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We present the first lattice QCD calculation of coupled 7w and z¢ scattering, incorporating coupled S
and D-wave zw in J¥ = 1*. Finite-volume spectra in three volumes are determined via a variational

analysis of matrices of two-point correlation functions, computed using large bases of operators resembling

single-meson, two-meson, and three-meson structures, with the light-quark mass corresponding to a pion

mass of m, ~ 391 MeV. Utilizing the relationship between the discrete spectrum of finite-volume energies

and infinite-volume scattering amplitudes, we find a narrow axial-vector resonance (J©¢ = 177), the
analogue of the b; meson, with mass mp =~ 1380 MeV and width 'y ~ 91 MeV. The resonance is found to
couple dominantly to S-wave zw, with a much-suppressed coupling to D-wave zw, and a negligible
coupling to z¢ consistent with the Okubo-Zweig-lizuka rule. No resonant behavior is observed in z¢,
indicating the absence of a putative low-mass Z, analogue of the Z. seen in zJ/y. In order to minimally
present the contents of a unitary three-channel scattering matrix, we introduce an n-channel generalization

of the traditional two-channel Stapp parametrization.

DOI: 10.1103/PhysRevD.100.054506

I. INTRODUCTION

Contemporary studies of hadron spectroscopy seek to
relate the spectrum of hadron resonances, including their
decay properties, to the fundamental theory of quarks and
gluons, quantum chromodynamics. The most successful
theoretical technique to achieve this has proven to be lattice
QCD which considers the theory on a discretized space-
time grid of finite size, allowing numerical calculation
of correlation functions through averaging over Monte-
Carlo generated field configurations. The discrete spectrum
in a finite volume corresponding to a particular choice of
quantum numbers can be extracted from a matrix of
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correlation functions, constructed using a basis of operators
which resemble the hadronic system being studied. The fact
that lattice QCD studies the theory in a finite volume can be
turned to our advantage—an approach introduced by
Liischer relates the discrete spectrum in a finite volume
to hadron-hadron scattering amplitudes. Initially this was
only for elastic scattering of spinless particles with the
system overall at rest with respect to the lattice [1-4], but
subsequent extensions generalize the formalism to describe
coupled-channels, particles with intrinsic spin, and moving
frames [5-12].

This approach has been applied to a number of cases in
which several coupled pseudoscalar-pseudoscalar channels
are present, for example zn, KK in which the scalar a
appears as a resonance [13], or zz, KK,nn where scalar
fo and tensor f, resonances appear [14]. Pseudoscalar-
pseudoscalar scattering with relative orbital angular momen-
tum defines the “natural parity” sequence, J©=0*,1-,2%,...,
where J is the angular momentum and P is the parity.
To observe resonances with two-body decays in the “unnatu-
ral parity” sequence, J* = 07, 17,27, ..., we must consider
the scattering of mesons with nonzero spin. An experimen-
tally observed example [15] is the b, (1235) resonance which

Published by the American Physical Society
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is dominantly seen through its decay to the zw final state,
where the w is the lightest isoscalar vector meson which has a
very small decay width to three pions.

Once we move into the pseudoscalar-vector scattering
sector, there can often be more than one partial-wave
construction having a particular J”. For example, in the
1T case relevant for the b,, we can have the 7 and w in a
relative S-wave or a relative D-wave—indeed, by studying
the angular distribution in the decay of the b, experiments
have estimated the amplitudes of these two partial
waves [16].

The finite-volume formalism to handle pseudoscalar-
vector scattering is in place [5], and has been tested
previously in a channel which did not feature a resonance,
namely zp scattering in isospin-2 with quark masses
sufficiently heavy such that the p resonance becomes a
bound-state, kinematically stable against decay to two
pions [17]. That first calculation determined the S- and
D-wave JP = 1% amplitudes and their dynamical mixing,
finding relatively weak effects as expected in this exotic
isospin channel.

In this paper we will report on a study of the J* = 1*
16 = 1% channel, where I is the isospin and G is G-parity,
in which we expect to see a b, resonance decaying to zw.
We make use of Ny =2+ 1 lattice configurations gen-
erated with a light-quark mass such that the pion has a mass
around 391 MeV. With this light-quark mass, the ® meson
is found to have a mass around 881 MeV [18,19], and
hence is stable against decay to three pions.

To study the b; we have computed matrices of corre-
lation functions in three lattice volumes, in several moving
frames (i.e., where systems have overall nonzero momen-
tum with respect to the lattice). To robustly determine the
finite-volume spectrum, a wide range of operators resem-
bling both single-hadron and multihadron structures were
included in the basis. These correlation functions provide
information which constrains the energy dependence of the
I¢ =17 JP = 17 scattering matrix whose channels are 7@
in S and D-wave, and, in addition, z¢> which is kinemat-
ically open in the considered energy region.1

A previous lattice QCD study [20] of the b; limited itself
to the rest-frame in one rather small volume. By consid-
ering only two degenerate flavors of light quarks and no
strange quarks, any physics associated with the z¢ channel
was disallowed. A very small operator basis was used, such
that only one usable energy level was obtained and this had
a statistical uncertainty at the percent level. Enforcing
elastic S—wave scattering only, ignoring any effect from
the D—wave, and fixing the decay coupling of an assumed
b, resonance at a value equal to that extracted from
experimental measurements, a crude estimate of the b,
mass was made in the case that the pion mass is 266 MeV.

'the ¢ is stable against decay to KK and zzz at the light-quark
mass considered.

An earlier study [21] used a different approach in which the
light-quark mass was tuned such that the b; decay to 7w is
exactly at kinematic threshold. From the time-dependence
of a single correlation function, an estimate of the decay
coupling was inferred.

In this calculation, we determine a large number of
finite-volume energy levels in multiple volumes and mov-
ing frames. We use up to 36 of these levels, each typically
having statistical uncertainty at the tenth of a percent level,
to constrain the coupled-channel scattering matrix.

As well as the 7w and 7¢ channels, we pay attention to
the fact that three-body channels, zzn and 7KK, which
have relatively low thresholds even for m, ~ 391 MeV, can
in principal play a role. Experimentally, three-body decays
of resonances are found to be dominated by two-body
isobar resonances. For example, in a zzn final state at
relatively small total energy, the Dalitz plot will be
expected to have the bulk of the events in narrow horizontal
and vertical bands around m,, ~ m, and mg, ~ mao.2

We will explore the role of these three-body channels by
including operators in our bases whose construction
resembles a meson coupled to a two-body resonance, in
a way which respects the symmetries of the finite cubic
lattice. No finite-volume formalism capable of rigorously
incorporating three-body scattering channels is yet suffi-
ciently mature to be applied in the current case, but there
has been significant recent developments [22-29]. Our
explorations will yield evidence that suggests that the three-
body channels have a negligible effect in this particular
case of a low-lying b, resonance.

To convert the finite-volume spectra calculated in lattice
QCD into scattering amplitudes, we consider parametriza-
tions of the energy dependence of the scattering 7-matrix
and the parameters are found which best describe the finite-
volume spectra. This approach allows us to explore the
resonance content of each J” in a rigorous way by
searching for the presence of pole singularities in t(s) at
complex values of s = E2. Poles lying relatively close to
the real energy axis typically have the real and imaginary
parts of their pole position interpreted in terms of the mass
and width of the resonance, and from the residue of #(s) at
the pole we can determine the relative couplings of the
resonance to its decay channels.

A relatively light b; resonance is expected based upon an
earlier set of calculations, performed on the same lattice
configurations used in this paper, in which the operator
basis was restricted to a set of fermion bilinears [18,19,30].
The resulting spectrum, which we expect to be incomplete
owing to the lack of multimeson operators, nevertheless
featured a JP¢ = 1+~ state near 1400 MeV, which had
strong overlap with, in particular, those operators which
resemble the ¢g spin-singlet, P-wave structure expected for
the b; in the quark model. Such a calculation can do no

There will also be a diagonal “reflection” of the a, band.
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more than indicate to us the likely presence of a narrow
resonance—in the current calculation we will rigorously
determine its presence and properties.

It has been suggested [31] that the z¢ channel, coupled
to 7w, may feature a Z; resonance analogous to the Z,.
enhancement that has been seen in the zJ/y final state
[32,33]. We will find no evidence of a Z; resonance in
this work.

The remainder of this paper is structured as follows. In
Sec. II we briefly review the calculation of finite-volume
spectra from correlation functions and describe our single-,
two-, and three-meson operator constructions. The lattice
setup used and relevant hadron masses and thresholds are
presented in Sec. III, and in Sec. IV we discuss the partial
waves which are present and our choice of operator bases.
The finite-volume spectra are presented and commented on
in Sec. V. In Sec. VI we discuss the techniques used to
relate these spectra to scattering amplitudes and apply them
to determine 7w {3S,}, 7w{D,} and z¢{3S,} amplitudes,
and in Sec. VII we examine the pole singularities of these
amplitudes. Systematic tests of our analysis are given
in Sec. VIII where we examine the effects of additional
partial waves, including those that mix due to the reduced
symmetry of the finite volume, and additional channels that
resemble 7z and 7K K. An interpretation of the results is
provided in Sec. IX and we conclude with a summary
in Sec. X.

II. SPECTRAL DETERMINATION AND
OPERATOR CONSTRUCTION

Working in a cubic volume of size L x L x L with
spatially periodic boundary condition discretizes momenta,
restricting to values P = (2z/L)(n,. ny, n,) where n; € Z.
For particles at rest with respect to the lattice, the infinite-
volume O(3) spatial symmetry is broken to that of the
double cover of the octahedral group with parity, O?, and
total angular momentum J and parity P labeling the
irreducible representations (irreps) of O(3) are replaced
by A”, the irreps of OP. In this work we only encounter
integer spin and therefore irreps of the single cover Oj,. For
particles “in-flight,” i.e., moving with respect to the lattice,
parity is no longer a good quantum number and the irreps A
are those of the little group of symmetries, LG(ﬁ), as
discussed in Ref. [34]. We write lattice irreps PA with
shorthand P = [nynyn.|, omitting units of (2z/L) for
brevity.

In order to robustly determine the discrete finite-volume
energy eigenstates in each irrep, PA, we first compute a
large matrix of two-point correlation functions, C(t);; =
(0|O;(r + tsm)O;(tsmﬂO), by employing a diverse basis of
operators (0;. These operators are constructed with the
desired flavor structure and subduced into the irrep PA
[30,35]. A variationally optimal determination of the

spectrum [3,36] follows from solving the generalized
eigenvalue problem for each irrep,

C(H)v™ = 2,(1)C(tg)v". (1)

The energy levels E, are determined by fitting principal
correlators Ay (t) to the form,

Aa(1) = (1= A)e B0 4 A e F0) (2)

where the second term soaks up any residual excited state
contamination. The eigenvector »™ can be used to construct
a variationally optimized operator, Qf, = Ziv;‘(’)j, effi-
cient at interpolating the nth eigenstate in the spectrum. We
refer the reader to Refs. [30,37] for further details of our
implementation and techniques for selecting a reasonable
value of ¢,.

Figure 1 in Ref. [38] demonstrates the importance of
having sufficiently “complete” operator bases in order to
reliably determine the complete spectra in a given energy
region. The region we study includes the opening of several
multihadron thresholds: 7w, z¢), nrwy, and 7KK, and we
find that this necessitates the inclusion of twomesonlike
and threemesonlike operators in our basis, as well as single-
meson operators of fermion-bilinear form which we expect
to have good overlap with any bound state or relatively
narrow resonance present. Four-meson thresholds lie
beyond the energy region we consider, and previous
calculations suggest that local tetraquark-like operators
have little effect on the spectra [39,40], so neither of these
types of operators are included in the basis. The con-
struction of interpolating operators resembling single-
meson, two-meson and three-meson structures is discussed
in the subsections which follow.

A. Single-meson operators

The construction of “singlemesonlike” operators follows
the procedure detailed in Refs. [30,35]. To summarize,

fermion bilinears wI'D...Dy are constructed with definite
J* and z-component of angular momentum M by appro-

<>
priately coupling products of gauge-covariant derivatives D
and Dirac y-matrices I'. These are then projected onto
definite momentum P and appropriate linear combinations

yield continuum single-meson operators 7" (1_5 t) of
definite flavor, labelled by M. Schematically,

OfM(P.1) = 3 e [pTD...Dy]™ (%, 1),

X

where for P # 0 we use helicity operators, labeled by
helicity 4 rather than M, as discussed in Ref. [35]. Single-
meson operators, transforming irreducibly under the sym-
metry of the lattice grid and boundary, OKA]A” (13), are
obtained by subducing,

054506-3



WOSS, THOMAS, DUDEK, EDWARDS, and WILSON

PHYS. REV. D 100, 054506 (2019)

O’ (P) = _SKIOM (P).

M

where SY)/ are subduction coefficients tabulated in
Refs. [30,35].

A large basis of operators can be constructed by combin-
ing y-matrices with various numbers of derivatives—here
we use up to three derivatives for operators with zero
momentum and up to two otherwise. Single-meson oper-
ators are written as 'y for the remainder of this article.

Optimized operators for the stable w (Q,,) and ¢ (Q;) in
each relevant irrep follow from variational analysis of a
matrix of correlation functions constructed using a basis of
quark bilinears with both hidden-light (#l'u + dI'd) and
hidden-strange (5I's) flavor structure. The required “anni-
hilation” diagrams are computed but, as shown in Figs. 4
and 5 of Ref. [19], they prove to be small in the vector
channel in line with the experimentally motivated Okubo-
Zweig-lizuka (OZI) rule. In each irrep, the @ appears as the
ground state, dominated by overlap with #l'u + dI'd, and
the ¢ as the first excited state, dominated by sLs.

The same flavor basis is used to determine the optimum 7
operator (Q,T,) in each irrep, but here significant mixing
between light and strange is observed through the annihi-
lation diagrams (see Figs. 2 and 3 in Ref. [19]), indicating,
as is well known, that the OZI rule does not apply in the
pseudoscalar channel.

The need to account for “in-hadron annihilation” when
considering isoscalar mesons will reappear when the
optimized operators are used in two-meson and three-
meson constructions as discussed below.

B. Two-meson operators

Our approach to constructing operators which resemble a
two-meson structure has been discussed in detail in
Ref. [41] and we specifically discuss vector-pseudoscalar
operators in Ref. [17].

We construct two-meson operators with definite flavor
and momentum in irrep A (row u) by taking appropriate
linear combinations of the products of optimized single-
meson operators Q,{m, each independently constructed to
transform irreducibly in some lattice irrep. Schematically,

O;A]A.IMZ (P12) = ZC([T’Q]A’/‘; [PrIAL w1 [Pa] Ao o)
P1-P2
HHY

x QU (B1)Qu " (52), (3)

where the sum is over the rows y; of the irreps A; and the
sets of momenta {p;}*, containing all momenta related to
p; by an allowed lattice rotation with the total momentum
D12 = Py + P, fixed—see Eq. (3.3) of Ref. [17]. For
|pil> <9(27/L)?, the set {p;}* is equivalently labeled
by the magnitude of the momentum |p;|. The sum is

weighted by lattice Clebsch-Gordon coefficients, C([p,]A,
s [P1]ALs s [Po) gy o) [411.

For energies below three-meson thresholds, previous
calculations suggest that a sufficient set of operators for
a reliable calculation of the spectra consists of single-
meson and two-meson operators. Two-meson operators
Oil\-/ﬂAlK/ﬂz (p12) are efficient at interpolating the finite-volume
energy levels near to the associated noninteracting energies,

2

’

2 - -
EY) = \[md +15:[2 4 \/m} + |5

and truncating the two-meson operator bases when the
corresponding noninteracting energies are beyond the
energy region of interest has been demonstrated to be
sufficient for a robust determination of the spectra. Two-
meson operators are written M3 My, in all tables and
figures for the remainder of this work.

The fact that a vector meson in flight is subduced into
multiple irreps means that there can be multiple MM
constructions for a single noninteracting energy. For
example, my @y subduced into the [000]7| irrep (which
contains J© = 1) can be constructed independently from
7(Ay) ® w(A;) or from z(A,) ® w(E,). Cases such as
these where the multiplicity of operators is greater than one
are discussed in detail in Ref. [17], and we indicate them
with a notation {n}.

Correlation functions with MM operators at the source
and/or sink feature Wick contractions in which quarks
annihilate either within an isoscalar meson or between two
mesons. Considering a basis with overall / = 1 as relevant
here, with M = aI'd and MM = {zw, z¢p}, we need to
evaluate diagrams whose structure is similar to those shown
in Fig. 1 of [42].

C. Three-meson operators

Three-meson 0perat0rs3 can be constructed by iteratively
applying the two-meson operator construction outlined
above. Schematically,

Ol (Pr3) =D _CU[Bras)Augts [Bro) Avzoptr: [ As. t3)

P12:73
H12:H3

> A -
X OLEe (512) Q4 (73) (4)

where Og/ﬂAlK/ﬂz is a two-meson operator constructed from
a product of optimized single-meson operators as in
Sec. I B. Note that it does not matter with which optimized
single-mesons we formed the intermediate two-meson

. A, - TA, - A, >
operator, 1.e., %/&mz(mz), OMZKA]3(P23)7 or O;/U,KM3(P13),

Jand operators with a structure resembling more than three
mesons.
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as the tensor product is associative. An argument for
determining a sufficient set of three-meson operators,
analogous to that presented previously, would suggest
calculating the corresponding noninteracting energies

= M+ B2+ \fmd + [Pl \fmd + B2

and enforcing a similar truncation on the basis. While this
approach has the advantage of being straightforward, it pays
no attention to the fact that we expect certain two-meson
pairs to feature resonating behavior, the finite-volume
analogue of the Dalitz-plot enhancements mentioned in
the Introduction.

Consider the example of zzz in isospin-2. Following the
construction above, we would be attempting to describe
energy eigenstates of the zz isospin-1 subsystem using
O'A" constructed using only “zz”-like operators. To
rehably determine the isovector zz spectra, i.e., the p
spectra, an operator basis including both yT'y and zz-like
operators is needed as shown in Fig. 1 of Ref. [38]. An
alternative approach, based upon this observation and used
in Ref. [39], utilizes an optimized two-meson operator
which will be a linear combination of yI'y and zz-like
operators. We denote such an optimized operator Q"Z,
where R indicates the meson with the corresponding
quantum numbers, i.e. Q;r, for the example above.* In
general, multiple optimized operators may be relevant—
Q}én denotes the optimal interpolating operator for the nth
excited state in the relevant meson-meson subsystem.

Combining these operators with an optimized single-
meson operator yields an alternative set of three-meson
operators, given schematically by

) = ZC([I?IB}A’/‘; [D12]A12, 123 [P3] Az, i3)

X Q’Alzﬂlz(

TAu -
OR,2M3 (P12

DQU (B3). (5)

By design, we anticipate that these three-meson operators
will efficiently interpolate finite-volume levels in the region
of an energy value

241
ESIIJF )= ﬁl‘z (P12) +/ m3 + | p3|*, (6)

where ERu (P12) are finite-volume energies calculated in
the two-meson subsystem in irrep [p12]A,, i.e., they will
efficiently capture interaction in the two-meson subsystem

assuming weak residual interaction with the third meson.

(2+1)

Calculating E, "’ energies, for all possible combinations

“Lattice irreps contain more than one spin but for convenience
we choose the label R corresponding to the lightest such meson,
e.g., in [000]T7 we choose p.

of two-meson subsystems that together with the third
meson give the desired quantum numbers, and truncating
at a desired energy, provides a procedure for selecting
which of these three-meson operators to include in
the basis.

To illustrate the construction presented above, consider
the example of a three-meson operator resembling zz7 in
the irrep [000]T] with 19 =1T7. We begin with the
construction shown in Eq. (4). For p; = p, = p3 =0,
there is only one possible irrep,

(1=1°)

— | e
[000]A7 ® [000]AT ® [000]JAT — [000]AT,
—— = =

I%=17)  (1%=0)

n 7 n

so no noninteracting zzn level, or corresponding operator,
appears in [000]77 at threshold. If the pions are both given
one unit of momentum, p; = p, = [001] and p3 =0
(recalling that directions of momenta p; are summed over
as detailed in Sec. II B), the product

(19=17)

— = =
f001]4, ® fo01]4, ® 700047 — T000]T] & ...
——— —— =

(I5=17) (19=0") (I°=17%)

T b4 n

appears once in [000]7] with I¢ =17, Following the
construction outlined in Eq. (4) yields one operator of the
form ij,, with corresponding noninteracting energy,

2 2
£ Zo mg+(f”) m,

Now we consider bound states and resonances in the 7z
and zn two-meson subsystems and construct operators
according to Eq. (5). Unlike in the previous construction,
the order in which we combine the single-meson operators
does matter as the intermediate Q;, depends on the flavor
structure of the two-meson subsystem. As before, for

P =P, = Py =0 there is no [000]77, while for p, =

P> = [001] and p3 = 0, there are two possible distinct two-
meson subsystems.

First, for the zz subsystem, there are three possible
flavor combinations, /¢ = 0%, 1%,2%, and three possible
irreps with momentum J;, = 0, namely [000]A ", [000]77T,
and [000]E*. When combined with the 7, only the zz
subsystem with /¢ = 17 transforming in [000]77 gives the
desired overall flavor and irrep. This zz subsystem contains
quantum numbers corresponding to the p and the con-
struction is, schematically,

054506-5
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(16:1—) (16:1—> ([G:0+) (IG:1+)
— —N—
([001]A2 ® [001}A2) ® 1000]4; — 000)TF
——— N — N —
T T n
(1=1) o=ty (%=1

P ovitvnn D sovitwu S sy
000]7; ® f000]A; — T000]Tf.  (7)
—_ =

P n

Calculating the Eff:’l) energies amounts to determining the

p-like energy eigenstates in [000]77 with /¢ = 1T and
adding these to the 5 energy according to Eq. (6),
-
Ei ) = E,4((000]) +m,.

where we recall that p™ denotes the nth energy eigenstate
within the irrep. In many cases, including here, only the
lowest energy two-meson state (n = 0) yields an operator
below the energy cutoff.

The second possible construction considers the zn
subsystem where there is only one flavor combination,
16 = 17, and one possible irrep, [001]A;. These quantum
numbers correspond to the a, meson. Schematically,

(19=17) (16=0") (I15=17) (I16=1%)
—N— — ——
([001]A2 ® [000}A1—> ® 001)A, — 000]77
N~ —— ~——
n n n

(f=17) (%=1
—_— .  — Jp—"———
[001]A; ® [001]4, — [000]TF,  (8)
— N —

ay T

(1°=1%)

and, as before, we determine the Eff:rl) energies by

calculating the ay-like energy eigenstates in [001]A; with
I¢ = 1~ and add these to the 7 energy according to Eq. (6),

@+1) _ A [ 2, (272
En.i. - an"([OOl]) + my + (f) .

For each Er(f:rl) below some energy cutoff we can construct

operators of the form O}, via Eq. (5). The E;‘(;.. ([o01])
energies are an example of a case where it may be prudent to
consider multiple states (n > 0) in the two-body sector.
Figure 4 of Ref. [13] shows the [001]A; spectra correspond-
ing to the Eﬁ;n ([001]) energies—there are many nearby low-

lying energy levels on each volume. Following the
construction given in Eq. (5) leads to multiple operators
of the form O}, corresponding to similar El(fifrl).

The use of RM operators to efficiently interpolate finite-
volume states above three-meson thresholds requires the
calculation of a large number of diagrams. As an example,
consider the case of an ayz operator at the sink, where the
optimized a operators are linear superpositions of ul'd, zn,

and KK constructions (see Table VII). This leads to the

ald jj

T

1)
9

KK|,

FIG. 1. Quark propagation lines (black are light quarks, green
are strange quarks) from operator constructions featuring in an
optimized a,-like operator.

FIG. 2. Wick contraction topologies for b; — ayz. Left meson
resembles the by, upper right meson the 7 and the remaining one
or two mesons the @, (only a subset of the topologies in Fig. 1 are
relevant here).

diagram components shown in Fig. 1, which need to be
connected to the quark lines from the x and the source
operator to form complete Wick contractions. It follows
that even in the simple case of b; — ayz correlators we
would have diagrams with the structures shown in Fig. 2.

III. LATTICE SETUP

Correlation functions were computed on anisotropic
lattices of spatial volumes (L/a,)? =163, 20° and 243
each having temporal extent 7/a, = 128, where the tem-
poral lattice spacing, a,, is finer than the spatial lattice
spacing, a; ~ 0.12 fm, with an anisotropy & = a,/a, ~ 3.5.
Gauge fields were generated from a tree-level Symanzik-
improved gauge action and a Clover fermion action with
N; =2+ 1 flavors of dynamical quarks where the strange
quark is tuned to approximately its physical mass and the
degenerate light quarks are such that m, ~391 MeV
[43,44]. We utilize the distillation framework [45] to
compute correlation functions as successfully demonstrated
in many previous works. All relevant Wick contractions
were calculated within this framework without requiring
additional propagator inversions beyond the basic set of
tge —t and t —1t “perambulators” for light and strange
quarks which were computed for use in previously reported
calculations. The very large number of diagrams incurs
only a combinatoric cost associated with the contraction of
the perambulators with the operator constructions.
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TABLE I. Number of distillation vectors N,.., gauge configu-
rations N, and time-sources Ny used in the computation of
correlation functions.

(L/ax)3 X (T/a[) Nvecs chgs Ntsrcs
163 x 128 64 479 8-16
20° x 128 128 452-603 4
243 x 128 160 553 4

Correlation functions were computed using the number
of distillation vectors, gauge configurations, and time-
sources shown in Table I. Typically, we calculated all
the elements of the matrix of correlation functions, includ-
ing the transposes, C;; and Cj;, which are related by
Hermiticity. In a few cases where there are a particularly
large number of diagrams contributing, we made use of
Hermiticity to infer C;; from the computed C;;.

Masses of relevant stable hadrons are shown in
Table II, where 7, K, ;7(’), and o masses are taken from
Refs. [13,14,41,42] respectively. Using energy levels on
three lattice volumes, we determine the masses and
anisotropies of the w and ¢ mesons from fits to the
dependence of the energy of a stable hadron of momentum,
B = (22/L)i

5, , L2 \?_,

(@sP = (P + 5 () e )
up to discretization effects, as shown in Fig. 3. We observe
the same characteristic splitting between the || =0, 1
components as was found for the stable p meson in
Ref. [17] at larger quark mass, and we attribute this
splitting to discretization effects given that the finite-volume

TABLE 1II. Left: The masses of relevant stable hadrons
with uncertainties. Right: Relevant threshold energies with
uncertainties.

meson (J7) a,m
7z(07) 0.06906(13)
K(07) 0.09698(9)
n(07) 0.10364(19)
a(0T) 0.1316(9)
w(17) 0.15541(29)
7' (07) 0.1641(10)
$(17) 0.17949(21)
threshold a,E,,

Tw 0.22447(32)
zan 0.24176(26)
e 0.24855(25)
nKK 0.26302(18)
nne 0.26972(92)
ARTTT 0.27624(26)
77 0.30222(102)

& = 3.416(8)

(@, Eq)*
£=3471(6) W

0.07 -
£ = 3.408(13) [x*/Nur =28
g & = 3.481(10) [N = 1.7

0.06 |-
0.05 - .

0.04 A

o
E/
0.03 /
1
0

FIG. 3. Momentum dependence of @ and ¢ energies and fits to
Eq. (9). Blue and red lines correspond to the @ meson with |1 =
0 and 1 respectively. Similarly, green and orange lines correspond
to the ¢ meson with |A| =0 and 1. Points are shown with
statistical uncertainties and grey points show the (L/a,) = 16 in-
flight energies which are not included in the fit.

I | 1 I < 2m )2‘7?‘2
0.1 0.2 0.3 0.4 L/as

effects here are small. The values of a,m,,, a,my, and & we
use are obtained by taking the largest variations within one
standard deviation of the means across the different hel-
icities. This yields the masses given in Table I and an
anisotropy & = 3.443(48) which is consistent with the
anisotropies previously determined for =z, K, and p
[13,41,42].

IV. PARTIAL WAVES AND OPERATOR BASES

In this study we are principally interested in irreps that
contain J¥ = 17, For irreps at rest, J© = 1" subduces only
into 7. However, for in-flight irreps, different helicity
components of J” = 1% are subduced across multiple
irreps as shown in Table II of Ref. [41]—for example,
A =0 and £1 subduce into A, and E, respectively for
overall momentum P = [001]. Furthermore, at nonzero
momentum parity is no longer a good quantum number
and so many irreps contain both J* and J~, e.g., 17 and 17,

We will restrict our attention to PA, in-flight irreps—
these contain subductions of the 1 = 0 part of J* = 17 but,
because reflection parity i7 = P(—1)” is a good quantum
number for 4 = 0, they do not contain J¥ = 17. In contrast,
[001]E, contains J© = 17 as well as J* = 17—the latter
gives comparatively lower-lying J* = 17 levels, as seen in
Ref. [38], and so will lead to a dense spectrum of mixed
JP = 1% and 1~ energy eigenstates. Considering only f’Az
allows us to avoid the complication of disentangling the
JP = 1" and 1~ scattering amplitudes.

The partial-wave content of a pseudoscalar-vector sys-
tem for irreps [000]7] and PA, with |P|> <4(2z/L)?* is
given in Table III. There we make use of the 2571#; notation
for meson-meson scattering, where 25 + 1 = 3 reflects the
unique spin-coupling in pseudoscalar-vector scattering, and
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TABLE III. Partial-wave J”(3%¢,) content for pseudoscalar-

vector scattering in irreps PA containing J¥ = 1%, transcribed
from Ref. [17]. A subscript [N] indicates that this J” has N
embeddings in that irrep.

TABLEIV. [000]7 operator basis for each lattice volume, with
operators ordered by increasing E, , . The maximum number of
single-meson operators, N, is denoted by N x yI'y; various
subsets of these were considered to obtain robust fits. The number
in braces, {Nu}, denotes the multiplicity of linearly indepen-

000]T7 00n]A, OnnlA, nnn|A, dent two-meson operators if this is larger than one.
1 p g
0~ (*Py) 0~ (*Py) 0~ (3Py) L/a 16 20 24
38, 38, 38, 38, _ _ _
1+ (3D ) 1+ (3D ) 1+ (3D ) 1+ <3D > 22 x yTy 22 x yTy 22 x yTy
! ! o+ (3D l) ! T1000] @ [000] 7[000] @[000] 71000]@[000]
3p 3P2 3p 7[000] P[000] 7[000]P[000] Z000] Plooo]
2” (3 FZ) 2 (3 Fz) 2 (; F2> P[000]1[000] £1000}1[000] £1000]1[000]
2 2/ 2] 2 ¥ R R
3D 3D 3D 3D K[OOO]K[OOO] K[OOO]K[OOO] K[OOO]K[OOO]
3t (3 g) 3t (z %> 3t (3 3) 3t (3 2) {2} 7001 @)001)
Gs °Gs G3) G3)

Z is the relative orbital angular momentum. The use of the
¢ — § basis, over say the helicity basis, is for convenience;
in particular, the threshold behavior of a partial-wave of
definite # is known.

Table III includes cases where two >571#; constructions
appear with the same J”—in these cases the scattering
matrix is 2x 2 in the case of a single meson-meson
channel, e.g., for J¥ = 17 scattering of 7w, the #-matrix is

(aw{*Si}ao{’D\})  Haw{°D\}zo{D:}),

(10)

. <r<nw{3sl}|nw{3s1}> (0’5} w0 {*D,}) >

where the symmetric nature of the matrix follows from
time-reversal invariance.

The relevant thresholds for the isovector sector with
positive G-parity are shown in Table II. In the construction
of correlation matrices we utilize two-meson operators
resembling 7@ and z¢ and three-meson operators resem-
bling zzn and 7KK. All three-meson operators are of the
form O&M corresponding to py and agn for man-like
operators and agzw, K*K for zKK-like operators.” K*K
operators are constructed with definite G-parity analogous
to the KK operators in Ref. [46]. For the wzo—threshold,
three-meson operators resembling po and a;z were con-
sidered for inclusion. These appear in a relative P-wave in

the [000]7; and PA, irreps at values of EZ™ that lie far

n.i.
above zznn-threshold. Similarly, relevant zzo noninteract-
ing energies, Er(131) are far beyond smzaz-threshold.
Although the construction of operators resembling four-

mesons could be done analogously to the three-meson

The optimized operators QTR for p, ay and K* used in RM
operator constructions are determined independently in each
relevant irrep using variational analysis with the operator bases
that are presented in the Appendix B.

operator construction described above, we do not include
these in our basis and choose to restrict to energies below
the wrazz-threshold.

The operator basis used for the [000]7 irrep on each
lattice volume is presented in Table I'V. Included are all two-
©)

meson and three-meson operators corresponding to £

and Eff;rl) below zzzz-threshold.® The operator lists for
I3A2 irreps with P#0 are presented in Appendix B—we
include, as well as all low-lying two-meson operators, also

the lowest three-meson (RM) operator in each irrep, with
the intention of robustly determining the spectra up to the

lowest Ef;rl) or Er(fl) energy. As well as providing many
more energy levels with which to constrain the scattering
matrix, moving frames are required to determine the sign of
the off-diagonal element, t(zw{3S,}|z@{’D,}), as previ-
ously explored for zp scattering in Ref. [17].

In order to estimate the strength of partial waves with

J >2 that appear alongside our desired J© =17 in

[000]7| and PA,, on the largest volume we also computed
spectra in irreps [000]E~, [000]T5, [001]B;, and [001]B,,
whose partial-wave content is presented in Table V. As well
as the pseudoscalar-vector partial waves presented in the
table, the [001]B; and [001]B, irreps also contain a
pseudoscalar-pseudoscalar J© =3~ (!F;) partial-wave.
The operator bases used for these irreps are presented in
Appendix B.

In summary, because we are considering the G-parity
positive isovector sector, the neutral channels have charge-
conjugation C = —. The contributing J¥¢ includes our
target 17~ where we expect a low-lying b, resonance,
which in the quark model would be a ¢g spin-singlet in a
P-wave. 27~ and 37~ are expected to resonate at a somewhat
higher energy, corresponding to p,, p; resonances which
would be spin-triplet D-waves in the quark model. Still
higher we might have a 37~ resonance, b5, as a spin-singlet

“There are no E') below 4m,, in [000]T7 .
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TABLE V. Partial-wave J”(3%,) content for pseudoscalar-
vector scattering in irreps with lowest J = 2.

[000]T5 [000]E- [001]B, (001]B,

2*(°D,) 2*(°D,)

F-wave ¢g. 07~ and 21~ are exotic—they do not appear in
the gg quark model and previous lattice calculations [30]
suggest that they may resonate in the form of hybrid mesons
at much higher energy. Because they do not resonate, and
feature at least a P-wave threshold suppression, it follows
that we expect all partial waves except J* = 17 to be small

at low energies, and indeed we will find this to be the case
below.

V. FINITE-VOLUME SPECTRA

The spectra determined from variational analysis of
[000]T correlation matrices on three volumes using the
operator bases in Table IV are presented in Fig. 4. For the
largest lattice volume (L /a, = 24), the principal correlators
and operator-state overlaps, Z' = (n|O!(0)|0), are also
provided for illustration. The typical magnitude of stat-
istical uncertainty on the energy levels, even relatively high
in the spectrum, is at the level of a few tenths of a percent.
It should be clear from the operator-state overlaps that
our operator basis is rather efficiently “latching on” to the
finite-volume eigenstates. In some cases an eigenstate has
a dominant overlap with only one operator, suggesting
that the state closely resembles that particular operator
structure.

a;Eem = :Z excluding pn, K*K ops.
0.29 } e [ e Hee 4 0.29 |
i - = o Uxo s 10 15 20 25 30 §
028 | . f s 028 |
TTTT [thr. E - ;= N ) - nh-h ' E
027 | - ; 027 | \
{2} moo1 — )
B g g Pew E d b || B
TKK|ihy | == 2= =55 oz s i R H S S e N K= O
0.26 L 1 0004% 000 § 0 s 10 15 20 25 30 0.26 L §
""" " e oo™ - - B ::) SR T }
025 | ) , = 025 | e
ol —E‘_E—TWOOU%OU N -2
] B T i )
1] thr. o N T T~ E. Mo i aingd
024 | S b . t! 024 b
0.23 | AN 0.23 b
? 10 - ...{u}l
7w |t '—T——E—- T000%000 = B B R S 3_{ 5
022 E o P— g 021 %
| | | L/a a :: ] ""eecsases n}{;}n i 1551 ! | |
S .
16 20 24 - B A S 16 20 24

FIG. 4. Left: Finite-volume spectrum in the [000]7; irrep on three lattice volumes. Black points give the energy levels, including
statistical uncertainties, from a variational analysis using the operator bases in Table IV. Solid curves are two-meson noninteracting

. 2
energies, a,EiLi)',

short dashed horizontal lines are a,EI(f;r')

, and long dashed horizontal lines show the two—, three—, and four—-meson

thresholds. Multiplicities (if greater than one) are shown as {n}. For each energy level on the largest volume, we show the principal
correlators, plotted as A, (t, ty)e("=) for £, = 10a, so that a horizontal line is observed when a single exponential dominates. Points
show 1, (¢, 10) and error bars correspond to the one-sigma statistical uncertainty. Curves show fits to the form described in the text; the
curves show the fit range and gray points are not included in the fit. The histograms show the operator-state overlap factors,
Z" = (1O} (0)|0), for each energy level on the largest volume for the MM = 7@ (dark blue), z¢ (green) and RM = pr (blue-green),
K*K (purple) operators along with a sample set of single-meson operators subduced from J” = 1% (red) and J* = 3% (orange). The
overlaps are normalized such that the largest value for any given operator across all energy levels is equal to one. Right: The spectrum
extracted when pn and K*K operators are excluded from the basis (black) compared with the complete spectrum (gray).
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FIG.5. Finite-volume energy levels in the cm-frame for [000]7} and 1_5A2 below the lowest E

[011] Ay

N T011%000
T000P011 %
/ . -
_______ T {2} Too1wWoot TN T T TN T
Tt hr 0014000 ﬁ
0.24 | L L § L L

[111] A,

(002] A,

{2} To11wo01
To00P111

{2} Too1wo11

J

To00Wo11

} To00W111
B mﬂ'umwum

24 16 20 24 16 20 24

(2+1)

n.i.

or ESR Black points are used in the

scattering analysis in Sec. VI while gray points are excluded from the main analysis as discussed in the text. Solid curves are two-meson

(2)

noninteracting energies, a,E"

, short solid gray horizontal lines show the lowest E

(2+1)

or £ (3)

n.i

, and long dashed horizontal lines show

the two—, three—, and four-meson thresholds. Multiplicities (if greater than one) are shown as {n}. The horizontal axes are in units

of L/a.

Consider first the number of energy levels expected
below a,Eqm =~ 0.27 on each volume. In the absence of
residual meson-meson interactions we would expect four
on each lattice volume: one at each of the two Er(lzl)

corresponding to mono®gpo and mopoPogp, Shown as solid

horizontal lines in the figure, and one at each of the Eff:”

corresponding to pooofoon and KE‘)OOI_(OOO, shown as short
dotted horizontal lines. Counting the number of energy
levels actually extracted, we find five, with an “additional”
level appearing near z¢b threshold. This may suggest the
existence of a narrow resonance, as seen in calculations of
the p resonance [38,46], with a mass close to 7¢ threshold.”
On the largest volume, the effect of there being two ways to
construct myy gy can be seen: two energy levels are
found, one very close to the noninteracting energy and one
somewhat higher in energy.

In Fig. 4 we also present an investigation of the
importance of including RM operators in the basis. The
rightmost panel shows the spectrum extracted when py and
K*K operators are excluded, compared to the spectrum
extracted with the full basis—with the smaller basis we see
that typically the levels close to the pn and K*K “non-
interacting” energies are no longer found. The spectrum at
lower energies shows only modest discrepancies, except on
the smallest lattice volume (L/a, = 16) where we might
indeed expect the finite-volume effects associated with pn
and K*K to be largest. Finding “incorrect” spectra due to

"We will later find that the proximity of the resonance to ¢
threshold is a coincidence—this is hinted at by the operator
overlaps in Fig. 4 as discussed below.

“incomplete” operator bases has been demonstrated in
previous works. One example can be seen in Fig. 1 of
Ref. [38] where including both yI'y and zz operators is
shown to be essential in order to robustly determine the p
spectrum. Figure 4 demonstrates an analogue of this for the
case of three-meson operators.

Some qualitative observations about the spectrum can be
gleaned from the operator-state overlap factors shown in
Fig. 4. The energy level just below zw threshold on all
volumes has significant overlap onto both 7y @go and
wT'y operators, as one might expect if a ¢g-like resonance
lies nearby. For the two levels in close proximity to z¢
threshold, one appears dominated by wT'y operators with
some overlap onto 7w, py and K*K operators, while the
other is completely dominated by zyyy¢poo. Furthermore,
we observe that all other levels have very small overlaps
with the 7gy0Pooo operator, reflecting the fact that the matrix
of correlation functions is approximately block diagonal
with respect to 7gooPooo- This suggests that z¢ is essentially
“decoupled,” as might be expected from the OZI rule which
postulates that gg pairs in isoscalar mesons prefer not to
annihilate. The states close to the py and K*K noninteract-
ing energies are observed to have large overlap with py and
K*K operators respectively. The highest two states shown,
near to the mgy @y two-fold degenerate noninteracting
energy, differ somewhat in their overlaps. The level shifted
up has overlap with both the 7yy;®go; and Ty operators,
while the other, which lies on the noninteracting energy, has
significant overlap only with the 7y @qy; operators.

In Fig. 5, we present the cm-frame finite-volume

spectrum for irreps [000]7 and PA, on the three volumes,
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FIG. 6. As Fig. 5 but for irreps [000]75, [000]E~, [001]B, and
[001]B, on the largest lattice volume. Dashed curves show
noninteracting two-meson energies where the corresponding
operator was not included in the basis.

with only those levels found below the lowest EEIQIJr D or ESI)

shown.® Points in grey are levels that prove to be sensitive
to the presence of py, K*K and ayr operators in the basis,
or which are very close to the energy cutoff, and these
levels are excluded from the main scattering analysis in
Sec. VI. Although we take a conservative approach and
exclude these levels, we will find in Sec. VI that they are
mainly well described by the scattering amplitudes, and we
reexamine these levels_in Sec. VIIL

For irreps PA, with P # 0, the density of energy levels is
much higher than in irreps at rest—more momentum
combinations for two—and three—mesons with associated
Effl) E[(f;rl), and E1(131) lying below the zzzn—threshold are
possible. This can make identifying an “additional” level
more challenging in these irreps. However, in the [111]A,
irrep we can clearly see an additional energy level on each
volume relative to the number expected from counting the
noninteracting two-meson energies. We also observe an
“avoided level crossing” where the 7yyy®;1; noninteracting
energy crosses a,Egy, ~ 0.25, another hint that we may
have a narrow resonance in this energy region.

In Fig. 6, we present finite-volume spectra on the largest
lattice volume for irreps [000]75, [000]E~, [001]B; and
[001]B, where the lowest contributing spin is J = 2. We
observe very little deviation of the extracted energy levels
from noninteracting zw energies, suggesting that the zw
scattering amplitudes in J > 2 partial waves are very small

®Error bars on the energy levels include estimates of systematic
uncertainly coming from varying #, and fitting time ranges, and
reasonable variations of the operator basis. Also included is the
effect of the uncertainty on the anisotropy which appears when
we boost back from the “lab” energy to the cm frame.

in this energy region. We also find levels in [001]B; and
[001]B, consistent with noninteracting zz energies and
with dominant overlaps onto 7z operators. This is in line
with the results of Ref. [38] where the zz{'F5} amplitude
(JP =37) was found to be consistent with zero in this
energy region. We also find a level in [001]B; consistent
with the noninteracting KK energy and with dominant
overlap onto KK operators, suggesting that the opening of
the KK threshold does not enhance the scattering in
JP =3~

VI. SCATTERING ANALYSIS

Finite-volume energy levels and infinite-volume scatter-
ing amplitudes are related through a quantization condition
derived by Liischer [1,2,4] and extended by many others
[5-12,47] to accommodate the most general case of two
particle scatterin_g. The quantization condition, subduced
into lattice irrep PA, can be expressed as the determinant of
a matrix in the space of intrinsic spin S = S; @ S,, orbital
angular momenta 7, total angular momenta J, the embed-
ding number n of a particular partial-wave in lattice irrep

PA and hadron-hadron channel a. Written compactly,
following the notation of Ref. [17],

detisyuay[L+ip-t- (14iM)] =0, (11)

where the determinant over intrinsic spin is trivial in the
current case as S takes only the value 1 for vector-
pseudoscalar scattering. Here #(E.,) is the scattering
t-matrix,” diagonal in J with components terasd' b
The diagonal matrix of phase-space factors p(Egy) has
components

2k (a)
Peiac b = Ore01y8ap E—
cm

where k@ is the cm-frame momentum for hadron-hadron
channel a,

K = B = ()4 [ = (ol =}
cm

Both ¢ and p, being infinite-volume quantities, are diagonal
in embedding number n and we have dropped this index
for brevity. Lastly, M(Egm,L) is a matrix of known
functions, diagonal in hadron-hadron channel, describing
the kinematics of the system in a finite cubic volume, with
components M,z ;4 ¢

The subduced quantization condition in Eq. (11) reflects
the little-group symmetry. The finite-volume spectrum
calculated in irrep PA depends upon the various partial-
wave amplitudes present in that irrep (see, e.g., Tables III

%related to the unitary S-matrix via § = 1+ 2i N/ RV
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and V). In this way computing spectra in multiple irreps
offers additional constraints on scattering. Further details
can be found in Appendix C of Ref. [17].

Equation (11) is limited to describing two-body
scattering—developments in the pursuit of a correspond-
ing three-body formalism [22-29,48-52] have seen
significant recent progress towards a general quantiza-
tion condition, but they are not yet mature at the level
where we could apply them in the case considered in
this paper. We therefore mainly restrict our attention to
the two-body channels, 7@ and z¢, and in Sec. VIII we
estimate the systematic effects of neglecting the three-
body channels zzn and 7KK in the energy region
considered, finding them to be small.

In the case of elastic scattering, where a single meson-
meson channel appears in a single partial-wave, the
t-matrix can be expressed in terms of a single real
energy-dependent phase-shift §(Eqpp), where

e'(Eem) sin §( Egm). (12)

In this case we can invert Eq. (11) to obtain a one-to-one
relation between E, and §(Egy,). Given a set of discrete
energy levels below the inelastic threshold, we can hence
obtain a set of phase-shift points. In the case considered
in this paper, there is never rigorously elastic scattering—
as soon as the 7w threshold opens, in J¥ = 17 there are
always two coupled partial waves, 3S; and 3D;. However,
at low energies the angular momentum suppression of
the D-wave may make the system effectively elastic in
S-wave.

For scattering with more than one partial-wave or
hadron-hadron channel, there is no longer a one-to-one
relation between E;, and elements of the f-matrix and
we choose to make progress by parametrizing the
energy dependence of #(E.y). In order to calculate
the scattering amplitudes using Eq. (11) we follow
the successful approach detailed in [41]. In brief, taking
an appropriate parametrization of the scattering r-matrix,
we calculate the energy spectrum in each irrep using
Eq. (11). By varying the free parameters in the para-
metrization, we find the best description of the finite
volume spectra by minimizing a y?, described in Eq. (9)
of Ref. [38], measuring the agreement between finite-
volume spectra obtained in the lattice calculations and
those found by solving Eq. (11) with the parametrized
t-matrix. To ensure that we have not introduced bias by
any particular choice of f-matrix parametrization, we
repeat the analysis for a range of parametrization forms,
establishing which features of the resulting amplitudes
are robust.

A very convenient approach to building parametrizations
of the f-matrix is to work in terms of a real symmetric
K-matrix, K(s), where s = EZ,

1 1
[ )] esaras = W (K= () s (207

+ 8ol (), (13)

and 1,(s) =1,(s)8,, is a matrix diagonal in hadron-
hadron channel. Unitarity of the S-matrix is guaranteed if
Im/,(s) = —p,(s) above threshold in channel a and zero
below. A simple choice is 1,(s) = —ip,(s). Alternatively,
the Chew-Mandelstam prescription [53] defines Rel,(s)
through a dispersive integral featuring p,(s)—this has
improved analytic structure as we transition across
thresholds and move away from the real energy axis.
A detailed discussion of our implementation can be
found in Ref. [42].

One parametrization we utilize expresses the compo-
nents of K~!(s) as polynomials in s,

N

K ) garan = 3 s 5" (14)
n=0

where ¢ is a real symmetric matrix. Flexibility
in this form comes from varying N and allowing

parameter freedom in different combinations of e
£laf'Ib

coefficients.

An alternative approach is to parametrize the compo-
nents of K(s) directly, using a parametrization of the
form

N
Kt’]a,f’]h(s) _ gf]a(sz)gf’lb(s) + Z},,(fn])a o ", (15)
m-—s — ’
where m is a real parameter, g,;,(s) is some real
polynomial in s, and ¥ is a symmetric matrix of
real parameters. These forms assume nothing about a
nearby resonance or bound state but the pole
can efficiently describe such behavior where it is
present. These and similar K-matrix parametrizations
have been successfully used in previous lattice QCD
calculations of three coupled-channel resonant scatter-
ing [13,14,54] and nonresonant vector-pseudoscalar
scattering [17].

As an explicit example, one that we will make use of
later, consider a K-matrix parametrization suitable for
describing the dynamically coupled J¥ = 1% channels
70{38,}, 7w{?D,} and 7¢{3S,}."° One possible choice,
with 7 free parameters, is

"In principle, we should also consider ¢ in the 3D, partial-
wave; however, suppression due to the centrifugal barrier factor,
compounded with strong OZI suppression of z¢, suggests it
will be negligibly small and we find later in Sec. VIII that the
amplitude is consistent with zero in the energy region we
consider.
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where this form allows mixing between zw and ¢
channels only through g, 1.

To include additional partial waves that contribute as a
consequence of the finite-volume but which do no mix in
an infinite-volume, i.e., those with distinct J¥ as seen in

Table 11 for irreps [000]7 and PA,, we write the 7-matrix
in block-diagonal form with each block corresponding to a
JP. We refer the reader to Ref. [17] for more details.

Statistical uncertainties on the scattering parameters and
parameter correlations are determined by calculating the
second derivatives of the correlated y? at its minimum.
We make a conservative estimate of systematic uncertain-
ties on each scattering parameter due to the uncertainties
on stable hadron masses and the anisotropy by repeating
the y?> minimization fitting procedure at all the various
combinations of & + 6 and m; £ 5mi.“ For each of these
minimizations, we keep the finite-volume energies, Eqn,
their corresponding uncertainties, 0Egy, and correlations
between energy levels fixed, where

1 /2 R
a,Ecn = f(a;Eja, &) = \/(atElat)2 - 5_2 (Tl)z‘nP

- or \? f\?
aSEem = \/(m) (a,6Eq)* + <8_§> 6et, (17)

and Ey is the energy in the lattice frame. For each
scattering parameter, the largest change in the central value
is quoted as its systematic uncertainty.

Utilizing the approach outlined above, we now deter-
mine scattering amplitudes starting with a single partial
wave using energy levels below z¢ threshold, and pro-
gressing to a larger set of partial waves using the full set of
energy levels.

A. “Elastic” nw{3S;} scattering

Below z¢p threshold, the kinematically open hadron
channels are the two-body 7w and three-body zzn. We
expect 7z to become an important channel near the lowest
Effi_ﬂ) where the p resonance enhances zz as discussed in
Sec. II C. Below this energy, we expect the need to have a

"Values of the anisotropy, masses and uncertainties are given
in Sec. III.

(16)

P-wave to get overall J¥ = 17 will strongly suppress the
amplitude. The lowest Eff;“l) in each of the irreps we
consider is typically much higher in energy than z¢
threshold, and so we will initially propose that we can
ignore zan.

In this energy region only slightly above 7@ threshold,
the centrifugal barrier suppresses contributions of higher-
partial waves, tz; s1; ~ kf;#/, such that we expect the 3D,
contributions to the coupled 3S,, 3D, partial waves to be
rather small. Similarly, 7@ scattering amplitudes in other
partial waves that appear in these irreps due to the finite
volume, as shown in Table III, are expected to be sup-
pressed relative to the 3§, amplitude and to have no
significant resonant enhancement below z¢ threshold. It
follows that we can attempt an “elastic” analysis in terms of
pure 70 {3S,} — 7w{3S,} scattering at low energy.

We use 20 levels, all at least 1o below the z¢ threshold.
Specifically, for each irrep these correspond to the lowest
level on each of the (L/a,) = 16 and 20 volumes and the
lowest two levels on the (L/a,) = 24 volume,'* shown as
the black points below z¢ threshold in Fig. 5. The resulting
discrete phase-shift points are plotted in Fig. 7, where we
see that the trend is for them to increase toward a value
close to 90° as they approach the energy cutoft at z¢
threshold. This is certainly consistent with a resonance
located somewhere near to that energy.

Instead of extracting discrete phase-shift points, we can
also fit the spectrum using energy-dependent parametriza-
tions of elastic scattering; a selection of choices which
describe the finite-volume spectra well are included as gray
curves in Fig. 7 with the details of the parametrizations
presented in Appendix C. One description, chosen as a
reference amplitude and plotted as the blue curve in Fig. 7,
is given by,

gfsz{zsl}

K(s) = (18)

using the Chew-Mandelstam prescription for I(s) with
Re /(s = m?) = O—see Appendix B of Ref. [42]. The best
fit description of the finite-volume spectrum is

m-—S

20On the (L/a,) = 24 volume, of the two levels close to z¢
threshold, the slightly lower level is included but the slightly
higher level, essentially a decoupled z¢) energy level as indicated
by the histograms in Fig. 4, is excluded.
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FIG.7. rw{3S,} elastic phase-shift assuming no 3D, amplitude.
The blue line shows the reference amplitude given in Eq. (19)
with the blue bands reflecting the statistical (inner) plus system-
atic (outer) uncertainty. Gray lines and bands correspond to a
range of parametrizations presented in Table XIV of Appendix C
with only the statistical uncertainties shown. The point size (small
to large) of the discrete phase-shift point encodes the lattice
volume (small to large).

m = (0.2472 + 0.0007 & 0.0003) - a;! [1 - 0.04}

Gropis,) = (0.068 % 0.009 £ 0.010) - a' 1
15.1
2/ Ngor = = = 0.84, 1
X7/ Naot 20_3 08 (19)

where the first uncertainty is statistical and the second is
systematic as discussed above, and where the matrix shows
the correlations between the parameters.

B. Dynamically coupled 7w {3S;}, 7w {°D,} scattering

Now we relax the assumption of negligible 7w{*D}
contributions and perform a coupled-channel analysis on
the dynamically coupled 7w{3S,} and z@{’D,} system,
restricted to the same low energy region below z¢ thresh-
old as in Sec. VIA. Motivated by the suggestion of
resonant behavior in the zw{3S,} phase-shift in the
previous section, we should allow for a resonance to have
azw{>D, } coupling as this could significantly enhance the
z@{3D,} contribution above what might be expected on the
basis of angular momentum suppression at threshold.

An example of a two-channel parametrization capable of
describing the finite-volume spectra is

k(s) = mzl— s (

using the Chew-Mandelstam prescription for I(s) with
Rel(s = m?) = 0. The best-fit parameters are found to be

2
g”w{3sl }

9w {35} Iro 3D, } )

2
9r0 (s} 9z D, } gﬂ:w{3D1}

0/°
180 |
150 -
3
%% S
120 | me{5i}
92 |
60
30 | 3
7TOJ{ Dl}
0 I Or T T T T O—1— atEem
0.220 0.225 0.230 0.235 0.240 0.245 0.250
€/°
H (51 (D)
S el
0 F—r . O 0, Fm
0.220 0.225 0230 0235 0240 0.245 0.250
%0 e e T
203 —— ’m:O_‘°=c;_.A===_‘ ——
163 O ’—Oﬁﬂ—0—<: —_—t——
FIG. 8. Upper: zw{3S,} (blue) and zw{>D,} (purple) phase-

shifts for the reference amplitude in Eq. (20) with the bands
reflecting the statistical (inner) plus systematic (outer) uncertain-
ties. In gray are parametrizations given in Table XV of Appen-
dix C with only statistical uncertainties shown. Middle: As upper
but for the mixing-angle, &(zw{3S,}|7@{°D,}). Lower: Black
points are the finite-volume energy levels used to constrain the fit
and orange points are the energy levels calculated using Eq. (11)
for the reference amplitude in Eq. (20).

m=(0.2471+£0.0007 £0.0004) -a;' [1 —0.04 0.00
Grw(’s,} = (0.071£0.011£0.010) - a;! 1 049
Iropp,y = (0454+0.914+0.28) - a, 1

14.9
2/Ngot ==——=0.87. 20
X"/ Naot 20-3 (20)

The parameters m and g5, are compatible with
those of the reference amplitude in Eq. (19) and we find
9rw(’p,) t0 be consistent with zero within uncertainties.
In Fig. 8 we present the zw{3S,} and zw{°D,} phase-
shifts and the &(zw{’S,}|zw{?D;}) mixing-angle as
defined in the Stapp-parametrization [55] and given
in Eq. (A7) of Appendix A. A number of different
K-matrix parametrizations were explored and are plot-
ted as the gray curves in Fig. 8 and listed in Table XV
of Appendix C. We observe that all descriptions exhibit
a zw{3S,} phase-shift compatible with the behavior
seen in Sec. VIA, a zw{’D,} phase-shift that is very
small, and a mixing-angle that is consistent with zero
within a modest uncertainty over this energy range.
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C. Coupled 7w {3S;}, 7w {°D;}, np{3S,} scattering

We now consider scattering amplitudes in an energy region
up to the zzzz—threshold. In this region, zw, 77y, z¢, KK,
and 7o are all kinematically open, but we expect the three-

body channels to have only a small effect. By using only

energy levels below the lowest Eﬁ’l) or Er(fl) in each irrep,

and excluding any energy levels which show significant
sensitivity to the presence of pn, K* K, and aoz operators, we
propose that we can effectively neglect the effect of three-
body channels. In Sec. VIII we will explore possible effects of
relaxing this assumption. We proceed with a total of 36
energy levels—all the black points shown in Fig. 5.

Both 7w and ¢ are vector-pseudoscalar channels
dynamically coupled in 3S; and 3D, partial waves.
However, considering the centrifugal barrier for the heavier
threshold and the lack of mixing observed in the histograms
presented in Fig. 4, we assume that z¢{°D;} will have
negligible impact at low energies. Subsequently, we are left
with a system of three coupled channels: zw{3S;},
rw{’D,} and z${3S,}. Many other partial waves can
|

2
| Iz (s} 9w {35, } 9n0{3D,}
e 5 N 2
K(S) m2 —5 gﬂw{‘Sl}gﬂa){‘D]} gﬂa){3D1}
0 0

contribute to the finite-volume spectra as can be seen from
Tables III and V, but, as discussed in Sec. IV, we expect
these to be negligibly small and we will explicitly show this
in Sec. VIIL

To parametrize the energy dependence of the three-
channel #-matrix, we use K-matrices of the form in Eq. (15)
restricted to linear expansions in g,;,(s) and y—the para-
metrizations used are presented in full in Table XVI of
Appendix C. It should be noted that, while use of the
K-matrix guarantees unitarity, it does not guarantee good
analytic properties. Indeed, we found that some paramet-
rizations, which successfully describe the finite-volume
spectra, have #-matrix pole singularities at complex ener-
gies on the physical sheet. Such poles are forbidden by
causality, and these parametrizations must be rejected as
giving rise to unphysical solutions. A list of such para-
metrizations is provided in Table 0.2 in the Supplemental
Material [56] and the resulting amplitudes are omitted from
the figures in what follows.

A somewhat minimal parametrization,

(0)
0 Y 2038, } o35, } 0 0
0|+ 0 0 0 . (21)
0 0 0

{381} a8, }

used with the Chew-Mandelstam prescription with Rel,(s = m?) = 0, proves to be capable of the describing the finite-

volume spectra. The best-fit parameters are

rops,y = (0.106 £ 0.007 £ 0.007) - a;!
rofipy) = (1.08 £0.47 £0.28) - q,

) _
Vross, prs,) = —0-35 £0.19£0.18
(0) _
Vups, g s,y = 0-90 £ 0.24 £0.27
36.8
2/Nyop = —— = 1.19
)(/ dof 36 -5

We found no improvement in the description of the
finite-volume spectra by including freedom in g, )
and subsequently fixed this parameter to be zero in the
reference amplitude.

There is no established method to minimally display
the S-matrix in three-channel scattering. Plotting the real
and imaginary parts of the elements of the S-matrix
contains redundancy as it does not account for the
constraints provided by unitarity. Plotting the magnitudes
via pupp|t.s|* has the advantage of being closely related
to a differential cross-section, but discards important
phase information. In the two channel case, the Stapp

m = (0.2465 + 0.0007 4 0.0001) - ;!

1 —005 005 —0.01 —023]
1 070 —0.54 —0.06
1 —039 —0.06
1 022
1

(22)

|
parametrization is minimal with regard to unitarity and
reduces to single-channel phase-shifts when the channels
decouple, but to our knowledge there is not a generaliza-
tion to more channels that reduces to the two-channel
Stapp parametrization. In Appendix A we provide such a
generalization to n-channels where, if k are decoupled, the
scattering S-matrix naturally block diagonalizes into an
(n — k) coupled-channel block and a diagonal block
containing k decoupled phase-shifts.

The phase-shifts and mixing angles are plotted in Fig. 9
for the amplitude in Eqs. (21) and (22) (colored curves) and
the many other parametrizations listed in Table XVI of
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FIG. 9. Upper: As in Fig. 8 but for the zw{3S;} (blue),
zw{3D} (purple) and z¢{3S,} (green) phase-shifts for the
reference amplitude in Egs. (21) and (22), and for other
parametrizations presented in Table XVI of Appendix C (gray).
Middle: As upper but for the mixing-angle &(zw{3S, }|z0{3D,}).
The other mixing angles, &é(zw{3S, }|z¢{3S,}) and &(zw{°D,}|
7p{3S,}), are extremely small and consistent with zero for all
parametrizations and are not plotted. Lower: The energy levels
used to constrain the scattering amplitude (black) and their
corresponding description by the amplitude in Eqs. (21) and
(22) (orange).

Appendix C (gray curves). We observe that the behavior of
the 7w{3S,} phase-shift is in close agreement with the
results of Sec. VIB, and the zw{’D,} phase-shift is once
again very small. The 7¢{3S,} phase-shift shows a small
positive tendency indicative of a weak attraction. The
mixing-angle &(zw{3S,}|zw{?D;}) is small but likely
nonzero, while the mixing angles &(zw{3S;}|z¢{3S,})
and é(zw{D,}|n¢{3S,}) are around two orders of mag-
nitude smaller and statistically consistent with zero
everywhere.

The same amplitudes are plotted as p,pp|tzsass5|* in
Fig. 10. We observe a significant bumplike enhancement in
the zw{3S,} — zw{3S,} process which would be a canoni-
cal indication for a resonance in a scattering cross-section
measurement.

In Fig. 11 we present the energies calculated using
Eq. (11) with the reference amplitude of Egs. (21) and (22)
which, as suggested by the small 2, are seen to be in good
agreement with the lattice finite-volume energy levels.
Notably, for levels not included in the fits, shown in gray,
the predicted spectra on the (L/ay) =20, 24 volumes

2
PaPb |tega, wb|

Ir ({51} mo{’s1})
0.8 |-
0.6 +
04
02 (ro{*81}[mo{'51))
0L O T T —O —atEem
0.220 0.230 0.240 0.250 0.260 0.270
004+ (ro {51} ro{’D1) .
002+ e
0ob—o— m
0.220 0.230 0.240 0.250 0.260 0.270
0.002 (mw{*Da} [meo{°D1} )
0 T O T TO——=0% ﬂ
0.220 0.230 0.240 0.250 0.260 0.270

T 0"% (O Rt
0_0_“—&—1 i Wm;:.nm_.
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207 .o
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FIG. 10. As Fig. 9 but for p.pp|tssasss|*. Colored curves
illustrate the reference amplitude in Egs. (21) and (22) with bands
reflecting the statistical (inner) plus systematic (outer) uncer-
tainty. Other parametrizations presented in Table XVI of
Appendix C are in gray with bands reflecting only the statistical
uncertainties. p,py|tz74.¢75|* not plotted are significantly smaller
than those shown and consistent with zero.

appear to be mainly in reasonable agreement, while on
the (L/a;) =16 volume there is a larger discrepancy.
This may be attributed to more significant contributions
from three-meson amplitudes on smaller volumes, further
supported by the observation that there is a much larger
variation in the spectrum in the [000]77 irrep on the smaller
volume when threemesonlike operators are removed—
see Fig. 4.

A final comment concerns the effect on the scattering
results of the uncertainty placed on the anisotropy due to
the observed dependence on vector-meson helicity in
Sec. III. Unlike in the pz isospin-2 case presented in
Ref. [17], where the weak nature of the scattering led to the
anisotropy uncertainty being the largest systematic effect,
here the interactions are strong and the anisotropy uncer-
tainty contributes relatively little as can be seen from the
relative sizes of the inner and outer bands in Figs. 9 and 10.

To summarize, the characteristic “bump” we found in the
scattering magnitudes in Fig. 10 and the clearly observed
avoided level crossing in the [111]A, spectrum seen in
Fig. 5 strongly suggests a resonance. To demonstrate this
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FIG. 11.

As Fig. 5 but including, as orange bands, the energy levels calculated from the reference amplitude in Egs. (21) and (22) using

Eq. (11) as a function L/a,. The thickness of the bands reflect the combined statistical and systematic uncertainties. The vertical red
band on the right of the figure indicates the position of the resonant pole of mp and width I'; as determined in Sec. VII. The red
horizontal line at the resonant mass is shown in each irrep to guide the eye.

rigorously, we proceed to determine the pole singularities
of our scattering amplitudes.

VII. POLE ANALYSIS FOR COUPLED-CHANNEL
AMPLITUDES

At each threshold, unitarity necessitates a branch point
singularity and the corresponding branch cut divides the
complex s-plane into two Riemann sheets, so for n open
thresholds there are 2" sheets. Riemann sheets can be
labeled by the sign of the imaginary component of the
cm-frame momentum k@ in each hadron channel a. We
identify the physical sheet, where physical scattering occurs
just above the real energy axis, as having Im(k(?)) > 0 for
all a. Sheets with other sign combinations are referred to as
unphysical, and it is on these sheets that pole singularities
corresponding to resonances lie, in complex-conjugate
pairs, off the real energy axis. Poles off the real axis on
the physical sheet indicate causality violating amplitudes
and signal an unacceptable description of the scattering
process.

For poles off the real axis, we define the real and
imaginary parts of the pole singularity at s = s in terms
of the mass my and the width 'y of a resonance respec-
tively, by /5o = mg =& 4. For narrow resonances, with a
single dominant decay mode, these definitions of the
resonance mass and width agree well with the location
and full-width at half-maximum of the “bump” seen in
scattering cross sections. The advantage of associating the
pole singularity with the resonance is that this definition is

still useful in complicated coupled-channel cases, such as
those seen in the lattice calculations of the ay [13] and f
[14], where the resonance does not appear as a clear
isolated bump for real energies.

In the current case, the hadron-hadron channels 7w and
n¢ lead to four sheets, (sign(Imk,,),sign(Imk,,)) =
{I(+,+), (=, +),0l(=,=),IV(+,-)}. Close to the n¢
threshold, all of sheets Il (lower half-plane), Il (lower
half-plane), and IV (upper half-plane) are close to physical
scattering. A single resonance can appear as a pole in
slightly different positions on multiple sheets—some dis-
cussion of this in the context of a simple coupled-channel
amplitude model can be found in Ref. [13].

For complex energies close to a pole singularity at s, the
scattering 7-matrix can be written in the factorized form

CeraCen
teraean(S ~ So) ~ s(:l;_sv (23)

where the complex valued couplings c,;, reflect the
strength of the resonance coupling to channel a{3¢,}.
For each coupled hadron-hadron channel, the coupling is
determined only up to a sign which gives no change to the
physics. In the current case this leads to a sign ambiguity
between the zw and z¢ couplings, but conversely the
relative sign between the 3S; and 3D, partial waves in 7@
can be unambiguously determined and physically would
lead to different angular decay shapes depending on its
value. In Ref. [17], it was shown that in a finite volume,
moving-frame spectra are required to constrain this sign.
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FIG. 12. Top: Lower half-plane sheet Il poles. Red ellipses
reflect the statistical uncertainties, oriented to account for
correlations between the real and imaginary parts, for poles from
all the parametrizations shown in Table XVI of Appendix C.
Black ellipses correspond to the reference amplitude in Eq. (22)
reflecting the statistical (inner) plus systematic (outer) uncertain-
ties. Bottom: As top but for the corresponding couplings,

C(n:a){3Sl})|| (blue), C(ﬂa){3D|})|| (purple) and C(ﬂ¢{3S|})"
(green). Black ellipses again correspond to the couplings of

the reference amplitude in Eq. (22) where c¢(z¢{3S,}), = 0.

For each amplitude parametrization we considered, using
the best-fit values of parameters, we perform a search
across all Riemann sheets over a large range of complex
s, finding any pole singularities present and determining
the couplings by factorizing the residue of the pole.
Uncertainties on the pole positions and couplings are
estimated by appropriately propagating through the uncer-
tainties and correlations on the fit parameters. For the case
of the reference amplitude presented in Eqgs. (21) and (22),
poles were found in complex conjugate pairs on sheet Il at

an/Soy = 0.2435(13)(10) + é0.0175(20)(19), (24)

where the first uncertainty is statistical and the second is
systematic. A complex conjugate pair of poles was also
found on sheet lll in agreement with Eq. (24) up to the
precision shown. The couplings for the pole in the lower
half-plane are

a,c(zw{3S,}), = 0.106(6)(6) exp[—iz0.078(28)(26)]
a,c(zw{D,}), = 0.010(4)(3) exp[—iz0.181(26)(24)],
(25)

and c(zp{3S,}), is exactly zero, a result of the choice of
reference amplitude. Considered as a ratio we have

lc(z@{°Dy })y/ c(ae{’S1})y| = 0.091(37)(20)
arglc(zo{°D,})/ c(zw{’S })y] = —70.103(26)(24).

That the poles on sheets Il and Ill are in essentially the same
position is a consequence of the z¢ channel being almost
completely decoupled from the zw channel as discussed
in Sec. V.

For each three-channel parametrization presented in
Table XVI of Appendix C, we found poles and couplings
broadly consistent with those given above. We show these
in Fig. 12, observing that the scatter over different para-
metrizations is in this case not significantly larger than the
uncertainty on the reference amplitude.

VIII. SYSTEMATIC TESTS

To test the robustness of the extracted scattering ampli-
tudes and the determination of the resonant pole and
couplings, we consider two sources of potential systematic
uncertainties due to possibilities we have so far neglected.
First, we examine the partial waves that mix as a conse-
quence of the finite volume, which we neglected based on
observations discussed in Sec. V, and the z¢{°D;} ampli-
tude which we asserted was negligible. Second, we
examine the dependence of the energy levels on the
ro{’D,}, nw{?P,} and zw{3P,} parameters to demon-
strate that we are able to constrain these amplitudes. Lastly,
we make a crude estimate of the possible size of effects due
to the neglected three-body channels.

A. Additional partial waves

We first consider the 7w {3Py} and zw{?P,} amplitudes

that enter in the I3A2 irreps as shown in Table III. Since a
P-wave has less threshold suppression than a D-wave, we
might expect these waves to be at least as important as
z@{’D,}, though they are not expected to be resonant at
such low energies. Augmenting the reference amplitude as
defined in Eq. (21), we allow a nonzero amplitude in the
rw{Py} and 7w{?P,} channels by including a constant
y-term for each in the K-matrix and for these additional
channels we set Re I,,(s = (m, + m,)?) = 0 in the Chew-
Mandelstam phase-space. The resulting 7-matrix is block
diagonal in J” reflecting the fact that this mixing is a
result of the reduced symmetry on the lattice. We fit to the
same 36 energy levels as in Sec. VIC and, allowing all
parameters to vary, find
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Sensitivity of the finite-volume spectra to g,,,3p,}- Lighter to darker red curves reflect smaller to larger values of g,,,:p,y as

shown in the key. The central curves corresponds to g,,,;3p,; = 1.08, i.e., the mean value in the reference amplitude in Eq. (22). The gray
bands reflect the combined statistical and systematic uncertainties of Eq. (22). The horizontal axes are in units of L/a.

m = (0.2466 £ 0.0007) - a;"
Gropis,) = (0.105 £0.007) - a7
gmu{3D]} = (112 + 046) - ay

7/52{351},,,,0{351} =-0.34+0.19

722{%,},,,,,,{351} =0.79 £0.25

Y nopo)mopiney = (-8 £21)-a

ngPQ},m{sz} =(-10£12)-a?
)(2/Ndof:3364—;47: 1.19, (26)

where correlations between the zw{S,}, zw{°D,;} and
7p{3S,} parameters are compatible with those shown in
Eq. (22), and correlations between these and zw{P,} and
rw{’P,} parameters are small. We observe that the
amplitudes in both zw{Py} and zw{?P,} are consistent
with zero. A similar approach allowing for zw{3D,} and
zw{Ds} parameter freedom finds no evidence for large
amplitudes as one would expect given the larger angular
momentum suppression and lack of low-energy resonances
with JP€ =2+~ and 3*~.

In order to investigate the possible effect of the pre-
viously excluded z¢{’D,}, we take the reference ampli-
tude in Eq. (21) and extend it to include a constant diagonal

y-term in zp{°D,} in the K-matrix. Once again fitting to
the 36 energy levels and allowing all parameters to vary, we
find the 7¢p{°D,} parameter to be consistent with zero, as
expected, with all other parameters compatible with those
presented in Eq. (22).

B. Spectrum dependence on 7w {3P,},
zw{3P,} and 7w {°D,}

It is worth illustrating at this stage how particular energy
levels in the finite-volume spectra depend upon the strength
in zw{?D,} and the nw P-waves. For zw{°D,} this is
shown in Fig. 13, where the curves present the finite-
volume energy spectrum for the reference amplitude in
Egs. (21) and (22), varying the value of g,,;p,, while
keeping all other parameters fixed. In each irrep, we see a
level near the lowest m¢ noninteracting energy which
appears to be independent of the value of g,,pp . as
expected given the near complete decoupling of z¢. Most
other levels show significant dependence on g, pp, )
indicating that the lattice computed levels are providing
constraint on the D-wave strength, but there are some
notable exceptions. In irreps [011]A, and [111]A,, there are
levels observed to be consistent with the two-fold degen-
erate noninteracting zw energies, which show no visible
dependence on g,,(p,}-

Interestingly, the position of these same levels proves to
be strongly dependent on the amplitude strength in the
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FIG. 14.  As Fig. 13 but for varying 0/, .

reflect the strengths of the zw{P,} amplitudes.

rw{?Py} and zw{?P,} partial waves, so the lattice com-
puted energies allow us to confidently limit the amplitude
of these P-waves to be very small in this energy region.
Figures 14 and 15 show the analogue of Fig. 13 but for
varying 7w{3P,} and 7w{>P,} channel parameters respec-
tively. In these two cases, the reference amplitude in
Eq. (21) is augmented, as described in Sec. VIII A, to
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include a constant y-term in the K-matrix for channels
aw{3Py} and rw{°P,}.

C. Three-body channels

For the light-quark masses used in this calculation, the
resonant behavior is found to occur between the relatively
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FIG. 15.

As Fig. 14 but for varying y
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low-lying zzn threshold and the somewhat higher-lying
nKK threshold. As such, we might worry that these
channels could have a significant impact on the physics
in this region. We previously presented some arguments for
why we do not expect this to be the case, but noted that in
Fig. 4 there appeared to be deviations in the finite-volume
spectra depending on whether or not three-meson operators
were included in the bases, most notably in the smallest,
(L/ay) = 16, volume. As a precaution, we ensured that we

only made use of those energy levels which lie below the

lowest Eﬁ’l) value and which show no significant depend-

ence on the presence/absence of py, K*K, or aym operators.

In this section, we attempt to quantify the size of possible
contributions from the three-body sector on our scattering
amplitudes and resonance pole by treating the scattering
system as though zz in zzzn can be completely replaced by
a stable p with a fixed mass a,m, = 0.1509(2), (the pole
mass obtained from the 7z isospin-1 scattering amplitudes
in Ref. [38]) and 7K in 7KK can be completely replaced by
a stable K* with a,mg = 0.1648(1) (the bound-state pole
mass in the K* scattering analysis presented in Ref. [42]).
In this way we augment our scattering matrix with two
extra channels pn{3S,} and K*K{3S,}.

This approach cannot be expected to completely describe
the finite-volume spectra because, for example, whenever the
p has nonzero momentum, we expect there to be more than
one corresponding energy level, as indicated by Fig. 1 in
Ref. [38]—a stable p model cannot capture this and will not
even give the right number of energy levels in the “three-
body” spectrum. However, for the p at rest the nearest
noninteracting zz energy is much higher, and there is

o [000] 75 [001] Ay
=]
0.28 | - L
& g

7K K |in, N §
0.26 + L L
g [} —%—
025F g8 -_:%___E___ﬁﬁ___ -_%
ﬂalthr, E § q E

77Nty

024" "o L L E

0.27 - - %

effectively only one finite-volume level which lies very close
to the p resonance mass. In this case, the stable p may be a
reasonable first approximation to the true three-body physics.
For [000]|T, the relevant low-lying three-meson like
operators are of the form pogg7000 and Ky Koo as shown in
Table IV. We will therefore restrict our analysis to the three
volumes of this irrep and include, in addition to the 36
energy levels with which we have constrained the ampli-
tude in Sec. VIC, the remaining energy levels shown in
Fig. 4, giving a total of 48 levels to constrain five coupled
channels. Taking the reference amplitude in Eq. (21),
augmented to include a “pole plus constant” term in
pn{3S,} and K*K{3S,}, we find best-fit parameters

— (0.2485 = 0.0008) -
Gropis,) = (0.14£001) - a;!
Yo,y = (1.8 £0.5) -
Gpuiisy = (00 £0.1) - a7
dx-rps,) = (020 £0.01) - a7

7 s s = ~052£0.16
7 s mpris,y = 064 %017
P s npis,y = —182£0.13
P s rpsy = 1274052
X2/ Naot = % = 1.19. (27)
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FIG. 16. AsFig. 11 but for the amplitude in Eq. (27). Orange bands reflect only the statistical uncertainty on the scattering parameters.

The gray bands are transcribed from Fig. 11.
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The zw{3S,}, 7w{’D,}, and n{3S,} parameters are in
reasonable agreement with those found for the reference
amplitude in Eq. (22). We show in Fig. 16 the finite-
volume spectra calculated through Eq. (11), analogous to
Fig. 11. We observe that the dependence of the finite-
volume energy levels in moving-frame irreps, lying below

the lowest Eﬁ’l), on the new “three-body” part of the
amplitude is very slight. However, there is improved
agreement in [000]7 where the previously excluded
levels, in particular on the (L/a,) = 16 volume, are now
described quite well. We argue that this shows our original
selection criteria, giving the 36 energy levels across all
irreps, is sound and leads to a robust determination of the
scattering t-matrix. Utilizing the generalized n-channel
Stapp-parametrization, we give the zw{S;}, zw{’D,},
{381}, pn{3S,} and K*K{3S,} coupled-channel phase-
shifts and mixing angles in Appendix A.

As a final test of the effects of the pn{3S; } and K*K{3S,}
channels, we find the resonance pole and corresponding
couplings. There are 16 Riemann sheets and several “mirror
poles,” but the closest pole is located at

an/Soy = 0.2448(12) —% 0.0215(21),  (28)

which agrees within uncertainties with the pole position
found in Sec. VII. The corresponding couplings are,

a,c(zo{3S})y = 0.117(7) exp[—in0.084(20)]
a,c(zo 3Dy })y = 0.016(4) exp|[—iz0.182(22)]
arclpn{’$,})y = 0.003(52)
a,c(K*K{38,})y = 0.166(8) expl=ix0.043(12)],  (29)

where we exclude the meaningless phase on a,c(pn{3S,}),
as the magnitude is consistent with zero and where
c(znp{3S,});, = 0 by choice of amplitude. The coupling
to pn{3S,} is small but has a large uncertainty, while the
coupling to K*K{3S,} is larger."

We conclude that although we cannot currently rigor-
ously handle three-body contributions due to zzy and
nKK, we do not see any evidence to suggest that they
significantly affect the results reported in this paper.

IX. INTERPRETATION

All J? = 17 amplitude parametrizations used, that prove
to be capable of describing the finite-volume spectra in the
energy region we are considering, had the same character-
istic resonant bump in the 7w {3S;} to 7w{3S,} amplitude

Bwe might expect the K*K coupling to be comparable to the
7w coupling because in an OZI rule obeying framework they
differ only in the flavor of gg pair creation needed to allow the
resonance to decay.

2

PaPb ’tm,z'b
1k

JP =1t

my ~ 391 MeV

(roPsif mo{1)
0.8 |

0.6

04 +

0.2 |
(ro{’si}|mo{’s1}) -

0.02 (ﬁw{"%\}\ww{‘;nl})

O —_— A s
O

T T L

(mo{*D} o {°D1})

0.002
I— T T T J T T T
1250 1300 1350 1400 1450 1500
o ) o O® @@ 0000 OO0 O
[e) 00 Q

® o o
oo %o o o o o

1250 1300 1350 1400 1450 1500
—O T —O R T O—1— MR
-50 @@@M
1

-150 mtoi [

of's) &

FIG. 17. Top: The scattering amplitudes-squared, p,pp|tssa.
£'Jb|?, transcribed from Fig. 10 with the energy axis converted
to physical units. Below the amplitudes are the energy levels used
to constrain the amplitudes (black points). Bottom: The best
estimate of the resonant pole position, where uncertainties
combine statistical and systematic uncertainties with variations
across parametrizations. The histograms show the best estimate
of the magnitude of each coupling with the lightly shaded region
reflecting the combined uncertainties. The 7¢{3S,} coupling is
an estimate of the upper bound.

squared, with little strength in the diagonal zw{3D,} and
7p{3S,} elements. The off-diagonal amplitudes were all
found to be relatively small. In every case we found that the
bump is associated with a complex conjugate pair of poles
on sheets Il and lll, which we interpret as the effect of a
single resonance.

As in previous calculations, to quote results in physical
units, we choose to set the scale using the Q-baryon mass
measured on these lattices, a,mq = 0.2951 [57], and the
physical Q-baryon mass, m}>* = 1672 MeV [15]. This
gives a;' = m%™*/(a,mq) = 5666 MeV and stable hadron
masses m, =~ 391 MeV, mg ~ 549 MeV, m, ~ 587 MeV,
m,, ~ 881 MeV and my ~ 1017 MeV.

Using this scale setting, we summarize the scattering
amplitudes resulting from this work in Fig. 17, expressing all
quantities in physical units. We find a b; resonant pole of
mass myp = 1382(15) MeV and width Ty, = 91(31) MeV,
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FIG. 18. The b; pole position for various pion masses.

Blue shows the ground-state mass of the axial-vector octet
from a lattice calculation with m, ~ 700 MeV [46], red shows
the estimate from this work with m, ~ 391 MeV and black
is the experimentally determined mass and width of the b,
resonance [15].

where the uncertainties are a conservative estimate
from a combination of statistical and systematic uncertain-
ties and encompass variation over different parametriza-
tions. Similarly, we find for the couplings,

|C7rw{3S]}| = 564(114) MeV
|Cﬂw{3D]}| = 81(56) MeV,
|C”¢{3Sl}| = 59(41) MeV

In Fig. 18 we plot the position of the pole found
in this calculation compared to the experimental b,
resonance, with mass m;, = 1230(3) MeV and width
[, = 142(9) MeV [15], and a lattice calculation at the
SU(3), point with m, ~700 MeV [30]. In the latter
calculation, the b forms part of an axial-vector octet with
mass around 1525 MeV; the pseudoscalar-vector threshold
corresponding to zw is at roughly 1695 MeV, and thus the
b is stable at this pion mass. We observe that the trajectory
of the pole with varying pion mass appears to be similar to
that of the p meson shown in Ref. [46], as may be expected
for a reasonably narrow resonance.

Since we find the b, to be a narrow resonance a moderate
distance above zw threshold, it is reasonable to compute
theoretical “branching fractions” for its decay to zw. For
channels a{3¢,} these are given by [15],

Br(R — a{’¢,}) = -'%j'pa(m,e). (30)

1
['g
As mentioned in Ref. [14], the sum of these partial
branching fractions does not necessarily give unity. We
obtain

Br(bl e 77.'60{3S] }) ~93%

Br(b, = 70{?D,}) ~ 2%
where using the definition in Eq. (30) the z¢{3S;}

branching fraction is zero as the channel is kinematically
closed (mg < m, + my).

A crude extrapolation of the couplings to the physical
value of the light quark masses comes if we assume them to
be independent of the light quark masses once the threshold
behavior is removed. Such a behavior is not guaranteed, but
has been observed in lattice calculations of the p [46,58—
67] and K* [61,68-71] couplings at various values of m,.
Considering

cPhys
rot)}| | Crofe,) (31)
(k)7 | (ko)

where the cm-frame momentum is evaluated at the reso-
nance pole position, and where we use the values presented
above on the right-hand side, and the experimental b,

phys
aw{*D;}
146(101) MeV. Subsequently, we obtain an estimate for the
ratio of couplings at the physical pion mass of,

hys - .
mass to compute khs ', gives a prediction of |c

phys

zo{*D;}
phys
70{38,}

= 0.27(20). (32)

The PDG [15] reports a ratio of D-wave to S-wave
amplitudes for the b resonance of magnitude 0.277(27),
which is not computed at the complex pole position and
therefore not precisely the same quantity as we quote.

X. SUMMARY

This paper has reported on the first lattice QCD
calculation of coupled zw, n¢p scattering, the first time
coupled pseudoscalar-vector scattering amplitudes have
been computed. This large-scale calculation made use of
a significant number of operators resembling single, two
and three-meson constructions to extract finite-volume
spectra which were used to constrain the coupled-channel
scattering amplitudes.

Analysis of the obtained finite-volume spectra required
consideration of coupled 3§, — 3D, partial waves in 7@
scattering. A clear b, resonance was observed, visible as a
rapid increase in the 7zw{3S,} phase-shift through 90° or
correspondingly as a bump in the magnitude of the
rw{3S,} = nw{3S,} t-matrix element. More rigorously,
we found pole singularities on unphysical Riemann sheets
relatively close to the real energy axis with couplings that
are large for the zw{>S,} final state, significantly smaller
for zw{*D,} and compatible with zero for z¢. The mass
and width of the b; resonance found in this calculation,
with light-quark masses such that m, ~ 391 MeV, appear
to be compatible with a smooth interpolation between a
stable state for much larger quark mass, and the exper-
imental resonance at lower quark mass.

We explored the role of three-body channels by includ-
ing operators in our bases whose construction resembles
a meson coupled to a two-body resonance, utilizing
earlier calculations of meson-meson scattering channels
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[13,38,72]. There is no sufficiently mature finite-volume
formalism capable of rigorously incorporating three-body
scattering channels here. However, as a systematic test, the
finite-volume formalism, which in principle can handle
any number of coupled meson-meson channels, was applied
in a limited study of five coupled-channels—(zw{3S,},
rw{*D}, zp{3S, }, pn{3S, }, K*K{3S,}). Our investiga-
tions suggested that the three-body channels have a
negligible effect in this particular case of a low-lying b,
resonance—the two-body amplitudes varied very little and a
single resonance pole was found, commensurate with the
pole singularity calculated without three-body channels.
Furthermore, observations were made of how particular
finite-volume energy levels depend upon the various partial
waves which “mix” due to the cubic nature of the lattice
boundary.

In order to provide a way to minimally present
n-channel scattering on the real energy axis, a generaliza-
tion of the two-channel Stapp parametrization was presented
in which a unitary S-matrix is expressed in terms of n phase-
shifts and n(n — 1)/2 mixing angles. This parametrization
was used to present the three-channel 7w {3S,}, 70 {°D,},
7p{3S;}JP = 1" scattering matrix in which the b, reso-
nance appears. The construction provided conveniently
reduces to the Stapp form in the case that one channel
decouples from the others (as approximately found here).

As expected, no I° = 17 resonances are observed with a
mass comparable to the b, in J¥ = 07,27, Notably, no
resonating behavior is observed in a largely decoupled z¢
channel, suggesting the absence of a Z; which might be
proposed as an analogue of the Z. seen in zJ/y.

This work has advanced lattice techniques for studying
coupled-channel scattering involving hadrons with nonzero
spin and operators which effectively interpolate three
hadrons. Looking forward, once a three-hadron scattering
formalism is practical to use, a future calculation would
enable the rigorous determination of the zzny and 7KK
scattering amplitudes. Furthermore, utilizing such a formal-
ism would allow the calculation of the G-parity-negative
axial-vector, the a;, which has a dominant decay to the
pseudoscalar-vector meson pair zp, for which the p is
unstable at this pion mass, and would make for an interesting
comparison. Moving on from the simplest low-lying reso-
nances, and as the light-quark mass approaches its physical
value, it becomes more important to reliably determine such
three-hadron scattering processes.
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APPENDIX A: GENERALIZAED n-CHANNEL
STAPP-PARAMETRIZATION

In this Appendix we present a construction for a para-
metrization that naturally extends the two-channel Stapp
parametrization [55] to n-channels, preserving the notion
of n phase-shifts and n(n — 1)/2 mixing angles. We begin
by defining the exponential map from the Lie Algebra
LU(n) to the Lie Group U(n) as,
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Exp: LU(n) — U(n)

X - exp(iX). (A1)

With this definition, a basis for LU(n) is given by the set of
n?, n x n Hermitian matrices. A convenient choice are the
sets {A;]1 <i<n}, {01 <i<j<n}and{¥;|]l <i<

Jj < n} where

(A7) ap = 8iaip(n0 sum oni) (A2)
(8j)ap = 6iaOj + 640, (i < J) (A3)
(Wij)ap = i6:a0jp — 16,40, (i < J). (A4)

In order to construct a general n X n symmetric unitary
matrix S, we exponentiate the subset of n(n+1)/2
symmetric matrices, {A;, ®;}, and take S = BB" where

B = exp(i61A}) exp(i6,A)... exp(i5,A,)

X exp(i€,-1,On_1n)--- exp(i€2013). (A5)

Here BT denotes the matrix transpose of B and {§;, € k) are
a set of n(n + 1)/2 real parameters.

With this choice, for two channels, 6;, J,, and €;, are
exactly the Stapp phase-shifts and mixing angle of
Ref. [55]. If instead we take S = BB, where

E = exp(ien—lnlpn—ln)' = exp(i912lpl2)

x exp(id,A;) exp(id,A,)... exp(id,4,),  (A6)

we obtain a parametrization similar to that of Blatt and

Biedenharn [76] where & are the eigen-phaseshifts and  are
some mixing angles.

We use the indexing €;; and ©;; to conveniently label
the angle and matrix respectively that mix channels i and ;.
By construction, this parametrization gives a symmetric
unitary matrix with n(n + 1)/2 independent free parame-
ters and provides a natural n-channel extension of the two-
channel Stapp parametrization.

1.n=2

For two-channels, the basis construction above gives the
matrices

1 0 0 0
Al: s AZZ B
0 0 0 1
o _(0 1) - _(0 i)
12 — 1 0 P 12 — —i 0 .

It follows that setting n = 2 in Eq. (AS5) gives,

cos(2€,, ) e j sin(28,,)ei(01+9:)
_ ( 612)? isin(28,,)e ‘ (A7)
iSin(2512)€l<5‘+52) 62152

which is precisely the Stapp-parametrization.

cos(2€,)

2.n=3

The generalized three-channel Stapp-parametrization has
6 free real-parameters (three phase-shifts and three mixing
angles) and is obtained by taking n = 3 in Eq. (AS). Fixing
€13 =0 and €,; =0 reduces to the two-channel Stapp-
parametrization in channels 1 and 2, and leaves a single
phase-shift in the channel 3. An analogous reduction applies
for other appropriate combinations of mixing angles taken
to be zero. Explicitly, the elements of the S-matrix are

$11= (e i)
S12 = c13(io1223 = s13503 (1 +x12)) e
Si3=ci3(icassi3(14x12) —012823) €'t
S = (112‘/’%3 +)(123%3S%3 - 0%35%3 —2i061,813523C23)€
Sz = (012513(533 — ¢33) +icticss03 (1 + y1p) ) €l(255)

(2 2 2 2 2 :
S33= (013023 —X12513€23 —X12523 —21012313523023)8

51+6,)
851+63)

2i5,

2i65
(A8)

where

c13=c0s(€13), €3 =c0s(&y3)

$23 =sin(éx;).

X12 = C0s(28),),

o1, =sin(2é),),

513 =sin(é3),
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FIG. 19. Upper: As in Fig. 8 but for the zw{3S;} (blue),
z0{’D,} (purple), zp{3S;} (green), pn{3S;} (orange), and
K*K{3S,} (red) phase-shifts for the reference amplitude in
Eq. (27). The faded error bands reflect the statistical uncertainty
on the scattering parameters. The py and K*K “thresholds” are
calculated using the p and K* masses given in Sec. VIII C. Lower:
As upper but for the mixing angles &(zo{3S, }|zw{D,}) (blue),
ez S HK*K{’S}) (gray) and  &(mo{’D}|K*K{’S})
(brown). All other mixing angles are extremely small and
consistent with zero as discussed in the text.
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These conventions mean that 5, is equal to  arg(S;; ), which
is in agreement with the conventions in Refs. [13,14,54]
where the phase-shift is defined as §; = %arg(S ;). However,
we see for 6, and 95 there are corrections to the phase due to
the imaginary components & 6,53523Co3 in the expressions
for S,, and Ss3, given in Eq. (A8). For a very weakly mixed
channel these corrections are very small and 6; ~ %arg(S i)
fori =2, 3.

3.n=5

For the limited five coupled-channel analysis of
(70{’$,}. 70 {°D1 }, ap{’S1}. pn{°S1}. K*K{7S,}) given
in Sec. VIII C, we calculate the five phase-shifts and ten
mixing angles. We find that seven of the mixing angles, all
featuring either zg{3S;} and/or pn{3S,}, are extremely
small and consistent with zero, in agreement with the
observation that both are decoupled from the resonance as
shown in Eq. (29). This illustrates the natural reduction
from the five-channel parametrization to the three-channel
parametrization in the case that two channels decouple.
The five phase-shifts and the remaining three nonzero
mixing angles are presented in Fig. 19.

APPENDIX B: TABLES OF OPERATORS

Tables VI-XIII show the operator bases used in this
study.

TABLE VIII. As Table VI but for optimized K* operators.

L/a; 16 20 24

K ffooo]‘T; 6 x yT'y 16 x yT'y 9 x Ty

KFOOI],Al 8 x yTy 16 x yT'y 8 x yTy
2 x K 6 x 7K

KTOII],AI 8 x pT'y 26 x yT'y
3x K 6 x 7K

Krlll],Al 8 x yTy 9 x yT'y 9 x yT'y
4 x 7K 4 x tK

TABLE IX. As in Table IV but for irrep [001]A,. For operators
OJW, the superscript n on R™ denotes the nth excited state when
n > 1. All p and K* operators transform in [000]77 at p = 0 and
all p, ay and K* operators transform in I3A1 for p # 0. Operators

shown in gray correspond to Efffl) greater than the Effiw or El(fl)

of operators that have not been included in the basis.

TABLE VI. Single-meson and two-meson operators used to L/a; 16 20 24
compute optimized p operators in the [000]77 irrep and PA,
irreps at various overall momenta on the three volumes. 12 x yTy 12 x yTy 12 xyTy
Mo.mentum labgls on the z’s that form the zz operators are [001]A, 71000 2[001] [000]@[001] T[000] @[001]
omitted for brevity. Zjoo0] Poo1] T[001)@[000] T[001)@[000]
L/a 16 20 2% P1001]1[000] T[000] ¢[001] 7000 05[001]
. ap[001]77[000] P100111[000] Pl001]1T000]
Po0o].T; 26 x yTy 262>< 20% 12 xyTy 7T[001]®[000] Ao [001)7000] Kioon K pooo)
’ X_];ZT 1 ) itz 18 % T K001 K000] Ko1K 000] P [1001]’7 [000]
Ploo1].A, 84X><W;ml// i >; Vf’mv/ i f(l/;ml’/ £1000)1[001] Pl000]T[001]
_ _ _ Z001] 9000 Z001]9[000
Po11).4, 27 x yTy 27 x yTy 27 x yTy o Fion KEF ]I_([ ]
3xnx 3xnrx 3xnn 5 fooo) ™ 001]
Plitia, 8 x gy 21 x Ty 21 x Ty {2}”["0”(”[‘””
3 x 7n 3xan 3 x 7m {2} m01@p001)
TABLE VII. As Table VI but for optimized a, operators. TABLE X. As in Table IX but for irrep [011]A,.
L/ay 16 20 L/a, 16 20 24
aojoo1].A, ltx Ly lix wly 21 x Ty 21 x yly 21 x Ty
) :IZ(T;I?( ) :Ig( [011]A, 72(000)@[011] 1000|@[o11] 71000)@[011]
u 18 x T 18 x T ”[000]¢[011] ﬂ[ooo]d’[on] {2}”[001]&’[001]
o[o11}As 4 Xy;mw 4 Xl/;ml// Plo11)1[o00] {2}”[001]60[001] ”[000]¢[011]
2% KK 2% KK K o111 K [o0o] Pio11]1[000] 011)@[000)
ao(ii)a 15 x Ty {2}”[001160[001] doo11]7[000] Plo11)1[000]
- 4% 7y @o[011)%[000] Ko1K ooo]
2 x KK T011]@[000]
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TABLE XI. As in Table IX but for irrep [111]A,.
L/a, 16 20 24
15 x Ty 15 x gy 15 x yTy
[111]A; [ 00]@[111] T000)@[111] TT1000]@[111]
oo P[111] Tooo)P(111] 000} P111]
/’[111}’7[000] {2}”[001 [o11] {2}77[001]60[011]
Kl1111K jooo) Pl 000] {2} w01 @p001
{2} 70011 @j011] K[lll]K[OOO] P11)1[000]
T111)@[000] ao[111]7%[000] 7[111]@[000]
{2} 701 1@)001] LGL
TABLE XII. As in Table IX but for irrep [002]4,.
L/a; 16 20 24
20 x yT'y 20 x yTy 20 x yTy
[002]A, 7[001]@[001] 7[001)@[001] Z001]@[001]
Ploon Tjoo1] Poo1]M[oo1] T1000]@[002]
Kioo1 Koo 7[000]P[002] Poo111[001]
72[000] @[002] 77[001]412[001] [ ]¢[001]
70011 f0o1] Kioor Koo K01 Koo1]
p[lom]ﬂ[oou 0[001)7%[001) 7000 Ploo2)
TABLE XIII.  As Table IX for irreps [000]T5, [000]E~, [001]B;, and [001]B, on the (L/a,) = 24 lattice.
[000]T5 [000]E~ [001]B, [001]B,
14 x yTy 12 x yTy 9 x yTy 9 x yly
70011 @[001] 7[001]@[001] T011]7[001] 1117011
Ko1K oo {2} 7001 @j011]
Z001]@[011] {2}” 011]@[001]
Z011]@[001]
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APPENDIX C: TABLES OF SCATTERING PARAMETRIZATIONS
We present here tables of scattering parametrizations as referred to in Sec. VL.
TABLE XIV. Parametrizations of elastic z&{3S,} scattering amplitudes with Npars free parameters. Fits used 20

energy levels below z¢ threshold as described in the text. The reference amplitude, Eq. (19), is in bold. “CM”
denotes that the Chew-Mandelstam prescription was employed with subtraction at energy m or at threshold

s = (m, + m,)?. Otherwise, we set I(s) = —ip(s).
Parametrization Further Restrictions N pars 1%/ Ngo
Breit-Wigner - 2 0.84
Effective Range _ 2 0.86
kew cot(8) = a™' + 1 rk2,,
_ 4 0.80
K — L_ + },(0) + 7,(1)s y(l> =0 3 0.76
I(s) = —ip(s) YO =00 =0 2 0.84
/0 =0 3 0.75
- 4 0.80
K:mg-_er},(o) 4y yW=0 3 0.76
CM Re{I(s = s"7) = 0} Y@ =0 ,0=0 2 0.84
/0 =0 3 0.76
— 4 0.80
K — nlgis 170 4y 7D =0 3 0.76
/0 =0 3 0.76
K" =c0 4 Mg - 2 0.84
I(s) = _i€(5> )
-1 _ (0 (a
K =circ s - 2 0.84

CM Re{I(s = s™) =0}

TABLE XV. Parametrizations of dynamically coupled zw{3S,} and zw{3D,} scattering amplitudes. Fits were determined using 20
energy levels below z¢ threshold as described in the text. Displayed in bold is the reference amplitude of Eq. (20). CM denotes that the
Chew-Mandelstam prescription was employed with subtraction at energy m, the “pole” parameter in the K-matrix.

Parametrization Further Restrictions Phase-space Npars 72/ Nao
ol 0
Kejey = yrzjzg_/‘;’ y(fj)f/j Vw38, Vaw {38} — 0
(0) _
where yﬂa){3D|}aﬂal{3Dl} =0, yﬂw{3S1}.7ru1{3D1} =0 M Re{I(s = mZ) = 0} 3 0.87
hence 6 — 1 = 5 free real-parameters. -0
VoD }a0lD))
}/(0) 3 3 =0
(et CM Re{I(s = m?) = 0} 4 0.80
yﬂal{3D1},zr(u{3D,} =0
}’(0) 3 30, =0
ety CM Re{I(s = m?) = 0} 4 0.93
N
Grofpsy =0
0
Vs, mols,) = O CM Re{I(s = m?) = 0} 3 0.89
0 —
},mu{3D1},mu{3D]} =0
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TABLE XVIL

Parametrizations of coupled zw{3S,}, 70w{D,} and z{3S,} scattering amplitudes. Fits used 36 energy levels below

rzrzrr threshold as described in the text. Displayed in bold is the reference amplitude of Eq. (22). CM denotes that the Chew-Mandelstam

prescription was employed with subtraction at energy m or at threshold s,

thr thr ( (a)

I,(s) = —ip,(s). Results of fits to these parametrizations can be found in the Supplemental Material [56].

where st = (m\” + m{”)2. Otherwise, we set

Parametrization Further Restrictions Phase-space Noars 1%/ Neos
Ky = et 0 s =g =0 14(5) = =ipa(s) 118
) (1) © = CM Re{l,(s =m?) =0 1.19
Y eiaean TV eiae S Ve (s, }.x{'D,) 0 (Ll N ) } 5
(0.1) _ 0 — CM Re{l, (s =s7") =0 1.19
Whete 7.0, o)) = O Tt apis) 0 tals = 5a") = 0}
(1) _ (1) _ 1 _
y?"'){%l}ﬂqb{'*s]} =0 Vewpsropny = O Vros)aops,) = O
| ) .
Va5t~ O Vroppyapsy = O Gpsy = sy =0 Io(s) = =ipa(s) 1.22
(]) o (]) o P 1 Tw 1
ey = O Gapps,y = O Vo5 sy = O CM Re{l,(s = m*) = 0} 6 122
aw{>S }.xp{’S,
hence 19 — 9 = 10 free real-parameters. , 1) —0 CM Re{l,(s = s) = 0} 122
70{’S, } 70{S,}
(1) _ I =—i 1.27
WD =0 A(5) = =ipa(s)
(0) _ CM Re{l,(s =m?) =0 1.27
Yzm{ﬁsl}.m{“sl} =0 o th) b
1 _ CM Re{l, (s =s5) =0 1.27
yﬂa}{3S1}.nw{3S1} =0 e{ a(S Sa ) }
M _p CM Re{l,(s = m*) =0} 1.24
Irwls,} . 7
0 — CM Re{l, (s =s)=0 1.24
Vrogs yap (s} ~ 0 ellals = sa") J
(0) _
77!0){351},7[0){3D1} =0
© _.m CM Re{l,(s =m?) =0 1.20
g’("/;{ssl} - g,m]{ss]} =0 { a( th) } 6
0 _ CM Re{l,(s =s3") =0 1.20
Vrot’s yap{’s,) — 0 e{lals = sa") }
4 0 3 3 =0
z0{3S,} no{?D,}
(0) _ 0 _ _ I =—i 1.35
Iropyy = Inpis)y T Irlis;) T 0 o(5) Pa(s)
1 — CM Re{l,(s=m?) =0 6 1.35
J/7r(u{3S1}.7[{1){3'51} =0 e{ a(s " ) }
CM Re{l,(s = s%) = 0} 1.32
(0) () _ 1,(s) = —ip,(: 1.35
Ina'p,y = Imps,y = O ) = i) 6
0 — CM Re{l,(s=m?) =0 1.35
ol 0 ol ) =0}
l J—
yﬂw{3S1}.7tw{3S]} =0
(0) _ 0 _ 0 _ I =—i 1.31
Tuor) = Ingsy = Inpsy =0 Fal8) = =iPals)
(1) _ CM Re{l,(s =m?) =0 1.31
yﬂw{351},7r(u{351} =0 e{ a(S‘ m ) } 5
0 CM Re{l,(s = s'r) = 0} 1.28
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