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We present the first lattice QCD calculation of coupled πω and πϕ scattering, incorporating coupled S
and D-wave πω in JP ¼ 1þ. Finite-volume spectra in three volumes are determined via a variational
analysis of matrices of two-point correlation functions, computed using large bases of operators resembling
single-meson, two-meson, and three-meson structures, with the light-quark mass corresponding to a pion
mass of mπ ≈ 391 MeV. Utilizing the relationship between the discrete spectrum of finite-volume energies
and infinite-volume scattering amplitudes, we find a narrow axial-vector resonance (JPC ¼ 1þ−), the
analogue of the b1 meson, with massmR ≈ 1380 MeV and width ΓR ≈ 91 MeV. The resonance is found to
couple dominantly to S-wave πω, with a much-suppressed coupling to D-wave πω, and a negligible
coupling to πϕ consistent with the Okubo-Zweig-Iizuka rule. No resonant behavior is observed in πϕ,
indicating the absence of a putative low-mass Zs analogue of the Zc seen in πJ=ψ . In order to minimally
present the contents of a unitary three-channel scattering matrix, we introduce an n-channel generalization
of the traditional two-channel Stapp parametrization.
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I. INTRODUCTION

Contemporary studies of hadron spectroscopy seek to
relate the spectrum of hadron resonances, including their
decay properties, to the fundamental theory of quarks and
gluons, quantum chromodynamics. The most successful
theoretical technique to achieve this has proven to be lattice
QCD which considers the theory on a discretized space-
time grid of finite size, allowing numerical calculation
of correlation functions through averaging over Monte-
Carlo generated field configurations. The discrete spectrum
in a finite volume corresponding to a particular choice of
quantum numbers can be extracted from a matrix of

correlation functions, constructed using a basis of operators
which resemble the hadronic system being studied. The fact
that lattice QCD studies the theory in a finite volume can be
turned to our advantage—an approach introduced by
Lüscher relates the discrete spectrum in a finite volume
to hadron-hadron scattering amplitudes. Initially this was
only for elastic scattering of spinless particles with the
system overall at rest with respect to the lattice [1–4], but
subsequent extensions generalize the formalism to describe
coupled-channels, particles with intrinsic spin, and moving
frames [5–12].
This approach has been applied to a number of cases in

which several coupled pseudoscalar-pseudoscalar channels
are present, for example πη; KK̄ in which the scalar a0
appears as a resonance [13], or ππ; KK̄; ηη where scalar
f0 and tensor f2 resonances appear [14]. Pseudoscalar-
pseudoscalar scattering with relative orbital angular momen-
tumdefines the “natural parity” sequence, JP¼0þ;1−;2þ;…,
where J is the angular momentum and P is the parity.
To observe resonances with two-body decays in the “unnatu-
ral parity” sequence, JP ¼ 0−; 1þ; 2−;…, we must consider
the scattering of mesons with nonzero spin. An experimen-
tally observed example [15] is theb1ð1235Þ resonancewhich
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is dominantly seen through its decay to the πω final state,
where theω is the lightest isoscalar vectormesonwhich has a
very small decay width to three pions.
Once we move into the pseudoscalar-vector scattering

sector, there can often be more than one partial-wave
construction having a particular JP. For example, in the
1þ case relevant for the b1, we can have the π and ω in a
relative S-wave or a relative D-wave—indeed, by studying
the angular distribution in the decay of the b1, experiments
have estimated the amplitudes of these two partial
waves [16].
The finite-volume formalism to handle pseudoscalar-

vector scattering is in place [5], and has been tested
previously in a channel which did not feature a resonance,
namely πρ scattering in isospin-2 with quark masses
sufficiently heavy such that the ρ resonance becomes a
bound-state, kinematically stable against decay to two
pions [17]. That first calculation determined the S- and
D-wave JP ¼ 1þ amplitudes and their dynamical mixing,
finding relatively weak effects as expected in this exotic
isospin channel.
In this paper we will report on a study of the JP ¼ 1þ

IG ¼ 1þ channel, where I is the isospin and G is G-parity,
in which we expect to see a b1 resonance decaying to πω.
We make use of Nf ¼ 2þ 1 lattice configurations gen-
erated with a light-quark mass such that the pion has a mass
around 391 MeV. With this light-quark mass, the ω meson
is found to have a mass around 881 MeV [18,19], and
hence is stable against decay to three pions.
To study the b1 we have computed matrices of corre-

lation functions in three lattice volumes, in several moving
frames (i.e., where systems have overall nonzero momen-
tum with respect to the lattice). To robustly determine the
finite-volume spectrum, a wide range of operators resem-
bling both single-hadron and multihadron structures were
included in the basis. These correlation functions provide
information which constrains the energy dependence of the
IG ¼ 1þ JP ¼ 1þ scattering matrix whose channels are πω
in S and D-wave, and, in addition, πϕ which is kinemat-
ically open in the considered energy region.1

A previous lattice QCD study [20] of the b1 limited itself
to the rest-frame in one rather small volume. By consid-
ering only two degenerate flavors of light quarks and no
strange quarks, any physics associated with the πϕ channel
was disallowed. Avery small operator basis was used, such
that only one usable energy level was obtained and this had
a statistical uncertainty at the percent level. Enforcing
elastic S–wave scattering only, ignoring any effect from
the D–wave, and fixing the decay coupling of an assumed
b1 resonance at a value equal to that extracted from
experimental measurements, a crude estimate of the b1
mass was made in the case that the pion mass is 266 MeV.

An earlier study [21] used a different approach in which the
light-quark mass was tuned such that the b1 decay to πω is
exactly at kinematic threshold. From the time-dependence
of a single correlation function, an estimate of the decay
coupling was inferred.
In this calculation, we determine a large number of

finite-volume energy levels in multiple volumes and mov-
ing frames. We use up to 36 of these levels, each typically
having statistical uncertainty at the tenth of a percent level,
to constrain the coupled-channel scattering matrix.
As well as the πω and πϕ channels, we pay attention to

the fact that three-body channels, ππη and πKK̄, which
have relatively low thresholds even formπ ≈ 391 MeV, can
in principal play a role. Experimentally, three-body decays
of resonances are found to be dominated by two-body
isobar resonances. For example, in a ππη final state at
relatively small total energy, the Dalitz plot will be
expected to have the bulk of the events in narrow horizontal
and vertical bands around mππ ∼mρ and mπη ∼ma0 .

2

We will explore the role of these three-body channels by
including operators in our bases whose construction
resembles a meson coupled to a two-body resonance, in
a way which respects the symmetries of the finite cubic
lattice. No finite-volume formalism capable of rigorously
incorporating three-body scattering channels is yet suffi-
ciently mature to be applied in the current case, but there
has been significant recent developments [22–29]. Our
explorations will yield evidence that suggests that the three-
body channels have a negligible effect in this particular
case of a low-lying b1 resonance.
To convert the finite-volume spectra calculated in lattice

QCD into scattering amplitudes, we consider parametriza-
tions of the energy dependence of the scattering t-matrix
and the parameters are found which best describe the finite-
volume spectra. This approach allows us to explore the
resonance content of each JP in a rigorous way by
searching for the presence of pole singularities in tðsÞ at
complex values of s ¼ E2. Poles lying relatively close to
the real energy axis typically have the real and imaginary
parts of their pole position interpreted in terms of the mass
and width of the resonance, and from the residue of tðsÞ at
the pole we can determine the relative couplings of the
resonance to its decay channels.
A relatively light b1 resonance is expected based upon an

earlier set of calculations, performed on the same lattice
configurations used in this paper, in which the operator
basis was restricted to a set of fermion bilinears [18,19,30].
The resulting spectrum, which we expect to be incomplete
owing to the lack of multimeson operators, nevertheless
featured a JPC ¼ 1þ− state near 1400 MeV, which had
strong overlap with, in particular, those operators which
resemble the qq̄ spin-singlet, P-wave structure expected for
the b1 in the quark model. Such a calculation can do no

1the ϕ is stable against decay to KK̄ and πππ at the light-quark
mass considered. 2There will also be a diagonal “reflection” of the a0 band.
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more than indicate to us the likely presence of a narrow
resonance—in the current calculation we will rigorously
determine its presence and properties.
It has been suggested [31] that the πϕ channel, coupled

to πω, may feature a Zs resonance analogous to the Zc
enhancement that has been seen in the πJ=ψ final state
[32,33]. We will find no evidence of a Zs resonance in
this work.
The remainder of this paper is structured as follows. In

Sec. II we briefly review the calculation of finite-volume
spectra from correlation functions and describe our single-,
two-, and three-meson operator constructions. The lattice
setup used and relevant hadron masses and thresholds are
presented in Sec. III, and in Sec. IV we discuss the partial
waves which are present and our choice of operator bases.
The finite-volume spectra are presented and commented on
in Sec. V. In Sec. VI we discuss the techniques used to
relate these spectra to scattering amplitudes and apply them
to determine πωf3S1g, πωf3D1g and πϕf3S1g amplitudes,
and in Sec. VII we examine the pole singularities of these
amplitudes. Systematic tests of our analysis are given
in Sec. VIII where we examine the effects of additional
partial waves, including those that mix due to the reduced
symmetry of the finite volume, and additional channels that
resemble ππη and πKK̄. An interpretation of the results is
provided in Sec. IX and we conclude with a summary
in Sec. X.

II. SPECTRAL DETERMINATION AND
OPERATOR CONSTRUCTION

Working in a cubic volume of size L × L × L with
spatially periodic boundary condition discretizes momenta,
restricting to values P⃗ ¼ ð2π=LÞðnx; ny; nzÞ where ni ∈ Z.
For particles at rest with respect to the lattice, the infinite-
volume O(3) spatial symmetry is broken to that of the
double cover of the octahedral group with parity, OD

h , and
total angular momentum J and parity P labeling the
irreducible representations (irreps) of O(3) are replaced
by ΛP, the irreps of OD

h . In this work we only encounter
integer spin and therefore irreps of the single cover Oh. For
particles “in-flight,” i.e., moving with respect to the lattice,
parity is no longer a good quantum number and the irrepsΛ
are those of the little group of symmetries, LGðP⃗Þ, as
discussed in Ref. [34]. We write lattice irreps P⃗Λ with
shorthand P⃗ ¼ ½nxnynz�, omitting units of ð2π=LÞ for
brevity.
In order to robustly determine the discrete finite-volume

energy eigenstates in each irrep, P⃗Λ, we first compute a
large matrix of two-point correlation functions, CðtÞij ¼
h0jOiðtþ tsrcÞO†

jðtsrcÞj0i, by employing a diverse basis of
operators Oi. These operators are constructed with the
desired flavor structure and subduced into the irrep P⃗Λ
[30,35]. A variationally optimal determination of the

spectrum [3,36] follows from solving the generalized
eigenvalue problem for each irrep,

CðtÞvn ¼ λnðtÞCðt0Þvn: ð1Þ
The energy levels En are determined by fitting principal
correlators λnðtÞ to the form,

λnðtÞ ¼ ð1 − AnÞe−Enðt−t0Þ þ Ane−E
0
nðt−t0Þ; ð2Þ

where the second term soaks up any residual excited state
contamination. The eigenvector vn can be used to construct
a variationally optimized operator, Ω†

n ¼Piv
n
i O

†
i , effi-

cient at interpolating the nth eigenstate in the spectrum. We
refer the reader to Refs. [30,37] for further details of our
implementation and techniques for selecting a reasonable
value of t0.
Figure 1 in Ref. [38] demonstrates the importance of

having sufficiently “complete” operator bases in order to
reliably determine the complete spectra in a given energy
region. The region we study includes the opening of several
multihadron thresholds: πω, πϕ, ππη, and πKK̄, and we
find that this necessitates the inclusion of twomesonlike
and threemesonlike operators in our basis, as well as single-
meson operators of fermion-bilinear form which we expect
to have good overlap with any bound state or relatively
narrow resonance present. Four-meson thresholds lie
beyond the energy region we consider, and previous
calculations suggest that local tetraquark-like operators
have little effect on the spectra [39,40], so neither of these
types of operators are included in the basis. The con-
struction of interpolating operators resembling single-
meson, two-meson and three-meson structures is discussed
in the subsections which follow.

A. Single-meson operators

The construction of “singlemesonlike” operators follows
the procedure detailed in Refs. [30,35]. To summarize,

fermion bilinears ψ̄ΓD
↔
…D

↔
ψ are constructed with definite

JP and z-component of angular momentum M by appro-

priately coupling products of gauge-covariant derivativesD
↔

and Dirac γ-matrices Γ. These are then projected onto
definite momentum P⃗ and appropriate linear combinations
yield continuum single-meson operators O†JM

M ðP⃗; tÞ of
definite flavor, labelled by M. Schematically,

O†JM
M ðP⃗; tÞ ¼

X
x⃗

eiP⃗·x⃗½ψ̄ΓD↔…D
↔
ψ �JMðx⃗; tÞ;

where for P⃗ ≠ 0⃗ we use helicity operators, labeled by
helicity λ rather than M, as discussed in Ref. [35]. Single-
meson operators, transforming irreducibly under the sym-
metry of the lattice grid and boundary, O†Λμ

M ðP⃗Þ, are
obtained by subducing,

b1 RESONANCE IN COUPLED πω, πϕ SCATTERING FROM … PHYS. REV. D 100, 054506 (2019)

054506-3



O†Λμ
M ðP⃗Þ ¼

X
M

SJM
ΛμO

†JM
M ðP⃗Þ;

where SJM
Λμ are subduction coefficients tabulated in

Refs. [30,35].
A large basis of operators can be constructed by combin-

ing γ-matrices with various numbers of derivatives—here
we use up to three derivatives for operators with zero
momentum and up to two otherwise. Single-meson oper-
ators are written as ψ̄Γψ for the remainder of this article.
Optimized operators for the stable ω (Ω†

ω) and ϕ (Ω†
ϕ) in

each relevant irrep follow from variational analysis of a
matrix of correlation functions constructed using a basis of
quark bilinears with both hidden-light (ūΓuþ d̄Γd) and
hidden-strange (s̄Γs) flavor structure. The required “anni-
hilation” diagrams are computed but, as shown in Figs. 4
and 5 of Ref. [19], they prove to be small in the vector
channel in line with the experimentally motivated Okubo-
Zweig-Iizuka (OZI) rule. In each irrep, the ω appears as the
ground state, dominated by overlap with ūΓuþ d̄Γd, and
the ϕ as the first excited state, dominated by s̄Γs.
The same flavor basis is used to determine the optimum η

operator (Ω†
η) in each irrep, but here significant mixing

between light and strange is observed through the annihi-
lation diagrams (see Figs. 2 and 3 in Ref. [19]), indicating,
as is well known, that the OZI rule does not apply in the
pseudoscalar channel.
The need to account for “in-hadron annihilation” when

considering isoscalar mesons will reappear when the
optimized operators are used in two-meson and three-
meson constructions as discussed below.

B. Two-meson operators

Our approach to constructing operators which resemble a
two-meson structure has been discussed in detail in
Ref. [41] and we specifically discuss vector-pseudoscalar
operators in Ref. [17].
We construct two-meson operators with definite flavor

and momentum in irrep Λ (row μ) by taking appropriate
linear combinations of the products of optimized single-
meson operators Ω†

M, each independently constructed to
transform irreducibly in some lattice irrep. Schematically,

O†Λμ
M1M2

ðp⃗12Þ ¼
X
p⃗1 ;p⃗2
μ1 ;μ2

Cð½p⃗12�Λ; μ; ½p⃗1�Λ1; μ1; ½p⃗2�Λ2; μ2Þ

× Ω†Λ1μ1
M1

ðp⃗1ÞΩ†Λ2μ2
M2

ðp⃗2Þ; ð3Þ

where the sum is over the rows μi of the irreps Λi and the
sets of momenta fp⃗ig�, containing all momenta related to
p⃗i by an allowed lattice rotation with the total momentum
p⃗12 ¼ p⃗1 þ p⃗2 fixed—see Eq. (3.3) of Ref. [17]. For
jp⃗ij2 < 9ð2π=LÞ2, the set fp⃗ig� is equivalently labeled
by the magnitude of the momentum jp⃗ij. The sum is

weighted by lattice Clebsch-Gordon coefficients, Cð½p⃗12�Λ;
μ; ½p⃗1�Λ1; μ1; ½p⃗2�Λ2; μ2Þ [41].
For energies below three-meson thresholds, previous

calculations suggest that a sufficient set of operators for
a reliable calculation of the spectra consists of single-
meson and two-meson operators. Two-meson operators
O†Λμ

M1M2
ðp⃗12Þ are efficient at interpolating the finite-volume

energy levels near to the associated noninteracting energies,

Eð2Þ
n:i: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ jp⃗1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ jp⃗2j2
q

;

and truncating the two-meson operator bases when the
corresponding noninteracting energies are beyond the
energy region of interest has been demonstrated to be
sufficient for a robust determination of the spectra. Two-
meson operators are written M1½p⃗1�M2½p⃗2� in all tables and
figures for the remainder of this work.
The fact that a vector meson in flight is subduced into

multiple irreps means that there can be multiple MM
constructions for a single noninteracting energy. For
example, π001ω001 subduced into the ½000�Tþ

1 irrep (which
contains JP ¼ 1þ) can be constructed independently from
πðA2Þ ⊗ ωðA1Þ or from πðA2Þ ⊗ ωðE2Þ. Cases such as
these where the multiplicity of operators is greater than one
are discussed in detail in Ref. [17], and we indicate them
with a notation fng.
Correlation functions with MM operators at the source

and/or sink feature Wick contractions in which quarks
annihilate either within an isoscalar meson or between two
mesons. Considering a basis with overall I ¼ 1 as relevant
here, with M ¼ ūΓd and MM ¼ fπω; πϕg, we need to
evaluate diagrams whose structure is similar to those shown
in Fig. 1 of [42].

C. Three-meson operators

Three-meson operators3 can be constructed by iteratively
applying the two-meson operator construction outlined
above. Schematically,

O†Λμ
M1M2M3

ðp⃗123Þ¼
X
p⃗12 ;p⃗3
μ12 ;μ3

Cð½p⃗123�Λ;μ; ½p⃗12�Λ12;μ12; ½p⃗3�Λ3;μ3Þ

×O†Λ12μ12
M1M2

ðp⃗12ÞΩ†Λ3μ3
M3

ðp⃗3Þ ð4Þ

where O†Λμ
M1M2

is a two-meson operator constructed from
a product of optimized single-meson operators as in
Sec. II B. Note that it does not matter with which optimized
single-mesons we formed the intermediate two-meson
operator, i.e., O†Λμ

M1M2
ðp⃗12Þ, O†Λμ

M2M3
ðp⃗23Þ, or O†Λμ

M1M3
ðp⃗13Þ,

3and operators with a structure resembling more than three
mesons.
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as the tensor product is associative. An argument for
determining a sufficient set of three-meson operators,
analogous to that presented previously, would suggest
calculating the corresponding noninteracting energies

Eð3Þ
n:i: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ jp⃗1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ jp⃗2j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ jp⃗3j2
q

and enforcing a similar truncation on the basis. While this
approach has the advantage of being straightforward, it pays
no attention to the fact that we expect certain two-meson
pairs to feature resonating behavior, the finite-volume
analogue of the Dalitz-plot enhancements mentioned in
the Introduction.
Consider the example of πππ in isospin-2. Following the

construction above, we would be attempting to describe
energy eigenstates of the ππ isospin-1 subsystem using
O†Λμ

M1M2
constructed using only “ππ”-like operators. To

reliably determine the isovector ππ spectra, i.e., the ρ
spectra, an operator basis including both ψ̄Γψ and ππ-like
operators is needed as shown in Fig. 1 of Ref. [38]. An
alternative approach, based upon this observation and used
in Ref. [39], utilizes an optimized two-meson operator
which will be a linear combination of ψ̄Γψ and ππ-like
operators. We denote such an optimized operator Ω†

R,
where R indicates the meson with the corresponding
quantum numbers, i.e. Ω†

ρ for the example above.4 In
general, multiple optimized operators may be relevant—
Ω†

Rn denotes the optimal interpolating operator for the nth
excited state in the relevant meson-meson subsystem.
Combining these operators with an optimized single-

meson operator yields an alternative set of three-meson
operators, given schematically by

O†Λμ
R12M3

ðp⃗123Þ ¼
X
p⃗12 ;p⃗3
μ12 ;μ3

Cð½p⃗123�Λ; μ; ½p⃗12�Λ12; μ12; ½p⃗3�Λ3; μ3Þ

× Ω†Λ12μ12
R12

ðp⃗12ÞΩ†Λ3μ3
M3

ðp⃗3Þ: ð5Þ

By design, we anticipate that these three-meson operators
will efficiently interpolate finite-volume levels in the region
of an energy value

Eð2þ1Þ
n:i: ¼ EΛ12

Rn
12
ðp⃗12Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ jp⃗3j2
q

; ð6Þ

where EΛ12

Rn
12
ðp⃗12Þ are finite-volume energies calculated in

the two-meson subsystem in irrep ½p⃗12�Λ12, i.e., they will
efficiently capture interaction in the two-meson subsystem
assuming weak residual interaction with the third meson.

Calculating Eð2þ1Þ
n:i: energies, for all possible combinations

of two-meson subsystems that together with the third
meson give the desired quantum numbers, and truncating
at a desired energy, provides a procedure for selecting
which of these three-meson operators to include in
the basis.
To illustrate the construction presented above, consider

the example of a three-meson operator resembling ππη in
the irrep ½000�Tþ

1 with IG ¼ 1þ. We begin with the

construction shown in Eq. (4). For p⃗1 ¼ p⃗2 ¼ p⃗3 ¼ 0⃗,
there is only one possible irrep,

½000�A−
1|fflfflfflffl{zfflfflfflffl}

π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½000�A−
1|fflfflfflffl{zfflfflfflffl}

π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½000�A−
1|fflfflfflffl{zfflfflfflffl}

η

zfflfflfflffl}|fflfflfflffl{ðIG¼0þÞ

→ ½000�A−
1 ;

so no noninteracting ππη level, or corresponding operator,
appears in ½000�Tþ

1 at threshold. If the pions are both given

one unit of momentum, p⃗1 ¼ p⃗2 ¼ ½001� and p⃗3 ¼ 0⃗
(recalling that directions of momenta p⃗i are summed over
as detailed in Sec. II B), the product

½001�A2|fflfflfflffl{zfflfflfflffl}
π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½000�A−
1|fflfflfflffl{zfflfflfflffl}

η

zfflfflfflffl}|fflfflfflffl{ðIG¼0þÞ

→ ½000�Tþ
1

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

⊕ …

appears once in ½000�Tþ
1 with IG ¼ 1þ. Following the

construction outlined in Eq. (4) yields one operator of the
form O†

ππη with corresponding noninteracting energy,

Eð3Þ
n:i: ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
�
2π

L

�
2

s
þmη:

Now we consider bound states and resonances in the ππ
and πη two-meson subsystems and construct operators
according to Eq. (5). Unlike in the previous construction,
the order in which we combine the single-meson operators
does matter as the intermediate Ω†

R depends on the flavor
structure of the two-meson subsystem. As before, for
p⃗1 ¼ p⃗2 ¼ p⃗3 ¼ 0⃗ there is no ½000�Tþ

1 , while for p⃗1 ¼
p⃗2 ¼ ½001� and p⃗3 ¼ 0⃗, there are two possible distinct two-
meson subsystems.
First, for the ππ subsystem, there are three possible

flavor combinations, IG ¼ 0þ; 1þ; 2þ, and three possible
irreps with momentum p⃗12 ¼ 0⃗, namely ½000�Aþ

1 , ½000�T−
1 ,

and ½000�Eþ. When combined with the η, only the ππ
subsystem with IG ¼ 1þ transforming in ½000�T−

1 gives the
desired overall flavor and irrep. This ππ subsystem contains
quantum numbers corresponding to the ρ and the con-
struction is, schematically,

4Lattice irreps contain more than one spin but for convenience
we choose the label R corresponding to the lightest such meson,
e.g., in ½000�T−

1 we choose ρ.

b1 RESONANCE IN COUPLED πω, πϕ SCATTERING FROM … PHYS. REV. D 100, 054506 (2019)

054506-5



�
½001�A2|fflfflfflffl{zfflfflfflffl}

π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ �
⊗ ½000�A−

1|fflfflfflffl{zfflfflfflffl}
η

zfflfflfflffl}|fflfflfflffl{ðIG¼0þÞ

→ ½000�Tþ
1

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

½000�T−
1|fflfflfflffl{zfflfflfflffl}

ρ

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

⊗ ½000�A−
1|fflfflfflffl{zfflfflfflffl}

η

zfflfflfflffl}|fflfflfflffl{ðIG¼0þÞ

→ ½000�Tþ
1

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

: ð7Þ

Calculating the Eð2þ1Þ
n:i: energies amounts to determining the

ρ-like energy eigenstates in ½000�T−
1 with IG ¼ 1þ and

adding these to the η energy according to Eq. (6),

Eð2þ1Þ
n:i: ¼ E

T−
1

ρn ð½000�Þ þmη;

where we recall that ρn denotes the nth energy eigenstate
within the irrep. In many cases, including here, only the
lowest energy two-meson state (n ¼ 0) yields an operator
below the energy cutoff.
The second possible construction considers the πη

subsystem where there is only one flavor combination,
IG ¼ 1−, and one possible irrep, ½001�A1. These quantum
numbers correspond to the a0 meson. Schematically,

�
½001�A2|fflfflfflffl{zfflfflfflffl}

π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½000�A−
1|fflfflfflffl{zfflfflfflffl}

η

zfflfflfflffl}|fflfflfflffl{ðIG¼0þÞ �
⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}

π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

→ ½000�Tþ
1

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

½001�A1|fflfflfflffl{zfflfflfflffl}
a0

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
π

zfflfflfflffl}|fflfflfflffl{ðIG¼1−Þ

→ ½000�Tþ
1

zfflfflfflffl}|fflfflfflffl{ðIG¼1þÞ

; ð8Þ

and, as before, we determine the Eð2þ1Þ
n:i: energies by

calculating the a0-like energy eigenstates in ½001�A1 with
IG ¼ 1− and add these to the π energy according to Eq. (6),

Eð2þ1Þ
n:i: ¼ EA1

a0n
ð½001�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
�2π
L

�
2

r
:

For each Eð2þ1Þ
n:i: below some energy cutoff we can construct

operators of the form O†
a0π via Eq. (5). The EA1

a0n
ð½001�Þ

energies are an example of a casewhere it may be prudent to
consider multiple states (n ≥ 0) in the two-body sector.
Figure 4 of Ref. [13] shows the ½001�A1 spectra correspond-
ing to theEA1

a0n
ð½001�Þ energies—there are many nearby low-

lying energy levels on each volume. Following the
construction given in Eq. (5) leads to multiple operators

of the form O†
a0π corresponding to similar Eð2þ1Þ

n:i: .
The use of RM operators to efficiently interpolate finite-

volume states above three-meson thresholds requires the
calculation of a large number of diagrams. As an example,
consider the case of an a0π operator at the sink, where the
optimized a0 operators are linear superpositions of ūΓd, πη,
and KK̄ constructions (see Table VII). This leads to the

diagram components shown in Fig. 1, which need to be
connected to the quark lines from the π and the source
operator to form complete Wick contractions. It follows
that even in the simple case of b1 − a0π correlators we
would have diagrams with the structures shown in Fig. 2.

III. LATTICE SETUP

Correlation functions were computed on anisotropic
lattices of spatial volumes ðL=asÞ3 ¼ 163, 203 and 243

each having temporal extent T=at ¼ 128, where the tem-
poral lattice spacing, at, is finer than the spatial lattice
spacing, as ∼ 0.12 fm, with an anisotropy ξ ¼ as=at ∼ 3.5.
Gauge fields were generated from a tree-level Symanzik-
improved gauge action and a Clover fermion action with
Nf ¼ 2þ 1 flavors of dynamical quarks where the strange
quark is tuned to approximately its physical mass and the
degenerate light quarks are such that mπ ∼ 391 MeV
[43,44]. We utilize the distillation framework [45] to
compute correlation functions as successfully demonstrated
in many previous works. All relevant Wick contractions
were calculated within this framework without requiring
additional propagator inversions beyond the basic set of
tsrc − t and t − t “perambulators” for light and strange
quarks which were computed for use in previously reported
calculations. The very large number of diagrams incurs
only a combinatoric cost associated with the contraction of
the perambulators with the operator constructions.

FIG. 1. Quark propagation lines (black are light quarks, green
are strange quarks) from operator constructions featuring in an
optimized a0-like operator.

FIG. 2. Wick contraction topologies for b1 − a0π. Left meson
resembles the b1, upper right meson the π and the remaining one
or two mesons the a0 (only a subset of the topologies in Fig. 1 are
relevant here).
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Correlation functions were computed using the number
of distillation vectors, gauge configurations, and time-
sources shown in Table I. Typically, we calculated all
the elements of the matrix of correlation functions, includ-
ing the transposes, Cij and Cji, which are related by
Hermiticity. In a few cases where there are a particularly
large number of diagrams contributing, we made use of
Hermiticity to infer Cji from the computed Cij.
Masses of relevant stable hadrons are shown in

Table II, where π, K, ηð0Þ, and σ masses are taken from
Refs. [13,14,41,42] respectively. Using energy levels on
three lattice volumes, we determine the masses and
anisotropies of the ω and ϕ mesons from fits to the
dependence of the energy of a stable hadron of momentum,
p⃗ ¼ ð2π=LÞn⃗,

ðatEn⃗Þ2 ¼ ðatmÞ2 þ 1

ξ2

�
2π

L=as

�
2

jn⃗j2; ð9Þ

up to discretization effects, as shown in Fig. 3. We observe
the same characteristic splitting between the jλj ¼ 0, 1
components as was found for the stable ρ meson in
Ref. [17] at larger quark mass, and we attribute this
splitting to discretization effects given that the finite-volume

effects here are small. The values of atmω, atmϕ, and ξ we
use are obtained by taking the largest variations within one
standard deviation of the means across the different hel-
icities. This yields the masses given in Table II and an
anisotropy ξ ¼ 3.443ð48Þ which is consistent with the
anisotropies previously determined for π, K, and η
[13,41,42].

IV. PARTIAL WAVES AND OPERATOR BASES

In this study we are principally interested in irreps that
contain JP ¼ 1þ. For irreps at rest, JP ¼ 1þ subduces only
into Tþ

1 . However, for in-flight irreps, different helicity
components of JP ¼ 1þ are subduced across multiple
irreps as shown in Table II of Ref. [41]—for example,
λ ¼ 0 and �1 subduce into A2 and E2 respectively for
overall momentum P⃗ ¼ ½001�. Furthermore, at nonzero
momentum parity is no longer a good quantum number
and so many irreps contain both Jþ and J−, e.g., 1þ and 1−.
We will restrict our attention to P⃗A2 in-flight irreps—

these contain subductions of the λ ¼ 0 part of JP ¼ 1þ but,
because reflection parity η̃ ¼ Pð−1ÞJ is a good quantum
number for λ ¼ 0, they do not contain JP ¼ 1−. In contrast,
½001�E2 contains JP ¼ 1− as well as JP ¼ 1þ—the latter
gives comparatively lower-lying JP ¼ 1− levels, as seen in
Ref. [38], and so will lead to a dense spectrum of mixed
JP ¼ 1þ and 1− energy eigenstates. Considering only P⃗A2

allows us to avoid the complication of disentangling the
JP ¼ 1þ and 1− scattering amplitudes.
The partial-wave content of a pseudoscalar-vector sys-

tem for irreps ½000�Tþ
1 and P⃗A2 with jP⃗j2 ≤ 4ð2π=LÞ2 is

given in Table III. There we make use of the 2Sþ1lJ notation
for meson-meson scattering, where 2Sþ 1 ¼ 3 reflects the
unique spin-coupling in pseudoscalar-vector scattering, and

TABLE I. Number of distillation vectors Nvecs, gauge configu-
rations Ncfgs, and time-sources Ntsrcs used in the computation of
correlation functions.

ðL=asÞ3 × ðT=atÞ Nvecs Ncfgs Ntsrcs

163 × 128 64 479 8–16
203 × 128 128 452–603 4
243 × 128 160 553 4

TABLE II. Left: The masses of relevant stable hadrons
with uncertainties. Right: Relevant threshold energies with
uncertainties.

meson ðJPÞ atm

πð0−Þ 0.06906(13)
Kð0−Þ 0.09698(9)
ηð0−Þ 0.10364(19)
σð0þÞ 0.1316(9)
ωð1−Þ 0.15541(29)
η0ð0−Þ 0.1641(10)
ϕð1−Þ 0.17949(21)

threshold atEthr

πω 0.22447(32)
ππη 0.24176(26)
πϕ 0.24855(25)
πKK̄ 0.26302(18)
ππσ 0.26972(92)
ππππ 0.27624(26)
ππη0 0.30222(102)

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4

FIG. 3. Momentum dependence of ω and ϕ energies and fits to
Eq. (9). Blue and red lines correspond to the ω meson with jλj ¼
0 and 1 respectively. Similarly, green and orange lines correspond
to the ϕ meson with jλj ¼ 0 and 1. Points are shown with
statistical uncertainties and grey points show the ðL=asÞ ¼ 16 in-
flight energies which are not included in the fit.
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l is the relative orbital angular momentum. The use of the
l − S basis, over say the helicity basis, is for convenience;
in particular, the threshold behavior of a partial-wave of
definite l is known.
Table III includes cases where two 2Sþ1lJ constructions

appear with the same JP—in these cases the scattering
matrix is 2 × 2 in the case of a single meson-meson
channel, e.g., for JP ¼ 1þ scattering of πω, the t-matrix is

t ¼
 

tðπωf3S1gjπωf3S1gÞ tðπωf3S1gjπωf3D1gÞ
tðπωf3S1gjπωf3D1gÞ tðπωf3D1gjπωf3D1gÞ;

!

ð10Þ

where the symmetric nature of the matrix follows from
time-reversal invariance.
The relevant thresholds for the isovector sector with

positive G-parity are shown in Table II. In the construction
of correlation matrices we utilize two-meson operators
resembling πω and πϕ and three-meson operators resem-
bling ππη and πKK̄. All three-meson operators are of the
form O†

RM corresponding to ρη and a0π for ππη-like
operators and a0π, K�K̄ for πKK̄-like operators.5 K�K̄
operators are constructed with definite G-parity analogous
to the KK̄ operators in Ref. [46]. For the ππσ–threshold,
three-meson operators resembling ρσ and a1π were con-
sidered for inclusion. These appear in a relative P-wave in

the ½000�Tþ
1 and P⃗A2 irreps at values of Eð2þ1Þ

n:i: that lie far
above ππππ-threshold. Similarly, relevant ππσ noninteract-

ing energies, Eð3Þ
n:i:, are far beyond ππππ-threshold.

Although the construction of operators resembling four-
mesons could be done analogously to the three-meson

operator construction described above, we do not include
these in our basis and choose to restrict to energies below
the ππππ-threshold.
The operator basis used for the ½000�Tþ

1 irrep on each
lattice volume is presented in Table IV. Included are all two-

meson and three-meson operators corresponding to Eð2Þ
n:i:

and Eð2þ1Þ
n:i: below ππππ-threshold.6 The operator lists for

P⃗A2 irreps with P⃗ ≠ 0⃗ are presented in Appendix B—we
include, as well as all low-lying two-meson operators, also
the lowest three-meson (RM) operator in each irrep, with
the intention of robustly determining the spectra up to the

lowest Eð2þ1Þ
n:i: or Eð3Þ

n:i: energy. As well as providing many
more energy levels with which to constrain the scattering
matrix, moving frames are required to determine the sign of
the off-diagonal element, tðπωf3S1gjπωf3D1gÞ, as previ-
ously explored for πρ scattering in Ref. [17].
In order to estimate the strength of partial waves with

J ≥ 2 that appear alongside our desired JP ¼ 1þ in
½000�Tþ

1 and P⃗A2, on the largest volume we also computed
spectra in irreps ½000�E−, ½000�Tþ

2 , ½001�B1, and ½001�B2,
whose partial-wave content is presented in Table V. As well
as the pseudoscalar-vector partial waves presented in the
table, the ½001�B1 and ½001�B2 irreps also contain a
pseudoscalar-pseudoscalar JP ¼ 3− (1F3) partial-wave.
The operator bases used for these irreps are presented in
Appendix B.
In summary, because we are considering the G-parity

positive isovector sector, the neutral channels have charge-
conjugation C ¼ −. The contributing JPC includes our
target 1þ− where we expect a low-lying b1 resonance,
which in the quark model would be a qq̄ spin-singlet in a
P-wave. 2−− and 3−− are expected to resonate at a somewhat
higher energy, corresponding to ρ2, ρ3 resonances which
would be spin-triplet D-waves in the quark model. Still
higher we might have a 3þ− resonance, b3, as a spin-singlet

TABLE III. Partial-wave JPð3lJÞ content for pseudoscalar-
vector scattering in irreps P⃗Λ containing JP ¼ 1þ, transcribed
from Ref. [17]. A subscript [N] indicates that this JP has N
embeddings in that irrep.

½000�Tþ
1

½00n�A2 ½0nn�A2 ½nnn�A2

0−ð3P0Þ 0−ð3P0Þ 0−ð3P0Þ
1þ
�

3S1
3D1

�
1þ
�

3S1
3D1

�
1þ
�

3S1
3D1

�
1þ
�

3S1
3D1

�
2þð3D2Þ

2−
�

3P2
3F2

�
2−
�

3P2
3F2

�
½2�

2−
�

3P2
3F2

�

3þ
�

3D3
3G3

�
3þ
�

3D3
3G3

�
3þ
�

3D3
3G3

�
½2�

3þ
�

3D3
3G3

�
½2�

TABLE IV. ½000�Tþ
1 operator basis for each lattice volume, with

operators ordered by increasing En:o:. The maximum number of
single-meson operators, N, is denoted by N × ψ̄Γψ ; various
subsets of these were considered to obtain robust fits. The number
in braces, fNmultg, denotes the multiplicity of linearly indepen-
dent two-meson operators if this is larger than one.

L=as 16 20 24

22 × ψ̄Γψ 22 × ψ̄Γψ 22 × ψ̄Γψ
π½000�ω½000� π½000�ω½000� π½000�ω½000�
π½000�ϕ½000� π½000�ϕ½000� π½000�ϕ½000�
ρ½000�η½000� ρ½000�η½000� ρ½000�η½000�
K�

½000�K̄½000� K�
½000�K̄½000� K�

½000�K̄½000�
f2gπ½001�ω½001�

5The optimized operators Ω†
R for ρ, a0 and K� used in RM

operator constructions are determined independently in each
relevant irrep using variational analysis with the operator bases
that are presented in the Appendix B. 6There are no Eð3Þ

n:i: below 4mπ in ½000�Tþ
1 .
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F-wave qq̄. 0−− and 2þ− are exotic—they do not appear in
the qq̄ quark model and previous lattice calculations [30]
suggest that they may resonate in the form of hybrid mesons
at much higher energy. Because they do not resonate, and
feature at least a P-wave threshold suppression, it follows
that we expect all partial waves except JP ¼ 1þ to be small

at low energies, and indeed we will find this to be the case
below.

V. FINITE-VOLUME SPECTRA

The spectra determined from variational analysis of
½000�Tþ

1 correlation matrices on three volumes using the
operator bases in Table IV are presented in Fig. 4. For the
largest lattice volume (L=as ¼ 24), the principal correlators
and operator-state overlaps, Zn

i ¼ hnjO†
i ð0Þj0i, are also

provided for illustration. The typical magnitude of stat-
istical uncertainty on the energy levels, even relatively high
in the spectrum, is at the level of a few tenths of a percent.
It should be clear from the operator-state overlaps that
our operator basis is rather efficiently “latching on” to the
finite-volume eigenstates. In some cases an eigenstate has
a dominant overlap with only one operator, suggesting
that the state closely resembles that particular operator
structure.

TABLE V. Partial-wave JPð3lJÞ content for pseudoscalar-
vector scattering in irreps with lowest J ¼ 2.

½000�Tþ
2

½000�E− ½001�B1 ½001�B2

2þð3D2Þ 2þð3D2Þ 2þð3D2Þ
2−
�

3P2
3F2

�
2−
�

3P2
3F2

�
2−
�

3P2
3F2

�

3þ
�

3D3
3G3

�
3þ
�

3D3
3G3

�
3þ
�

3D3
3G3

�

0.22
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0.24
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0.27

0.28

0.29
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FIG. 4. Left: Finite-volume spectrum in the ½000�Tþ
1 irrep on three lattice volumes. Black points give the energy levels, including

statistical uncertainties, from a variational analysis using the operator bases in Table IV. Solid curves are two-meson noninteracting

energies, atE
ð2Þ
n:i:, short dashed horizontal lines are atE

ð2þ1Þ
n:i: , and long dashed horizontal lines show the two–, three–, and four–meson

thresholds. Multiplicities (if greater than one) are shown as fng. For each energy level on the largest volume, we show the principal
correlators, plotted as λnðt; t0ÞeEnðt−t0Þ for t0 ¼ 10at so that a horizontal line is observed when a single exponential dominates. Points
show λnðt; 10Þ and error bars correspond to the one-sigma statistical uncertainty. Curves show fits to the form described in the text; the
curves show the fit range and gray points are not included in the fit. The histograms show the operator-state overlap factors,
Zn
i ¼ hnjO†

i ð0Þj0i, for each energy level on the largest volume for the MM ¼ πω (dark blue), πϕ (green) and RM ¼ ρη (blue-green),
K�K̄ (purple) operators along with a sample set of single-meson operators subduced from JP ¼ 1þ (red) and JP ¼ 3þ (orange). The
overlaps are normalized such that the largest value for any given operator across all energy levels is equal to one. Right: The spectrum
extracted when ρη and K�K̄ operators are excluded from the basis (black) compared with the complete spectrum (gray).
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Consider first the number of energy levels expected
below atEcm ≈ 0.27 on each volume. In the absence of
residual meson-meson interactions we would expect four

on each lattice volume: one at each of the two Eð2Þ
n:i:

corresponding to π000ω000 and π000ϕ000, shown as solid

horizontal lines in the figure, and one at each of the Eð2þ1Þ
n:i:

corresponding to ρ000η000 and K�
000K̄000, shown as short

dotted horizontal lines. Counting the number of energy
levels actually extracted, we find five, with an “additional”
level appearing near πϕ threshold. This may suggest the
existence of a narrow resonance, as seen in calculations of
the ρ resonance [38,46], with a mass close to πϕ threshold.7

On the largest volume, the effect of there being two ways to
construct π001ω001 can be seen: two energy levels are
found, one very close to the noninteracting energy and one
somewhat higher in energy.
In Fig. 4 we also present an investigation of the

importance of including RM operators in the basis. The
rightmost panel shows the spectrum extracted when ρη and
K�K̄ operators are excluded, compared to the spectrum
extracted with the full basis—with the smaller basis we see
that typically the levels close to the ρη and K�K̄ “non-
interacting” energies are no longer found. The spectrum at
lower energies shows only modest discrepancies, except on
the smallest lattice volume (L=as ¼ 16) where we might
indeed expect the finite-volume effects associated with ρη
and K�K̄ to be largest. Finding “incorrect” spectra due to

“incomplete” operator bases has been demonstrated in
previous works. One example can be seen in Fig. 1 of
Ref. [38] where including both ψ̄Γψ and ππ operators is
shown to be essential in order to robustly determine the ρ
spectrum. Figure 4 demonstrates an analogue of this for the
case of three-meson operators.
Some qualitative observations about the spectrum can be

gleaned from the operator-state overlap factors shown in
Fig. 4. The energy level just below πω threshold on all
volumes has significant overlap onto both π000ω000 and
ψ̄Γψ operators, as one might expect if a qq̄-like resonance
lies nearby. For the two levels in close proximity to πϕ
threshold, one appears dominated by ψ̄Γψ operators with
some overlap onto πω, ρη and K�K̄ operators, while the
other is completely dominated by π000ϕ000. Furthermore,
we observe that all other levels have very small overlaps
with the π000ϕ000 operator, reflecting the fact that the matrix
of correlation functions is approximately block diagonal
with respect to π000ϕ000. This suggests that πϕ is essentially
“decoupled,” as might be expected from the OZI rule which
postulates that qq̄ pairs in isoscalar mesons prefer not to
annihilate. The states close to the ρη and K�K̄ noninteract-
ing energies are observed to have large overlap with ρη and
K�K̄ operators respectively. The highest two states shown,
near to the π001ω001 two-fold degenerate noninteracting
energy, differ somewhat in their overlaps. The level shifted
up has overlap with both the π001ω001 and ψ̄Γψ operators,
while the other, which lies on the noninteracting energy, has
significant overlap only with the π001ω001 operators.
In Fig. 5, we present the cm-frame finite-volume

spectrum for irreps ½000�Tþ
1 and P⃗A2 on the three volumes,

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

16 20 24 16 20 24 16 20 24 16 20 24 16 20 24

FIG. 5. Finite-volume energy levels in the cm-frame for ½000�Tþ
1 and P⃗A2 below the lowest Eð2þ1Þ

n:i: or Eð3Þ
n:i:. Black points are used in the

scattering analysis in Sec. VI while gray points are excluded from the main analysis as discussed in the text. Solid curves are two-meson

noninteracting energies, atE
ð2Þ
n:i:, short solid gray horizontal lines show the lowest Eð2þ1Þ

n:i: or Eð3Þ
n:i:, and long dashed horizontal lines show

the two–, three–, and four–meson thresholds. Multiplicities (if greater than one) are shown as fng. The horizontal axes are in units
of L=as.

7We will later find that the proximity of the resonance to πϕ
threshold is a coincidence—this is hinted at by the operator
overlaps in Fig. 4 as discussed below.
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with only those levels found below the lowest Eð2þ1Þ
n:i: or Eð3Þ

n:i:
shown.8 Points in grey are levels that prove to be sensitive
to the presence of ρη, K�K̄ and a0π operators in the basis,
or which are very close to the energy cutoff, and these
levels are excluded from the main scattering analysis in
Sec. VI. Although we take a conservative approach and
exclude these levels, we will find in Sec. VI that they are
mainly well described by the scattering amplitudes, and we
reexamine these levels in Sec. VIII.
For irreps P⃗A2 with P⃗ ≠ 0⃗, the density of energy levels is

much higher than in irreps at rest—more momentum
combinations for two–and three–mesons with associated

Eð2Þ
n:i:, E

ð2þ1Þ
n:i: , and Eð3Þ

n:i: lying below the ππππ–threshold are
possible. This can make identifying an “additional” level
more challenging in these irreps. However, in the ½111�A2

irrep we can clearly see an additional energy level on each
volume relative to the number expected from counting the
noninteracting two-meson energies. We also observe an
“avoided level crossing” where the π000ω111 noninteracting
energy crosses atEcm ∼ 0.25, another hint that we may
have a narrow resonance in this energy region.
In Fig. 6, we present finite-volume spectra on the largest

lattice volume for irreps ½000�Tþ
2 , ½000�E−, ½001�B1 and

½001�B2 where the lowest contributing spin is J ¼ 2. We
observe very little deviation of the extracted energy levels
from noninteracting πω energies, suggesting that the πω
scattering amplitudes in J ≥ 2 partial waves are very small

in this energy region. We also find levels in ½001�B1 and
½001�B2 consistent with noninteracting ππ energies and
with dominant overlaps onto ππ operators. This is in line
with the results of Ref. [38] where the ππf1F3g amplitude
(JP ¼ 3−) was found to be consistent with zero in this
energy region. We also find a level in ½001�B1 consistent
with the noninteracting KK̄ energy and with dominant
overlap onto KK̄ operators, suggesting that the opening of
the KK̄ threshold does not enhance the scattering in
JP ¼ 3−.

VI. SCATTERING ANALYSIS

Finite-volume energy levels and infinite-volume scatter-
ing amplitudes are related through a quantization condition
derived by Lüscher [1,2,4] and extended by many others
[5–12,47] to accommodate the most general case of two
particle scattering. The quantization condition, subduced
into lattice irrep P⃗Λ, can be expressed as the determinant of
a matrix in the space of intrinsic spin S ¼ S1 ⊕ S2, orbital
angular momenta l, total angular momenta J, the embed-
ding number n of a particular partial-wave in lattice irrep
P⃗Λ and hadron-hadron channel a. Written compactly,
following the notation of Ref. [17],

detflJnag½1þ iρ · t · ð1þ iM̄Þ� ¼ 0; ð11Þ

where the determinant over intrinsic spin is trivial in the
current case as S takes only the value 1 for vector-
pseudoscalar scattering. Here tðEcmÞ is the scattering
t-matrix,9 diagonal in J with components tlJa;l0Jb.
The diagonal matrix of phase-space factors ρðEcmÞ has
components

ρlJa;l0J0b ¼ δll0δJJ0δab
2kðaÞ

Ecm

where kðaÞ is the cm-frame momentum for hadron-hadron
channel a,

kðaÞ ¼ 1

2Ecm
½E2

cm− ðmðaÞ
1 þmðaÞ

2 Þ2�12½E2
cm− ðmðaÞ

1 −mðaÞ
2 Þ2�12:

Both t and ρ, being infinite-volume quantities, are diagonal
in embedding number n and we have dropped this index
for brevity. Lastly, M̄ðEcm; LÞ is a matrix of known
functions, diagonal in hadron-hadron channel, describing
the kinematics of the system in a finite cubic volume, with
components M̄nlJa;n0l0J0b.
The subduced quantization condition in Eq. (11) reflects

the little-group symmetry. The finite-volume spectrum
calculated in irrep P⃗Λ depends upon the various partial-
wave amplitudes present in that irrep (see, e.g., Tables III

0.22

0.24

0.26

0.28

0.30

24 24 24 24

FIG. 6. As Fig. 5 but for irreps ½000�Tþ
2 , ½000�E−, ½001�B1 and

½001�B2 on the largest lattice volume. Dashed curves show
noninteracting two-meson energies where the corresponding
operator was not included in the basis.

8Error bars on the energy levels include estimates of systematic
uncertainly coming from varying t0 and fitting time ranges, and
reasonable variations of the operator basis. Also included is the
effect of the uncertainty on the anisotropy which appears when
we boost back from the “lab” energy to the cm frame. 9related to the unitary S-matrix via S ¼ 1þ 2i

ffiffiffi
ρ

p
· t ·

ffiffiffi
ρ

p
.
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and V). In this way computing spectra in multiple irreps
offers additional constraints on scattering. Further details
can be found in Appendix C of Ref. [17].
Equation (11) is limited to describing two-body

scattering—developments in the pursuit of a correspond-
ing three-body formalism [22–29,48–52] have seen
significant recent progress towards a general quantiza-
tion condition, but they are not yet mature at the level
where we could apply them in the case considered in
this paper. We therefore mainly restrict our attention to
the two-body channels, πω and πϕ, and in Sec. VIII we
estimate the systematic effects of neglecting the three-
body channels ππη and πKK̄ in the energy region
considered, finding them to be small.
In the case of elastic scattering, where a single meson-

meson channel appears in a single partial-wave, the
t-matrix can be expressed in terms of a single real
energy-dependent phase-shift δðEcmÞ, where

tðEcmÞ ¼
1

ρðEcmÞ
eiδðEcmÞ sin δðEcmÞ: ð12Þ

In this case we can invert Eq. (11) to obtain a one-to-one
relation between Ecm and δðEcmÞ. Given a set of discrete
energy levels below the inelastic threshold, we can hence
obtain a set of phase-shift points. In the case considered
in this paper, there is never rigorously elastic scattering—
as soon as the πω threshold opens, in JP ¼ 1þ there are
always two coupled partial waves, 3S1 and 3D1. However,
at low energies the angular momentum suppression of
the D-wave may make the system effectively elastic in
S-wave.
For scattering with more than one partial-wave or

hadron-hadron channel, there is no longer a one-to-one
relation between Ecm and elements of the t-matrix and
we choose to make progress by parametrizing the
energy dependence of tðEcmÞ. In order to calculate
the scattering amplitudes using Eq. (11) we follow
the successful approach detailed in [41]. In brief, taking
an appropriate parametrization of the scattering t-matrix,
we calculate the energy spectrum in each irrep using
Eq. (11). By varying the free parameters in the para-
metrization, we find the best description of the finite
volume spectra by minimizing a χ2, described in Eq. (9)
of Ref. [38], measuring the agreement between finite-
volume spectra obtained in the lattice calculations and
those found by solving Eq. (11) with the parametrized
t-matrix. To ensure that we have not introduced bias by
any particular choice of t-matrix parametrization, we
repeat the analysis for a range of parametrization forms,
establishing which features of the resulting amplitudes
are robust.
A very convenient approach to building parametrizations

of the t-matrix is to work in terms of a real symmetric
K-matrix, KðsÞ, where s ¼ E2

cm,

½t−1ðsÞ�lJa;l0Jb ¼
1

ð2kðaÞÞl ½K
−1ðsÞ�lJa;l0Jb

1

ð2kðbÞÞl0

þ δll0IabðsÞ; ð13Þ

and IabðsÞ ¼ IaðsÞδab is a matrix diagonal in hadron-
hadron channel. Unitarity of the S-matrix is guaranteed if
ImIaðsÞ ¼ −ρaðsÞ above threshold in channel a and zero
below. A simple choice is IaðsÞ ¼ −iρaðsÞ. Alternatively,
the Chew-Mandelstam prescription [53] defines ReIaðsÞ
through a dispersive integral featuring ρaðsÞ—this has
improved analytic structure as we transition across
thresholds and move away from the real energy axis.
A detailed discussion of our implementation can be
found in Ref. [42].
One parametrization we utilize expresses the compo-

nents of K−1ðsÞ as polynomials in s,

½K−1ðsÞ�lJa;l0Jb ¼
XN
n¼0

cðnÞlJa;l0Jb · s
n; ð14Þ

where cðnÞ is a real symmetric matrix. Flexibility
in this form comes from varying N and allowing

parameter freedom in different combinations of cðnÞlJa;l0Jb
coefficients.
An alternative approach is to parametrize the compo-

nents of KðsÞ directly, using a parametrization of the
form

KlJa;l0JbðsÞ ¼
glJaðsÞgl0JbðsÞ

m2 − s
þ
XN
n¼0

γðnÞlJa;l0Jb · s
n; ð15Þ

where m is a real parameter, glJaðsÞ is some real
polynomial in s, and γðnÞ is a symmetric matrix of
real parameters. These forms assume nothing about a
nearby resonance or bound state but the pole
can efficiently describe such behavior where it is
present. These and similar K-matrix parametrizations
have been successfully used in previous lattice QCD
calculations of three coupled-channel resonant scatter-
ing [13,14,54] and nonresonant vector-pseudoscalar
scattering [17].
As an explicit example, one that we will make use of

later, consider a K-matrix parametrization suitable for
describing the dynamically coupled JP ¼ 1þ channels
πωf3S1g, πωf3D1g and πϕf3S1g.10 One possible choice,
with 7 free parameters, is

10In principle, we should also consider πϕ in the 3D1 partial-
wave; however, suppression due to the centrifugal barrier factor,
compounded with strong OZI suppression of πϕ, suggests it
will be negligibly small and we find later in Sec. VIII that the
amplitude is consistent with zero in the energy region we
consider.
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KðsÞ¼ 1

m2− s

0
BBBB@

g2
πωf3S1g gπωf3S1ggπωf3D1g gπωf3S1ggπϕf3S1g

gπωf3S1ggπωf3D1g g2
πωf3D1g gπωf3D1ggπϕf3S1g

gπωf3S1ggπϕf3S1g gπωf3D1ggπϕf3S1g g2
πϕf3S1g

1
CCCCAþ

0
BBBB@

γð0Þ
πωf3S1g;πωf3S1g γð0Þ

πωf3S1g;πωf3D1g 0

γð0Þ
πωf3S1g;πωf3D1g 0 0

0 0 γð0Þ
πϕf3S1g;πϕf3S1g

1
CCCCA;

ð16Þ

where this form allows mixing between πω and πϕ
channels only through gπϕf3S1g.
To include additional partial waves that contribute as a

consequence of the finite-volume but which do no mix in
an infinite-volume, i.e., those with distinct JP as seen in
Table III for irreps ½000�Tþ

1 and P⃗A2, we write the t-matrix
in block-diagonal form with each block corresponding to a
JP. We refer the reader to Ref. [17] for more details.
Statistical uncertainties on the scattering parameters and

parameter correlations are determined by calculating the
second derivatives of the correlated χ2 at its minimum.
We make a conservative estimate of systematic uncertain-
ties on each scattering parameter due to the uncertainties
on stable hadron masses and the anisotropy by repeating
the χ2 minimization fitting procedure at all the various
combinations of ξ� δξ and mi � δmi.

11 For each of these
minimizations, we keep the finite-volume energies, Ecm,
their corresponding uncertainties, δEcm, and correlations
between energy levels fixed, where

atEcm ¼ fðatElat; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatElatÞ2 −

1

ξ2

� 2π

L=as

�
2jn⃗j2

s

atδEcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ∂f
∂ðatElatÞ

�
2

ðatδElatÞ2 þ
�∂f
∂ξ
�

2

δξ2

s
; ð17Þ

and Elat is the energy in the lattice frame. For each
scattering parameter, the largest change in the central value
is quoted as its systematic uncertainty.
Utilizing the approach outlined above, we now deter-

mine scattering amplitudes starting with a single partial
wave using energy levels below πϕ threshold, and pro-
gressing to a larger set of partial waves using the full set of
energy levels.

A. “Elastic” πωf3S1g scattering

Below πϕ threshold, the kinematically open hadron
channels are the two-body πω and three-body ππη. We
expect ππη to become an important channel near the lowest

Eð2þ1Þ
n:i: where the ρ resonance enhances ππ as discussed in

Sec. II C. Below this energy, we expect the need to have a

P-wave to get overall JP ¼ 1þ will strongly suppress the

amplitude. The lowest Eð2þ1Þ
n:i: in each of the irreps we

consider is typically much higher in energy than πϕ
threshold, and so we will initially propose that we can
ignore ππη.
In this energy region only slightly above πω threshold,

the centrifugal barrier suppresses contributions of higher-
partial waves, tlJ;l0J ∼ klþl0

cm , such that we expect the 3D1

contributions to the coupled 3S1, 3D1 partial waves to be
rather small. Similarly, πω scattering amplitudes in other
partial waves that appear in these irreps due to the finite
volume, as shown in Table III, are expected to be sup-
pressed relative to the 3S1 amplitude and to have no
significant resonant enhancement below πϕ threshold. It
follows that we can attempt an “elastic” analysis in terms of
pure πωf3S1g → πωf3S1g scattering at low energy.
We use 20 levels, all at least 1σ below the πϕ threshold.

Specifically, for each irrep these correspond to the lowest
level on each of the ðL=asÞ ¼ 16 and 20 volumes and the
lowest two levels on the ðL=asÞ ¼ 24 volume,12 shown as
the black points below πϕ threshold in Fig. 5. The resulting
discrete phase-shift points are plotted in Fig. 7, where we
see that the trend is for them to increase toward a value
close to 90° as they approach the energy cutoff at πϕ
threshold. This is certainly consistent with a resonance
located somewhere near to that energy.
Instead of extracting discrete phase-shift points, we can

also fit the spectrum using energy-dependent parametriza-
tions of elastic scattering; a selection of choices which
describe the finite-volume spectra well are included as gray
curves in Fig. 7 with the details of the parametrizations
presented in Appendix C. One description, chosen as a
reference amplitude and plotted as the blue curve in Fig. 7,
is given by,

KðsÞ ¼
g2
πωf3S1g
m2 − s

; ð18Þ
using the Chew-Mandelstam prescription for IðsÞ with
Re Iðs ¼ m2Þ ¼ 0—see Appendix B of Ref. [42]. The best
fit description of the finite-volume spectrum is

11Values of the anisotropy, masses and uncertainties are given
in Sec. III.

12On the ðL=asÞ ¼ 24 volume, of the two levels close to πϕ
threshold, the slightly lower level is included but the slightly
higher level, essentially a decoupled πϕ energy level as indicated
by the histograms in Fig. 4, is excluded.
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m ¼ ð0.2472� 0.0007� 0.0003Þ · a−1t
gπωf3S1g ¼ ð0.068� 0.009� 0.010Þ · a−1t

�
1 − 0.04

1

	

χ2=Ndof ¼
15.1
20 − 2

¼ 0.84; ð19Þ

where the first uncertainty is statistical and the second is
systematic as discussed above, and where the matrix shows
the correlations between the parameters.

B. Dynamically coupled πωf3S1g, πωf3D1g scattering

Now we relax the assumption of negligible πωf3D1g
contributions and perform a coupled-channel analysis on
the dynamically coupled πωf3S1g and πωf3D1g system,
restricted to the same low energy region below πϕ thresh-
old as in Sec. VI A. Motivated by the suggestion of
resonant behavior in the πωf3S1g phase-shift in the
previous section, we should allow for a resonance to have
a πωf3D1g coupling as this could significantly enhance the
πωf3D1g contribution abovewhat might be expected on the
basis of angular momentum suppression at threshold.
An example of a two-channel parametrization capable of

describing the finite-volume spectra is

KðsÞ ¼ 1

m2 − s

 
g2
πωf3S1g gπωf3S1ggπωf3D1g

gπωf3S1ggπωf3D1g g2
πωf3D1g

!
;

using the Chew-Mandelstam prescription for IðsÞ with
ReIðs ¼ m2Þ ¼ 0. The best-fit parameters are found to be

m¼ð0.2471�0.0007�0.0004Þ ·a−1t
gπωf3S1g ¼ ð0.071�0.011�0.010Þ ·a−1t
gπωf3D1g ¼ ð0.45�0.91�0.28Þ ·at

2
641 −0.04 0.00

1 0.49

1

3
75

χ2=Ndof ¼
14.9
20−3

¼ 0.87: ð20Þ

The parameters m and gπωf3S1g are compatible with
those of the reference amplitude in Eq. (19) and we find
gπωf3D1g to be consistent with zero within uncertainties.
In Fig. 8 we present the πωf3S1g and πωf3D1g phase-
shifts and the ϵ̄ðπωf3S1gjπωf3D1gÞ mixing-angle as
defined in the Stapp-parametrization [55] and given
in Eq. (A7) of Appendix A. A number of different
K-matrix parametrizations were explored and are plot-
ted as the gray curves in Fig. 8 and listed in Table XV
of Appendix C. We observe that all descriptions exhibit
a πωf3S1g phase-shift compatible with the behavior
seen in Sec. VI A, a πωf3D1g phase-shift that is very
small, and a mixing-angle that is consistent with zero
within a modest uncertainty over this energy range.
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FIG. 8. Upper: πωf3S1g (blue) and πωf3D1g (purple) phase-
shifts for the reference amplitude in Eq. (20) with the bands
reflecting the statistical (inner) plus systematic (outer) uncertain-
ties. In gray are parametrizations given in Table XV of Appen-
dix C with only statistical uncertainties shown. Middle: As upper
but for the mixing-angle, ϵ̄ðπωf3S1gjπωf3D1gÞ. Lower: Black
points are the finite-volume energy levels used to constrain the fit
and orange points are the energy levels calculated using Eq. (11)
for the reference amplitude in Eq. (20).
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FIG. 7. πωf3S1g elastic phase-shift assuming no 3D1 amplitude.
The blue line shows the reference amplitude given in Eq. (19)
with the blue bands reflecting the statistical (inner) plus system-
atic (outer) uncertainty. Gray lines and bands correspond to a
range of parametrizations presented in Table XIVof Appendix C
with only the statistical uncertainties shown. The point size (small
to large) of the discrete phase-shift point encodes the lattice
volume (small to large).
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C. Coupled πωf3S1g, πωf3D1g, πϕf3S1g scattering

Wenowconsider scattering amplitudes in an energy region
up to the ππππ–threshold. In this region, πω, ππη, πϕ, πKK̄,
and ππσ are all kinematically open, but we expect the three-
body channels to have only a small effect. By using only

energy levels below the lowest Eð2þ1Þ
n:i: or Eð3Þ

n:i: in each irrep,
and excluding any energy levels which show significant
sensitivity to the presence of ρη,K�K̄, and a0π operators, we
propose that we can effectively neglect the effect of three-
bodychannels. InSec.VIIIwewill explore possible effects of
relaxing this assumption. We proceed with a total of 36
energy levels—all the black points shown in Fig. 5.
Both πω and πϕ are vector-pseudoscalar channels

dynamically coupled in 3S1 and 3D1 partial waves.
However, considering the centrifugal barrier for the heavier
threshold and the lack of mixing observed in the histograms
presented in Fig. 4, we assume that πϕf3D1g will have
negligible impact at low energies. Subsequently, we are left
with a system of three coupled channels: πωf3S1g,
πωf3D1g and πϕf3S1g. Many other partial waves can

contribute to the finite-volume spectra as can be seen from
Tables III and V, but, as discussed in Sec. IV, we expect
these to be negligibly small and we will explicitly show this
in Sec. VIII.
To parametrize the energy dependence of the three-

channel t-matrix, we use K-matrices of the form in Eq. (15)
restricted to linear expansions in glJaðsÞ and γ—the para-
metrizations used are presented in full in Table XVI of
Appendix C. It should be noted that, while use of the
K-matrix guarantees unitarity, it does not guarantee good
analytic properties. Indeed, we found that some paramet-
rizations, which successfully describe the finite-volume
spectra, have t-matrix pole singularities at complex ener-
gies on the physical sheet. Such poles are forbidden by
causality, and these parametrizations must be rejected as
giving rise to unphysical solutions. A list of such para-
metrizations is provided in Table 0.2 in the Supplemental
Material [56] and the resulting amplitudes are omitted from
the figures in what follows.
A somewhat minimal parametrization,

KðsÞ ¼ 1

m2 − s

0
BB@

g2
πωf3S1g gπωf3S1ggπωf3D1g 0

gπωf3S1ggπωf3D1g g2
πωf3D1g 0

0 0 0

1
CCAþ

0
BB@

γð0Þ
πωf3S1g;πωf3S1g 0 0

0 0 0

0 0 γð0Þ
πϕf3S1g;πϕf3S1g

1
CCA; ð21Þ

used with the Chew-Mandelstam prescription with ReIaðs ¼ m2Þ ¼ 0, proves to be capable of the describing the finite-
volume spectra. The best-fit parameters are

m ¼ ð0.2465� 0.0007� 0.0001Þ · a−1t
gπωf3S1g ¼ ð0.106� 0.007� 0.007Þ · a−1t
gπωf3D1g ¼ ð1.08� 0.47� 0.28Þ · at

γð0Þ
πωf3S1g;πωf3S1g ¼ −0.35� 0.19� 0.18

γð0Þ
πϕf3S1g;πϕf3S1g ¼ 0.90� 0.24� 0.27

2
66666664

1 −0.05 0.05 −0.01 −0.23
1 0.70 −0.54 −0.06

1 −0.39 −0.06
1 0.22

1

3
77777775

χ2=Ndof ¼
36.8
36 − 5

¼ 1.19 ð22Þ

We found no improvement in the description of the
finite-volume spectra by including freedom in gπϕf3S1g
and subsequently fixed this parameter to be zero in the
reference amplitude.
There is no established method to minimally display

the S-matrix in three-channel scattering. Plotting the real
and imaginary parts of the elements of the S-matrix
contains redundancy as it does not account for the
constraints provided by unitarity. Plotting the magnitudes
via ρaρbjtabj2 has the advantage of being closely related
to a differential cross-section, but discards important
phase information. In the two channel case, the Stapp

parametrization is minimal with regard to unitarity and
reduces to single-channel phase-shifts when the channels
decouple, but to our knowledge there is not a generaliza-
tion to more channels that reduces to the two-channel
Stapp parametrization. In Appendix A we provide such a
generalization to n-channels where, if k are decoupled, the
scattering S-matrix naturally block diagonalizes into an
(n − k) coupled-channel block and a diagonal block
containing k decoupled phase-shifts.
The phase-shifts and mixing angles are plotted in Fig. 9

for the amplitude in Eqs. (21) and (22) (colored curves) and
the many other parametrizations listed in Table XVI of
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Appendix C (gray curves). We observe that the behavior of
the πωf3S1g phase-shift is in close agreement with the
results of Sec. VI B, and the πωf3D1g phase-shift is once
again very small. The πϕf3S1g phase-shift shows a small
positive tendency indicative of a weak attraction. The
mixing-angle ϵ̄ðπωf3S1gjπωf3D1gÞ is small but likely
nonzero, while the mixing angles ϵ̄ðπωf3S1gjπϕf3S1gÞ
and ϵ̄ðπωf3D1gjπϕf3S1gÞ are around two orders of mag-
nitude smaller and statistically consistent with zero
everywhere.
The same amplitudes are plotted as ρaρbjtlJa;l0Jbj2 in

Fig. 10. We observe a significant bumplike enhancement in
the πωf3S1g → πωf3S1g process which would be a canoni-
cal indication for a resonance in a scattering cross-section
measurement.
In Fig. 11 we present the energies calculated using

Eq. (11) with the reference amplitude of Eqs. (21) and (22)
which, as suggested by the small χ2, are seen to be in good
agreement with the lattice finite-volume energy levels.
Notably, for levels not included in the fits, shown in gray,
the predicted spectra on the ðL=asÞ ¼ 20, 24 volumes

appear to be mainly in reasonable agreement, while on
the ðL=asÞ ¼ 16 volume there is a larger discrepancy.
This may be attributed to more significant contributions
from three-meson amplitudes on smaller volumes, further
supported by the observation that there is a much larger
variation in the spectrum in the ½000�Tþ

1 irrep on the smaller
volume when threemesonlike operators are removed—
see Fig. 4.
A final comment concerns the effect on the scattering

results of the uncertainty placed on the anisotropy due to
the observed dependence on vector-meson helicity in
Sec. III. Unlike in the ρπ isospin-2 case presented in
Ref. [17], where the weak nature of the scattering led to the
anisotropy uncertainty being the largest systematic effect,
here the interactions are strong and the anisotropy uncer-
tainty contributes relatively little as can be seen from the
relative sizes of the inner and outer bands in Figs. 9 and 10.
To summarize, the characteristic “bump” we found in the

scattering magnitudes in Fig. 10 and the clearly observed
avoided level crossing in the ½111�A2 spectrum seen in
Fig. 5 strongly suggests a resonance. To demonstrate this
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FIG. 10. As Fig. 9 but for ρaρbjtlJa;l0Jbj2. Colored curves
illustrate the reference amplitude in Eqs. (21) and (22) with bands
reflecting the statistical (inner) plus systematic (outer) uncer-
tainty. Other parametrizations presented in Table XVI of
Appendix C are in gray with bands reflecting only the statistical
uncertainties. ρaρbjtlJa;l0Jbj2 not plotted are significantly smaller
than those shown and consistent with zero.
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FIG. 9. Upper: As in Fig. 8 but for the πωf3S1g (blue),
πωf3D1g (purple) and πϕf3S1g (green) phase-shifts for the
reference amplitude in Eqs. (21) and (22), and for other
parametrizations presented in Table XVI of Appendix C (gray).
Middle: As upper but for the mixing-angle ϵ̄ðπωf3S1gjπωf3D1gÞ.
The other mixing angles, ϵ̄ðπωf3S1gjπϕf3S1gÞ and ϵ̄ðπωf3D1gj
πϕf3S1gÞ, are extremely small and consistent with zero for all
parametrizations and are not plotted. Lower: The energy levels
used to constrain the scattering amplitude (black) and their
corresponding description by the amplitude in Eqs. (21) and
(22) (orange).

WOSS, THOMAS, DUDEK, EDWARDS, and WILSON PHYS. REV. D 100, 054506 (2019)

054506-16



rigorously, we proceed to determine the pole singularities
of our scattering amplitudes.

VII. POLE ANALYSIS FOR COUPLED-CHANNEL
AMPLITUDES

At each threshold, unitarity necessitates a branch point
singularity and the corresponding branch cut divides the
complex s-plane into two Riemann sheets, so for n open
thresholds there are 2n sheets. Riemann sheets can be
labeled by the sign of the imaginary component of the
cm-frame momentum kðaÞ in each hadron channel a. We
identify the physical sheet, where physical scattering occurs
just above the real energy axis, as having ImðkðaÞÞ > 0 for
all a. Sheets with other sign combinations are referred to as
unphysical, and it is on these sheets that pole singularities
corresponding to resonances lie, in complex-conjugate
pairs, off the real energy axis. Poles off the real axis on
the physical sheet indicate causality violating amplitudes
and signal an unacceptable description of the scattering
process.
For poles off the real axis, we define the real and

imaginary parts of the pole singularity at s ¼ s0 in terms
of the mass mR and the width ΓR of a resonance respec-
tively, by

ffiffiffiffiffi
s0

p ¼ mR � i
2
ΓR. For narrow resonances, with a

single dominant decay mode, these definitions of the
resonance mass and width agree well with the location
and full-width at half-maximum of the “bump” seen in
scattering cross sections. The advantage of associating the
pole singularity with the resonance is that this definition is

still useful in complicated coupled-channel cases, such as
those seen in the lattice calculations of the a0 [13] and f0
[14], where the resonance does not appear as a clear
isolated bump for real energies.
In the current case, the hadron-hadron channels πω and

πϕ lead to four sheets, ðsignðImkπωÞ; signðImkπϕÞÞ ¼
fIðþ;þÞ; IIð−;þÞ; IIIð−;−Þ; IVðþ;−Þg. Close to the πϕ
threshold, all of sheets II (lower half-plane), III (lower
half-plane), and IV (upper half-plane) are close to physical
scattering. A single resonance can appear as a pole in
slightly different positions on multiple sheets—some dis-
cussion of this in the context of a simple coupled-channel
amplitude model can be found in Ref. [13].
For complex energies close to a pole singularity at s0, the

scattering t-matrix can be written in the factorized form

tlJa;l0Jbðs ∼ s0Þ ∼
clJacl0Jb
s0 − s

; ð23Þ

where the complex valued couplings clJa reflect the
strength of the resonance coupling to channel af3lJg.
For each coupled hadron-hadron channel, the coupling is
determined only up to a sign which gives no change to the
physics. In the current case this leads to a sign ambiguity
between the πω and πϕ couplings, but conversely the
relative sign between the 3S1 and 3D1 partial waves in πω
can be unambiguously determined and physically would
lead to different angular decay shapes depending on its
value. In Ref. [17], it was shown that in a finite volume,
moving-frame spectra are required to constrain this sign.
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FIG. 11. As Fig. 5 but including, as orange bands, the energy levels calculated from the reference amplitude in Eqs. (21) and (22) using
Eq. (11) as a function L=as. The thickness of the bands reflect the combined statistical and systematic uncertainties. The vertical red
band on the right of the figure indicates the position of the resonant pole of mR and width ΓR as determined in Sec. VII. The red
horizontal line at the resonant mass is shown in each irrep to guide the eye.
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For each amplitude parametrization we considered, using
the best-fit values of parameters, we perform a search
across all Riemann sheets over a large range of complex
s, finding any pole singularities present and determining
the couplings by factorizing the residue of the pole.
Uncertainties on the pole positions and couplings are
estimated by appropriately propagating through the uncer-
tainties and correlations on the fit parameters. For the case
of the reference amplitude presented in Eqs. (21) and (22),
poles were found in complex conjugate pairs on sheet II at

at
ffiffiffiffiffi
s0

p
II ¼ 0.2435ð13Þð10Þ � i

2
0.0175ð20Þð19Þ; ð24Þ

where the first uncertainty is statistical and the second is
systematic. A complex conjugate pair of poles was also
found on sheet III in agreement with Eq. (24) up to the
precision shown. The couplings for the pole in the lower
half-plane are

atcðπωf3S1gÞII ¼ 0.106ð6Þð6Þ exp½−iπ0.078ð28Þð26Þ�
atcðπωf3D1gÞII ¼ 0.010ð4Þð3Þ exp½−iπ0.181ð26Þð24Þ�;

ð25Þ

and cðπϕf3S1gÞII is exactly zero, a result of the choice of
reference amplitude. Considered as a ratio we have

jcðπωf3D1gÞII=cðπωf3S1gÞIIj ¼ 0.091ð37Þð20Þ
arg½cðπωf3D1gÞII=cðπωf3S1gÞII� ¼ −π0.103ð26Þð24Þ:

That the poles on sheets II and III are in essentially the same
position is a consequence of the πϕ channel being almost
completely decoupled from the πω channel as discussed
in Sec. V.
For each three-channel parametrization presented in

Table XVI of Appendix C, we found poles and couplings
broadly consistent with those given above. We show these
in Fig. 12, observing that the scatter over different para-
metrizations is in this case not significantly larger than the
uncertainty on the reference amplitude.

VIII. SYSTEMATIC TESTS

To test the robustness of the extracted scattering ampli-
tudes and the determination of the resonant pole and
couplings, we consider two sources of potential systematic
uncertainties due to possibilities we have so far neglected.
First, we examine the partial waves that mix as a conse-
quence of the finite volume, which we neglected based on
observations discussed in Sec. V, and the πϕf3D1g ampli-
tude which we asserted was negligible. Second, we
examine the dependence of the energy levels on the
πωf3D1g, πωf3P0g and πωf3P2g parameters to demon-
strate that we are able to constrain these amplitudes. Lastly,
we make a crude estimate of the possible size of effects due
to the neglected three-body channels.

A. Additional partial waves

We first consider the πωf3P0g and πωf3P2g amplitudes
that enter in the P⃗A2 irreps as shown in Table III. Since a
P-wave has less threshold suppression than a D-wave, we
might expect these waves to be at least as important as
πωf3D1g, though they are not expected to be resonant at
such low energies. Augmenting the reference amplitude as
defined in Eq. (21), we allow a nonzero amplitude in the
πωf3P0g and πωf3P2g channels by including a constant
γ-term for each in the K-matrix and for these additional
channels we set Re Iaðs ¼ ðmπ þmωÞ2Þ ¼ 0 in the Chew-
Mandelstam phase-space. The resulting t-matrix is block
diagonal in JP reflecting the fact that this mixing is a
result of the reduced symmetry on the lattice. We fit to the
same 36 energy levels as in Sec. VI C and, allowing all
parameters to vary, find

-0.03

-0.02

-0.01

0.00
0.22 0.23 0.24 0.25 0.26 0.27

-0.06

-0.04

-0.02

0.02

0.04

-0.02 0.02 0.04 0.06 0.08 0.10 0.12

00.0 2

FIG. 12. Top: Lower half-plane sheet II poles. Red ellipses
reflect the statistical uncertainties, oriented to account for
correlations between the real and imaginary parts, for poles from
all the parametrizations shown in Table XVI of Appendix C.
Black ellipses correspond to the reference amplitude in Eq. (22)
reflecting the statistical (inner) plus systematic (outer) uncertain-
ties. Bottom: As top but for the corresponding couplings,
cðπωf3S1gÞII (blue), cðπωf3D1gÞII (purple) and cðπϕf3S1gÞII
(green). Black ellipses again correspond to the couplings of
the reference amplitude in Eq. (22) where cðπϕf3S1gÞII ¼ 0.
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m ¼ ð0.2466� 0.0007Þ · a−1t
gπωf3S1g ¼ ð0.105� 0.007Þ · a−1t
gπωf3D1g ¼ ð1.12� 0.46Þ · at

γð0Þ
πωf3S1g;πωf3S1g ¼ −0.34� 0.19

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0.79� 0.25

γð0Þ
πωf3P0g;πωf3P0g ¼ ð−8� 21Þ · a2t
γð0Þ
πωf3P2g;πωf3P2g ¼ ð−10� 12Þ · a2t

χ2=Ndof ¼
34.4
36 − 7

¼ 1.19; ð26Þ

where correlations between the πωf3S1g, πωf3D1g and
πϕf3S1g parameters are compatible with those shown in
Eq. (22), and correlations between these and πωf3P0g and
πωf3P2g parameters are small. We observe that the
amplitudes in both πωf3P0g and πωf3P2g are consistent
with zero. A similar approach allowing for πωf3D2g and
πωf3D3g parameter freedom finds no evidence for large
amplitudes as one would expect given the larger angular
momentum suppression and lack of low-energy resonances
with JPC ¼ 2þ− and 3þ−.
In order to investigate the possible effect of the pre-

viously excluded πϕf3D1g, we take the reference ampli-
tude in Eq. (21) and extend it to include a constant diagonal

γ-term in πϕf3D1g in the K-matrix. Once again fitting to
the 36 energy levels and allowing all parameters to vary, we
find the πϕf3D1g parameter to be consistent with zero, as
expected, with all other parameters compatible with those
presented in Eq. (22).

B. Spectrum dependence on πωf3P0g,
πωf3P2g and πωf3D1g

It is worth illustrating at this stage how particular energy
levels in the finite-volume spectra depend upon the strength
in πωf3D1g and the πω P-waves. For πωf3D1g this is
shown in Fig. 13, where the curves present the finite-
volume energy spectrum for the reference amplitude in
Eqs. (21) and (22), varying the value of gπωf3D1g while
keeping all other parameters fixed. In each irrep, we see a
level near the lowest πϕ noninteracting energy which
appears to be independent of the value of gπωf3D1g, as
expected given the near complete decoupling of πϕ. Most
other levels show significant dependence on gπωf3D1g,
indicating that the lattice computed levels are providing
constraint on the D-wave strength, but there are some
notable exceptions. In irreps ½011�A2 and ½111�A2, there are
levels observed to be consistent with the two-fold degen-
erate noninteracting πω energies, which show no visible
dependence on gπωf3D1g.
Interestingly, the position of these same levels proves to

be strongly dependent on the amplitude strength in the
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FIG. 13. Sensitivity of the finite-volume spectra to gπωf3D1g. Lighter to darker red curves reflect smaller to larger values of gπωf3D1g as
shown in the key. The central curves corresponds to gπωf3D1g ¼ 1.08, i.e., the mean value in the reference amplitude in Eq. (22). The gray
bands reflect the combined statistical and systematic uncertainties of Eq. (22). The horizontal axes are in units of L=as.
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πωf3P0g and πωf3P2g partial waves, so the lattice com-
puted energies allow us to confidently limit the amplitude
of these P-waves to be very small in this energy region.
Figures 14 and 15 show the analogue of Fig. 13 but for
varying πωf3P0g and πωf3P2g channel parameters respec-
tively. In these two cases, the reference amplitude in
Eq. (21) is augmented, as described in Sec. VIII A, to

include a constant γ-term in the K-matrix for channels
πωf3P0g and πωf3P2g.

C. Three-body channels

For the light-quark masses used in this calculation, the
resonant behavior is found to occur between the relatively
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FIG. 15. As Fig. 14 but for varying γð0Þ
πωf3P2g;πωf3P2g.
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FIG. 14. As Fig. 13 but for varying γð0Þ
πωf3P0g;πωf3P0g. The central curves corresponds to γ

ð0Þ
πωf3P0g;πωf3P0g ¼ 0. The phase-shifts on the left

reflect the strengths of the πωf3P0g amplitudes.

WOSS, THOMAS, DUDEK, EDWARDS, and WILSON PHYS. REV. D 100, 054506 (2019)

054506-20



low-lying ππη threshold and the somewhat higher-lying
πKK̄ threshold. As such, we might worry that these
channels could have a significant impact on the physics
in this region. We previously presented some arguments for
why we do not expect this to be the case, but noted that in
Fig. 4 there appeared to be deviations in the finite-volume
spectra depending on whether or not three-meson operators
were included in the bases, most notably in the smallest,
ðL=asÞ ¼ 16, volume. As a precaution, we ensured that we
only made use of those energy levels which lie below the

lowest Eð2þ1Þ
n:i: value and which show no significant depend-

ence on the presence/absence of ρη, K�K̄, or a0π operators.
In this section, we attempt to quantify the size of possible

contributions from the three-body sector on our scattering
amplitudes and resonance pole by treating the scattering
system as though ππ in ππη can be completely replaced by
a stable ρ with a fixed mass atmρ ¼ 0.1509ð2Þ, (the pole
mass obtained from the ππ isospin-1 scattering amplitudes
in Ref. [38]) and πK in πKK̄ can be completely replaced by
a stable K� with atmK� ¼ 0.1648ð1Þ (the bound-state pole
mass in the K� scattering analysis presented in Ref. [42]).
In this way we augment our scattering matrix with two
extra channels ρηf3S1g and K�K̄f3S1g.
This approach cannot be expected to completely describe

the finite-volume spectra because, for example, whenever the
ρ has nonzero momentum, we expect there to be more than
one corresponding energy level, as indicated by Fig. 1 in
Ref. [38]—a stable ρ model cannot capture this and will not
even give the right number of energy levels in the “three-
body” spectrum. However, for the ρ at rest the nearest
noninteracting ππ energy is much higher, and there is

effectively only one finite-volume level which lies very close
to the ρ resonance mass. In this case, the stable ρ may be a
reasonable first approximation to the true three-body physics.
For ½000�Tþ

1 , the relevant low-lying three-meson like
operators are of the form ρ000η000 andK�

000K̄000 as shown in
Table IV. We will therefore restrict our analysis to the three
volumes of this irrep and include, in addition to the 36
energy levels with which we have constrained the ampli-
tude in Sec. VI C, the remaining energy levels shown in
Fig. 4, giving a total of 48 levels to constrain five coupled
channels. Taking the reference amplitude in Eq. (21),
augmented to include a “pole plus constant” term in
ρηf3S1g and K�K̄f3S1g, we find best-fit parameters

m ¼ ð0.2485� 0.0008Þ · a−1t
gπωf3S1g ¼ ð0.14� 0.01Þ · a−1t
gπωf3D1g ¼ ð1.8� 0.5Þ · at
gρηf3S1g ¼ ð0.0� 0.1Þ · a−1t

gK�K̄f3S1g ¼ ð0.20� 0.01Þ · a−1t
γð0Þ
πωf3S1g;πωf3S1g ¼ −0.52� 0.16

γð0Þ
πϕf3S1g;πϕf3S1g ¼ 0.64� 0.17

γð0Þ
ρηf3S1g;ρηf3S1g ¼ −1.82� 0.13

γð0Þ
K�K̄f3S1g;K�K̄f3S1g ¼ 1.27� 0.52

χ2=Ndof ¼
46.6
48 − 9

¼ 1.19: ð27Þ
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FIG. 16. As Fig. 11 but for the amplitude in Eq. (27). Orange bands reflect only the statistical uncertainty on the scattering parameters.
The gray bands are transcribed from Fig. 11.
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The πωf3S1g, πωf3D1g, and πϕf3S1g parameters are in
reasonable agreement with those found for the reference
amplitude in Eq. (22). We show in Fig. 16 the finite-
volume spectra calculated through Eq. (11), analogous to
Fig. 11. We observe that the dependence of the finite-
volume energy levels in moving-frame irreps, lying below

the lowest Eð2þ1Þ
n:i: , on the new “three-body” part of the

amplitude is very slight. However, there is improved
agreement in ½000�Tþ

1 where the previously excluded
levels, in particular on the ðL=asÞ ¼ 16 volume, are now
described quite well. We argue that this shows our original
selection criteria, giving the 36 energy levels across all
irreps, is sound and leads to a robust determination of the
scattering t-matrix. Utilizing the generalized n-channel
Stapp-parametrization, we give the πωf3S1g, πωf3D1g,
πϕf3S1g, ρηf3S1g and K�K̄f3S1g coupled-channel phase-
shifts and mixing angles in Appendix A.
As a final test of the effects of the ρηf3S1g andK�K̄f3S1g

channels, we find the resonance pole and corresponding
couplings. There are 16 Riemann sheets and several “mirror
poles,” but the closest pole is located at

at
ffiffiffiffiffi
s0

p
II ¼ 0.2448ð12Þ − i

2
0.0215ð21Þ; ð28Þ

which agrees within uncertainties with the pole position
found in Sec. VII. The corresponding couplings are,

atcðπωf3S1gÞII ¼ 0.117ð7Þ exp½−iπ0.084ð20Þ�
atcðπωf3D1gÞII ¼ 0.016ð4Þ exp½−iπ0.182ð22Þ�
atcðρηf3S1gÞII ¼ 0.003ð52Þ

atcðK�K̄f3S1gÞII ¼ 0.166ð8Þ exp½−iπ0.043ð12Þ�; ð29Þ

where we exclude the meaningless phase on atcðρηf3S1gÞII
as the magnitude is consistent with zero and where
cðπϕf3S1gÞII ¼ 0 by choice of amplitude. The coupling
to ρηf3S1g is small but has a large uncertainty, while the
coupling to K�K̄f3S1g is larger.13

We conclude that although we cannot currently rigor-
ously handle three-body contributions due to ππη and
πKK̄, we do not see any evidence to suggest that they
significantly affect the results reported in this paper.

IX. INTERPRETATION

All JP ¼ 1þ amplitude parametrizations used, that prove
to be capable of describing the finite-volume spectra in the
energy region we are considering, had the same character-
istic resonant bump in the πωf3S1g to πωf3S1g amplitude

squared, with little strength in the diagonal πωf3D1g and
πϕf3S1g elements. The off-diagonal amplitudes were all
found to be relatively small. In every case we found that the
bump is associated with a complex conjugate pair of poles
on sheets II and III, which we interpret as the effect of a
single resonance.
As in previous calculations, to quote results in physical

units, we choose to set the scale using the Ω-baryon mass
measured on these lattices, atmΩ ¼ 0.2951 [57], and the
physical Ω-baryon mass, mphys

Ω ¼ 1672 MeV [15]. This
gives a−1t ¼ mphys

Ω =ðatmΩÞ ¼ 5666 MeV and stable hadron
masses mπ ≈ 391 MeV, mK ≈ 549 MeV, mη ≈ 587 MeV,
mω ≈ 881 MeV and mϕ ≈ 1017 MeV.
Using this scale setting, we summarize the scattering

amplitudes resulting from thiswork in Fig. 17, expressing all
quantities in physical units. We find a b1 resonant pole of
mass mR ¼ 1382ð15Þ MeV and width ΓR ¼ 91ð31Þ MeV,
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FIG. 17. Top: The scattering amplitudes-squared, ρaρbjtlJa;
l0Jbj2, transcribed from Fig. 10 with the energy axis converted
to physical units. Below the amplitudes are the energy levels used
to constrain the amplitudes (black points). Bottom: The best
estimate of the resonant pole position, where uncertainties
combine statistical and systematic uncertainties with variations
across parametrizations. The histograms show the best estimate
of the magnitude of each coupling with the lightly shaded region
reflecting the combined uncertainties. The πϕf3S1g coupling is
an estimate of the upper bound.

13We might expect the K�K̄ coupling to be comparable to the
πω coupling because in an OZI rule obeying framework they
differ only in the flavor of qq̄ pair creation needed to allow the
resonance to decay.
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where the uncertainties are a conservative estimate
from a combination of statistical and systematic uncertain-
ties and encompass variation over different parametriza-
tions. Similarly, we find for the couplings,

jcπωf3S1gj ¼ 564ð114Þ MeV

jcπωf3D1gj ¼ 81ð56Þ MeV;

jcπϕf3S1gj ¼ 59ð41Þ MeV:

In Fig. 18 we plot the position of the pole found
in this calculation compared to the experimental b1
resonance, with mass mb1 ¼ 1230ð3Þ MeV and width
Γb1 ¼ 142ð9Þ MeV [15], and a lattice calculation at the
SUð3ÞF point with mπ ≈ 700 MeV [30]. In the latter
calculation, the b1 forms part of an axial-vector octet with
mass around 1525 MeV; the pseudoscalar-vector threshold
corresponding to πω is at roughly 1695 MeV, and thus the
b1 is stable at this pion mass. We observe that the trajectory
of the pole with varying pion mass appears to be similar to
that of the ρ meson shown in Ref. [46], as may be expected
for a reasonably narrow resonance.
Since we find the b1 to be a narrow resonance a moderate

distance above πω threshold, it is reasonable to compute
theoretical “branching fractions” for its decay to πω. For
channels af3lJg these are given by [15],

BrðR → af3lJgÞ≡ 1

ΓR
·
jclJaj2
mR

ρaðmRÞ: ð30Þ

As mentioned in Ref. [14], the sum of these partial
branching fractions does not necessarily give unity. We
obtain

Brðb1 → πωf3S1gÞ ∼ 93%

Brðb1 → πωf3D1gÞ ∼ 2%

where using the definition in Eq. (30) the πϕf3S1g
branching fraction is zero as the channel is kinematically
closed (mR < mπ þmϕ).

A crude extrapolation of the couplings to the physical
value of the light quark masses comes if we assume them to
be independent of the light quark masses once the threshold
behavior is removed. Such a behavior is not guaranteed, but
has been observed in lattice calculations of the ρ [46,58–
67] and K� [61,68–71] couplings at various values of mπ .
Considering 



 c

phys
πωf3lJg
ðkphysπω Þl





 ¼




 cπωf3lJgðkπωÞl





; ð31Þ

where the cm-frame momentum is evaluated at the reso-
nance pole position, and where we use the values presented
above on the right-hand side, and the experimental b1
mass to compute kphysπω , gives a prediction of jcphys

πωf3D1gj¼
146ð101ÞMeV. Subsequently, we obtain an estimate for the
ratio of couplings at the physical pion mass of,



 c

phys
πωf3D1g
cphys
πωf3S1g





 ¼ 0.27ð20Þ: ð32Þ

The PDG [15] reports a ratio of D-wave to S-wave
amplitudes for the b1 resonance of magnitude 0.277(27),
which is not computed at the complex pole position and
therefore not precisely the same quantity as we quote.

X. SUMMARY

This paper has reported on the first lattice QCD
calculation of coupled πω, πϕ scattering, the first time
coupled pseudoscalar-vector scattering amplitudes have
been computed. This large-scale calculation made use of
a significant number of operators resembling single, two
and three-meson constructions to extract finite-volume
spectra which were used to constrain the coupled-channel
scattering amplitudes.
Analysis of the obtained finite-volume spectra required

consideration of coupled 3S1 − 3D1 partial waves in πω
scattering. A clear b1 resonance was observed, visible as a
rapid increase in the πωf3S1g phase-shift through 90° or
correspondingly as a bump in the magnitude of the
πωf3S1g → πωf3S1g t-matrix element. More rigorously,
we found pole singularities on unphysical Riemann sheets
relatively close to the real energy axis with couplings that
are large for the πωf3S1g final state, significantly smaller
for πωf3D1g and compatible with zero for πϕ. The mass
and width of the b1 resonance found in this calculation,
with light-quark masses such that mπ ≈ 391 MeV, appear
to be compatible with a smooth interpolation between a
stable state for much larger quark mass, and the exper-
imental resonance at lower quark mass.
We explored the role of three-body channels by includ-

ing operators in our bases whose construction resembles
a meson coupled to a two-body resonance, utilizing
earlier calculations of meson-meson scattering channels
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-50

1200 1300 1400 1500 1600

FIG. 18. The b1 pole position for various pion masses.
Blue shows the ground-state mass of the axial-vector octet
from a lattice calculation with mπ ≈ 700 MeV [46], red shows
the estimate from this work with mπ ≈ 391 MeV and black
is the experimentally determined mass and width of the b1
resonance [15].
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[13,38,72]. There is no sufficiently mature finite-volume
formalism capable of rigorously incorporating three-body
scattering channels here. However, as a systematic test, the
finite-volume formalism, which in principle can handle
any number of coupled meson-meson channels, was applied
in a limited study of five coupled-channels—ðπωf3S1g;
πωf3D1g; πϕf3S1g; ρηf3S1g; K�K̄f3S1gÞ. Our investiga-
tions suggested that the three-body channels have a
negligible effect in this particular case of a low-lying b1
resonance—the two-body amplitudes varied very little and a
single resonance pole was found, commensurate with the
pole singularity calculated without three-body channels.
Furthermore, observations were made of how particular
finite-volume energy levels depend upon the various partial
waves which “mix” due to the cubic nature of the lattice
boundary.
In order to provide a way to minimally present

n-channel scattering on the real energy axis, a generaliza-
tion of the two-channel Stapp parametrizationwas presented
in which a unitary S-matrix is expressed in terms of n phase-
shifts and nðn − 1Þ=2 mixing angles. This parametrization
was used to present the three-channel πωf3S1g; πωf3D1g;
πϕf3S1gJP ¼ 1þ scattering matrix in which the b1 reso-
nance appears. The construction provided conveniently
reduces to the Stapp form in the case that one channel
decouples from the others (as approximately found here).
As expected, no IG ¼ 1þ resonances are observed with a

mass comparable to the b1 in JP ¼ 0−; 2−. Notably, no
resonating behavior is observed in a largely decoupled πϕ
channel, suggesting the absence of a Zs which might be
proposed as an analogue of the Zc seen in πJ=ψ .
This work has advanced lattice techniques for studying

coupled-channel scattering involving hadrons with nonzero
spin and operators which effectively interpolate three
hadrons. Looking forward, once a three-hadron scattering
formalism is practical to use, a future calculation would
enable the rigorous determination of the ππη and πKK̄
scattering amplitudes. Furthermore, utilizing such a formal-
ism would allow the calculation of the G-parity-negative
axial-vector, the a1, which has a dominant decay to the
pseudoscalar-vector meson pair πρ, for which the ρ is
unstable at this pionmass, andwouldmake for an interesting
comparison. Moving on from the simplest low-lying reso-
nances, and as the light-quark mass approaches its physical
value, it becomes more important to reliably determine such
three-hadron scattering processes.
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APPENDIX A: GENERALIZAED n-CHANNEL
STAPP-PARAMETRIZATION

In this Appendix we present a construction for a para-
metrization that naturally extends the two-channel Stapp
parametrization [55] to n-channels, preserving the notion
of n phase-shifts and nðn − 1Þ=2 mixing angles. We begin
by defining the exponential map from the Lie Algebra
LUðnÞ to the Lie Group UðnÞ as,
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Exp∶ LUðnÞ → UðnÞ
X → expðiXÞ: ðA1Þ

With this definition, a basis for LUðnÞ is given by the set of
n2, n × n Hermitian matrices. A convenient choice are the
sets fΔij1 ≤ i ≤ ng, fΘijj1 ≤ i < j ≤ ng and fΨijj1 ≤ i <
j ≤ ng where

ðΔiÞab ¼ δiaδibðno sum oniÞ ðA2Þ
ðΘijÞab ¼ δiaδjb þ δjaδib; ði < jÞ ðA3Þ
ðΨijÞab ¼ iδiaδjb − iδjaδibði < jÞ: ðA4Þ

In order to construct a general n × n symmetric unitary
matrix S, we exponentiate the subset of nðnþ 1Þ=2
symmetric matrices, fΔi;Θjkg, and take S ¼ BBT where

B ¼ expðiδ1Δ1Þ expðiδ2Δ2Þ… expðiδnΔnÞ
× expðiϵ̄n−1nΘn−1nÞ… expðiϵ̄12Θ12Þ: ðA5Þ

Here BT denotes the matrix transpose of B and fδi; ϵ̄jkg are
a set of nðnþ 1Þ=2 real parameters.
With this choice, for two channels, δ1, δ2, and ϵ̄12 are

exactly the Stapp phase-shifts and mixing angle of
Ref. [55]. If instead we take S ¼ B̃B̃T , where

B̃ ¼ expðiθn−1nΨn−1nÞ… expðiθ12Ψ12Þ
× expðiδ̃1Δ1Þ expðiδ̃2Δ2Þ… expðiδ̃nΔnÞ; ðA6Þ

we obtain a parametrization similar to that of Blatt and
Biedenharn [76] where δ̃ are the eigen-phaseshifts and θ are
some mixing angles.
We use the indexing ϵ̄ij and Θij to conveniently label

the angle and matrix respectively that mix channels i and j.
By construction, this parametrization gives a symmetric
unitary matrix with nðnþ 1Þ=2 independent free parame-
ters and provides a natural n-channel extension of the two-
channel Stapp parametrization.

1. n= 2

For two-channels, the basis construction above gives the
matrices

Δ1 ¼
�
1 0

0 0

�
; Δ2 ¼

�
0 0

0 1

�
;

Θ12 ¼
�
0 1

1 0

�
; Ψ12 ¼

�
0 i

−i 0

�
:

It follows that setting n ¼ 2 in Eq. (A5) gives,

S ¼
 

cosð2ϵ̄12Þe2iδ1 i sinð2ϵ̄12Þeiðδ1þδ2Þ

i sinð2ϵ̄12Þeiðδ1þδ2Þ cosð2ϵ̄12Þe2iδ2

!
ðA7Þ

which is precisely the Stapp-parametrization.

2. n= 3

The generalized three-channel Stapp-parametrization has
6 free real-parameters (three phase-shifts and three mixing
angles) and is obtained by taking n ¼ 3 in Eq. (A5). Fixing
ϵ̄13 ¼ 0 and ϵ̄23 ¼ 0 reduces to the two-channel Stapp-
parametrization in channels 1 and 2, and leaves a single
phase-shift in the channel 3. An analogous reduction applies
for other appropriate combinations of mixing angles taken
to be zero. Explicitly, the elements of the S-matrix are

S11¼ðχ12c213− s213Þe2iδ1
S12¼ c13ðiσ12c23− s13s23ð1þ χ12ÞÞeiðδ1þδ2Þ

S13¼ c13ðic23s13ð1þχ12Þ−σ12s23Þeiðδ1þδ3Þ

S22¼ðχ12c223þχ12s213s
2
23−c213s

2
23−2iσ12s13s23c23Þe2iδ2

S23¼ðσ12s13ðs223−c223Þþ ic213c23s23ð1þ χ12ÞÞeiðδ2þδ3Þ

S33¼ðc213c223−χ12s213c
2
23−χ12s223−2iσ12s13s23c23Þe2iδ3

ðA8Þ
where

χ12¼ cosð2ϵ̄12Þ; c13¼ cosðϵ̄13Þ; c23¼ cosðϵ̄23Þ
σ12¼ sinð2ϵ̄12Þ; s13¼ sinðϵ̄13Þ; s23¼ sinðϵ̄23Þ:
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FIG. 19. Upper: As in Fig. 8 but for the πωf3S1g (blue),
πωf3D1g (purple), πϕf3S1g (green), ρηf3S1g (orange), and
K�K̄f3S1g (red) phase-shifts for the reference amplitude in
Eq. (27). The faded error bands reflect the statistical uncertainty
on the scattering parameters. The ρη and K�K̄ “thresholds” are
calculated using the ρ andK� masses given in Sec. VIII C. Lower:
As upper but for the mixing angles ϵ̄ðπωf3S1gjπωf3D1gÞ (blue),
ϵ̄ðπωf3S1gjK�K̄f3S1gÞ (gray) and ϵ̄ðπωf3D1gjK�K̄f3S1gÞ
(brown). All other mixing angles are extremely small and
consistent with zero as discussed in the text.
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These conventions mean that δ1 is equal to 1
2
argðS11Þ, which

is in agreement with the conventions in Refs. [13,14,54]
where the phase-shift is defined as δi ¼ 1

2
argðSiiÞ. However,

we see for δ2 and δ3 there are corrections to the phase due to
the imaginary components∝ σ12s13s23c23 in the expressions
for S22 and S33, given in Eq. (A8). For a very weakly mixed
channel these corrections are very small and δi ≈ 1

2
argðSiiÞ

for i ¼ 2, 3.

3. n= 5

For the limited five coupled-channel analysis of
ðπωf3S1g; πωf3D1g; πϕf3S1g; ρηf3S1g; K�K̄f3S1gÞ given
in Sec. VIII C, we calculate the five phase-shifts and ten
mixing angles. We find that seven of the mixing angles, all
featuring either πϕf3S1g and/or ρηf3S1g, are extremely
small and consistent with zero, in agreement with the
observation that both are decoupled from the resonance as
shown in Eq. (29). This illustrates the natural reduction
from the five-channel parametrization to the three-channel
parametrization in the case that two channels decouple.
The five phase-shifts and the remaining three nonzero
mixing angles are presented in Fig. 19.

APPENDIX B: TABLES OF OPERATORS

Tables VI–XIII show the operator bases used in this
study.

TABLE VI. Single-meson and two-meson operators used to
compute optimized ρ operators in the ½000�T−

1 irrep and P⃗A1

irreps at various overall momenta on the three volumes.
Momentum labels on the π’s that form the ππ operators are
omitted for brevity.

L=as 16 20 24

ρ½000�;T−
1

26 × ψ̄Γψ 26 × ψ̄Γψ 12 × ψ̄Γψ
3 × ππ 2 × ππ

ρ½001�;A1
8 × ψ̄Γψ 18 × ψ̄Γψ 18 × ψ̄Γψ
4 × ππ 4 × ππ 4 × ππ

ρ½011�;A1
27 × ψ̄Γψ 27 × ψ̄Γψ 27 × ψ̄Γψ
3 × ππ 3 × ππ 3 × ππ

ρ½111�;A1
8 × ψ̄Γψ 21 × ψ̄Γψ 21 × ψ̄Γψ
3 × ππ 3 × ππ 3 × ππ

TABLE VII. As Table VI but for optimized a0 operators.

L=as 16 20

a0½001�;A1
14 × ψ̄Γψ 14 × ψ̄Γψ
4 × πη 4 × πη
2 × K̄K 2 × K̄K

a0½011�;A1
18 × ψ̄Γψ 18 × ψ̄Γψ
4 × πη 4 × πη
2 × K̄K 2 × K̄K

a0½111�;A1
15 × ψ̄Γψ
4 × πη
2 × K̄K

TABLE VIII. As Table VI but for optimized K� operators.

L=as 16 20 24

K�
½000�;T−

1
6 × ψ̄Γψ 16 × ψ̄Γψ 9 × ψ̄Γψ

K�
½001�;A1

8 × ψ̄Γψ 16 × ψ̄Γψ 8 × ψ̄Γψ
2 × πK 6 × πK

K�
½011�;A1

8 × ψ̄Γψ 26 × ψ̄Γψ
3 × πK 6 × πK

K�
½111�;A1

8 × ψ̄Γψ 9 × ψ̄Γψ 9 × ψ̄Γψ
4 × πK 4 × πK

TABLE IX. As in Table IV but for irrep ½001�A2. For operators
O†

RM, the superscript n on Rn denotes the nth excited state when

n ≥ 1. All ρ and K� operators transform in ½000�T−
1 at p⃗ ¼ 0⃗ and

all ρ, a0 and K� operators transform in P⃗A1 for p⃗ ≠ 0⃗. Operators

shown in gray correspond to Eð2þ1Þ
n:i: greater than the Eð2þ1Þ

n:i: or Eð3Þ
n:i:

of operators that have not been included in the basis.

L=as 16 20 24

12 × ψ̄Γψ 12 × ψ̄Γψ 12 × ψ̄Γψ
½001�A2 π½000�ω½001� π½000�ω½001� π½000�ω½001�

π½000�ϕ½001� π½001�ω½000� π½001�ω½000�
ρ½001�η½000� π½000�ϕ½001� π½000�ϕ½001�
a0½001�π½000� ρ½001�η½000� ρ½001�η½000�
π½001�ω½000� a0½001�π½000� K�

½001�K̄½000�
K�

½001�K̄½000� K�
½001�K̄½000� ρ1½001�η½000�

ρ½000�η½001� ρ½000�η½001�
π½001�ϕ½000� π½001�ϕ½000�

K�
½000�K̄½001�

f2gπ½001�ω½011�
f2gπ½011�ω½001�

TABLE X. As in Table IX but for irrep ½011�A2.

L=as 16 20 24

21 × ψ̄Γψ 21 × ψ̄Γψ 21 × ψ̄Γψ
½011�A2 π½000�ω½011� π½000�ω½011� π½000�ω½011�

π½000�ϕ½011� π½000�ϕ½011� f2gπ½001�ω½001�
ρ½011�η½000� f2gπ½001�ω½001� π½000�ϕ½011�
K�

½011�K̄½000� ρ½011�η½000� π½011�ω½000�
f2gπ½001�ω½001� a0½011�π½000� ρ½011�η½000�
a0½011�π½000� K�

½011�K̄½000�
π½011�ω½000�
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TABLE XI. As in Table IX but for irrep ½111�A2.

L=as 16 20 24

15 × ψ̄Γψ 15 × ψ̄Γψ 15 × ψ̄Γψ
½111�A2 π½000�ω½111� π½000�ω½111� π½000�ω½111�

π½000�ϕ½111� π½000�ϕ½111� π½000�ϕ½111�
ρ½111�η½000� f2gπ½001�ω½011� f2gπ½001�ω½011�
K�

½111�K̄½000� ρ½111�η½000� f2gπ½011�ω½001�
f2gπ½001�ω½011� K�

½111�K̄½000� ρ½111�η½000�
π½111�ω½000� a0½111�π½000� π½111�ω½000�

f2gπ½011�ω½001� K�
½111�K̄½000�

TABLE XII. As in Table IX but for irrep ½002�A2.

L=as 16 20 24

20 × ψ̄Γψ 20 × ψ̄Γψ 20 × ψ̄Γψ
½002�A2 π½001�ω½001� π½001�ω½001� π½001�ω½001�

ρ½001�η½001� ρ½001�η½001� π½000�ω½002�
K�

½001�K̄½001� π½000�ω½002� ρ½001�η½001�
π½000�ω½002� π½001�ϕ½001� π½001�ϕ½001�
π½001�ϕ½001� K�

½001�K̄½001� K�
½001�K̄½001�

ρ1½001�η½001� a0½001�π½001� π½000�ϕ½002�

TABLE XIII. As Table IX for irreps ½000�Tþ
2 , ½000�E−, ½001�B1, and ½001�B2 on the ðL=asÞ ¼ 24 lattice.

½000�Tþ
2

½000�E− ½001�B1 ½001�B2

14 × ψ̄Γψ 12 × ψ̄Γψ 9 × ψ̄Γψ 9 × ψ̄Γψ
π½001�ω½001� π½001�ω½001� π½011�π½001� π½111�π½011�

K̄½011�K½001� f2gπ½001�ω½011�
π½001�ω½011� f2gπ½011�ω½001�
π½011�ω½001�
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APPENDIX C: TABLES OF SCATTERING PARAMETRIZATIONS

We present here tables of scattering parametrizations as referred to in Sec. VI.

TABLE XIV. Parametrizations of elastic πωf3S1g scattering amplitudes with Npars free parameters. Fits used 20
energy levels below πϕ threshold as described in the text. The reference amplitude, Eq. (19), is in bold. “CM”
denotes that the Chew-Mandelstam prescription was employed with subtraction at energy m or at threshold
sthr ¼ ðmπ þmωÞ2. Otherwise, we set IðsÞ ¼ −iρðsÞ.
Parametrization Further Restrictions Npars χ2=Ndof

Breit-Wigner – 2 0.84

Effective Range – 2 0.86
kcm cotðδÞ ¼ a−1 þ 1

2
rk2cm

– 4 0.80

K ¼ g2

m2−s þ γð0Þ þ γð1Þs γð1Þ ¼ 0 3 0.76

IðsÞ ¼ −iρðsÞ γð0Þ ¼ 0, γð1Þ ¼ 0 2 0.84
γð0Þ ¼ 0 3 0.75

– 4 0.80

K ¼ g2

m2−s þ γð0Þ þ γð1Þs γð1Þ ¼ 0 3 0.76

CM RefIðs ¼ sthrÞ ¼ 0g γð0Þ ¼ 0, γð1Þ ¼ 0 2 0.84

γð0Þ ¼ 0 3 0.76

– 4 0.80

K ¼ g2

m2−s þ γð0Þ þ γð1Þs γð1Þ ¼ 0 3 0.76

CM RefIðs ¼ m2Þ ¼ 0g γð0Þ ¼ 0, γð1Þ ¼ 0 2 0.84

γð0Þ ¼ 0 3 0.76

K−1 ¼ cð0Þ þ cð1Þs – 2 0.84
IðsÞ ¼ −iρðsÞ
K−1 ¼ cð0Þ þ cð1Þs – 2 0.84
CM RefIðs ¼ sthrÞ ¼ 0g

TABLE XV. Parametrizations of dynamically coupled πωf3S1g and πωf3D1g scattering amplitudes. Fits were determined using 20
energy levels below πϕ threshold as described in the text. Displayed in bold is the reference amplitude of Eq. (20). CM denotes that the
Chew-Mandelstam prescription was employed with subtraction at energy m, the “pole” parameter in the K-matrix.

Parametrization Further Restrictions Phase-space Npars χ2=Ndof

KlJ;l0J ¼ glJgl0J
m2−s þ γð0ÞlJ;l0J

where γð0Þ
πωf3D1g;πωf3D1g ¼ 0,

hence 6 − 1 ¼ 5 free real-parameters.

γð0Þ
πωf3S1g;πωf3S1g ¼ 0

CM RefIðs ¼ m2Þ ¼ 0g 3 0.87γð0Þ
πωf3S1g;πωf3D1g ¼ 0

γð0Þ
πωf3D1g;πωf3D1g ¼ 0

γð0Þ
πωf3S1g;πωf3D1g ¼ 0

CM RefIðs ¼ m2Þ ¼ 0g 4 0.80
γð0Þ
πωf3D1g;πωf3D1g ¼ 0

γð0Þ
πωf3S1g;πωf3S1g ¼ 0

CM RefIðs ¼ m2Þ ¼ 0g 4 0.93
γð0Þ
πωf3D1g;πωf3D1g ¼ 0

gπωff3S1g ¼ 0

CM RefIðs ¼ m2Þ ¼ 0g 3 0.89γð0Þ
πωf3S1g;πωf3S1g ¼ 0

γð0Þ
πωf3D1g;πωf3D1g ¼ 0
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TABLE XVI. Parametrizations of coupled πωf3S1g, πωf3D1g and πϕf3S1g scattering amplitudes. Fits used 36 energy levels below
ππππ threshold as described in the text. Displayed in bold is the reference amplitude of Eq. (22). CM denotes that the Chew-Mandelstam

prescription was employed with subtraction at energy m or at threshold sthra where sthra ¼ ðmðaÞ
1 þmðaÞ

2 Þ2. Otherwise, we set
IaðsÞ ¼ −iρaðsÞ. Results of fits to these parametrizations can be found in the Supplemental Material [56].

Parametrization Further Restrictions Phase-space Npars χ2=Ndof

KlJa;l0Jb ¼
ðgð0ÞlJaþgð1ÞlJasÞðg

ð0Þ
l0Jbþgð1Þ

l0JbsÞ
m2−s

þγð0ÞlJa;l0Jb þ γð1ÞlJa;l0Jbs

where γð0;1Þ
πωf3D1g;πωf3D1g ¼ 0,

γð1Þ
πϕf3S1g;πϕf3S1g ¼ 0, γð1Þ

πωf3S1g;πωf3D1g ¼ 0,

γð1Þ
πωf3S1g;πϕf3S1g ¼ 0, γð0;1Þ

πωf3D1g;πϕf3S1g ¼ 0,

gð1Þ
πωf3D1g ¼ 0, gð1Þ

πϕf3S1g ¼ 0,

hence 19 − 9 ¼ 10 free real-parameters.

gð0Þ
πϕf3S1g ¼ gð1Þ

πωf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ
5

1.18

γð0Þ
πωf3S1g;πωf3D1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 1.19

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 1.19

γð1Þ
πωf3S1g;πωf3S1g ¼ 0

gð0Þ
πϕf3S1g ¼ gð1Þ

πωf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ
6

1.22

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 122

γð1Þ
πωf3S1g;πωf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 122

gð1Þ
πωf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ

7

1.27

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 1.27

γð1Þ
πωf3S1g;πωf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 1.27

gð1Þ
πωf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g

7
1.24

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 1.24

γð0Þ
πωf3S1g;πωf3D1g ¼ 0

gð0Þ
πϕf3S1g ¼ gð1Þ

πωf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g
6

1.20

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 1.20

γð0Þ
πωf3S1g;πωf3D1g ¼ 0

gð0Þ
πωf3D1g ¼ gð0Þ

πϕf3S1g ¼ gð1Þ
πωf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ

6

1.35

γð1Þ
πωf3S1g;πωf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 1.35

CM RefIaðs ¼ sthra Þ ¼ 0g 1.32

gð0Þ
πωf3D1g ¼ gð0Þ

πϕf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ
6

1.35

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 1.35

γð1Þ
πωf3S1g;πωf3S1g ¼ 0

gð0Þ
πωf3D1g ¼ gð0Þ

πϕf3S1g ¼ gð1Þ
πωf3S1g ¼ 0 IaðsÞ ¼ −iρaðsÞ

5

1.31

γð1Þ
πωf3S1g;πωf3S1g ¼ 0 CM RefIaðs ¼ m2Þ ¼ 0g 1.31

γð0Þ
πωf3S1g;πϕf3S1g ¼ 0 CM RefIaðs ¼ sthra Þ ¼ 0g 1.28

b1 RESONANCE IN COUPLED πω, πϕ SCATTERING FROM … PHYS. REV. D 100, 054506 (2019)

054506-29

https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1103/PhysRevD.89.074507
https://doi.org/10.1103/PhysRevD.88.094507
https://doi.org/10.1103/PhysRevD.88.094507
https://doi.org/10.1103/PhysRevD.72.114506
https://doi.org/10.1103/PhysRevD.72.114506
https://doi.org/10.1103/PhysRevD.88.014501
https://doi.org/10.1103/PhysRevD.88.014501


[9] C. H. Kim, C. T. Sachrajda, and S. R. Sharpe, Nucl. Phys.
B727, 218 (2005).

[10] S. He, X. Feng, and C. Liu, J. High Energy Phys. 07 (2005)
011.

[11] K. Rummukainen and S. A. Gottlieb, Nucl. Phys. B450, 397
(1995).

[12] M. Gockeler, R. Horsley, M. Lage, U. G. Meissner, P. E. L.
Rakow, A. Rusetsky, G. Schierholz, and J. M. Zanotti, Phys.
Rev. D 86, 094513 (2012).

[13] J. J. Dudek, R. G. Edwards, and D. J. Wilson (Hadron
Spectrum Collaboration), Phys. Rev. D 93, 094506
(2016).

[14] R. A. Briceño, J. J. Dudek, R. G. Edwards, and D. J. Wilson,
Phys. Rev. D 97, 054513 (2018).

[15] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[16] M. Nozar et al. (E852 Collaboration), Phys. Lett. B 541, 35
(2002).

[17] A. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards, and
D. J. Wilson, J. High Energy Phys. 07 (2018) 043.

[18] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon, D. G.
Richards, and C. E. Thomas, Phys. Rev. D 83, 111502
(2011).

[19] J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas
(Hadron Spectrum Collaboration), Phys. Rev. D 88, 094505
(2013).

[20] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, J.
High Energy Phys. 04 (2014) 162.

[21] C. McNeile and C. Michael (UKQCD Collaboration), Phys.
Rev. D 73, 074506 (2006).

[22] R. A. Briceño, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
95, 074510 (2017).

[23] R. A. Briceño, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
99, 014516 (2019).

[24] R. A. Briceño, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D
98, 014506 (2018).

[25] H.W. Hammer, J. Y. Pang, and A. Rusetsky, J. High Energy
Phys. 10 (2017) 115.

[26] M. Mai and M. Döring, Eur. Phys. J. A 53, 240
(2017).

[27] M. Mai and M. Doring, Phys. Rev. Lett. 122, 062503
(2019).

[28] M. T. Hansen and S. R. Sharpe, arXiv:1901.00483.
[29] T. D. Blanton, F. Romero-López, and S. R. Sharpe, J. High

Energy Phys. 03 (2019) 106.
[30] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,

and C. E. Thomas, Phys. Rev. D 82, 034508 (2010).
[31] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99,

011101 (2019).
[32] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110,

252002 (2013).
[33] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.

110, 252001 (2013).
[34] D. C. Moore and G. T. Fleming, Phys. Rev. D 73, 014504

(2006); 74, 079905(E) (2006).
[35] C. E. Thomas, R. G. Edwards, and J. J. Dudek, Phys. Rev. D

85, 014507 (2012).
[36] C. Michael, Nucl. Phys. B259, 58 (1985).
[37] J. J. Dudek, R. G. Edwards, N. Mathur, and D. G. Richards,

Phys. Rev. D 77, 034501 (2008).

[38] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron
Spectrum Collaboration), Phys. Rev. D 87, 034505 (2013);
90, 099902(E) (2014).

[39] G. K. C. Cheung, C. E. Thomas, J. J. Dudek, and R. G.
Edwards (Hadron Spectrum Collaboration), J. High Energy
Phys. 11 (2017) 033.

[40] M. Padmanath, C. B. Lang, and S. Prelovsek, Phys. Rev. D
92, 034501 (2015).

[41] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D
86, 034031 (2012).

[42] D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas,
Phys. Rev. D 91, 054008 (2015).

[43] R. G. Edwards, B. Joo, and H.-W. Lin, Phys. Rev. D 78,
054501 (2008).

[44] H.-W. Lin et al. (Hadron Spectrum Collaboration), Phys.
Rev. D 79, 034502 (2009).

[45] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek,
R. G. Edwards, B. Joo, H.-W. Lin, D. G. Richards, and K. J.
Juge (Hadron Spectrum Collaboration), Phys. Rev. D 80,
054506 (2009).

[46] D. J. Wilson, R. A. Briceño, J. J. Dudek, R. G. Edwards, and
C. E. Thomas, Phys. Rev. D 92, 094502 (2015).

[47] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 86, 016007
(2012).

[48] R. A. Briceño and Z. Davoudi, Phys. Rev. D 87, 094507
(2013).

[49] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003
(2014).

[50] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509
(2015).

[51] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67
(2012).

[52] M. Döring, H. W. Hammer, M. Mai, J. Y. Pang, A. Rusetsky,
and J. Wu, Phys. Rev. D 97, 114508 (2018).

[53] G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
[54] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. J.

Wilson, J. High Energy Phys. 10 (2016) 011.
[55] H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.

105, 302 (1957).
[56] Please see the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.100.054506 for results of
fits to coupled-channel amplitude parametrizations.

[57] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.
Wallace, Phys. Rev. D 84, 074508 (2011).

[58] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, Nucl.
Phys. B939, 145 (2019).

[59] L. Leskovec, C. Alexandrou, S. Meinel, J. W. Negele, S.
Paul, M. Petschlies, A. Pochinsky, G. Rendon, and
S. Syritsyn, in 13th Conference on the Intersections of
Particle and Nuclear Physics (CIPANP 2018) Palm
Springs, California, USA, 2018 (2018), https://arxiv.org/
abs/1810.01927.

[60] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul,
M. Petschlies, A. Pochinsky, G. Rendon, and S. Syritsyn,
Phys. Rev. D 96, 034525 (2017).

[61] G. S. Bali, S. Collins, A. Cox, G. Donald, M. Göckeler,
C. B. Lang, and A. Schäfer (RQCD Collaboration), Phys.
Rev. D 93, 054509 (2016).

[62] S. Aoki et al. (CS Collaboration), Phys. Rev. D 84, 094505
(2011).

WOSS, THOMAS, DUDEK, EDWARDS, and WILSON PHYS. REV. D 100, 054506 (2019)

054506-30

https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/S0370-2693(02)02194-9
https://doi.org/10.1016/S0370-2693(02)02194-9
https://doi.org/10.1007/JHEP07(2018)043
https://doi.org/10.1103/PhysRevD.83.111502
https://doi.org/10.1103/PhysRevD.83.111502
https://doi.org/10.1103/PhysRevD.88.094505
https://doi.org/10.1103/PhysRevD.88.094505
https://doi.org/10.1007/JHEP04(2014)162
https://doi.org/10.1007/JHEP04(2014)162
https://doi.org/10.1103/PhysRevD.73.074506
https://doi.org/10.1103/PhysRevD.73.074506
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1103/PhysRevD.99.014516
https://doi.org/10.1103/PhysRevD.99.014516
https://doi.org/10.1103/PhysRevD.98.014506
https://doi.org/10.1103/PhysRevD.98.014506
https://doi.org/10.1007/JHEP10(2017)115
https://doi.org/10.1007/JHEP10(2017)115
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevLett.122.062503
http://arXiv.org/abs/1901.00483
https://doi.org/10.1007/JHEP03(2019)106
https://doi.org/10.1007/JHEP03(2019)106
https://doi.org/10.1103/PhysRevD.82.034508
https://doi.org/10.1103/PhysRevD.99.011101
https://doi.org/10.1103/PhysRevD.99.011101
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevD.73.014504
https://doi.org/10.1103/PhysRevD.73.014504
https://doi.org/10.1103/PhysRevD.74.079905
https://doi.org/10.1103/PhysRevD.85.014507
https://doi.org/10.1103/PhysRevD.85.014507
https://doi.org/10.1016/0550-3213(85)90297-4
https://doi.org/10.1103/PhysRevD.77.034501
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.90.099902
https://doi.org/10.1007/JHEP11(2017)033
https://doi.org/10.1007/JHEP11(2017)033
https://doi.org/10.1103/PhysRevD.92.034501
https://doi.org/10.1103/PhysRevD.92.034501
https://doi.org/10.1103/PhysRevD.86.034031
https://doi.org/10.1103/PhysRevD.86.034031
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.78.054501
https://doi.org/10.1103/PhysRevD.78.054501
https://doi.org/10.1103/PhysRevD.79.034502
https://doi.org/10.1103/PhysRevD.79.034502
https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1103/PhysRevD.97.114508
https://doi.org/10.1103/PhysRev.119.467
https://doi.org/10.1007/JHEP10(2016)011
https://doi.org/10.1103/PhysRev.105.302
https://doi.org/10.1103/PhysRev.105.302
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
http://link.aps.org/supplemental/10.1103/PhysRevD.100.054506
https://doi.org/10.1103/PhysRevD.84.074508
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://arxiv.org/abs/1810.01927
https://arxiv.org/abs/1810.01927
https://arxiv.org/abs/1810.01927
https://arxiv.org/abs/1810.01927
https://doi.org/10.1103/PhysRevD.96.034525
https://doi.org/10.1103/PhysRevD.93.054509
https://doi.org/10.1103/PhysRevD.93.054509
https://doi.org/10.1103/PhysRevD.84.094505
https://doi.org/10.1103/PhysRevD.84.094505


[63] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D 83,
094505 (2011).

[64] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 76,
094506 (2007).

[65] J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar, and
C. H. Wong, Nucl. Phys. B910, 842 (2016).

[66] D. Guo, A. Alexandru, R. Molina, and M. Döring, Phys.
Rev. D 94, 034501 (2016).

[67] Z. Fu and L. Wang, Phys. Rev. D 94, 034505 (2016).
[68] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and

C. E. Thomas, Phys. Rev. Lett. 123, 042002 (2019).
[69] S. Prelovsek, L. Leskovec, C. B. Lang, and D. Mohler, Phys.

Rev. D 88, 054508 (2013).
[70] R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, and C.

Morningstar, Nucl. Phys. B932, 29 (2018).
[71] G. Rendon, L. Leskovec, S. Meinel, J. Negele, S. Paul, M.

Petschlies, A. Pochinsky, G. Silvi, and S. Syritsyn, in 36th

International Symposium on Lattice Field Theory (Lattice
2018) East Lansing, MI, United States, 2018 (SISSA,
Trieste, 2018).

[72] J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson
(Hadron Spectrum Collaboration), Phys. Rev. Lett. 113,
182001 (2014).

[73] R. G. Edwards and B. Joo (SciDAC, LHPC, and UKQCD
Collaborations), Nucl. Phys. B, Proc. Suppl. 140, 832
(2005).

[74] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C.
Rebbi, Comput. Phys. Commun. 181, 1517 (2010).

[75] R. Babich, M. A. Clark, and B. Joo, in SC 10
(Supercomputing 2010) New Orleans, Louisiana, 2010
(IEEE, New York, 2010), https://doi.org/10.1109/SC.2010
.40.

[76] J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

b1 RESONANCE IN COUPLED πω, πϕ SCATTERING FROM … PHYS. REV. D 100, 054506 (2019)

054506-31

https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.76.094506
https://doi.org/10.1103/PhysRevD.76.094506
https://doi.org/10.1016/j.nuclphysb.2016.07.024
https://doi.org/10.1103/PhysRevD.94.034501
https://doi.org/10.1103/PhysRevD.94.034501
https://doi.org/10.1103/PhysRevD.94.034505
https://doi.org/10.1103/PhysRevLett.123.042002
https://doi.org/10.1103/PhysRevD.88.054508
https://doi.org/10.1103/PhysRevD.88.054508
https://doi.org/10.1016/j.nuclphysb.2018.05.008
https://doi.org/10.1103/PhysRevLett.113.182001
https://doi.org/10.1103/PhysRevLett.113.182001
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1109/SC.2010.40
https://doi.org/10.1109/SC.2010.40
https://doi.org/10.1109/SC.2010.40
https://doi.org/10.1109/SC.2010.40
https://doi.org/10.1109/SC.2010.40
https://doi.org/10.1103/RevModPhys.24.258
https://doi.org/10.1103/RevModPhys.24.258

