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Scientists often try to incorporate prior knowledge into their regression algorithms, such as a
particular analytic behavior or a known value at a kinematic endpoint. Unfortunately, there is
often no unique way to make use of this prior knowledge, and thus, different analytic choices can
lead to very different regression results from the same set of data. To illustrate this point in the
context of the proton electromagnetic form factors, we use the Mainz elastic data with its 1422
cross section points and 31 normalization parameters. Starting with a complex unbound non-
linear regression, we will show how the addition of a single theory-motivated constraint removes an
oscillation from the magnetic form factor and shifts the extracted proton charge radius. We then
repeat both regressions using the same algorithm, but with a rebinned version of the Mainz dataset.
These examples illustrate how analytic choices, such as the function that is being used or even the
binning of the data, can dramatically affect the results of a complex regression. These results also
demonstrate why it is critical when using regression algorithms to have either a physical model in
mind or a firm mathematical basis.
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I. INTRODUCTION

Silberzahn et al. [1] points out that there is often lit-
tle appreciation for how different analytic strategies can
affect a reported result. In this work, we illustrate how
analytic choices can impact the extraction of the elec-
tromagnetic form factors and the associated charge radii
from electron scattering data. These extractions are fre-
quently done with complex non-linear regression algo-
rithms and tend to make use of prior information about
the limiting behavior of the electromagnetic form factors
to help constrain the value of experimental normaliza-
tion parameters. Also, while many tend to look at all
regressions as being the same, in fact there are different
types of regressions such as descriptive, predictive, and
explanatory.

A descriptive model is used to capture the features of
a dataset in a compact manner without reliance on an
underlying theory. A predictive model is any statistical
model which tries to generalize beyond the data that is
being fitted. Finally, explanatory modeling takes a the-
ory based model and tests that model’s hypothesis by ap-
plying it to data. Further details about these differences
can be found in Ref. [2]. Though the type of regression
model being developed is not always clearly stated, it is
yet another choice that affects how scientists design their
regression algorithms.

II. PROTON ELASTIC SCATTERING

There has been renewed interest in proton elastic scat-
tering data due to muonic hydrogen Lamb shift results
which determined the charge radius of the proton to be
0.84078(39) fm [3, 4], a result in stark contrast to the
CODATA-2014 recommended value of 0.8751(61) fm [5].
This systematic difference was known as the proton ra-

dius puzzle [6–8]. We will show that determining the
proton’s charge radius is highly dependent on the ana-
lytic choices made when selecting a model to describe
the world data.

In the plane-wave Born approximation, the cross sec-
tion for elastic electron scattering on a proton is given
by:

σ =σMott×[
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where σMott is the Mott cross section, GE and GM are
the electric and magnetic Sachs form factors respectively,

τ = Q2

4m2
p
, Q2 = 4EBeamE
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θ
2

)
, EBeam is the energy

of the electron beam, E′ is the energy of the outgoing
electron, θ is the scattering angle of the outgoing electron,
and mp is the mass of the proton.

The proton charge radius, rp, is extracted from the
cross sections by determining the slope of the electric
form factor, GE , in the limit of four-moment transfer,
Q2, approaching zero [9]:

rp ≡

(
−6

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

. (2)

Since the scattering data is measured at finite Q2, an ex-
trapolation is required to extract the charge radius. A
purely mathematical fit to the scattering data would be
a descriptive model and would generally only be valid in
the region of the data making extrapolation risky. When
extrapolating back to Q2=0 it is desirable to use a pre-
dictive model. This requires extra care such as adding
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physics considerations to the model and/or mathemati-
cal requirements to keep the fit well behaved (e.g. not di-
verging in the region) and not unduly complex. Authors
have taken many different approaches to this extraction,
yielding different outcomes [10–20].

III. REGRESSIONS

To illustrate how analytic choice can strongly affect
the extracted radius, we first use the Mainz dataset of
1422 cross section points along with its 31 normalization
parameters [21]. As noted in the work of Bernauer et
al. [22], knowledge of the absolute value of cross sections
is limited by the determination of the absolute luminos-
ity, which in turn is limited by the uncertainty of the tar-
get thickness and beam current. In order to compensate
for these uncertainties, normalization parameters were
introduced to the original fits of this data which were
constrained only by the value of the charge and mag-
netic form factors in the limit of Q2 = 0. While there is
no debate about the value of the form factors at Q2 = 0,
how the data at finite Q2 is connected to the known end-
point brings a model dependence to the analysis that is
not easily understood.

These parameters are taken in combinations to link
sets of data together, with the final value of each cross
section point defined by:

σexp = σp · normAp · normBp, (3)

where normAp and normBp are the two normalization
parameters associated with that data point. A complete
list of the 31 different normalization parameters, Nj , that
are taken in 34 unique combinations for the 1422 points,
is shown in Table I. Further details of how these param-
eters connect to each of the 1422 cross section points
can be found in the supplemental material of Bernauer
et al. [22].

For our example of how analytic choice can effect the
outcome, we first fit the Mainz dataset with an unbound
complex non-linear regression with the form factors pa-
rameterized in terms of polynomials:

GE,polynomial(a
E
i , Q

2) = 1 +

n∑
i=1

aEi Q
2 i and (4)

GM,polynomial(a
M
i , Q

2) = µp

(
1 +

n∑
i=1

aMi Q
2 i

)
, (5)

where µp is the magnetic moment of the proton and n
is the order of the polynomial. This is one of the many
form factors parameterizations described in Ref. [22] that
has been used for extracting the proton radius from the
Mainz dataset.

For these regressions, we perform a weighted least
squares minimization with a χ2 function defined as fol-
lows:

χ2 =

pmax∑
p=1

(
σModel(Ep, θp)− σp · normAp · normBp

∆σp · normAp · normBp

)2

,

(6)
where for each data point p there is a cross-section, σp,
with energy Ep, angle θp, and normalization parameters
normA and normB as shown in Table I. As was done in
the Mainz fits, the normalization parameters are allowed
to float freely.

We repeat this same regression adding one require-
ment: that the terms of the polynomial have succes-
sively alternating signs. This makes the polynomial more
closely resemble a “completely monotone” function and
is referred to as a bound regression. A true completely
monotone function, f , would possess derivatives, fn, of
all orders such that (−1)nfn(x) ≥ 0, x > 0 [23]. Of
course for a finite order polynomial being fit to experi-
mental data, we are simply approximating a completely
monotone function over the range of the data by alter-
nating the signs of the terms. This seemingly simple con-
straint imposes an analytic behavior to the form factors
that is constant with nuclear physics calculations such
as chiral effective field theory [24]. In statistics terms,
adding the condition that the polynomial approximate a
physically motivated function would be classified as cre-
ating a robust regression model [25]. Robust regression
models are designed such that they are not unduly af-
fected by outliers, whereas least squares estimates are
highly sensitive to outlying points as illustrated in Ap-
pendix A.

As a further check of how sensitive these two functions
are to the handling of the data in the fit, we use the re-
binned version of the Mainz data that is provided in the
supplemental material of Ref. [13]. These authors care-
fully rebinned and re-weighted the full Mainz dataset and
provided a new set of 658 cross section points, though
with the same 31 normalization parameters as the origi-
nal set. By simply replacing the original Mainz dataset
with this set, we can repeat our unbound and bound re-
gressions.

While regressions that are linear in terms can be solved
exactly, this is not the case with non-linear regressions
where algorithms can converge in a local or non-physical
minimum; thus choosing reasonable initialization param-
eters is an important step when developing non-linear
regression algorithms. To have reasonable initialization
parameters for our complex non-linear regressions, we
first perform a regression with dipole functions for GE
and GM and use the resultant normalization parameters
as initialization parameters in the more complex regres-
sions.

In Table II and Table III we show the results of fitting
with both the unbound and bound regressions for the
1422 Mainz cross section points and the rebinned 658
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TABLE I. The 34 different combinations of the 31 normaliza-
tion parameters, Nj , found in Ref. [22] which link the data
together along with the number of data points and the Q2

range of each dataset.

Energy Spec. normA normB Points Q2 Range [GeV2]

180 MeV B N1 N3 106 0.0038 – 0.0129

B N1 N4 41 0.0101 – 0.0190

A N3 - 102 0.0112 – 0.0658

B N1 N5 19 0.0190 – 0.0295

C N2 N4 38 0.0421 – 0.0740

C N2 N5 17 0.0740 – 0.0834

315 MeV B N6 N9 104 0.0111 – 0.0489

A N7 N9 38 0.0430 – 0.1391

A N9 - 40 0.0479 – 0.1441

C N8 N9 62 0.1128 – 0.2131

450 MeV B N10 N13 77 0.0152 – 0.0572

B N10 N15 52 0.0572 – 0.1175

A N13 - 42 0.0586 – 0.2663

B N10 N14 17 0.0589 – 0.0851

A N11 N13 36 0.0670 – 0.2744

C N12 N15 50 0.2127 – 0.3767

A N14 - 2 0.2744 – 0.2744

585 MeV B N16 N18 41 0.0255 – 0.0433

B N16 N19 47 0.0433 – 0.1110

A N18 - 27 0.0590 – 0.0964

B N16 N20 21 0.0920 – 0.1845

A N19 - 37 0.0964 – 0.4222

C N17 N20 20 0.3340 – 0.5665

720 MeV B N21 N25 47 0.0711 – 0.1564

A N25 - 46 0.1835 – 0.6761

C N24 N26 28 0.6536 – 0.7603

B N23 N26 27 0.2011 – 0.2520

C N22 N26 37 0.4729 – 0.7474

B N21 N26 36 0.1294 – 0.2435

855 MeV B N27 N31 35 0.3263 – 0.4378

C N28 N31 31 0.7300 – 0.9772

A N29 N30 32 0.3069 – 0.5011

A N29 - 13 0.5274 – 0.7656

B N27 N29 54 0.0868 – 0.3263

Mainz cross section points respectively. The regression
results and residuals are shown graphically in Fig. 1 and
Fig. 2 for the 1422 Mainz cross section points and the
rebinned 658 Mainz cross section points respectively. For
clarity we divide σexp by σdipole, where σdipole is simply
Eq. 1 with standard dipole form factors:

GE,dipole(Q
2) =

(
1 +

Q2

0.71 GeV2

)−2
and (7)

GM,dipole(Q
2) = µp

(
1 +

Q2

0.71 GeV2

)−2
. (8)

The fits of the unbound and bound regressions clearly

differ significantly for both the original and the rebinned
Mainz cross section points, but the residuals of each
fit are quite similar. The reason the locations of the
cross section data points differ between the unbound and
bound regressions in Fig. 1 and Fig. 2 is due to the choice
of regression model shifting the 31 normalization param-
eters to maintain agreement with our prior knowledge of
the values of the electromagnetic form factors in the limit
of Q2 = 0. The magnitude of individual normalizaton
shifts is a few tenths of a percent, which is much smaller
than absolute normalizatons can be determined, but can
have a clear effect on the results as the point-to-point
uncertainties are also just few tenths of a percent.

TABLE II. The values of the polynomial terms for the un-
bound and bound regressions of the 1422 cross section points
following the notation of Eq. 4 and 5. If one wishes to in-
terpret the charge form factor slope term (i = 1) in terms of
charge radius using Eq. 2, one finds the unbound fit gives a
charge radius of 0.882 fm while the bound fit gives a charge
radius of 0.854 fm.

unbound bound

i aEi aMi aEi aMi

1 -3.331 -2.523 -3.124 -2.800

2 13.05 -0.7081 8.821 5.188

3 -63.68 40.16 -25.74 -5.742

4 249.4 -176.7 60.06 2.806

5 -658.6 380.3 -89.41 -0.000

6 1099 -392.6 72.48 0.01034

7 -987.6 11.53 -24.23 -0.2766

8 57.38 442.4 0.0000 0.0000

9 853.4 -492.1 -0.0061 -0.0009

10 -810.5 230.3 0.0081 0.0013

11 250.4 -40.92 -0.0000 -0.0000

IV. MODEL SELECTION

For a fixed number of fit parameters, the unbound re-
gressions presented in this work will always have a total
χ2 equal to or lower than a bound regression as shown in
Fig. 3 and Fig. 4 which plot the total χ2 and charge ra-
dius given by the unbound and bound regressions of the
1422 Mainz cross section points and the 658 rebinned
cross sections respectively. Since adding parameters will
always either decrease or keep total χ2 the same, χ2 by
itself is not a valid model selection criterion. More ap-
propriate model selection techniques include using an F-
Test for nested models that are linear in terms [12, 26] or
model selection methods like the Akaike Information Cri-
terion (AIC) [27] or the Bayesian Information Criterion
(BIC) [28] which can be used with non-nested non-linear
models (see Ref. [29] for more details).

Since the regressions herein are non-linear, we use the
AIC and BIC to determine the most appropriate number
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FIG. 1. The 1422 Mainz cross section points plotted vs. Q2 for the six different incident beam energies and fit with unbound
and bound polynomials. The gray points were analyzed using an unbound eleventh order polynomial regression in GE and GM

while the black points used a bound eleventh order polynomial regression constrained to alternate term signs. The systematic
difference in the location of the points is due to how the 31 normalization parameters in the fit change based on the choice of
using either the unbound or bound functions in the regression. While the mean values are clearly different for these fits, the
residuals of the fits to their respective functions are quite similar.
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FIG. 2. The 658 rebinned Mainz cross section points plotted vs. Q2 for the six different incident beam energies and fit with
unbound and bound polynomials. The gray points were analyzed using an unbound eleventh order polynomial regression in
GE and GM while the black points used a bound eleventh order polynomial regression constrained to alternate term signs. The
systematic difference in the location of the points is due to how the 31 normalization parameters in the fit change based on the
choice of using either the unbound or bound functions in the regression. While the mean values again differ for the two fits,
the residuals of the fits to their respective functions are quite similar.
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TABLE III. The values of the polynomial terms for the un-
bound and bound regressions of the 658 cross section points
of rebinned data [13] following the notation of Eq. 4 and 5.
If one wishes to interpret the charge form factor slope term
(i = 1) in terms of charge radius using Eq. 2, one finds the
unbound fit gives a charge radius of 0.863 fm while the bound
fit gives a radius of 0.845 fm.

unbound bound

i aEi aMi aEi aMi

1 -3.191 -2.465 -3.061 -2.760

2 10.83 -0.7271 8.413 4.979

3 -44.59 35.32 -24.46 -5.196

4 157.2 -136.4 58.23 2.193

5 -404.2 228.8 -89.36 -0.000

6 712.6 -98.11 74.77 0.5035

7 -733.1 -234.1 -25.73 -0.5330

8 133.4 349.9 0.0000 0.0000

9 632.8 -122.4 -0.0000 -0.0000

10 -695.5 -56.49 0.0000 0.0000

11 232.9 35.80 -0.0000 -0.0000

of parameters for these regressions. These statistical cri-
teria, along with the frequently quoted χ2 per degree of
freedom χ2/df [30], are defined as follows:

χ2 =

N∑
n=1

((datai −modeli)/σi)2, (9)

χ2/df = χ2/(N −Nvar), (10)

AIC = N log(χ2/N) + 2Nvar, (11)

BIC = N log(χ2/N) + log(N)Nvar, (12)

where N is the number of data points, datai and σi are
the measured values and their estimated uncertainties
respectively, modeli is the model value, and Nvar is the
number of model parameters. Starting from lowest order
fits, at first the value of these criteria will decrease as
a parameter is added indicating an underfitting of the
data while eventually the criteria will start to increase
as parameters are added indicating an overfitting of the
data; thus, with these criteria the model with the lowest
AIC or BIC value should be selected as most appropriate.

For the 1422 original Mainz data points, we find with
both AIC and BIC the most appropriate of the bound
fits is the 7th order fit with a χ2/df of 1.21, while for
the unbound fits the 10th order fit with a χ2/df of 1.14
is most appropriate as previously found [21, 22]. For the
658 rebinned Mainz data points, we find with both AIC
and BIC the most appropriate of the bound fits is the 7th

order fit with a χ2/df of 0.865, while for the unbound fits
the 9th order fit with a χ2/df of 0.830 is most appropriate.
Ideally a criteria would have been defined prior to the
analysis of the data, since we are doing a re-analysis, we
are presenting two of the most common techniques so one
can judge how even the criteria can effect the outcome

of the analysis. Further details about model selection
techniques can be found in [31].
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FIG. 3. Total χ2 vs. the number of fit parameters in GE and
GM using Eq. 4 and 5 for both the unbound and bound poly-
nomial regressions of the full 1422 point Mainz dataset. Total
χ2 will decrease as parameters are added, but at some point
no significant improvement will be made where significance
is defined using the statistical criteria. With both AIC and
BIC, the most appropriate bound fits are the 7th order while
for the unbound descriptive fits the most appropriate order is
10th.

One should also keep in mind whether one is trying
to do a descriptive fit of the data or, by adding physical
constraints, building a predictive or explanatory model
of the data [2]. One must also keep in mind that none
of these model selection techniques will prevent the use
of completely inappropriate functions nor do they en-
sure that the best type of function has been selected.
As noted in Ref. [30, 32], it is essential to plot the fit
functions and residuals to ensure a reasonable regression
as χ2 minimization alone is insufficient as illustrated in
Appendix B.

As the changes we have presented in these four fits
are larger than the statistical parameter uncertainties,
we have limited ourselves to a discussion of the shifts of
the mean values of the points. For non-linear regressions
such as these, statistical bootstrapping which makes use
of sampling with replacement can be used to find the
statistical parameter uncertainties [25].

V. RESULTS

In Fig. 5 and Fig. 6, we show the individual electric and
magnetic form factors obtained from the unbound and



7

3 4 5 6 7 8 9 10 11

0.83

0.84

0.85

0.86
Ch

ar
ge

 R
ad

iu
s [

fm
]

Bound
Unbound

3 4 5 6 7 8 9 10 11
Polynominal Order GE and GM

450

500

550

600

650

700

To
ta

l 
2

Bound
Unbound

FIG. 4. Total χ2 vs. the number of fit parameters in GE

and GM using Eq. 4 and 5 for both the unbound and bound
polynomial regressions of the 658 points of the rebinned Mainz
dataset [13]. For these fits, by AIC and BIC, 7th order is
the most appropriate for the bound regression while for the
unbound 9th order is the most appropriate.

bound regressions for the 1422 Mainz cross section points.
In Fig. 5 we see thatGM for both the unbound and bound
fits remains well behaved at high Q2. However, for GE
both the unbound and bound fits begin to diverge at
high Q2. This is due to the dominance of the magnetic
form factor in the cross section at high Q2 which leads
the electric form factor to become unconstrained in this
region. Due to using a high-order polynomial regression,
along with the unconstrained nature of GE in the high
Q2 region, the divergence of GE is to be expected.

In Fig. 6 the ratios of the electromagnetic form fac-
tors to the standard dipole are shown. This ratio reveals
that the unbound GE ratio has a small oscillation and
the unbound GM ratio has a large oscillation. Whereas,
the bound GE ratio has mostly removed the oscillation
and the bound GM ratio has almost no oscillation. The
unbound ratios are descriptive models of the scattering
data without any physics considerations, but the bound
ratios are more akin to predictive models as the terms
alternate sign as one would expect from chiral effective
field theory. By adding this one physical constraint the
oscillations are removed as the model becomes more pre-
dictive.

Though it is beyond the range of the data used in the
regression, the results of regressions like these are fre-
quently used to extract the charge radius of the proton
by using Eq. 2 to relate the fit function to the charge
radius of the proton. Ideally, these extractions would use
a predictive model to fit the data as finding the charge

radius requires extrapolating beyond the range of the ex-
perimental data. For the case of a polynomial regression,
this is simply:

rp = (−6aE1 )1/2. (13)

Using Eq. 2 one finds a charge radius of 0.882 fm from the
unbound regression and 0.854 fm from the bound regres-
sion of the original Mainz cross section points (Table II),
and a charge radius of 0.863 fm from the unbound re-
gression and 0.845 fm from the bound regression of the
rebinned Mainz data (Table III). These results show that
even just rebinning the data can shift the result of a high-
order polynomial regression significantly.

In the end, the radii extracted from the more descrip-
tive unbound regressions are closer to the CODATA-2014
value, while the radii extracted from the more physically
justifiable and predictive bound regressions are closer to
the muonic results as well as the most recent atomic re-
sult [33]. With freedom to make analytic choices that so
strongly affect the results, there is the potential for un-
conscious confirmation bias, and for researchers to select
and report the regressions that confirm their expecta-
tions [34, 35].
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FIG. 5. The electromagnetic form factors vs. Q2 from the
unbound and bound polynomial regressions of the 1422 Mainz
cross sections [22]. For these kinematics, as the Q2 gets large,
the cross sections are dominated by GM and the GE form
factor becomes unconstrained, so the divergence of GE at
high Q2 is to be expected from a high-order polynomial.

VI. CONCLUSIONS

We have shown that small changes in analytic func-
tions and binning choices applied to a complex non-linear
regression can result in significantly different results. In
particular, using the Mainz dataset of elastic cross sec-
tion points to extract a proton charge radius, we have
shown results consistent with the CODATA-2014 value
when using high-order unbounded polynomial fits and
values close to the muonic results when using bounded
polynomial regressions. Thus, by simply trying different
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FIG. 6. The ratio of the extracted electromagnetic form fac-
tors to standard dipole vs. Q2 for the 1422 Mainz cross sec-
tions. The oscillations in the unbound magnetic form fac-
tor, and to a lesser extent electric form factor, go away once
the terms of the fit functions are forced to alternate sign.
The smooth magnetic form factor also results in a smaller
extracted proton charge radius (0.854 fm vs. 0.882 fm).

functions, limits, and bounds, one can easily extrapolate
to different results which can lead to confirmation bias
and/or inappropriate rejection of certain results. En-
rico Fermi noted that these types of problems should be
addressed using either a firm mathematical basis or a
physical model [36]. Ideally, regression models should
be carefully developed prior to obtaining experimental
data, as was done by the PRad collaboration [37, 38];
otherwise, one must be exceedingly careful to avoid con-
firmation bias though the rigorous use of model selection
techniques [34, 35].

Thus, while one can argue that the bounded non-linear
regression is the more physical function, it would be more
appropriate to approach the analysis such that the ana-
lytic choices do not so strongly affect the results. To do
this, one can either fit only lower Q2 data where fewer
free parameters are required [11, 12, 29, 37, 39–44] and
the results are not sensitive to the magnetic form fac-
tor, as shown explicitly in Ref. [29]; or, as Fermi pre-
ferred, use a physical model, such as that of Bernard et
al. [45] or Alarcón and Weiss [24] to constrain the
fits [16, 17, 46, 47]. There are also the physically moti-
vated functions such as rational functions [12, 48], contin-
ued fractions [11, 49, 50], or the z-expansion fits [13, 51]
though these still require model selection techniques to
determine the appropriate number of regression parame-
ters. We hope to have illustrated that by using extremely
complex non-linear regressions and deep searches, one
can find nearly any radius in a wide range of radii from
a single dataset [52]. To quote Nobel laureate Ronald
H. Coase, “if you torture the data long enough, it will
confess.”
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Appendix A: Robust Regressions

Ordinary least squares regression (OLSR) is one of the
most commonly employed techniques used to fit a given
model and its parameters to a dataset. However, OLSR is
commonly misunderstood and misapplied by researchers.
For OLSR, fit parameters are determined by minimizing
the square of the differences between real-world data and
model predictions. This is known as a χ2 minimization.
Eq. A1 shows this minimization for N data points with
M fit parameters.

χ2 ≡
N∑
i=1

(
yi − y (xi|a1, a2, ..., aM )

σi

)2

(A1)

Here yi are the measured data values, y (xi|a1, a2, ..., aM )
are the values given by the model with fit parameters a1
to aM when evaluated at the xi of the measured data,
and σi are the uncertainties on each measured data point.

While OLSR via χ2 minimization is often a useful ini-
tial method for checking the ‘goodness’ of a fit, it can fail
if the dataset being fit does not meet certain conditions.
OLSR is based on the core assumptions that the errors
are random variables that are normally distributed, the
errors are uncorrelated to each other, and the errors are
homoscedastic, which is to say they have the same vari-
ance. Unfortunately, these assumptions often do not hold
true in the case of real-world data. When OLSR’s as-
sumptions are not met, such as when the dataset has
significant outliers, OLSR is not sufficient for fitting the
data and can yield misleading results. Even a singular
outlier can skew the results of an OLSR pulling the fit
away from the data’s true behavior [25, 53]. To avoid
these pitfalls, robust methods such as robust least squares
regression (RLSR) should be used instead of OLSR tech-
niques.

To avoid outliers having too much influence over a fit,
we desire a method by which outliers can be identified
and then re-weighted such that they do not skew the over-
all fit. The least squares minimization found in Eq. A1
can be generalized to Eq. A2 by introducing the function
ρ(z) [54]. OLSR is then simply the case where ρ(z) = z.



9

Many functions can be used for ρ(z) to introduce robust-
ness, but for the following examples the ‘soft loss’ (softl1)
function given in Eq. A3 was selected and implemented
using the Python package SciPy [54–56].

χ2 ≡
N∑
i=1

ρi (z) and z =

(
yi − y (xi|a1, a2, ..., aM )

σi

)2

(A2)

ρ (z) = 2
(√

1 + z − 1
)

(A3)

With soft loss, as a zi gets larger, the magnitude of
ρi(z) is increasingly reduced with respect to OLSR. A
RLSR with soft loss essentially re-weights the outliers of
a dataset, decreasing their influence when fitting. Note
that if a dataset meets all of the above assumptions in-
herent to OLSR (i.e. errors are normally distributed,
uncorrelated, and have the same variance) then OLSR
and RLSR techniques should both produce the same fit
results since the dataset, by definition, does not contain
excessive outliers.

A simple example reproduced from a classic statistics
paper [32] is shown in Fig. 7. The dataset has a single
clear outlier which pulls the fit considerably away from
the bulk of the data when using OLSR. However, when
RLSR with soft loss is used to fit the data the influence
of the outlier is greatly reduced, and the fit returns to
the bulk of the data yielding superior results.

2 4 6 8 10 12 14 16
x

2

4

6

8

10

12

14

y

Robust Least Squares Regression
Ordinary Least Squares Regression

FIG. 7. This example data, reproduced from a classic statis-
tics paper [32], shows how an ordinary least squares regres-
sion, OLSR, is easily pulled away from the true trend of the
data while a robust least squares regression, RLSR, is only
weakly affected by the outlying data point.

For a real-world example using RLSR we can study
the full Initial State Radiation (ISR) dataset found in
the supplemental material of Ref. [57, 58]. Fig. 8 shows
the results of two regressions of the ISR proton electric
form factor data using the theory model of Alarcón and
Weiss [24], with the proton radius as its single free pa-
rameter. The light gray curve uses an OLSR to fit the
dataset and the dark curve uses a RLSR with soft loss.

There is a clear separation between the results of the
two regressions, with the RLSR fitting the higher Q2 data
better. The OLSR finds a proton radius of 0.874 fm, and
the RLSR finds a significantly smaller radius of 0.844 fm.
Again, the purely analytic choice of the regression type
significantly influences the fit results. Further, the fact
that the OLSR and the RLSR fit results differ signifi-
cantly is evidence that there are outliers in the dataset
that are not following a normal distribution, otherwise
the OLSR and RLSR fits would have better agreement.

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Q2 [GeV2]

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

GE P

Robust Least Squares Regression
Ordinary Least Squares Regression

FIG. 8. Proton electric form factor data taken from the Initial
State Radiation dataset found in the supplemental material
of Ref. [57]. The uncertainties are calculated by summing
the listed statistical uncertainties with the systematic uncor-
related uncertainties in quadrature. The theoretical model
used for the regressions is the model of Alarcón and Weiss [24],
with only one free parameter. These regressions give a proton
radius of 0.874 fm for the OLSR and 0.844 fm for the RLSR
with soft loss.

Appendix B: Anscombe’s Quartet

With the power of modern computing, one can be
tempted to blindly assume the results of the regression
are correct if the χ2/df is close to unity; but this can be
extremely misleading [59]. To illustrate this point we use
the Anscombe quartet [32], though as nuclear physicists
tend to use χ2/df instead of R2. We have taken the 1973
example problem and added uncertainties to the points
as shown in Table IV.

When fit with a linear function, these four sets of
(x,y,dy) values give the same statistical quantities to
three significant figures: mean, variance, χ2, χ2/df, etc.
So if one fails to make graphical checks, one can be com-
pletely fooled into thinking the fits are all equally good;
but by simply graphing (see Fig. 9) one can see that only
the first set of data is distributed in an ideal way around
the fit function.

Dataset two clearly has a curved residual yet has ex-
actly the same mean, errors, and χ2 as the first fit. This
suggests that the fitter should likely add a quadratic term
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TABLE IV. Four datasets of (xi,yi,dyi) values adapted
from [32].

x1,2,3 y1 y2 y3 x4 y4 dy1,2,3,4

10.0 8.04 9.14 7.46 8.0 6.58 1.235

8.0 6.95 8.14 6.77 8.0 5.76 1.235

13.0 7.58 8.74 12.74 8.0 7.71 1.235

9.0 8.81 8.77 7.11 8.0 8.84 1.235

11.0 8.33 9.26 7.81 8.0 8.47 1.235

14.0 9.96 8.10 8.84 8.0 7.04 1.235

6.0 7.24 6.13 6.08 8.0 5.25 1.235

4.0 4.26 3.10 5.39 19.0 12.50 1.235

12.0 10.84 9.13 8.15 8.0 5.56 1.235

7.0 4.82 7.26 6.42 8.0 7.91 1.235

5.0 5.68 4.74 5.73 8.0 6.89 1.235

0 5 10 15 20
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y1

m = 0.50
b = 3.00

2/df = 1.00
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2/df = 1.00
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FIG. 9. Graphs of the four sets of data from Table IV. When
fit with a linear function, y = mx + b, all four sets of data
give the same slope, same intercept and same χ2/df of one;
yet clearly these four sets of data are not the same.

to the regression as well as check that the uncertainties
have been correctly reported.

Dataset three illustrates the effect of an outlier on the
regression. Of course, the scientist doesn’t simply throw
out an outlier. Instead one should report on the outlier’s
influence on the result. For example, in dataset three it
would be worth noting that if the outlier is removed, the
data exactly follow a line of y = 4+0.346x and that that
measurement should be repeated.

Dataset four looks unsatisfactory, since all the informa-
tion about the slope comes from one observation. This is
very different from dataset one where any one point can
be removed and one will obtain nearly the same result.
Thus, for dataset four it should be pointed out that a
single observation plays a critical role in the result.
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