
Automated and Distributed Monte Carlo Generation for
GlueX

Thomas Britton1,∗

1Thomas Jefferson National Accelerator Facility

Abstract. MCwrapper is a set of systems that manages the entire Monte Carlo
production workflow for GlueX and provides standards for how that Monte
Carlo is produced. MCwrapper was designed to be able to utilize a variety
of batch systems in a way that is relatively transparent to the user, thus en-
abling users to quickly and easily produce valid simulated data at home insti-
tutions worldwide. Additionally, MCwrapper supports an autonomous system
that takes user’s project submissions via a custom web application. The system
then atomizes the project into individual jobs, matches these jobs to resources,
and monitors the jobs status. The entire system is managed by a database which
tracks almost all facets of the systems from user submissions to the individ-
ual jobs themselves. Users can interact with their submitted projects online
via a dashboard or, in the case of testing failure, can modify their project re-
quests from a link contained in an automated email. Beginning in 2018 the
GlueX Collaboration began to utilize the Open Science Grid (OSG) to handle
a bulk of simulation tasks; these tasks are currently being performed on the
OSG automatically via MCwrapper. This talk will outline the entire system of
MCwrapper, its use cases, and the unique challenges facing the system.

1 Genesis

GlueX[1] is an experiment housed in Hall-D, one of Jefferson Laboratory’s four experimental
halls and is comprised of an international collaboration of 116 members across 27 different
institutions. It collects roughly two PetaBytes of data a year at a rate of approximately one
GigaByte each second when running. In order to produce some physics results GlueX relies
on Monte Carlo simulation. This simulation workflow involves the precise configuration
and running of several different programs each of which can be grouped into 4 major steps
(Generation, Geant, Smearing, Reconstruction/Analysis).

Like all good projects MCwrapper was born out of necessity by one Postdoctoral re-
searcher; everyone had their own personal script(s) to run the workflow, students shared
second hand scripts that often had missing options of parameters, many of the parameters in-
volved with the workflow had to be mirrored across several different configuration files. All
of this lead to a system prone to human error and unable to provide for proper provenance for
any data produced. Not wanting to deal with these intricacies more than once, MCwrapper
was created.

∗e-mail: tbritton@jlab.org

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 03028 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503028

Ultimately MCwrapper seeks to be a "one-stop-shop" for simulation in GlueX and Hall-
D. To accomplish this MCwrapper must be able to complete the entire production chain,
provide basic standards of simulation, accommodate special configurations for individual
studies, utilize available batch systems, and provide support for new users. Special attention
was given to the utilization of available computational resources, going beyond Jefferson
Laboratory’s local cluster and enabling users to almost seamlessly utilize the batch systems
of their home institutions.

The "engine" of MCwrapper is run by a script (gluex_MC.py) which takes user parame-
ters via both a special configuration file (although MCwrapper is agnostic as to the name of
this configuration file it is generically referred to, by the users, as the "MC.config file") as well
as the command line. This "engine" actually handles the sourcing of needed resources neces-
sary to complete the workflow and configures the underlying programs, handling outputs as
specified. A basic graphical representation of this system is given in Figure 1.

Figure 1. The basic structure of MCwrapper’s underlying system. Parameters from MC.config and the
command line are fed to gluex_MC which breaks the request into the necessary jobs, configuring one
or many instances of MakeMC.(c)sh to run. Each run of MakeMC.(c)sh is responsible for obtaining
needed resources, configuring the underlying software packages, and marshalling output.

It is the gluex_MC.py script which contains the knowledge of how to deploy the indi-
vidual workflows on several underlying batch systems. At the time of CHEP 2019 this list
includes PBS, condor, SLURM, as well as a few special instances thereof. These few batch
systems cover approximately 90% of collaborator home institutions. There are also two spe-
cial implementations which can be utilized by MCwrapper, these implementations cover the
Open Science Grid[2][3] (OSG), which is ultimately based on the condor batch system, and
Jefferson Laboratory’s own homegrown workflow management system which is based on the
SLURM system. Given the workflow knowledge encapsulated by MCwrapper there are min-
imal changes a user must make to configure MCwrapper to use one or another system (e.g.
configuring MCwrapper to run on the OSG versus at Jefferson lab requires changing a single
string in the MC.config file).

2 Towards Automation

After the integration of submissions to the OSG there quickly grew a demand for centralized
production. Growing tired of managing everyone’s simulation by hand on the OSG the flex-
ibility of MCwrapper could be exploited to automatically manage Monte Carlo production.
The automatic arm of MCwrapper (referred to as MCwrapper-bot) desired to maintain an

2

EPJ Web of Conferences 245, 03028 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503028

extremely low barrier to entry. To accomplish this the flexibility had to be restricted (users
have always been able to produce their own simulations with all of the power and flexibility)
but in exchange users need answer only a minimal set of questions and gain the benefits au-
tomation can offer, including easy access to the OSG as well as automatic job monitoring and
re-submission.

Essentially, MCwrapper-bot is just a wrapper around MCwrapper. This single abstraction
allows for the creation of a web-based interface to a central production system. The dynamic
request submission interface is shown in Figure 2. The added integration with other GlueX
systems means the barrier to enter stays incredibly low. A new graduate student can easily put
in a request and produce valid MonteCarlo simulations without having a deeper knowledge of
individual configurations needed. This is accomplished by specifically building an interface
that presents options in plain text (e.g. the analysis submit form accessible from the submit
page), dynamically showing or hiding specific options to reduce total form complexity, and
localizing all configuration parameters to a single place.

Figure 2. Shown is part of the dynamic web form which is used to submit a project to MCwrapper
bot. This form includes knowledge of the GlueX software stack, a bevy of options, and integration with
other GlueX systems (in the pop-up window). The system shown in the pop-up window allows users
to set up reactions, in plain text, that will be searched for in the simulated data; mimicking the process
real data goes through.

After submission users receive an email confirming receipt of the request and are pre-
sented with a link to a dashboard (Figure 3) that shows system statistics, projects which
progress dynamically, and gives users, and administrators, the ability to interact with active
projects. Projects then automatically test run a small sample locally with the same software
stack as requested to be used to produce the Monte Carlo. This "go no-go" testing ensures the
batch jobs submitted to the OSG, or local farm, are likely to succeed, saving a bulk of the re-
sources for "typo free" projects likely to produce usable simulation results. If a user’s project
fails to test they receive an automated email containing information on the crash (stdout and
stderr) as well as a custom link allowing the user to make corrective changes to the request.
Once corrected, the project is automatically flagged for a retest. The entire system is sup-
ported by a database which contains information from every submitted project and submitted
job.

3

EPJ Web of Conferences 245, 03028 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503028

The system itself has the ability to run on several systems automatically, making the de-
cision on which system to run on automatically on a job-by-job basis. This allows for global
load balancing across multiple platforms. The system could, with additional development,
dynamically aggregate jobs to target payloads specific to the systems MCwrapper-bot uti-
lizes. Further optimizations can be achieved by leveraging the go no-go tests locally to better
tailor compute resource requests for each project or job aggregations. Each submitted job is
monitored in near real time. The system has some understanding of common failure modes,
automatically taking appropriate corrective actions and resubmitting these jobs.

With increased usage MCwrapper and MCwrapper-bot has seen its share of scaling chal-
lenges. For example, many simulations end up needing access to "random trigger" events (a
100 Hz asynchronous trigger is used to collect hit level information from detectors allowing
the use of backgrounds coming from actual data) to be merged in with pure simulation out-
put. These files vary in size with a mean close to 1 GB. Each job needs only a slice of one of
the files. The naive solution has every job take an entire copy of the needed file and proceeds
to get the necessary chunk on the worker node. This, when a sufficient number of jobs are
submitted, would lead to an I/O limited state on the submit node and did, in cases, saturate
the entire out-bound bandwidth of Jefferson Laboratory. To reduce the load XRootD was
implemented to stream parts of files to the worker node as needed. Utilizing this technology
reduced bandwidth consumption by 90% and allowed for the files to be hosted separately
from the submit host.

3 Summary and Outlook

Since its inception MCwrapper is heavily utilized collaboration wide, supplanting most, if
not all means of producing Monte Carlo in GlueX. MCwrapper-bot has seen increased us-
age month-over-month use. At the time of writing MCwrapper-bot has been used by 48
unique users (40% of GlueX members) to produce over 52 TeraBytes of simulation with
almost 1.8 million jobs which consumed almost 400 cpu-years. In the future MCwrapper-
bot should utilize a more sophisticated decision making algorithm to dynamically scale and
distribute elastic workflows, shuttling jobs to locations to optimize throughput, and provide
multi-cluster load balancing for simulation production in Hall-D and beyond.
This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Nuclear Physics under contract DE-AC05-06OR23177.

References

[1] S. Adhikari et al. (2020), 2005.14272
[2] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn,

T. Wenaus, F. Würthwein et al., The open science grid, in J. Phys. Conf. Ser. (2007),
Vol. 78 of 78, p. 012057

[3] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The pilot
way to grid resources using glideinWMS, in 2009 WRI World Congress on Computer
Science and Information Engineering (2009), Vol. 2 of 2, pp. 428–432

4

EPJ Web of Conferences 245, 03028 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503028

Figure 3. Shown is part of the dynamic dashboard (emails have been redacted to protect user infor-
mation). Each request has a progress bar which updates in near real time without the need for page
reloading. The Status column shows failed tests (red), successfully tested and running projects (green),
and projects currently being tested (an animated ellipses). The rest of the table shows basic information
about the request. The rows can be right-clicked to interact with the project (user’s options are privilege
dependent). Left-clicking on a row generates additional tables with more detailed information. Not
shown are heart beats from the components of the automated system, the current load as seen from the
submit host, and a world showing the geo-locations of the current active projects or, if a project has
been selected, the scraped geo-location of the selected project’s jobs.

5

EPJ Web of Conferences 245, 03028 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503028

