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We calculate the target normal single-spin asymmetry caused by two-photon exchange in inclusive 
electron-nucleon scattering in the resonance region. Our analysis uses the 1/Nc expansion of low-
energy QCD and combines N and � intermediate and final states using the contracted SU(4) spin-flavor 
symmetry. The normal spin asymmetry obtained in leading-order accuracy in 1/Nc has magnitude ∼10−2

and different sign in ep and en scattering. It can be measured in electron scattering at lab energies 
∼0.5–1.5 GeV and provides a clean probe of two-photon exchange dynamics.
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1. Introduction

Electron scattering represents a principal tool for exploring 
hadron structure and strong interaction dynamics. The process is 
traditionally described in leading order of the electromagnetic cou-
pling (one-photon exchange approximation), where the amplitude 
is proportional to the transition matrix element of the electromag-
netic current operator between the hadronic states. Recent devel-
opments in experiment and theory point to the need of including 
higher-order interactions between the electron and the hadronic 
system (two-photon exchange) in certain observables [1]. Measure-
ments of the proton form factor ratio G p

E/G p
M at Jefferson Lab using 

the Rosenbluth separation and polarization transfer methods show 
discrepancies that have been associated with two-photon exchange 
[2–4]. A direct demonstration of two-photon exchange becomes 
possible through comparison of electron and positron scattering 
in experiments at DESY [5,6] and Jefferson Lab [7]. Two-photon 
exchange is also discussed in connection with muon scattering at 
MUSE [8] and plays an important role in radiative corrections to 
parity-violating electron scattering [9]. Two-photon exchange has 
thus become as field of research in its own right.

A particularly interesting observable is the target spin depen-
dence in inclusive electron-nucleon scattering,

e(ki) + N↑(pi,ai) → e(kf) + X(pf), (1)
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where X denotes the hadronic final states accessible at the inci-
dent energy, which are summed over. If the electron is unpolarized, 
and the nucleon is polarized with a spin 4-vector ai , with a2

i = −1
for complete polarization, the dependence of the differential cross 
section on the nucleon spin is of the form [10]

dσ

d�f
= dσU

d�f
− eμ

Naiμ
dσN

d�f
(2)

(d�f denotes the invariant phase space element of the final elec-
tron and will be specified below). Here eN is the normalized pseu-
dovector formed from the initial and final electron momenta and 
the initial nucleon momentum (ε0123 = 1),

eμ
N ≡ Nμ

√−N2
, Nμ ≡ −εμαβγ piαkfβkiγ , e2

N = −1. (3)

In the nucleon rest frame, pi = 0, the spin 4-vector is ai = (0, 2S i), 
with |S i| = 1/2 for complete polarization, and eN is the normal 
vector to the scattering plane, so that the cross section Eq. (2) de-
pends on the normal component of the nucleon spin,

eN = (0, eN), eN = kf × ki

|kf × ki| , −eμ
Naiμ = 2eN · S i (4)

[this form applies in any frame where the 3-momenta ki, kf and pi
lie in a plane, e.g. the electron-nucleon center-of-mass (CM) frame, 
where pi + ki = 0]. The spin-dependent cross section in Eq. (2) is 
zero in one-photon exchange approximation, as a consequence of 
P and T invariance, and represents a pure two-photon exchange 
observable [11,12]. It is proportional to the imaginary (absorptive) 
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part of the eN → e X two-photon exchange amplitude, which is 
given by the product of on-shell matrix elements between the ini-
tial, intermediate, and final electron-hadron states. Unlike the real 
(dispersive) part, the imaginary part of the two-photon exchange 
amplitude is infrared–finite and can be considered separately from 
real photon emission into the final state [10].

Measurements of the normal spin asymmetry (the ratio of the 
N and U cross sections) have been performed in deep-inelastic 
electron scattering (DIS) on proton [13] and 3He targets [14]. The-
oretical calculations in this kinematics have employed the parton 
picture and QCD interactions and produced a wide range of esti-
mates [10,15–17]. Further measurements at few-GeV energies are 
planned at Jefferson Lab [18]. Calculations in the resonance region 
need to account for the contributions of individual hadronic chan-
nels to the inclusive cross section, including elastic scattering and 
resonance excitation, and require appropriate methods.

In this work we analyze the normal spin dependence of inclu-
sive eN scattering in the resonance region using the 1/Nc expan-
sion. The method organizes low-energy dynamics (hadron masses, 
couplings, form factors) based on the scaling properties in the 
limit of a large number of colors in QCD and has been success-
fully applied in many areas of hadronic physics [19–25]. Low-lying 
baryon states are organized in multiplets of the emerging con-
tracted SU(4) spin-flavor symmetry, with the baryon masses O (Nc)

and the splitting inside multiplets O (N−1
c ). The ground-state mul-

tiplet contains the N and �, and transitions between them are 
governed by the symmetry and can be computed using group-
theoretical techniques, with the parameters for the N–� and �–�

transitions fixed in terms of the measurable N–N transitions.
The 1/Nc expansion offers specific advantages for studying two-

photon exchange in inclusive scattering. The method treats N and 
� states on the same basis and enables a consistent description of 
inelastic channels and inclusive scattering in the resonance region. 
The group-theoretical techniques permit efficient calculation of the 
sums over channels in intermediate and final states. The para-
metric ordering of the kinematic variables gives rise to a physical 
picture that enables an intuitive understanding of the two-photon 
exchange process.

In this letter we present the leading-order 1/Nc expansion and 
describe the calculational techniques and physical picture specific 
to this situation. A full analysis, including 1/Nc corrections and 
suppressed structures, will be presented in a forthcoming article.

2. Method

2.1. Kinematics and final states

Inclusive electron scattering Eq. (1) is characterized by three 
independent kinematic variables, corresponding to the incident en-
ergy, the momentum transfer, and the energy transfer of the pro-
cess. They can be chosen as the invariant variables

s ≡ (ki + pi)
2 = (kf + pf)

2, (5)

t ≡ (ki − kf)
2 = (pf − pi)

2 = q2, (6)

m2
X = (q + pi)

2 = p2
f , (7)

where q ≡ ki −kf = pf − pi is the 4-momentum transfer. In the fol-
lowing we use the CM frame, where the 3-momenta in the initial 
and final states are pi = −ki, pf = −kf , with

|ki| = s − m2

2
√

s
, |kf| = s − m2

X

2
√

s
, (8)

t = −2|kf||ki|(1 − cos θ), θ ≡ angle(kf,ki), (9)

where m is the nucleon mass.
2

When analyzing the process Eq. (1) in the 1/Nc-expansion, we 
have to specify the scaling behavior of the kinematic variables in 
the parameter 1/Nc . Different choices are possible, leading to dif-
ferent types of expansions. Here we consider the domain where 
the initial and final CM momenta are

|ki|, |kf| = O (N0
c ), (10)

corresponding to 
√

s = O (Nc) and 
√

s − m = O (N0
c ). For the final-

state masses we consider values such that

mX − m = O (N−1
c ), m,mX = O (Nc). (11)

In this domain the only accessible final states are the ground-state 
baryon multiplet containing the N and � states, X = N + �; other 
baryon multiplets have masses mX − m = O (N0

c ) and are not ac-
cessible as final states. Together, Eqs. (10) and (11) imply

|ki| − |kf| = m2
X − m2

2
√

s
= O (N−1

c ) � |kf|, |ki|. (12)

In leading order of 1/Nc we can therefore neglect the difference 
between |ki| and |kf| and use the common CM momentum

k ≡ |ki| = |kf| + O (N−1
c ). (13)

For the CM scattering angle we consider values θ = O (N0
c ), which 

together with Eq. (10) implies

t = O (N0
c ). (14)

The parametric ordering in 1/Nc adopted here gives rise to 
a definite physical picture of the scattering process. The electron 
with energy O (N0

c ) scatters from the heavy nucleon with mass 
O (Nc), losing a small fraction O (N−1

c ) of its energy. The nucleon 
remains intact or gets excited to a � by absorbing a small energy 
O (N−1

c ). The velocity of the initial/final baryons is small O (N−1
c ), 

and their kinetic energy is negligible compared to the electron 
energy. However, the momentum transfer is O (N0

c ), so that the 
process probes the internal structure of the baryons.

In the parametric domain considered here, inelastic scattering 
consists simply in the transition from N to � states, which can 
be regarded as stable in leading order of 1/Nc (the � width is 
suppressed). This corresponds to the physical situation that π N fi-
nal states are predominantly produced through � resonance decay. 
Non-resonant π N states do not appear explicitly at leading order 
in 1/Nc in the domain considered here.

2.2. Currents and amplitudes

In the group-theoretical formulation of large-Nc QCD, the N
and � are states in the SU(4) multiplet of ground-state baryons, 
characterized by the spin/isospin S = I = 1/2 and 3/2, the spin 
projection S3, and the isospin projection I3, denoted collectively 
by B ≡ {S, S3, I3}. The electron scattering process takes the form 
of a transition between baryon states 〈B f|...|B i〉. We denote the 
electron-baryon scattering amplitude by

M(k,nf,ni|λ, Bf, B i) ≡ Mfi, (15)

where k is the common CM momentum Eq. (13), and

ni ≡ ki/|ki|, nf ≡ kf/|kf| (16)

are the unit vectors along the initial/final electron CM momenta. 
In our convention the electron states have covariant normalization, 
while the baryon states have non-covariant normalization; in this 
way the baryon mass does not appear in the expressions for the 
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phase space integral Eq. (25) and cross section Eq. (26), which is 
natural for the 1/Nc expansion. In Eq. (15), λ is the electron he-
licity (spin projection on ni and nf), which is conserved in the 
scattering process. The baryon spins are quantized along a fixed 
direction in the CM frame; in this way the initial and final states 
have the same quantization axis, and the spin transitions can be 
computed using algebraic identities [24,25].1

The amplitude Eq. (15) can be computed as an expansion in the 
electromagnetic coupling,

Mfi = M(e2)

fi + M(e4)

fi + . . . (17)

The e2 term (one-photon exchange) is given by the product of the 
electron and baryon currents,

M(e2)

fi = −e2

tfi
( jμ)fi( Jμ)fi, (18)

tfi = −2k2(1 − nfni), (19)

( jμ)fi = ū(nf, λ)γ μ u(ni, λ), (20)

( Jμ)fi = 〈−nf, Bf| Ĵμ|−ni, B i〉. (21)

The minus sign in Eq. (18) comes from the negative electric charge 
of the electron. The electron current Eq. (20) is the standard cur-
rent of the spin-1/2 particle; its explicit form can be derived from 
the spinors in the CM frame. The baryon current Eq. (21) can be 
constructed using the large-Nc SU(4) spin-flavor symmetry and 
expanded in the generators {1̂, ̂Ia, ̂Si, Ĝ ia}(i, a = 1, 2, 3) [24–26]. 
Their matrix elements are of the order

〈Bf|{1̂, Îa, Ŝ i}|B i〉 = O (N0
c ), 〈Bf|Ĝ ia|B i〉 = O (Nc). (22)

The full 1/Nc expansion of the current is given in Ref. [26]. In 
the present study we focus on the leading-order contribution to 
the cross sections, which is produced by the isovector magnetic 
current proportional to Ĝ i3. This current is given by

( J 0)fi = 0, ( J i)fi = ik ε i jk (nf − ni)
j 〈Bf|Ĝk3|B i〉 F (tfi). (23)

It satisfies the transversality condition qμ( Jμ)fi = 0 for all transi-
tions between multiplet states, without corrections in 1/Nc .

The function F (t) in Eq. (23) (dimension mass−1) is the 
large-Nc form factor, which describes the dynamical response of 
the large-Nc baryon to the momentum transfer t = O (N0

c ). It can 
be determined by matching the N → N matrix element of the 
large-Nc current Eq. (23) with the physical nucleon current at 
Nc = 3. At leading order in 1/Nc one obtains

F (t) = G V
M(t)

m

∣∣∣∣∣
phys

, (24)

where G V
M(t) ≡ 1

2 [G p
M(t) − Gn

M(t)] is the physical nucleon isovector 
magnetic form factor, whose value at t = 0 is given by the pro-
ton and neutron magnetic moments, G V

M(0) = 1
2 (μp − μn), and m

is the physical nucleon mass. In this way the spin-flavor symme-
try fixes the N–� and �–� form factors in terms of the empirical 
N–N form factor, showing the predictive power of the 1/Nc ex-
pansion.

1 The following calculation does not refer to a specific coordinate system. For 
definiteness we can imagine using a system where nf + ni defines the +x-direction, 
and nf − ni the +z-direction, and quantize the baryon spin along the +z-direction; 
in this system the normal vector eN , Eq. (4), points in the +y direction, and the 
spin density matrix Eq. (28) is σ y/2.
3

Fig. 1. Inclusive eN scattering in the 1/Nc expansion in the domain Eqs. (10) and 
(11). (a) Spin-independent cross section from square of e2 amplitudes. (b) Spin-
dependent cross section from interference of e4 and e2 amplitudes. It includes also 
the complex-conjugate term, in which the e4 and e2 amplitudes are interchanged 
(not shown here). (c) Interference of real photon emission from electron and baryon.

The e4 term in the electron-baryon scattering amplitude Eq. 
(17) results from two-photon exchange interactions. The absorp-
tive part arises from on-shell rescattering and can be computed as 
the product of two e2 amplitudes, integrated over the phase space 
of the intermediate state (see Fig. 1b),

M(e4)

fi = ik

4π

∫
d�n

4π

∑
Bn

M(e2)

fn M(e2)
ni . (25)

We use the shorthand notation Eq. (15) for the amplitudes of the 
i → n and n → f transitions. The integral is over the momentum 
direction nn in the intermediate state, and the summation is over 
the full set of baryon quantum numbers Bn, including N and �
states. The prefactor in Eq. (25) is specific to our convention for 
the amplitude (see above).

Some comments are in order regarding the inelasticity in the 
intermediate states of the two-photon exchange amplitude. In 
the parametric domain considered here, the scattering energy is √

s − m = O (N0
c ), so that the intermediate states in principle in-

clude baryons with masses mB − m = O (N0
c ) (N∗ states), larger 

than those of the final states with mX − m = O (N−1
c ). However, 

the electromagnetic couplings of such N∗ states to the ground 
state multiplet are suppressed by 1/ 

√
Nc relative to those between 

ground state baryons [27,28]. In leading order of the 1/Nc expan-
sion it is thus justified to retain only ground state baryons N and 
� as intermediate states. Note also that the two-photon exchange 
amplitude Eq. (25) is free of collinear divergences, because the 
large-Nc baryon currents in the i → n and n → f amplitudes satisfy 
the transversality conditions without corrections in 1/Nc [10].

2.3. Cross section

The cross section for inclusive eN scattering Eq. (1) in the 1/Nc

expansion in the domain Eq. (10) and (11) is obtained from the 
amplitude Eq. (15) as

dσ

d�f
= 1

16π2

1

2

∑
λ

∑
′

ρ(S3i, S3i
′ )
S3i S3i
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×
∑

Bf

M∗
fi(λ, Bf, B i

′ ) Mfi(λ, Bf, B i). (26)

We write the cross section as differential in the solid angle of nf , 
similar to elastic scattering. The inclusive scattering is expressed 
through the summation over the final baryon states B f = N, �. The 
initial baryon is a nucleon, B i = { 1

2 , S3i, I3i} and B i
′ = { 1

2 , S3i
′ , I3i}, 

with I3i = ± 1
2 for proton/neutron. The spin projections are av-

eraged with the nucleon spin density matrix ρ , normalized as 
trρ = 1, which consists of an unpolarized and a polarized part, 
ρ = ρU + ρN . The unpolarized part is

ρU = 1

2
δ(S3i, S3i

′ ). (27)

In the case of polarization along the unit vector eN , Eq. (3), the 
polarized part is (σ k are the Pauli matrices)

ρN = 1

2
ek

Nσ k(S3i, S3i
′ ), (28)

such that the expectation value of the spin operator is
∑

S3i
′ S3i

ρN(S3i, S3i
′ ) 〈S3i

′ | Ŝk |S3i〉 = 1

2
ek

N . (29)

The spin-independent cross section of Eq. (2) is obtained from 
the product of e2 amplitudes in Eq. (26) (see Fig. 1a),

dσU

d�f
= 1

16π2

1

2

∑
λ

∑
S3i

′ S3i

ρU

∑
Bf

M(e2)∗
fi M(e2)

fi ; (30)

the expression will be evaluated further below. For the spin-
dependent cross section, one can easily verify that it is zero at the 
same order in e2, because the e2 amplitude is real and the average 
with Eq. (28) requires an imaginary part in one of the amplitudes 
[11,12]. The spin-dependent cross section appears instead from the 
product of e2 and e4 amplitudes, i.e., the interference of one- and 
two-photon exchange (see Fig. 1b)

dσN

d�f
= 1

16π2

1

2

∑
λ

∑
S3i

′ S3i

ρN

×
∑

Bf

[
M(e2)∗

fi M(e4)

fi + M(e4)∗
fi M(e2)

fi

]
. (31)

With the e4 amplitude given by Eq. (25), the spin-dependent 
cross section is completely expressed in terms of the e2 amplitude 
Eq. (18), and thus in terms of the large-Nc baryon current matrix 
elements.

3. Results

3.1. Spin-dependent cross section and asymmetry

We now extract the leading 1/Nc term of the spin-dependent 
cross section. It results from the isovector magnetic current 
Eq. (23) proportional to the spin-flavor generator Ĝ i3. The e2 am-
plitude Eq. (18) produced by this current is

M(e2)

fi = e2 F (tfi)

1 − nfni
bi

fi〈Bf|Ĝ i3|B i〉, (32)

bi
fi ≡ iε i jk(nf − ni)

j jk
fi

2k
, (33)

where jk
fi is the spatial part of the electron current Eq. (20). The 

product of e2 and e4 amplitudes in Eq. (31) then becomes
4

M(e2)∗
fi M(e4)

fi = ie6k

4π

∫
d�n

4π

F fi F fn Fni bk∗
fi b j

fn bi
ni

(1 − nfni)(1 − nfnn)(1 − nnni)

×
∑

Bf

∑
Bn

〈B i
′ |Ĝk3|Bf〉〈Bf|Ĝ j3|Bn〉〈Bn|Ĝ i3|B i〉, (34)

where F fi ≡ F (tfi), etc. It represents a sequence of isovector mag-
netic transitions, with a tensor structure governed by the electron 
current and the transition geometry. We evaluate it using algebraic 
methods based on t-channel angular momentum considerations. 
For the intermediate states in the e4 amplitude, we sum over 
Bn = N + � using the completeness relation in the ground state 
representation,∑
Bn

|Bn〉〈Bn| = 1, (35)

and the product in the last line of Eq. (34) becomes∑
Bf

〈B i
′ |Ĝk3|Bf〉〈Bf|Ĝ j3Ĝ i3|B i〉. (36)

For the final states, we distinguish two cases:
(i) Nucleon final state, Bf = N. In this case the matrix element 

of Ĝ j3Ĝ i3 in Eq. (36) is a 1
2 → 1

2 spin transition, and the tensor 
formed by the operator product can only have t-channel angular 
momentum J = 0 or 1. The J = 1 part is antisymmetric in i j and 
suppressed in 1/Nc , because the commutator of the operators is 
[Ĝ i3, Ĝ j3] = O (N0

c ). The tensor can therefore be projected on J =
0, which in leading order in 1/Nc gives

Ĝ j3Ĝ i3 → 1

3
δ ji Ĝl3Ĝl3 = 1

3
δ ji N2

c

16
, (37)

and Eq. (36) becomes

1

3
δ ji N2

c

16
〈B i

′ |Ĝk3|B i〉. (38)

(ii) Sum of nucleon and Delta final states, B f = N + �. In this case 
the summation over Bf can be performed with the completeness 
relation, see Eq. (35), and Eq. (36) becomes

〈B i
′ |Ĝk3Ĝ j3Ĝ i3|B i〉 ≡ T kji . (39)

Because the commutator of the Ĝ i3 operators is suppressed in 
1/Nc , see above, the tensor T kji can be regarded as completely 
symmetric in leading order. As such it can be projected on overall 
J = 1 using

T kji → 1

5
(δkj T i + δki T j + δ ji T k), (40)

T k ≡ T kll = N2
c

16
〈B i

′ |Ĝk3|B i〉. (41)

The two cases thus lead to similar contractions of the tensor 
Eq. (36). The remaining matrix element of Ĝk3 in Eqs. (38) and 
(41) is proportional to the initial nucleon spin and isospin, and in 
leading order of 1/Nc evaluates to

〈B i
′ |Ĝk3|B i〉 = Nc

6
〈S3i

′ | Ŝk|S3i〉 (2I3i), (42)

which can be averaged with the spin density matrix using Eq. (29). 
Altogether, we obtain the spin-dependent cross section in leading 
order of 1/Nc

dσN

d�f
= (2I3i)α

3N3
c k F fi

96 (1 − nfni)

∫
d�n

4π

F fn Fni �

(1 − nfnn)(1 − nnni)
, (43)
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� = Re
1

2

∑
λ

i

3
ek

Nbk∗
fi bl

fnbl
ni (for N final state), (44)

� = Re
1

2

∑
λ

i

5
ek

N

(
bk∗

fi bl
fnbl

ni + bl∗
fi bk

fnbl
ni + bl∗

fi bl
fnbk

ni

)

(for N + � final state). (45)

Here α ≡ e2/4π is the fine structure constant. The angular func-
tions � can be evaluated using the explicit form of the axial vec-
tors bi

fi etc., Eq. (33). The spin-dependent cross section Eq. (43) is 
proportional to the initial nucleon isospin (2I3i) = ±1 and has dif-
ferent sign for ep and en scattering

dσN = dσN [ep] = −dσN [en]. (46)

We also compute the spin asymmetry

AN ≡ dσN

d�f

/
dσU

d�f
, (47)

by dividing by the unpolarized cross section computed in the same 
approximation. In leading order of 1/Nc , the unpolarized cross sec-
tion Eq. (30) arises from the isovector magnetic current in the e2

amplitude. In the case of summation over N and � final states, 
Bf = N + �, the result is

dσU

d�f
= α2 N2

c F 2
fi

24 (1 − nfni)
2

1

2

∑
λ

bi∗
fi bi

fi (48)

= α2 N2
c (3 − nfni) F 2

fi

48 (1 − nfni)
. (49)

The spin-independent cross section in this approximation is in-
dependent of the initial nucleon isospin; the asymmetry Eq. (47)
therefore has the same isospin dependence as the spin-dependent 
cross section in the numerator,

AN = AN [ep] = −AN [en]. (50)

Some comments on these result from the perspective of the 
1/Nc expansion are in order. First, the spin-dependent cross sec-
tion is parametrically large in Nc , as it arises from the maxi-
mal product of isovector magnetic currents with matrix elements 
O (Nc). Second, our calculation provides an example of the “I = J
rule” of large-Nc QCD, according to which leading structures ap-
pear with t-channel quantum numbers I = J [29–31]. The spin-
dependent cross section, as a matrix element between the initial 
nucleon states 〈B i

′ |...|Bi〉, is a structure with overall J = 1, and its 
leading large-Nc result has I = 1. It arises as the product of an e2

amplitude with I = J = 1 (for both N and � final states) with an 
e4 amplitude that is either projected on I = J = 0 (for N final) 
or on I = J = 2 (for � final), as can be observed in the algebraic 
calculation above.

3.2. Numerical results

We now evaluate the asymmetry numerically and study its 
kinematic dependence using the leading-order 1/Nc expansion re-
sults, Eqs. (43)–(45) and Eq. (49). The large-Nc form factors F (t)
appearing in the expressions are fixed by the matching condition 
Eq. (24), and we use the standard dipole form (1 − t/0.71 GeV2)−2

to model the empirical t-dependence.
Fig. 2 shows AN for two values of the CM momentum k, as 

a function of the CM scattering angle θ = angle(nfni). Results are 
shown for the cases of N and N + � final states in σN in the nu-
merator; σU in the denominator is always for N + � final states; 
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Fig. 2. Target normal single-spin asymmetry AN in inclusive eN scattering, Eq. (47), 
in leading order of the 1/Nc expansion, for two values of the CM momentum k, as 
a function of the CM scattering angle θ . Dashed lines: AN with N final state in σN

in the numerator. Solid lines: AN with N + � final states in σN . In both cases, σU in 
the denominator is with N + � final states.

in this way one can add/subtract the results for AN in the graph 
and see the contributions of the various channels to σN . (The in-
termediate states in the two-photon exchange amplitude in σN are 
always the sum N + �.)

One observes: (i) AN vanishes at θ = 0 and π , which is natural, 
as at these angles the normal vector n2 ×n1 vanishes. (ii) The con-
tribution of � final states (the difference of the results for N + �

and N final states) is small at small θ but becomes significant at 
θ ∼ π/2, causing the AN for final N + � to be several times larger 
than that for final N . (iii) AN reaches values ∼ 10−2 at θ ∼ π/2
and k ∼ 0.6 GeV.

Some comments on the region of applicability of the large-Nc

expressions are in order. (i) The 1/Nc expansion in the domain 
Eq. (11) assumes that the � channel is open. The expressions 
should therefore be applied at CM energies above the physical �
threshold 

√
s = 1.23 GeV. (ii) The calculation relies on the 1/Nc

suppression of N∗ states with masses mB −m = O (N0
c ) as interme-

diate states in the two-photon exchange amplitude. This should be 
reasonable at energies up to and moderately above the N∗ thresh-
old 

√
s ∼ 1.5 GeV, but not substantially above it. (iii) The leading-

order results for σN and AN arise entirely from magnetic currents, 
which are proportional to the momentum transfers at the vertices. 
They are not expected to be accurate at small θ � π/2 and k � 1 
GeV, where the momentum transfers are kinematically suppressed 
and contributions from electric currents are important (those can 
be computed as part of the 1/Nc corrections). Altogether, we ex-
pect the leading-order 1/Nc result to be a fair approximation at 
CM momenta k ∼ 0.3–0.6 GeV and large angles θ ∼ π/2. In this 
kinematics the accuracy of the leading-order 1/Nc result is naively 
estimated to be of the order ∼ 1/3, as observed in other hadronic 
observables. A more quantitative assessment of the accuracy will 
become possible with the computation of 1/Nc corrections.

We note that the numerical results for σN and AN in the 1/Nc

expansion are strongly affected by the presence of the form factors 
in the integral in Eq. (43). This indicates that the two-photon ex-
change observables are sensitive to baryon structure in the domain 
considered here.
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4. Extensions

We have studied the target normal single-spin asymmetry in 
inclusive eN scattering in leading order of the 1/Nc expansion, in 
the parametric domain where the energy transfer is O (N−1

c ) and 
allows for � excitation, and the momentum transfer is O (N0

c ) and 
probes the internal structure of the baryons. The results can be 
extended and applied in several ways.

The method developed here, particularly the algebraic approach 
in Sec. 3, can be used to compute 1/Nc corrections to the leading-
order result. These corrections will quantify the numerical accuracy 
of the leading-order result for the isovector σN , and provide esti-
mates of the isoscalar σN , which appears only at subleading order.

In the parametric domain considered here, the intermediate 
states in the two-photon exchange amplitude have energies 

√
s −

m = O (N0
c ) and include N∗ baryons with masses mB −m = O (N0

c ). 
In the present analysis we have neglected such intermediate states 
because their electromagnetic couplings to the initial/final N and 
� states are suppressed by factors 1/ 

√
Nc . When such N∗ states 

are included, they can enhance the region of quasi-real photon ex-
change (collinear to the electron momenta) in the two-photon ex-
change integral, which could result in numerically enhanced con-
tributions. This effect needs to be analyzed in the context of the 
higher-order 1/Nc expansion.

The cross section for inclusive eN scattering includes also real 
photon emission into the final state (Fig. 1c). This process can 
be analyzed in the 1/Nc expansion in the same manner as two-
photon exchange (Fig. 1b). If the intermediate state is a �, the 
emitted photon momentum is kγ = O (N−1

c ), because its energy 
is given by the mass difference m� − m = O (N−1

c ). In this sit-
uation the coupling through the leading magnetic vertex is sup-
pressed, and we expect real photon emission to be suppressed in 
leading order of the 1/Nc expansion. If the intermediate state is 
an N∗ with mass difference mB − m = O (N0

c ), as becomes possi-
ble in higher orders in 1/Nc , the emitted photon momentum is 
kγ = O (N0

c ), and real emission can contribute at the same order 
as two-photon exchange. The higher-order 1/Nc expansion there-
fore needs to treat two-photon exchange and real photon emission 
on the same basis. Overall, the parametric expansion in 1/Nc pro-
vides definite prescriptions for including both N∗ excitation and 
real photon emission in the inclusive normal single-spin asymme-
try.

The 1/Nc expansion can also be performed in parametric do-
mains different from Eqs. (10) and (11). For example, the choice 
k = O (N−1

c ) leads to a “low-energy expansion” in which the elec-
tric currents enter in the same order as the magnetic ones, giving 
rise to a different physical picture.

The framework of the 1/Nc expansion can also be used to ex-
plore the transition between the resonance and DIS regions and 
the realization of quark-hadron duality in two-photon exchange 
observables. Theoretical estimates of AN differ by 1-2 orders of 
magnitude between the resonance and DIS regions, because of the 
large effects of the anomalous magnetic moment that are present 
in resonance production but disappear in DIS [10,15–17]. Perform-
ing 1/Nc expansions in different kinematic domains would help 
explain how the transition happens.

The methods developed here can be applied to the beam spin 
asymmetry in eN scattering, a two-photon exchange effect propor-
tional to the electron mass, which is being studied as a background 
to parity-violating electron scattering [32–34].
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