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a b s t r a c t

We discuss the simultaneous dispersive analyses of πK → πK and ππ → KK̄ scattering
data and the κ/K ∗

0 (700) resonance. The unprecedented statistics of present and future
hadron experiments, modern lattice QCD calculations, and the wealth of new states
and decays require such precise and model-independent analyses to describe final state
interactions. We review the existing and often conflicting data and explain in detail
the derivation of the relevant dispersion relations, maximizing their applicability range.
Next, we review and extend the caveats on some data, showing their inconsistency with
dispersion relations. Our main result is the derivation and compilation of precise ampli-
tude parameterizations constrained by several πK → πK and ππ → KK̄ dispersion
relations. These constrained parameterizations are easily implementable and provide
the rigor and accuracy needed for modern experimental and phenomenological hadron
physics. As applications, after reviewing their status and interest, we will provide new
precise threshold and subthreshold parameters and review our dispersive determination
of the controversial κ/K ∗

0 (700) resonance and other light-strange resonances.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

1.1. Motivation

‘‘There is no excellent beauty that hath not some strangeness in the proportion’’.

Francis Bacon. ‘‘Of Beauty’’, in Essays (1625)

Even though the existing data on πK → πK and ππ → KK̄ scattering below 2 GeV were obtained between 30
and 50 years ago, there is a longstanding interest in them, which has been renewed over the last years motivated by the
following reasons: First, they are relevant by themselves because they test hadron physics and particularly the low-energy
realm. Second, because pions and kaons are the lightest hadrons and then they appear in the final state of most hadronic
processes, which thus require a description of their interactions. Third, they are of interest for Hadron Spectroscopy, due
to the resonances that can be identified in these processes. Finally, on the theoretical side, since the low-energy regime
lies out of reach for standard QCD perturbation theory, they test the most recent developments on non-perturbative QCD
techniques, like lattice QCD calculations and the low-energy QCD effective theory, known as Chiral Perturbation Theory
(ChPT).

Given their relevance and the many years passed since these interactions were measured, readers outside the field may
assume that a rigorous and accurate description should have been found many years ago. However, this is not the case and,
in brief, this is due to what we could call the ‘‘data problem’’ and the ‘‘model-dependence problem’’. The data problem is
that the πK → πK [1–6] and ππ → KK̄ [7–9] scattering data, obtained in the ’70s and ’80s, were extracted indirectly from
meson–nucleon scattering experiments. Unfortunately, this technique is plagued with systematic uncertainties, leading
to conflict within or between data sets, particularly for the controversial S-wave, as we will review here in Section 2.
The model-dependence problem arises because, since we cannot use a systematic approach like QCD, for many years
simple models and fits were considered good enough to describe such data. Moreover, given that conflicting data exist,
any model providing a mere qualitative description was also considered acceptable, even good if the description was
semiquantitative. This situation with data and models is illustrated in Fig. 1. Needless to say that this state of affairs has
led, for instance, to different resonance contents in different models, or different parameters for the same resonance, to
scarce robust and precise determinations of low-energy parameters, etc... Of course, the use of models may have been
justified at first, but modern hadron physics demands a more precise, rigorous, and model-independent description.

Dispersion relations, which, as we will also review in Section 3, are a consequence of fundamental properties
like relativistic causality and crossing symmetry, provide a solution to these two problems. First, concerning the data
problem, they provide stringent constraints on amplitudes, which allow us to neglect or identify inconsistent data and
restrict the fits that can be acceptable. We will review in Section 4 how simple and very nice-looking data fits fail
to satisfy the dispersive representation. Sometimes, dispersion relations can be solved in a given regime and provide
information without using data there. However, in this report, we want to analyze the data and our main result will
be to provide in Section 5 a Constrained Fit to Data (CFD) that satisfies all the dispersive constraints. Second, since the
dispersive constraints are written in terms of integral relations, they wash out any dependence on the details of input
parameterizations. Moreover, dispersion relations provide the correct and model-independent analytic continuation to the
complex plane that allows for a rigorous determination of the existence and parameters of resonances, to which Section 6
is dedicated. In particular, after reviewing the general state of the art in 6.1, we will dedicate Section 6.2 to the use of
analytic methods to minimize model dependencies when extracting parameters of strange resonances and Section 6.3
to the dispersive determinations of the still debated κ/K ∗

0 (700) meson. In addition, a dispersive determination of the
non-ordinary Regge trajectory of the κ/K ∗(700), using as input its pole parameters, is presented in Section 6.4.
0
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Fig. 1. Plots are taken from [10] to illustrate the conflicting data sets and a rather popular model (unitarized Chiral Perturbation Theory). They
represent the phase shifts of the isospin 1/2 (Left) and 3/2 (Right) scalar partial waves. As we will discuss in the main text, the 1/2 phase shifts are
not measured directly. See [10] for experimental references.

Finally, apart from their model independence, the use of integrals increases the precision when calculating certain
bservables, like the threshold or subthreshold parameters. In Section 7.1 we will thus review these so-called sum rule
eterminations, also providing new results or updating old ones. Further applications related to the πK sigma term and
brief review of the ππ → KK̄ contribution to the calculation of the anomalous magnetic moment of the muon are also
resented in Sections 7.2 and 7.3, respectively.
All the advantages of dispersion theory listed above are common to many other processes where they have provided

uccessful descriptions highly demanded by modern developments. The relatively recent and comprehensive reports on
heir application to ππ → ππ [11–13] and πN → πN [14] are illustrative of this demand. Our aim here is to provide
uch a comprehensive report for πK → πK and ππ → KK̄ .

.2. State of the art and goals

Let us then describe in detail the present situation of the pieces of motivation we have enumerated above and the
bjectives we want to address in this report.

.2.1. The interest in πK → πK and ππ → KK̄ interactions by themselves
First of all, these processes are interesting by themselves, since, together with ππ → ππ scattering, they are the

implest two-body interactions of hadrons. Moreover, these are the lightest mesons available, and, being pseudoscalar
articles, they do not have the complications associated with their spin. Thus, one would expect that any basic
nderstanding of hadronic interactions should be able to describe these processes.
Indeed, over almost five decades, a lot of work has been devoted to building phenomenological models to describe

K → πK and/or ππ → KK̄ scattering. Until the late ’70s, we refer the reader to the excellent review in [15] and after
hat a wide variety of these models can be found in [10,16–40]. Many of them will be discussed below. However, in this
eport, we will focus on the data analysis within the model-independent dispersive approach, which yields mathematical
obust constraints and results, although it may also be limited in its applicability conditions.

Of course, to understand these interactions the first need is to have a reliable data analysis, consistent with fundamental
onstraints. Unfortunately, we have recently shown in [41,42] that, respectively, the πK → πK and ππ → KK̄ data
re inconsistent with dispersion relations, sometimes by a large amount. It should be pointed out that in a remarkable
ork [43], numerical solutions of partial-wave projections of fixed-t dispersion relations, i.e. the so-called Roy–Steiner
quations [44–46], were obtained for πK below 1 GeV. As seen in Fig. 2 these solutions were consistent with the scalar-
ave data from [5], but not quite so with the prominent K ∗(892) in the vector wave. We emphasize that these are solutions
o the dispersion relations, which do not use data in the elastic regions of these waves so that the curves are predictions
nd the results impressive. In the present work, however, we will follow a different approach, not solving Roy–Steiner
ispersion relations, but using many types of them as constraints on data in an energy region as large as possible.
Thus, in this report we will explain and review the dispersive formalism for πK → πK and ππ → KK̄ , paying

articular attention to our series of works [41,42,47]. Besides reviewing those results, we will complete the Roy–Steiner
nalysis applying it simultaneously to πK → πK and ππ → KK̄ , which so far had been analyzed considering the other
ne as a fixed input. Moreover, we will derive and use Roy–Steiner relations with various numbers of subtractions, which
eight differently different energy regions, and we will use them to determine several threshold parameters. Finally,

orward dispersion relations will be used to constrain πK amplitudes up to 1.7 GeV. This defines our main goal, which is
o present here simple parameterizations of both πK → πK up to 1.8 GeV and ππ → KK̄ up to 2 GeV that describe the
ata, and their uncertainties, while simultaneously satisfying an ample set of dispersion relations covering different regions.
his result will be called Constrained Fit to Data (CFD) in contrast to other Unconstrained Fits to Data (UFD) that we will
lso analyze here. Similarly constrained parameterizations were obtained for ππ → ππ in a series of works [48–51] by
ne of the authors together with the Madrid–Krakow group and they have become widely used both in theoretical and
xperimental studies. To provide the hadron community with similar results for πK → πK and ππ → KK̄ , this review
4
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Fig. 2. Solutions of Roy–Steiner equations obtained in [43] for the phase shifts of πK → πK scattering partial waves. Left: S-waves with isospin
/2 (positive curves) and 3/2 (negative curves). Right: P-wave of isospin 1/2. The data come from [5,6].
ource: The figure is taken from [43].

ill therefore deliver the most constrained set of πK → πK and ππ → KK̄ partial-wave parameterizations, together
ith accurate values of threshold and subthreshold parameters as well as a review of the rigorous determination of the
/K ∗

0 (700) parameters and other heavier strange resonances.
The simplicity of our parameterizations and their uncertainties is a goal we imposed on ourselves so that they are easy

o implement in future works, either of phenomenological or experimental character, whose interest on πK → πK and
π → KK̄ we detail in the next subsections.

.2.2. πK → πK and ππ → KK̄ scattering for final state interactions
On the experimental and phenomenological side, we remark once again that a piece of motivation to look for such a

FD parameterization of πK → πK and ππ → KK̄ interactions is because, being much lighter than similar hadrons,
ions and kaons are ubiquitous in final states of hadron processes. Once they appear in a final state they re-scatter
trongly again. These are known as final state interactions (FSI) and are a very relevant contribution to the description
f many hadronic processes. Moreover, the interest for a precise and rigorous πK → πK and ππ → KK̄ description

has increased due to the high statistics at B-meson factories (BaBar, Belle, LHCb), the wealth of new hadron states,
their many decay channels and the CP violation studies, which need reliable input from intermediate ππ, πK , KK̄
tates and their FSI. As illustrative examples of these processes, let us mention: multi-body heavy-meson decays like
→ Kππ [52–54], B±

→ DK± with D → Kππ or D → KKπ [55–58], or B → 3M , with M = π, K [59], CP violation
in D, B → K+π−K−π+ [60–62], and the enhancement of CP violation by meson–meson FSI in three-body charmless B
decays [63,64], particularly through ππ → KK̄ rescattering [65,66] (see the recent review in [67]). Very often, these FSI
are described with simple models fitted to data, which, as we will show here, fail to satisfy the fundamental constraints
encoded in dispersion relations. The precision achieved by the already existing data thus asks for model-independent
parameterizations and a realistic assessment of their uncertainties. Let us note that such model-independent dispersively
constrained parameterizations for ππ → ππ coauthored by one of us [48] are widely used both by phenomenological
and experimental studies. Moreover several of these experimental groups have asked us for our constrained πK → πK
and ππ → KK̄ parameterizations [41,42] too. This includes the recently accepted KLF proposal [68,69] to use a neutral KL
beam at Jefferson Lab with the Gluex experimental setup, to study strange spectroscopy and the πK final state system up
to 2 GeV. Further developments on existing experiments and future Hadron-Physics facilities will be even more demanding
for precise and model-independent meson–meson amplitudes like those reviewed in this manuscript.

1.2.3. Lattice QCD and Chiral Perturbation Theory
On the theoretical side, unfortunately, the energy region below 1.5 or 2 GeV lies beyond the applicability realm of

perturbative QCD. Nevertheless, unquenched lattice QCD calculations on πK → πK [70–72] phase shifts and ππ →

KK̄ [73,74], still at unphysical masses, provide scattering information at several different energies. This is illustrated in
Fig. 3, where we can see that the main features of the scalar and vector partial waves in the elastic regime are clearly
visible, even if for unphysical masses. For a review on scattering processes and resonances from lattice QCD see [75].
We consider it very likely that precise lattice QCD calculations with close to physical pion masses may be available soon.
These will also require consistent and precise data analyses, like the one we pursued here, to compare with.

In addition, since the advent of QCD, we know that pions and kaons (together with the eta meson) can be identified with
the Nambu–Goldstone-Bosons (NGB) [76–79] associated with the spontaneously broken SU(3) chiral symmetry generators
of QCD. In the massless quark limit, these NGB would be massless and separated from all other hadrons by a mass gap
of O(1GeV ). Note, however, that quarks have a small non-zero mass so that pions and kaons are indeed massive, but
they are still much lighter than hadrons with similar quantum numbers. This is why, in purity, they should be called
5
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Fig. 3. Comparison between the fitted low energy phase shifts δℓ obtained from lattice QCD calculations for the scalar f 1/20 (s) (top) and vector f 1/21 (s)
bottom) πK → πK scattering partial waves, at four different quark masses. Notice how, as the lattice pion mass tends to the physical pion mass,
oth partial waves approach the gray curves, which represent our UFD fit [41] to real data. Note also that the vector channel at mπ = 391 MeV has
een plotted starting at 180 degrees as the K ∗(892) becomes a bound state.
ource: The figure is taken from [72].

‘pseudo-NGB’’. In any case, the mass gap exists even if QCD is not massless. This means that pions, kaons, and etas are
he only degrees of freedom of the strong interaction at low energies and the main decay products at all energies.

Perturbative QCD may not be applicable at low energies, but, together with the observed chirally-broken spectrum, it
till dictates that the spontaneous chiral symmetry pattern is that of an SU(3)L× SU(3)R group, broken down to an SU(3)L+R
group (for introductory texts see [80–82]). Here R, L refer to right and left quark chiralities. It is then possible to formulate
the low-energy effective field theory of QCD reproducing this symmetry breaking pattern in terms of pions, kaons, and
the eta. This is called Chiral Perturbation Theory (ChPT) [83,84] and provides a rigorous and systematic perturbative
treatment of hadron physics in the low-energy regime. This alternative perturbative expansion is organized in even powers
of masses or momenta and can be tested against experiments by studying meson–meson interactions at very low energies.
Consequently, the so-called threshold or sub-threshold parameters become a central object of study. In particular, the ChPT
program has been carried out to NNLO for πK → πK scattering in [85], providing rather accurate predictions. Let us note
that the pion-only version of ChPT is known to work very well since the pion mass is very small ∼0.14GeV. However,
he SU(3) ChPT convergence is not so nice [86] when dealing with kaons, whose mass is ∼0.5GeV.

Interestingly, at present, there is some tension between the scalar πK scattering lengths from QCD [87–93] and the
igorous dispersive determination we mentioned above [43] and our previous dispersively constrained fits to data [41].
his situation is summarized in Fig. 4. Only with NNLO ChPT [86] it is possible to come close to these dispersive values,
ut then the NNLO lies more than two standard deviations off the bulk of lattice values. Moreover, in such case the scalar
K scattering lengths show ‘‘the worst convergence of all’’ [86].
Thus, another goal in this report is to provide accurate and rigorous determinations of πK threshold and subthreshold

arameters, with particular attention to the scalar ones. These will be obtained in Sections 7.1.2 and 7.1.3, respectively,
rom sum rules derived from dispersion theory, and, once again, we will pay special attention to uncertainties, including
hose from ππ → KK̄ .

.2.4. Strange meson spectroscopy and the κ/K ∗

0 (700)
Finally, the fourth feature of πK → πK and ππ → KK̄ interactions motivating this work is that they provide important

nformation on light meson spectroscopy. One aim of spectroscopy is to identify as mesons the bound states of quarks and
ntiquarks—or, more often, as resonances since we deal with strong interactions that make most of these states rather
nstable. For a compilation of our present knowledge about these bound and resonant states, we refer the reader to the
eview of Particle Physics (RPP) [95]. Once these states are established, another aim of spectroscopy is to classify them
n multiplets related by some symmetry transformation: in our case, isospin, flavor SU(3), and spin multiplets, as well as
o identify their parity, etc... Let us remark that SU(3) flavor multiplets require the presence of strange resonances, and it
an be checked that the information on many of these strange resonances is dominated by πK → πK scattering data.
6
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Fig. 4. Comparison between various existing determinations of the πK → πK scalar scattering lengths a1/20 and a3/20 . The only experimental value
shown is the beige band of the a−

0 DIRAC measurement [94]. The first lattice result (Miao et al. [87]) yields the rather large yellow band, whereas
higher precision is claimed in more recent lattice calculations (In red: NPLQCD [88], Fu [91], PACS-CS [92], ETM [93]) as well as when lattice
was combined within an Omnès dispersion relation (Flynn–Nieves [89]). Note that dispersive determinations yield somewhat larger values for both
scattering lengths, as in Büttiker et al. [43], or Peláez-Rodas [41] (FDR CFD-old). ChPT calculations to LO, NLO and NNLO come from the Bijnens–Ecker
review [86], but note the NNLO parameters are obtained by including in the fit the value of [43].

One area of very active research in Hadron Spectroscopy is the search for non-ordinary mesons, namely, those that
are not made of just a valence quark and an antiquark. Probably the most interesting non-ordinary configuration is the
glueball. This is a meson made of bound gluons, which contrary to photons can interact with themselves due to QCD being
a non-abelian gauge theory. Having no quarks in its composition, a glueball should have zero charge and no flavor, so that
it forms a flavor singlet. The lightest one is also expected to be a scalar. This is one of the reasons why understanding light
scalar mesons is very important. However, mesons made of quarks should form nonets, i.e. an octet and a singlet. Thus,
naively, any singlet not associated with an octet is a glueball candidate. Unfortunately, in practice, this simple picture is
complicated by the mixing of resonances with the same quantum numbers. However, the simplest way to identify how
many octets should be and where their masses are is by looking at their strange members, which makes the identification
of strange resonances even more relevant. As we commented above, a great deal of the information used to determine the
existence and properties of strange resonances below 2 GeV comes from πK → πK scattering, with all the caveats about
data inconsistencies and model dependencies that we have already emphasized. Hence, another goal of this report is to
review the recent application of analytic techniques, using our CFD as input, to obtain model-independent determinations
of strange resonances below 2 GeV.

Furthermore, the other reason why light scalar mesons are interesting is that the exchange of the lightest one, known as
the σ or f0(500) resonance, is responsible for most of the attractive part of the nucleon–nucleon potential, without which
nuclei would not be formed and we would not even exist. The σ/f0(500) is very difficult to observe clearly in experiments,
since it is very wide and short-lived, with no charge, isospin zero, and no strangeness, i.e. the vacuum quantum numbers. It
has very many properties that make it a robust candidate for a non-ordinary meson. Over the last years there is growing
agreement that this state is dominated by some kind of four-quark or two-meson configuration (see [13] for a recent
review). Nevertheless, since the σ/f0(500) has the same quantum numbers of the lightest glueball, some works have
postulated that it is actually the lightest one of them [28,96]. However, if it were made of quarks it would necessarily
have a strange partner, known as the κ/K ∗

0 (700), which once again is a wide and very controversial state. There has been
a longstanding debate about the existence and properties of this light strange resonance and, as of today, it still ‘‘Needs
Confirmation’’ in the RPP [95]. Once again, the determination of this state is hindered by the data and model-dependence
problems commented above. In this case, the model-dependence problem is aggravated because the analytic extension to
the complex plane is a very unstable procedure when models are used to extrapolate to the complex plane. Once more,
the solution comes from dispersion theory, this time in the form of dispersion relations projected into partial waves.
However, we will show here that the problem is so unstable that even using naively the same partial-wave data as input,
different dispersion relations can yield different poles. A unique pole is obtained only if the data description in the real
axis satisfies dispersion theory. It should be remarked that a rigorous dispersive determination of the κ/K ∗

0 (700), although
without using data on the nominal κ/K ∗

0 (700) region, was obtained in [97]. Interestingly, the authors were able to prove
that the κ/K ∗

0 (700) pole lies within the applicability domain of partial-wave projected hyperbolic dispersion relations.
Then, by using inside the latter the solution predicted from partial-wave projected fixed-t dispersion relations obtained
in [43], they obtained their very sound prediction for the κ/K ∗

0 (700) pole. Since this work does not use πK → πK data in
he κ/K ∗

0 (700) region, in a sense, their resonance is a prediction. Nevertheless, even after that work, the κ/K ∗

0 (700) still
‘Needs Confirmation’’ according to the RPP [95].
7



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

i
r
r
t

a
u
n
u
l
d
w

1

t

π
q
v
s

o
t
i
t

1

k
Σ

m
s
q

Within our approach, we are looking for a complementary determination based on data instead. Actually, our recent
determination in [98] using analytic techniques based on truncated series of Padé approximants obtained from the deriva-
tives of our dispersively constrained fit to data [99], triggered the 2018 change of the κ/K ∗

0 (700) name and parameters
n the Review of Particle Physics (it was K ∗(800) until then). It is only recently that we have completed a precise and
igorous dispersive determination of the κ/K ∗

0 (700) pole using partial wave hyperbolic dispersion relations [47]. The final
esult for our pole and a sketch of the constrained fit to data was given in [47], but one of our goals here is to provide
he details of the full calculations.

Let us remark that a recent lattice study [100,101] at unphysical masses already finds a virtual pole that can be
ssociated with the κ/K ∗

0 (700). This behavior was already predicted within unitarized ChPT [102]. Unfortunately, when
sing more realistic masses, even using the phase shifts shown in Fig. 3, the extraction of the κ/K ∗

0 (700) pole is
ot so straightforward. When employing models to obtain the analytic continuation, the poles are, once again, rather
nstable [72,101]. It seems that a rigorous determination of the κ/K ∗

0 (700) from lattice will also require the analysis of
attice data using analytic and dispersive techniques like the ones we will describe in this report. Note that in this case
ispersion relations will not be ‘‘solved’’ but instead used to ‘‘constrain’’ the lattice data, which is the main approach we
ill follow here.

.2.5. Other applications
Finally, we will also review other applications of dispersion relations to πK → πK or ππ → KK̄ scattering, as well as

further applications where, as a part of a larger calculation, a precise knowledge of these interactions may be of interest.
Thus, in Section 6.4, we will illustrate an additional use of dispersion theory for πK → πK scattering. The relevant

observation is that the analytic properties of Regge trajectories are determined by the analytic properties of the partial
wave where they appear (for a textbook introduction to Regge theory see [103]). In the case of an ‘‘elastic resonance’’,
i.e. with just one decay channel, these analytic constraints can be combined with elastic unitarity into a dispersion relation
for its trajectory, which in turn determines, up to a few subtraction constants, the partial-wave in the energy region
dominated by that resonance. Adjusting these constants so that the partial-wave has a pole with the given resonance
parameters, one then determines its Regge trajectory. It is here that the poles obtained from dispersive approaches can
also be used as input. When this method is applied to relatively narrow resonances like the ρ(770) or f2(1270) [104,105],
their trajectories come almost real and in the form of straight lines in the (M2, J) plane, with a slope of ∼1 GeV−2.
These are the ordinary resonances associated with quark–antiquark states bound by QCD dynamics. In Section 6.4 we
will review how, when this method has been applied to resonance poles in πK → πK scattering [106], we have found
he expected ordinary trajectories for the K ∗(892) and K ∗

0 (1430). In contrast, the trajectory of the κ/K ∗

0 (700) comes out
different, providing strong evidence for the non-ordinary nature of this controversial state. Moreover, we will review how
this trajectory is very similar to that of the σ/f0(500) meson, showing once more the striking similarities of these two
non-ordinary states.

In the final Section 7 we supply examples of applications where our CFD can be used as input. We have already
commented that in this section we provide precise and model-independent values of threshold and subthreshold
parameters obtained using our CFD as input. For these we review and also derive a large collection of sum rules from
dispersion relations, providing many of their explicit expressions. We hope these are of relevance to test ChPT and
low-energy lattice calculations.

In addition, we discuss two more applications where a precise and model-independent description of πK → πK or
π → KK̄ data is of relevance. Regarding the former case, we aim at providing a value of the so-called πK σ -term—a
uantity of relevance to understand the inner structure of the kaon. The calculation of one of its contributions requires the
alue of the πK amplitude at the unphysical Cheng–Dashen point t = 2m2

π , ν = 0. For this, we have to use a dispersive
um rule evaluated with our CFD as input, as explained in Section 7.2.
And finally, regarding the need for ππ → KK̄ , we review its contribution for the calculation of (g −2)µ. We comment

n how our updated CFD parameterization could be of use since some of our previous parameterizations were used in
he past for this purpose. Nevertheless, although it constitutes a nice possible application, the overall effect of KK̄ states
n intermediate states is always found to be very small, and will not change the status of the present conflict between
heoretical calculations and experiment.

.3. Notation

Throughout this work we will be working in the isospin limit of equal mass for all pions, mπ ≡ mπ+ = 139.57 MeV,
aons, mK = 496 MeV, and etas, mη = 547 MeV, mη′ = 957 MeV. It is also convenient to define m± = mK ± mπ ,
12 = m2

1 +m2
2 and ∆12 = m2

1 −m2
2, as well as tπ = 4m2

π , tK = 4m2
K . In the rest of this work, and unless stated otherwise,

1 = mK , m2 = mπ , ∆ = ∆Kπ , Σ = ΣKπ . It is also customary to use the standard Mandelstam variables s, t, u for πK
cattering, satisfying s + t + u = 2Σ . The center-of-mass (CM) momentum of the s-channel πK system will be called
= qπK (s), whereas qπ = qππ (t) =

√
t − tπ/2, qK = qKK (t) =

√
t − tK/2 will be the CM momenta of the respective ππ

and KK̄ states in the t-channel, i.e. for ππ → KK̄ scattering. Here

q12(s) =
1
√

√
(s − (m1 + m2)2)(s − (m1 − m2)2) =

1
√

√
s2 − 2sΣ12 +∆2

12 (1)

2 s 2 s

8
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ometimes it will also be convenient to use the so-called phase-space:

σπK (s) =
2q
√
s
, σπ (t) =

2qπ
√
t
, σK (t) =

2qK
√
t
. (2)

Since we will be working in the isospin limit, we will make extensive use of the isospin-defined πK scattering amplitudes,
enoted by F I (s, t, u), where I = 1/2, 3/2 is the total isospin of the process. They are related by s ↔ u crossing as

follows:

F 1/2(s, t, u) =
3
2
F 3/2(u, t, s) −

1
2
F 3/2(s, t, u). (3)

For convenience we will frequently use the s ↔ u symmetric and antisymmetric πK amplitudes, denoted F± respectively.
hese can be recast as

F+(s, t, u) =
1
3
F 1/2(s, t, u) +

2
3
F 3/2(s, t, u), (4)

F−(s, t, u) =
1
3
F 1/2(s, t, u) −

1
3
F 3/2(s, t, u). (5)

In addition, using s ↔ t crossing symmetry, the ππ → KK̄ amplitudes, denoted GI for isospin I = 0, 1, are related to
those of πK scattering as follows:

G0(t, s, u) =
√
6F+(s, t, u),

G1(t, s, u) = 2F−(s, t, u). (6)

In this work we will also use the partial-wave decomposition of both the πK and ππ → KK̄ scattering amplitudes,
efined1 as:

F I (s, t, u) = 16π
∑
ℓ

(2ℓ+ 1)Pℓ(zs)f Iℓ (s), (7)

GI (t, s, u) = 16π
√
2
∑
ℓ

(2ℓ+ 1)(qπqK )ℓPℓ(zt )g I
ℓ(t).

Let us not forget that, since in the isospin limit pions are identical particles from the point of view of hadronic interactions,
irrespective of their charge, then, being bosons, the ππ state must be fully symmetric. Thus, for even (odd) isospin, only
even (odd) angular momenta should be considered in the above partial-wave expansion of GI (t, s, u). Let us remark that
it is customary to extract explicitly the (qπqK )ℓ factors in the partial waves of the t-channel, to ensure good analytic
properties for gℓ(t) (see [107] in the ππ → NN̄ context). The scattering angles in the s and t channels are given by:

zs = cos θs = 1 +
2st
λs
, zt = cos θt =

s − u
4qπqK

=
ν

4qπqK
=

ν
√
(t − tπ )(t − tK )

, (8)

here

λs = λ(s,m2
π ,m

2
K ) = (s − m2

+
)(s − m2

−
) = s2 − 2sΣ +∆2

= 4s q2Kπ (s), (9)

and ν ≡ s − u is the antisymmetric variable under s ↔ u crossing. For convenience, we have also defined the Källén
function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (10)

Let us now recall that in the s-channel partial waves are projected using

f Iℓ (s) =
1

32π

∫ 1

−1
dzsPℓ(zs) F I (s, t(zs)), (11)

hereas for the t-channel partial waves are obtained from

g I
ℓ(t) =

√
2

32π (qπqK )ℓ

∫ 1

0
dztPℓ(zt )GI (t, s(zt )), (12)

ince now we have two identical particles in the initial state, i.e. the two pions in the isospin conserving formalism. It is
orth noticing that very often experimentalists in their partial-wave definitions included an

√
2ℓ+ 1 factor, which we

ill have to take into account when comparing with data.

1 Please note that in our Ref. [99] we used the notation t Iℓ(s) instead of f Iℓ (s). In addition, we used F (s, t, u) which corresponds to what we would
call F (s, t, u)/4π2 here. The present notation is the one we used in [42].
9
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For later use we define the scalar πK scattering lengths as follows:

aI0 =
2
m+

f I0 (m
2
+
), (13)

and similarly for a−

0 = (a1/20 − a3/20 )/3 and a+

0 = (a1/20 + 2a3/20 )/3. These parameters come from the low-energy effective
ange expansion for partial waves

2
√
s
Re f Iℓ (s) ≃ q2ℓ

(
aIℓ + bIℓq

2
+ c Iℓq

4
+ · · ·

)
, (14)

hose coefficients are called scattering lengths (aIℓ), effective ranges (bIℓ), shape parameters (c Iℓ), etc... and are generically
eferred to as threshold parameters. All them are similarly defined for the expansion of the f ±

ℓ combinations.
The relation with the S-matrix partial waves, which allows for a direct comparison with some experiments, is:

S Iℓ(s)πK→πK = 1 + i
4q
√
s
f Iℓ (s)θ (s − m2

+
), (15)

S Iℓ(t)ππ→KK̄ = i
4(qπqK )ℓ+1/2

√
t

g I
ℓ(t)θ (t − tK ).

When it is clear from the context that the energy under consideration is above the corresponding physical threshold it is
also usual to write these equations omitting the step function.

Let us now remind that the S-matrix should be unitary, which means that if, for a given energy, the initial state i can
evolve not only into a given final state f but also to many other states n, then

∑
n S

I
ℓ(s)inS

I
ℓ(s)

†
nf = δif .

In case only one state is available, as for πK at sufficiently low energies, we say the reaction is elastic. The elastic
unitarity condition translates into the following algebraic relation for πK partial waves

Im f Iℓ (s) = σπK (s)|f Iℓ (s)|
2
, (16)

hich implies that the elastic πK → πK partial wave can be recast in terms of a real phase shift, called δIℓ(s), as
ollows:

f Iℓ (s) =
f̂ Iℓ (s)
σπK (s)

=
eiδ

I
ℓ
(s) sin δIℓ(s)
σπK (s)

=
1

σπK (s)
1

cot δIℓ(s) − i
, (17)

here we have introduced the ‘‘Argand’’ partial wave f̂ (s) for later convenience. In practice, πK scattering is elastic below
pproximately 1 GeV for all waves, and so are the maximal isospin waves within the whole region of interest in this review.
n such cases, the knowledge of δIℓ(s) is enough to characterize the full complex amplitude. We detail in Appendix A the
xplicit functional form used in this work when describing this elastic region.
In contrast, in the inelastic regime, and like any other complex function, the description of a partial wave requires the

nowledge of two real functions, i.e., the phase and the modulus. We will often use those quantities, but sometimes it is
lso convenient to define an elasticity function 0 ≤ ηIℓ ≤ 1 to write:

f Iℓ (s) =
f̂ Iℓ (s)
σπK (s)

=
ηIℓ(s)e

2iδI
ℓ
(s)

− 1
2iσπK (s)

. (18)

ote that when the elasticity is one, we recover the elastic formalism.
When partial waves are considered as analytic functions of the s variable, they have a complicated cut structure in

he complex plane that will be explained in detail in Section 3. However, the so-called ‘‘physical’’ or ‘‘unitarity’’ cut can
lready be observed in Eq. (16) from the σπK (s) factor. It starts at threshold and extends to infinity, and produces two

Riemann sheets, each for a different sign of the imaginary part of the momentum. So far we have been dealing with the
expressions in the first or ‘‘physical’’ Riemann sheet, so that our f (s) should have been called f (I)(s). The partial wave in
he second Riemann sheet. i.e., f (II)(s), is accessible by crossing continuously the unitarity cut.

Let us now recall that, for elastic scattering, the S-matrix in the second Riemann sheet is the inverse of the S-matrix
n the first. But then, since the f -matrix partial waves are related to the S-matrix partial waves by S(s) = 1−2iσπK (s)f (s),
here we have suppressed the isospin and angular momentum indices for simplicity, we can write the amplitude in the
econd Riemann sheet f (II)(s) in terms of the one in the first Riemann sheet f (I)(s), as follows:

f (II)(s) =
f (I)(s)

1 + 2iσπK (s)f (I)(s)
. (19)

Note that in the equation above the determination of σπK (s) is chosen such that σπK (s∗) = −σπK (s)∗ to ensure the Schwarz
eflection symmetry of the amplitude. In other words, on the upper half s plane we can take σπK = +2qπK/

√
s as usual,

whereas on the lower half s plane we must then take σ (s) = −σ (s∗)∗.
πK πK

10
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Fig. 5. One-pion exchange diagrams for the processes used to extract meson–meson scattering data. It is then assumed that, when the exchanged
ion is nearly on-shell, the meson–meson interaction factorizes out in the whole process description. Left panel: πK → πK case. Right panel
π → KK̄ case.

The above equation is useful to look for poles associated with elastic resonances, which are found in the second sheet.
n particular, a pole at

√
sR = MR − iΓR/2 in the second sheet, corresponds exactly with the position of a zero of the

S-matrix partial wave in the first Riemann sheet. Restoring the isospin and angular momentum indices back, this reads:

S Iℓ(s) = 1 + 2 i f̂ Iℓ (s) = e2 i δI
ℓ = 0. (20)

This zero condition may be recast as

cot δIℓ(sR) = − i , (21)

here, of course, cot δIℓ(s) now corresponds to a function in the complex plane that has all the singularities of the
mplitude, except for the cut along the real axis above threshold, where it coincides with the physical cot δIℓ(s). We will
se this method to find elastic resonances from a given parameterization of data in Section 6. The inelastic case is not so
imple and specific analytic methods to find resonances will be discussed in Section 6.2.
Finally, once the pole position sp of a resonance is found, another parameter of relevance is its coupling to the partial

ave, defined as

g2
= −16π (2ℓ+ 1) lim

s→sp

(
s − sp

) f RSℓ (s)
(2qπK (s))2ℓ

, (22)

here f RSℓ (s) represents the partial wave in the contiguous Riemann sheet.

. The data

.1. πK → πK scattering data

.1.1. Introduction
Most of the data on πK scattering were obtained during the ’70s and the ’80s. Due to the practical impossibility

f making pion or kaon beams sufficiently luminous to measure these collisions directly, data are measured indirectly
n fixed-target KN → KπN ′ experiments assuming they are dominated by the exchange of a single pion. This generic
echanism is illustrated in the left panel of Fig. 5. Here N is a nucleon and N ′ can either be a nucleon or a ∆ resonance

although some experiments used deuterium in the initial state and pp in the final one). Experimentally, events whose
omentum transfer is as close as possible to the pion pole are selected and then approximated by considering that

he exchanged pion is on-shell. This technique was first proposed for ππ scattering [108,109] and later extended to
K → πK in [110–114], see [115] for a textbook introduction. Unfortunately this one-pion-exchange formalism needed
o extract πK scattering amplitudes from KN → KπN ′ is just an approximation and has several sources of large systematic
ncertainties. Namely: corrections to the on-shell extrapolation of the exchanged pion, rescattering effects, absorption,
xchange of other resonances, etc... (see [116]). However, most experimental works only quote statistical uncertainties
or each solution and it is therefore rather usual that different experiments disagree within their quoted experimental
rrors, which do not include these sources of systematic uncertainties. This will be clearly seen in the figures below. One
f our main tasks in later sections will be to estimate the systematic uncertainty for different sets, or data points within
he same set, in conflict within a specific energy region.

Before presenting the data on each partial-wave, let us recall that isospin is conserved to a very good approximation

nd we will thus work in the isospin limit. Then, there are two possible isospins for a πK state, i.e. I = 1/2 and I = 3/2.

11
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n particular, cross-section measurements for the I = 3/2 isospin channel were obtained in the early ’70s using different
eactions. These include K−d → K−π−pp in Y. Cho et al. [1], K−n → K−π−p in A.M. Bakker et al. [2] as well as
±p → K±π−∆++ in B. Jongejans et al. [4]. In practice, this isospin channel is elastic up to at least 1.8 GeV and then
t is straightforward to obtain its phase shift from the cross-section. This was done by D. Linglin et al. in [3] using their
−p → K−π−∆++ data. Generically, experiments in the earlier ’70s have low statistics. An excellent review on the
xperimental and phenomenological situation until 1978, which also comments on dispersive approaches, can be found
n [15]. Fortunately, such a situation was improved by the end of the decade. Indeed, in 1978 P. Estabrooks et al. [5]
resented an analysis of K±p → K±π+n and K±p → K±π−∆++ at 13 GeV with relatively high statistics and obtained
he I = 3/2 πK scattering contribution, without any evidence of inelasticity up to 1.8 GeV.

Concerning isospin I = 1/2 scattering, let us first of all note that, when extracted from KN → KπN ′, it always appears
ixed with I = 3/2 in the following isospin combination: fl = f 1/2l + f 3/2l /2. This was the case, for example, of the first

experiments by R. Mercer et al. in [117] using K+p → K+π−∆++ and K+p → K 0π0∆++ reactions. In practice, they
eparated different isospins by combining their results with a heterogeneous and not very precise data collection that
xisted at the time, which was called the ‘‘World Data Summary Tape’’. Together with their low statistics, this means that
heir results for both the I = 1/2 and 3/2 waves have huge uncertainties. For this reason these data are usually neglected
gainst later and more precise experiments.
The first study of πK → πK scattering with relatively high statistics for the fl ≡ f 1/2l +f 3/2l /2 isospin combination, up to

.85 GeV, was published in 1978 by Estabrooks et al. [5], using the SLAC 13 GeV spectrometer. However, the experiment
ith the highest statistics so far was performed about a decade later by Aston et al. [6], using the Large Acceptance
uperconducting Solenoid (LASS) Spectrometer at SLAC. This LASS experiment studied the K−p → K−π+n reaction at
1 GeV and obtained the same πK partial-wave combination up to 2.6 GeV. These two experiments are the most widely
sed in the literature, particularly the latter.
Apart from the large, but frequently omitted, systematic uncertainties, an additional problem affects πK → πK

cattering data phases. Namely, ambiguities appear in the determination of the phase leading to different solutions even
hen extracted from the same KN → KπN experiment. In the case of Aston et al. [6], they appear above the region
f interest for this review. However, Estabrooks et al. [5] presented four solutions above 1.5 GeV. We will only consider
olution B since it is the one qualitatively closer to the LASS results.
So far we have discussed fixed-target experiments, from which data on both the modulus and the phase of the

mplitude can be obtained. However, it is also possible to gather experimental information on the meson–meson
cattering phase by measuring processes where two mesons appear in the final state, as long as the other particles interact
ery weakly with the two mesons and among themselves. Then, Watson’s theorem [118] implies that the phase of the
hole process is the same as the phase of its two-meson rescattering. This technique has been applied using D or ηc
eson decays. Unfortunately, the uncertainties are much bigger than those from fixed-target experiments. Nevertheless,

hey are useful because they provide direct access to I = 1/2. We will review them here too.
Finally, let us recall that the I = 3/2 data ends at 1.74 GeV. That is the reason why all our plots in this subsection

nd at 1.74 or 1.8 GeV at most. Nevertheless, above that energy, we will not use the partial-wave expansion but Regge
arameterizations obtained from the factorization of nucleon–nucleon and meson–nucleon cross-sections. Since these are
ot πK → πK data but phenomenological parameterizations, they will be described in Section 4.3.
Let us then discuss the data on each partial wave in detail.

.1.2. S-wave data
I = 3/2 S-wave data

We will first describe the I = 3/2 data since it is rather large and needed to extract the I = 1/2. As commented above,
everal experiments measured first this wave in the early ’70s: Y. Cho et al. [1], A.M. Bakker et al. [2], D. Linglin et al. [3]
nd B. Jongejans et al. in [4] . None of them found any evidence of inelasticity up to 1.8 GeV so that the amplitude is fully
etermined in terms of the phase shift, which is shown in Fig. 6 as a function of the CM energy. The first observation
s that these phase shifts are negative, which means that the interaction in this channel is repulsive, and no resonances
ccur. Second, it can be seen that most of these experiments have relatively large uncertainties and provide data between
00 and 1100 MeV, except for [1], which reaches up to 1.7 GeV. In contrast, the data from Estabrooks et al. [5], obtained
n 1977 and also reaching 1.75 GeV, quotes much smaller uncertainties. It will therefore dominate any fit, particularly
t high energies. Although there is a crude agreement at low-energies, the conflict between different experimental sets
hen taking the uncertainties at face value is evident from the plot, particularly between Estabrooks et al. and Bakker
t al. at low energies or Cho et al. at higher energies. It is also important to remark that the lowest data points sit around
00 MeV, and therefore somewhat far from threshold at 636 MeV. Hence, the direct extraction of threshold parameters,
ike scattering lengths, from a fit to data requires an extrapolation that produces large uncertainties. For example, although
n [5] a value of a3/20 = −0.14 ± 0.07 is quoted (in m−1

π units), the compilation of low-energy parameters in 1983 [119]
rovided five values for this scattering length ranging from −0.14 to −0.05. We already commented that this observable
s relevant for chiral perturbation theory and is the subject of a renewed interest from lattice QCD. It will be discussed
n Section 7.1, where we will provide more precise and robust determinations from sum rules using our constrained

arameterizations.
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Fig. 6. Phase-shift data on the S3/2(s) πK → πK from [5] (solid squares), [4] (solid circles), [1] (solid triangles), [3] (empty squares) and [2] (empty
ircles). We also show the results of our Unconstrained and Constrained Fits to Data (UFD and CFD respectively).

I = 1/2 S-wave data

his is the wave with the most structure and the most interesting for spectroscopy. Unfortunately, as already discussed,
n fixed-target experiments the data on this isospin always appears mixed with I = 3/2 in the following combination:
S ≡ f 1/20 + f 3/20 /2. Its modulus and phase are defined as follows:

fS(s) = |fS(s)| eiΦS (s), (23)

hich, in principle, were measured independently and therefore will be fitted separately. For comparison with data, the
ollowing normalization is used:

f̂S(s) = fS(s) σπK (s), (24)

here the phase space σπK (s) was defined in Eq. (2). With this notation, we show in Fig. 7 the high-statistics data from the
ixed-target experiments [5,6]. Taking into account that the I = 3/2 has a negative phase decreasing smoothly from zero
o about −25 degrees, then the structure that is observed in fS is mostly due to I = 1/2. In particular, there is a peak in the
odulus and a simultaneous rapid increase of the phase around 1430 MeV. This is a scalar strange resonance, nowadays
alled K ∗(1430), whose existence was supported by both experiments. In addition, there is a considerable increase in
he modulus and the phase from threshold to 1.2 GeV, but not clearly resonant, which is the origin of the long-standing
ontroversy about the existence of the κ/K ∗

0 (700) meson, which still ‘‘Needs confirmation’’ according to the present edition
f the Review of Particle Physics [95]. We will dedicate Section 6 to review the dispersive determination of this resonance.
Let us note the discrepancies between both sets of data in the whole energy region. Since the quoted errors are purely

tatistical, it is evident that there are systematic effects that we will have to estimate and consider when fitting the
ata. In addition, it is important to remark that there are only two points below 800 MeV, coming from [5], and thus the
xtraction of the I = 1/2 scattering length from fits to data requires a large extrapolation, which yields large uncertainties.
or illustration, the compilation of low-energy parameters from data in 1983 [119] provided five values for this scattering
ength ranging from 0.13± 0.09 to 0.33± 0.01 (in mπ units). The latter is from [5]. The LASS data [6] starts even higher,
t 825 MeV. Once again, we recall that this scattering length is relevant for chiral perturbation theory and has been the
ubject of a renewed interest from lattice QCD. We will provide robust results from sum rules using our constrained
arameterizations in Section 7.1.
Up to here, we have discussed scattering data from fixed-target experiments on nucleons. However, it is also possible

o extract I = 1/2 data from heavy meson decays. In particular, when πK are the only strongly interacting products in
he decay, Watson’s theorem implies [118] that, in the πK elastic region, the phase of the whole process should be the
ame as the πK → πK scattering phase shift.
13
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Fig. 7. Data on the S-wave, measured by Estabrooks et al. [5] and Aston et al. [6]. The upper panel shows the modulus and the lower panel the
hase. We also show the results of our Unconstrained and Constrained Fits to Data (UFD and CFD respectively).

The ideal situation is when the other particles in the decay are weakly interacting, as in so-called semileptonic decays.
or example, the I = 1/2 phase-shift difference between S and P waves has been measured from D+

→ K−π+e+νe decays
by the BaBar and BESIII Collaborations [120,121]. In the left panel of Fig. 8 we illustrate how πK → πK rescattering
represented as a black disk) appears in this process. Note that the lepton and neutrino come from a weakly interacting

boson, represented by a gray disk. Thus, in the left panel of Fig. 9 we show the S-wave phase, extracted from the
easured S − P phase difference with a simple model for the P-wave, whose uncertainties are much smaller than those

of the S-wave and therefore can be neglected. In that plot, it can be seen that both the BaBar and BESIII results are quite
consistent with those of the LASS experiment (separated from the I = 3/2 component using their parameterization).
However, they will not be included in our fits because their uncertainties are much larger than those from fixed-target
experiments and they should only be the same in the elastic region. Nevertheless, they provide a nice check of consistency.

Furthermore, the I = 1/2 phase of the πK S-wave amplitude has also been obtained from Dalitz plot analyses of
D+

→ K−π+π+ by the E791 [53], FOCUS [54,122] and CLEO-c [123] collaborations, as well as a recent similar analysis of
c → KK̄π by the BaBar Collaboration [124]. The illustration of how πK → πK rescattering appears in these processes is
hown in the center and right panels of Fig. 8, respectively. In principle, these phases (and amplitudes) are not necessarily
hose of πK scattering due to the presence of a third meson that could also interact strongly. However, a comparison with
he scattering data has shown that, within the large uncertainties and at least in the elastic region, the resulting phase
but not the amplitude) still bears some similarity to that of LASS. It seems that, to a good degree of approximation, the
hird meson acts as a spectator and its effect on the phase can be recast as a global constant shift. Thus, we show in the
ight panel of Fig. 9 that, up to 1.5 GeV and mostly due to their large uncertainties, the phases obtained from E791 and
aBar [53,124] are fairly compatible with those of LASS (extracting once again their I = 1/2 with their own I = 3/2
arameterization). Note, however, that the data from BaBar are displaced by 34◦ while those from E791 are displaced
14
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Fig. 8. Other mechanisms that are sensitive to πK scattering through its appearance as part of the final state. Assuming the other particles in the
final state are spectators, Watson’s theorem implies that the phase of the whole process is that of πK scattering. Left: The cleanest case is when
he other particles do not interact strongly as the lepton and neutrino produced in D+

→ K−π+e+νe decays observed by the BaBar and BESIII
ollaborations [120,121]. Center: D+

→ K−π+π+ measured by the E791 [53], FOCUS [54,122] and CLEO-c [123] collaborations. Right: ηc → KK̄π
easured by the BaBar Collaboration [124]. In the last two processes, the πK scattering phase is obtained assuming the effect of the spectator
article plays a minor role in the energy dependence of the phase-shift, which is then observed displaced by a constant phase.

Fig. 9. I = 1/2 S-wave phases obtained from the decay of heavy mesons versus the LASS data (using their own I = 3/2 model to separate the
= 3/2 component). Left: From the semileptonic D+

→ K−π+e+νe decay measured by BaBar and BESIII Collaborations [120,121], which used a
imple P-wave model to separate the P wave component. Right: From Dalitz plot analyses of D+

→ K−π+π+ by the E791 Collaboration [53] and
f ηc → KK̄π by the BaBar Collaboration [124]. Statistical plus systematic uncertainties are plotted for [53]. As explained in the main text, the data
rom BaBar are displaced by 34◦ while those from E791 are displaced by 86◦ , to ease the comparison with πK data.

y 86◦. We do not show FOCUS and CLEO-c data, because they only provide some curves coming from their model for
he phase, which, once displaced by a similar constant phase are relatively similar to that of LASS. The additional phase
s originated in the production process, represented by the gray disk in Fig. 8, as well as in the interaction with the
dditional pion. Within the range of interest, these two energy dependencies are expected to be very mild compared
o that of πK scattering itself and therefore crudely approximated by a constant. Nevertheless, apart from their huge
ncertainty, which makes them of little use, these data cannot be interpreted as a scattering phase beyond this simplistic
pproximation. As a matter of fact, the effect of the interaction with the second pion has been investigated [125–130]
ithin several theoretical frameworks implementing rescattering beyond what is typically called the isobar model and,
o a varying degree, they explain why the I = 1/2 S-wave phase shift extracted from D-decays should not be expected
o agree with the scattering data. Therefore, D-meson decay data are not included in our fits, although they still provide
qualitative check of consistency, at least in the elastic region.

.1.3. P-wave data
I = 3/2 P-wave data
Only Estabrooks et al. [5] provide data for the I = 3/2 P-wave phase-shift up to 1.74 GeV, which we show in Fig. 10.

o inelasticity is observed. As it happened in the scalar case, this isospin wave is negative and therefore also repulsive.
owever, the phase is an order of magnitude smaller. Actually, below 1.1 GeV the modulus of the phase shift is less than
◦, below 1.4 GeV is less than 2◦, and below 1.74 GeV it is less than 3◦. For this reason, is very frequently neglected
n many analyses. However, it should be considered for precision studies, and in particular to separate its contribution
rom that of I = 1/2 in fixed-target experiments. Finally, it should be noted that data starts at 1 GeV and has huge
scillations. Therefore there is no information on its behavior near threshold, although NLO and NNLO ChPT [85,131] and
um rules [43] predict that the scattering length should be positive. This suggests that the phase might be positive close
o threshold and below 1 GeV, which will be confirmed by our dispersive analysis.

I = 1/2 P-wave data
15
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Fig. 10. Data on the I = 3/2 P-wave from Estabrooks et al. [5]. We also show our CFD result as a solid line with a gray uncertainty band, which
s obtained by fitting these data together with the data on the fP = f 1/21 + f 3/21 /2 combination. For comparison, we show with a dashed line the
nconstrained fit to the data in this figure, whose uncertainty is delimited by the orange band.

Once again this wave is measured mixed with the I = 3/2 component in the combination fP ≡ f 1/21 + f 3/21 /2, whose
odulus and phase we define as follows:

fP (s) = |fP (s)| eiΦP (s), (25)

lthough for comparison with data, the following normalization is used:

f̂P (s) = fP (s) σπK (s), (26)

here the phase space σπK (s) was defined in Eq. (2). With this notation, we show in Fig. 11 the data measured by
Estabrooks et al. [5] and the LASS Collaboration [6]. There is a previous production experiment that was able to extract
the P-wave [117]. However, its statistics are low compared to LASS experiments, yielding remarkably larger uncertainties,
for which we consider it superseded by later experiments.

Then, taking into account that the I = 3/2 contribution is tiny, one can see the general features of this I = 1/2
P-wave. The low-energy part below 1.2 GeV is completely dominated by the presence of the K ∗(892) resonance peak
and its very rapid associated increase of 180◦ in the phase. This is a very well-established resonance, measured in many
other processes. For the neutral case, which is the one measured in [5,6], the Review of Particle Physics quotes a mass
of 895.55 ± 0.20 MeV and a width of 47.3 ± 0.5 MeV. These features are usually described by means of some sort of
Breit–Wigner parameterization, which may be justified when high precision is not required. Above 1.2 GeV, there are
two other strange resonances: First, the K ∗(1410) whose mass and width averages in the RPP are 1403 ± 7 MeV and
174 ± 13 MeV, respectively. This resonance couples very little to the πK channel and, accordingly, its associated peak
s very small in the modulus. In contrast, the K ∗(1680), whose mass and width averages at the RPP are 1718 ± 18 MeV
nd 322 ± 110 MeV, has a ≃40% branching fraction to πK and its peak is more visible. The LASS experiment, using
ifferent decays channels, plays a very relevant role in the determination of the parameters of these resonances. Note
hat, being so close and wide, they largely overlap and interfere, giving rise to the complicated behavior observed in the
hase. Obviously, since these resonances decay predominantly to other channels, the πK → πK inelasticity becomes
arge in some parts of this region. Concerning the threshold parameters, note once more that there are only two points
elow 800 MeV so that simple extrapolations of data down to threshold are rather unstable. Moreover, these two points
re at odds with the rest of the data and the dispersion relations, so we do not include them in our fits. We will provide
um-rule determinations of these threshold parameters in Section 7.1.
Besides scattering experiments on nuclei, other ways of extracting information on πK scattering in the P-wave

re possible as shown in Fig. 12. In particular, according to [134], data measured on D+
→ K+π−µ+ν by the

OCUS collaboration [133] could provide stringent constraints on the P-wave phase shifts. In addition, there are two
easurements of τ → Kπντ decays [132,135]. These observations, together with information on other decays, have
een recently used to improve our knowledge of the πK form factors [136–140]. Furthermore, the first extraction of
he f+(0)|Vus| term coming from these combined analyses was performed in [141]. Due to the fact that the πK vector
artial wave is the dominant contribution in all these processes, the K ∗(892) plays a very relevant role in all these
16
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(

Fig. 11. Experimental results on P-wave πK → πK scattering from Estabrooks et al. [5] and Aston et al. [6]. Top: Data on |f̂P (s)|. Bottom: Data on
φP (s). The continuous line is our constrained fit (CFD), whose uncertainties are covered by the gray band, whereas the dashed line is the Unconstrained
Fit to Data (UFD), whose corresponding uncertainties are delimited by the orange band.

Fig. 12. τ → Kπντ data measured by the BELLE collaboration (left panel) [132] and D+
→ K+π−µ+ν data measured by the FOCUS collaboration

right panel) [133].
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Fig. 13. Data on the I = 3/2 D-wave from Estabrooks et al. [5]. We also show our UFD and CFD parameterizations (dotted and continuous lines,
espectively).

orks. Therefore, in Appendix B we describe a new alternative elastic P-wave obtained by using the fits of the FOCUS
ollaboration [133], and we also perform there its dispersive study. Fortunately, although starting from different data,
he dispersively constrained final result of the alternative description and the one we will discuss in the main text, using
cattering data only, turn out to be very similar and compatible, which is why we have relegated the alternative one to
he appendix.

.1.4. D-waves data
I = 3/2 D-wave data

s with the I = 3/2 P-wave, only Estabrooks et al. [5] provide data for the I = 3/2 D-wave phase shift up to 1.74 GeV.
Since no inelasticity has been measured, the phase shift determines completely the amplitude. The data for the phase
shift are shown in Fig. 13 and are very small in the whole energy region, not even reaching 3◦. Note there are no data
below 1 GeV so that there is no information on threshold, however, in this case, both NNLO ChPT [85] and sum rules [43]
yield a negative scattering length, and then it is natural to assume that the phase shift is also negative from threshold up
to the first data point. We will confirm this with our dispersive analysis.

I = 1/2 D-wave data
As it happened with the S and P-waves, the I = 1/2 D-wave is only measured together with the I = 3/2-wave in the

fD ≡ f 1/22 + f 3/22 /2 combination, for which, once again, we define the modulus and the phase

fD(s) = |fD(s)| eiΦD(s), (27)

as well as the usual normalization to compare with data:

f̂D(s) = fD(s) σπK (s). (28)

With this notation we show in Fig. 14 the experimental results of [5,6]. Since the I = 3/2 component is so small and
featureless, all the features seen in that figure correspond to the I = 1/2 channel. In particular, below 1.8 GeV there is
just a clear peak and phase motion corresponding to the well-established K ∗

2 (1430) strange resonance. This resonance
is seen in many other processes, but note that the averaged mass of the neutral case is dominated in the RPP by the
results of [5] and LASS. Its decay branching ratio to πK is approximately 50% and an inelastic formalism will be needed.
Let us remark that the data starts above 1.1 GeV so that there is no real experimental information on threshold and
extrapolations are unstable. Actually, although NNLO ChPT [85] and sum rules [43] predict a positive scattering length,
they are not very consistent with each other. We will review this situation and provide sum rule determinations from
our constrained dispersive fits in Section 7.1.

2.1.5. I = 1/2 F-wave data
As usual with other waves we define

f (s) ≡ |f (s)| eiφF (s), f̂ (s) = f (s) σ (s). (29)
F F F F πK
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Fig. 14. Data on the D-wave isospin combination fD measured by Estabrooks et al. [5] and Aston et al. [6]. Left: Modulus of |f̂D|. Right: Phase ΦD .
We also show our UFD and CFD parameterizations (dotted and continuous lines, respectively).

Fig. 15. Scattering data on the πK → πK F-wave measured by Estabrooks et al. [5] and Aston et al. [6]. Left: Modulus of |f̂F |. Right: Phase ΦF . We
lso show our UFD and CFD parameterizations as dashed and continuous lines, respectively, with their corresponding uncertainty bands (gray and
range respectively).

owever, for this wave, there are no observations of I = 3/2 scattering, which is therefore neglected in the literature. We
an thus consider that the whole fF is just I = 1/2. We show in Fig. 15 the data obtained in [5,6]. Note that the threshold
suppression is so large that there are no data below 1.5 GeV. We will provide sum-rule results for the scattering length.

The most salient feature of this wave is the peak of the K ∗

3 (1780) resonance, whose branching ratio to πK is slightly
less than 20%. We will thus need an inelastic formalism. In the RPP, the parameters of this wave are completely dominated
by the LASS Collaboration results [6].

2.2. ππ → KK̄ scattering data

Let us recall that, in the isospin limit, all pions are identical particles, and, being bosons, the ππ state must be fully
symmetric. Thus, the two possible isospin states that couple to KK̄ , which are I = 0 and I = 1, are expanded in terms of
only-even or only-odd partial waves, respectively. For all of them, we define a modulus and a phase g I

ℓ = |g I
ℓ|e

iφI
ℓ .

The experimental results on ππ → KK̄ partial waves that will be reviewed next were obtained in the early
eighties [7,8], indirectly from fixed-target experiments on πN → KK̄N ′. In order to extract the meson–meson amplitude,
it is then assumed that the one-pion-exchange mechanism illustrated in the right panel of Fig. 5 dominates the whole
process and that the meson–meson sub-process is factorizable. This is a fairly good approximation if the events are
selected with the exchanged pion momenta close to the pion mass shell, but as commented in the πK → πK case, and
as illustrated below, the final result is plagued with systematic uncertainties. It is therefore usual to find that different
experiments do not agree within their statistical uncertainties, and a systematic uncertainty will have to be considered.
For our purposes, the data can be grouped in four different types. First, we will use data on phases and modulus for the
g0
0 , g

1
1 partial waves extracted from π−p → K−K+n and π+n → K−K+p at the Argonne National Laboratory [7] and

rom π−p → K 0
s K

0
s n at the Brookhaven National Laboratory in a series of three works [8,9,142]. The latter will be called

rookhaven-I, Brookhaven-II, and Brookhaven-III, respectively. Second, although data for the modulus of the tensor g0
2

ave was obtained in Brookhaven-II and Brookhaven-III, we will see that the old experimental parameterizations are not
uite compatible with the resonance parameters presently compiled in the RPP. Third, for higher partial waves, which
lay a very minor role in the dispersive analysis of the lower waves and have no scattering data, we use simple resonance
arameterizations adjusting their parameters to those in the RPP.
Finally, let us remark that in the high-energy region above 2 GeV there are no data on all the partial waves we need

or our dispersive integrals. It is for this reason that our plots in this subsection will end at that energy. Nevertheless, we
19
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Fig. 16. ππ → KK̄ scattering data on the scalar–isoscalar partial wave g0
0 , coming from [7] (Argonne), [8] (Brookhaven-I) and [9] (Brookhaven-II).

As explained in the main text, in the ‘‘unphysical region’’ below KK̄ threshold, due to Watson’s theorem and the fact that no multi-pion states
are observed, the ππ → KK̄ phase shift is precisely that of ππ → ππ scattering. Thus in that region, we provide a representative sample of
such ππ scattering data [145] (Grayer et al. solution b), [146,147] (Kaminski et al.), or the very precise Kℓ4 decays from [148] (NA48/2). We have
also separated Region I, where we will be able to apply dispersion relations as tests or constraints, from Region II, where these relations are not
applicable.

will follow closely our approach in [42] and rely on recent updates [41,48,97] of Regge parameterizations [143] obtained
from factorization from nucleon–nucleon and meson–nucleon processes and the phenomenological observations of Regge
trajectories or the Veneziano model [144]. All this will be discussed in Section 4.3.

Let us then describe the ππ → KK̄ data for each partial wave in detail.

2.2.1. I = 0 S-wave
This g0

0 (t) wave is quite complicated but also a very interesting one for hadron spectroscopy, since it couples to the
much-debated scalar–isoscalar resonances. Data for both the modulus |g0

0 | and the phase φ0
0 exist in the physical region

and are shown in Fig. 16. Although data for both observables extend up to 2.4 GeV, we only show them up to 2 GeV, since
above that energy we will use Regge parameterizations.
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Note that in the lower panel of Fig. 16 we also show data on the phase below KK̄ threshold, coming from ππ elastic
cattering in the scalar–isoscalar channel. Watson’s theorem [118] tells us that in the ππ scattering elastic regime this is
lso the ππ → KK̄ phase. Since multi-pion states have not been observed in ππ scattering below the KK̄ threshold, this
hase shift is in practice the same as that of ππ → KK̄ below threshold.
There are several incompatible data sets in different parts of the inelastic regime and some of them will be discarded

ased on physical shortcomings, like Watson’s theorem. However, for the modulus two distinct sets can be seen: on the
ne hand the Argonne and Brookhaven I data, which are roughly compatible, and, on the other hand, the Brookhaven
I set. In [41] we studied them both and we were able to find constrained fits describing either one of them while
atisfying simultaneously the dispersive representation, although the combined solution of Argonne and Brookhaven I
eemed slightly favored. Of course, that was done with a fixed πK → πK input, and here we will complete that analysis
onstraining simultaneously πK → πK and ππ → KK̄ . Thus we will analyze dispersively again the two different g0

0
incompatible sets, referring by default to the combined solution in the main text, and explaining the alternative one
in Appendix C. To this end it is more convenient to separate the whole inelastic fit range into two regions, as follows:

(I) Region I, extending from
√
tmin,I = 2mK up to

√
tmax,I = 1.47GeV. As shown in Appendix D, this region lies

within the applicability domain of Roy–Steiner equations and will be constrained to satisfy dispersion relations
in Section 5.3 below.
It is clearly seen in the lower panel of Fig. 16 that from 2mK up to 1.2GeV, the phase φ0

0 from the Argonne [7]
and Brookhaven-I [8] collaborations are incompatible. However, by Watson’s theorem, φ0

0 at KK̄ threshold should
be the same as that of the scalar–isoscalar ππ → ππ phase shift δ(0)0 . Here one should notice that, as seen in
the figure in the unphysical region, both the ππ → ππ data and their dispersive analyses with Roy and GKPY
equations [48,149], which extend up to or beyond KK̄ threshold, find δ(0)0 > 200◦. The huge rise of the phase right
below KK̄ threshold is due to the presence of the well-known f0(980) resonance. Thus, it seems that the phase
of Brookhaven-I [8] right above KK̄ threshold is inconsistent with Watson’s theorem. Moreover, this phase was
extracted using a g0

2 wave that also violates Watson’s theorem, as we will see soon below. Hence, for our fits, we
will discard the Brookhaven-I phase data [8] below ∼1.15 GeV, i.e. until it agrees again with that of Argonne [7].
Concerning the data on |g0

0 |, shown in the upper panel of Fig. 16, we can see that, up to roughly 1.4 GeV, the sets
of Argonne and Brookhaven-I are consistent among themselves but not with Brookhaven-II. For later purposes, it
is relevant to remark that the latter is consistent up to 1.2 GeV with the so-called ‘‘dip solution’’ of the elasticity
favored from dispersive ππ → ππ analyses [48,149], assuming that only ππ and KK̄ states are relevant. In contrast,
Brookhaven-II would require the presence of some non-negligible coupling to another state, possibly four pions. As
we did in [42] we will consider both alternative possibilities in our fits. Finally, in the 1.2 GeV to 1.47 region the
‘‘dip’’ solution from ππ scattering has such large uncertainties that it is roughly consistent with the three data sets.

(II) Region II, extending from
√
tmin,II = 1.47 GeV up to

√
tmax,II = 2 GeV. We only use this region as input for our

dispersive calculations for lower energies, since Roy–Steiner equations are not applicable here (see Appendix D).
Above 1.4 GeV all sets seem compatible again although the data from Argonne finishes around 1.5 GeV, whereas
the Brookhaven-I set reaches up to ∼1.7 GeV and only Brookhaven-II reaches up to 2 GeV. It should be noticed
that above 1.5 GeV this wave is rather small and possible resonance shapes are not evident. Nevertheless, several
scalar–isoscalar resonances are claimed to exist above KK̄ threshold: the f0(1370), f0(1500) and f0(1710). They enjoy
different statuses: from still some debate about the existence and parameters of the first, to well established for the
f0(1500). In general, their parameters are not determined very precisely. However, for all three, both their couplings
to ππ and KK̄ are small and they do not appear as clear peaks in the plot of |g0

0 |. Also, they seem to be fairly wide
and there should be a significant overlap between them.

.2.2. I = 1 P-wave data
In the physical ππ → KK̄ region, only the Argonne Collaboration (Cohen et al. [7]), has provided ππ → KK̄ scattering

ata on the g1
1 partial wave. They reach up to ∼1.55GeV for both the modulus |g1

1 | and its phase φ1
1 and are shown in

Fig. 17. It can be noticed that, for the phase, the error bars are very large in the 1 to 1.2 GeV region as well as in the last
two data points above 1.45 GeV.

In addition, in Fig. 17 we also show below KK̄ threshold, the data on the phase coming from ππ elastic scattering
with these quantum numbers. Note that the very rapid increase of the ρ(770) meson is clearly seen. Since multiple pion
states have not been observed in ππ scattering below the two-kaon threshold, Watson’s theorem tells us that this is also
the ππ → KK̄ phase in this pseudo-physical region. We will need this phase later on for our dispersive representation.
Let us remark that the uncertainties here are much smaller than in the physical region.

Finally, the fact that there are no scattering data above 1.6 GeV and very poor information above 1.4 GeV, forces us to
consider the information on resonances measured in other processes. Apart from the ρ(770) that dominates completely
the region below 1 GeV, there are three other resonances below 2 GeV listed in the RPP with JPC = 1−− quantum numbers.
However, only two of them are relevant for us. Namely, the ρ ′

= ρ(1450) and ρ ′′
= ρ(1700), which have sizable couplings

to both the ππ and KK̄ channels. The values of these parameters will be reviewed and used in Section 4.2 for our fits.
In contrast, the couplings of these two channels to the ρ(1570), whose existence is less certain (according to the RPP it ‘‘
may be an OZI-violating decay mode of the ρ(1700)’’), have not been seen. We will therefore neglect it in our analysis.
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Fig. 17. Modulus (Left) and phase (Right) of the g1
1 (t) ππ → KK̄ partial wave. The continuous line and the gray uncertainty band correspond to the

CFD parameterization described in the text, whereas the dashed line and orange band correspond to the UFD. Note that due to Watson’s theorem,
the phase below KK̄ follows that of I = 1, ℓ = 1 elastic ππ scattering [48]. The white circles and squares come from the ππ scattering experiments
of Protopopescu et al. [150] and Estabrooks and Martin [151], respectively. Let us remark that this is the only case for ℓ ≥ 1 when the data on the
modulus was provided with the same normalization as ours, i.e. without a

√
2ℓ+ 1 factor.

Fig. 18. Left: Data on the modulus of ĝ0
2 (t) from the Brookhaven-II analysis [9] together with our UFD and CFD parameterizations, described in the

text. Right: Phase of the g0
2 (t) partial wave. Watson’s theorem implies that in the ‘‘unphysical’’ region below KK̄ scattering this phase should be the

same as for elastic ππ scattering with the same quantum numbers because an inelasticity to other states has not been observed. Note that both
our UFD and CFD satisfy this theorem since they match the ππ scattering data below 1 GeV [152] and the dispersive analysis in [48], whereas the
Brookhaven-I model [8], does not.

2.2.3. I = 0 D-wave data
We show in Fig. 18 the data for this wave in the physical region. These data were obtained in the Brookhaven-II

analysis [9], which was published 6 years after Brookhaven-I. Brookhaven-II was a study of ππ → K̄K scattering in the
I = 0, JPC = 2++ channel employing a coupled-channel formalism, which included data from other reactions. Later on,
some members of that collaboration published in [142] a re-analysis, that we call Brookhaven-III, including even further
information on other processes. Note that our normalization differs from that used by the experimental collaborations
and this is why we are plotting |ĝ0

2 |, defined as:

ĝ0
2 (t) ≡

2(qπqK )5/2
√
t

g0
2 (t) ≡ |ĝ0

2 (t)|e
iφ02 (t). (30)

Concerning the phase, below the KK̄ threshold we will use Watson’s theorem and the elastic data on ππ scattering.
However, the relevant observation here is that for this partial wave there are no data on the ππ → KK̄ phase in the
physical region. Thus, we need to look at the information on resonances with these quantum numbers observed in other
processes. According to the RPP, there are eight possible JPC = 2++ resonances below 2 GeV. These are the f2(1270),
f2(1430) f ′

2(1525), f2(1565), f2(1640), f2(1810), f2(1910) and f2(1950). The only really well-established and clearly seen in
many different processes are the f2(1270), f ′

2(1525) and f2(1950). Although the first couples predominantly to ππ and the
second to KK̄ , their decays to both states have been measured and therefore they do couple significantly to ππ → KK̄ .
Actually, the peak of the f2(1270) is the most prominent feature in Fig. 18 and there is a hint of a second structure around
1.5 GeV. However, the existence of the other five resonances is much into question, and either they ‘‘Need confirmation’’ or
they are omitted from the summary RPP tables. Still, in Fig. 18 there is some hint of a raise in the modulus above 1.8 GeV,
and the f2(1810) resonance was considered both by Brookhaven-II and Brookhaven-III [9,142] in their phenomenological
fits.

2.2.4. Data on higher ππ → KK̄ partial waves
There are no data on ππ → KK̄ scattering for partial-waves with an angular momentum higher than ℓ > 2. We thus

have to resort to the information on resonances below 2 GeV from the RPP. For JPC = 3−− there is one well-established
22
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esonance, the ρ3(1690) with a ∼160 MeV width, whose decays to ππ and KK̄ are both measured and should therefore
ouple significantly to ππ → KK̄ . A not-so-well-established ρ3(1990) candidate is too high for our purposes and no
ecays to KK̄ have been reported. Concerning JPC = 4++, an f4(2050) resonance is listed in the RPP, with sizable decays
o ππ and KK̄ . Its width is ∼240 MeV so that its tail should affect somewhat ππ → KK̄ below 2 GeV, but we have
hecked that its effect is negligible in our calculations.

. Dispersion relations for πK → πK and ππ → KK̄

Dispersion relations are the mathematical consequence of causality once we consider that pions and kaons have a
ufficiently long life that they can propagate to infinity, which is a remarkably good approximation compared to the size
f typical hadronic interactions. Causality implies that the amplitude has to be analytic in the first Riemann sheet of
he complex plane except for cuts due to the presence of thresholds (see [13,153] for introductory texts) in the direct
r crossed channels. Poles associated with bound states can only appear in the real axis below threshold, but this does
ot occur in πK → πK nor ππ → KK̄ scattering and we can thus ignore them. Rigorous proof of this connection
etween causality and analyticity only exists within non-relativistic scattering [153], but for relativistic scattering there
s no general proof beyond axiomatic field theory or perturbation theory [154]. For the general non-perturbative case we
esort to the so-called Mandelstam hypothesis [155,156] or ‘‘maximal analyticity’’, which we will assume throughout this
eview.

Dispersion relations take the form of integral equations in which the amplitude is represented as an integral over its
maginary part. In Section 4, we will review and update tests showing that the data on both πK → πK and ππ → KK̄
do not satisfy different dispersive representations. One of the aims of this review, attained in Section 5, is to provide an
update of data parameterizations that satisfy the different kinds of dispersion relation that we will present below, by
imposing them as constraints on the fits to data.

The derivation of dispersion relations requires the use of Cauchy’s theorem for a single complex variable. Since two-
body scattering depends on two variables, different kinds of dispersion relations are obtained depending on whether
we fix one variable, we relate one variable to the other, or whether we integrate one variable leaving just the explicit
dependence on the other one. Respectively, these cases correspond in this review to fixed-t , hyperbolic, and partial-wave
dispersion relations that we describe in detail next.

In Fig. 19 we illustrate how a fixed-t dispersion relation is obtained by applying Cauchy’s theorem to the integral over
the contour C (in blue) that encloses the complex plane except for the cuts (shown in black). The right cut corresponds
to the opening of the s channel threshold at s = m2

+
, which then extends to +∞, whereas the left cut corresponds to the

opening of the πK → πK u-channel, starting at s = m2
−

− t and extending to −∞. Then, the value of the amplitude at
any point s inside this contour is given by:

F (s, t, u) =
1

2π i

∮
C

F (s′, t, u′)
s′ − s

ds′. (31)

f the contribution of the amplitude in the curved part vanishes as its radius R is taken to infinity, we are left only with
he straight contours, separated by an infinitesimal distance ϵ from the real axis. Since amplitudes satisfy the reflection
ymmetry F (s′ + iϵ′, t, u′

− iϵ′) = F∗(s′ − iϵ′, t, u′
+ iϵ′), in the ϵ → 0 limit, and given that the straight contours above

nd below the real axis run in opposite sense, we are left with

F (s, t, u) =
1
π

∫
∞

m2
+

ds′
ImF (s′, t, u′)

s′ − s
+

1
π

∫ m2
−

−t

−∞

ds′
ImF (s′, t, u′)

s′ − s
. (32)

his is a fixed-t dispersion relation valid everywhere in the s-complex plane except on the singularities. If we want the
mplitude from the dispersion relation in the real axis over the cut singularities, we must then consider the amplitude
t s + iϵ with s real, and use the relation:

1
s′ − s − iϵ

= PV
1

s′ − s
+ iπδ(s′ − s), (33)

here PV denotes the principal value. Note that the effect of iπδ(s′ − s) on Eq. (32) is to extract i Im T (s, t, u) out of the
irst integral, which cancels out the imaginary part on the left side. Hence on the real axis, we find:

ReF (s, t, u) =
1
π
PV
∫

∞

m2
+

ds′
ImF (s′, t, u′)

s′ − s
+

1
π

∫ m2
−

−t

−∞

ds′
ImF (s′, t, u′)

s′ − s
. (34)

herefore, for real values of s dispersion relations provide the real part of the amplitude from its imaginary part.
When the amplitude F (s, t, u) does not tend to zero fast enough at ∞, the circular contribution of the contour will

not vanish. In such cases, we can try applying the theorem to the ‘‘subtracted" function
(
F (s, t, u) − F (s0, t, u)

)
/(s − s0),

to write

F (s, t, u) − F (s0, t, u) =
1

(s − s0)
∮

ds′
F (s′, t, u′)

, (35)

2π i (s′ − s)(s′ − s0)
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Fig. 19. Analytic structure of the fixed-t πK → πK amplitude in the complex s-plane. We show as continuous thick black lines the ‘‘right’’ or
‘‘physical’’ cut, extending from m2

+
to +∞, as well as the ‘‘left’’ cut, from m2

−
− t to −∞. In blue we show the typical contour C used to obtain a

dispersion relation from Cauchy’s theorem, enclosing the complex plane but avoiding the two cuts and sending the radius of its curved part (dashed)
to infinity. Its straight sections are infinitesimally close to the cuts on the real axis.

and for the circular part of C to vanish it is enough to demand F (s, t, u)/s to tend to zero at ∞ faster than 1/s. This yields
so-called ‘‘once subtracted’’ dispersion relation, which now reads:

F (s, t, u) = F (s0, t, u) +
s − s0
π

∫
∞

m2
+

ds′
F (s′, t, u′)

(s′ − s)(s′ − s0)
+

s − s0
π

∫ m2
−

−t

−∞

ds′
F (s′, t, u′)

(s′ − s)(s′ − s0)
. (36)

he price to pay is that the amplitude at the subtraction point s0 is now required as input. If that is still not enough to
nsure the vanishing of the circular part of C , one can make another subtraction, typically at the same point, finding

F (s, t, u) = F (s0, t, u) + (s − s0)
(
∂

∂s
F (s, t, u)

)
s=s0

+
1

2π i
(s − s0)2

∮
ds′

F (s′, t, u′)
(s′ − s)(s′ − s0)2

.

his is now called a ‘‘twice subtracted’’ dispersion relation, which requires the knowledge of two subtraction constants. In
rinciple, one can calculate dispersion relations with an arbitrary number of subtractions. However, due to the Froissart
ound [157], i.e. σtot (s) < c(log s)2, two subtractions are enough to ensure convergence. Nevertheless, more subtractions
han strictly needed can be made in order to weigh some regions of the integrand more than others. Actually, in this
eview, we will use the same dispersion relation with different numbers of subtractions with that purpose.

The previous discussion was made in terms of a fixed-t dispersion relation, but for partial waves one can proceed
imilarly once the analytic structure is known. Thus we show in Fig. 20 the analytic structure in the complex plane for
he πK → πK scattering f Iℓ (s) partial waves (top panel) and the g I

ℓ(t) ππ → KK̄ partial waves (bottom panel). Due to
he partial-wave integration and the two different masses involved in the process, the πK → πK partial waves have an
dditional circular cut. It is also important to notice that, in the ππ → KK̄ case, the right cut extends below the physical
K̄ threshold down to the two-pion threshold, which is the so-called ‘‘pseudo-physical’’ or ‘‘unphysical’’ region.
The main problem with dispersion relations is to recast all the integrals in terms of the amplitudes in physical regions.

or this, crossing symmetry is essential. It is particularly easy to implement for fixed-t amplitude dispersion relations,
iving rise to closed and simple expressions. In contrast, it is more cumbersome for partial-wave relations, since for each
artial wave in a given channel they might involve the infinite tower of partial waves in the crossed channel. We will
erive expressions for all the dispersion relations of interest in the next subsections.
However, let us remark that the previous derivation of a dispersion relation and the derivations in the next subsections

re purely formal. For the sake of brevity, we will proceed as if our manipulations on integrals, series, etc... are always well
ustified. For instance, we will assume that Im F (s, t, u) is a real function, or that the partial-wave expansions converge.
owever, these conditions are only met in certain regions of the (s, t) Mandelstam plane. The applicability domain of all
ispersion relations described next is studied in rigor and detail in Appendix D.

.1. State of the art

As explained above, a dispersion relation can always be written for a given amplitude in a certain region of the
andelstam plane. These integral equations enforce not only analyticity, but also crossing, and thus, when constrained
24
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Fig. 20. Analytic structure of partial-wave amplitudes in the complex plane for πK → πK scattering (f Iℓ (s), top) and ππ → KK̄ scattering (g I
ℓ(t),

ottom). Note that both present ‘‘right cuts’’ from each threshold to infinity. We only show two-particle thresholds. In the ππ → KK̄ case, the real
xis segment from the two-pion threshold to the KK̄ threshold is below the physical region, but the imaginary part of the amplitudes is non-zero. This
s called the pseudo-physical region. In addition, both types of partial waves have ‘‘left cuts’’ for negative values of their center-of-mass Mandelstam
ariable. However, πK → πK partial waves also have a circular cut, centered at s = 0 with radius m2

K − m2
π , and an additional piece of left cut

n the real axis from s = 0 to (mK − mπ )2 . We also show the position of several dynamical features of πK → πK scattering, like the Adler zero
equired by spontaneous chiral symmetry breaking (we show that of the f 1/20 wave), and the position of the κ/K ∗

0 (700) and K ∗(892) poles in the
econd Riemann sheet of the f 1/20 and f 1/21 , respectively. Note that while the latter is much closer to its nominal mass in the real axis, the κ/K ∗

0 (700)
s as close to its nominal mass region in the real axis as it is to the πK → πK threshold, or the left and circular cuts. Adler zeros [158] appear
n scalar partial waves only as a consequence of spontaneous chiral symmetry breaking. To leading order in ChPT, they are located in the real axis
lightly above the circular cut, roughly as depicted in the upper panel.

ith unitary partial waves, produce as a result a system of scattering amplitudes that fulfill all three first principles.
n top of that, it has been proven for two-hadron elastic scattering that dispersive solutions are unique under certain
onditions [159]. Considering, as explained in Section 2, that experimental data are usually plagued with systematic
ncertainties, dispersion relations offer the possibility to constrain the desired amplitudes and their data description,
ithout including any model dependencies. As a result, such dispersive analyses are considered very robust results within
he hadron physics community and, in practice, ‘‘model-independent’’ studies, up to minor simplifying assumptions like
sospin conservation, or that hadronic states are truly asymptotic, etc. For studies of isospin violation in πK scattering,
e refer the reader to [160–163].
Furthermore, one of the most relevant topics in Hadron Physics is the extraction of resonances. The most interesting

esonances nowadays are not those easily identified by nice peaks in cross-sections, but those which are very wide
nd/or masked by thresholds or other nearby resonances and dynamical features. An example is the much-debated
owest-lying scalar-nonet σ/f0(500), f0(980), a0(980) and κ/K ∗

0 (700). We will dedicate the whole Section 6 to the latter.
hen these complications occur, one has to resort to the rigorous resonance definition in terms of its associated pole

n the complex plane, which is a feature that cannot be removed by any other nearby effect. The pole position of these
esonances is usually far from the real axis, or surrounded by nearby thresholds, which produce a very unstable analytic
xtrapolation. Actually, different models providing similar-quality descriptions of data may yield rather different poles.
ispersion relations can also overcome this problem, since they are derived from Cauchy’s theorem, thus supplying the
orrect analytic continuation to the complex plane, which is also very stable. Last but not least, apart from resonance poles,
everal interesting parameters or quantities can only be determined far from the physical region, like the renowned πN
term, Adler zeros, etc... which can only be extracted with high precision if a stable analytic extrapolation is performed.
The formulation of dispersion relations using crossing constraints and coupling partial waves from crossed channels

ppeared in the ’70s. These lead to the so-called Roy equations [44] for ππ scattering and Steiner-equations [46,164]
25
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or πN scattering. Other phenomenological works along these lines where developed during that decade on ππ
cattering [165–170] together with the developments of sum-rules for the determination of low-energy ππ parameters,
lso using analyticity and crossing [171]. These techniques were soon applied to πK → πK and ππ → KK̄ scattering in
172–177] and, although these works were mostly focused on the determination of low-energy parameters, they laid the
round for the formalism we will use here. For a nice description of dispersive πK → πK and ππ → KK̄ analyses at the
nd of that decade, we refer the reader once again to the excellent review in [15].
With the advent of QCD, the interest in these techniques faded partially, but a renewed interest arose around the ’90s,

hich continues to our days, due, first, to the appearance of ChPT and its need for very precise and rigorous low-energy
bservables to which it could be compared, and, second, to the efforts to determine the existence and properties of the
uch-debated lightest scalar resonances. This has given rise to extensive studies of ππ scattering with Roy or similar
quations [11,12,48,178–185], so that very high-precision amplitude parameterizations have been built over the years,
ith various dispersive solutions converging to very similar final results. Furthermore, these techniques also produced a
ery precise extraction of the σ/f0(500) and f0(980) resonances [149,186,187], which lead to a major revision of their
tatus in the 2012 Review of Particle Physics, reducing the quoted uncertainty for the former by a factor of 5 and
ven changing its name to the present one, i.e., f0(500). On the πN front, similar dispersive analyses [14,188] exist,
hat will be of relevance for our πK → πK system. Moreover, besides determining the amplitudes on the real axis,
ll these dispersive techniques allow to extract information on different observables like the πN σ -term [189–194], the
atching to ChPT [195,196] or several other relevant quantities associated with the nucleon [197,198]. We will also

ollow this path here for πK when discussing applications in Section 7. Finally, we would like to point out that, given
he success of these techniques, they have also been applied recently to other processes like: e+e−

→ π+π− [199] and
(∗)γ (∗)

→ ππ [200–204].
Concerning πK → πK and ππ → KK̄ scattering, several previous dispersive studies must be recalled before

ddressing the details of our calculations. Seminal works using fixed-t [205] or hyperbolic dispersion relations can be
ound in [172,173,175–177], although they mostly focused on the determination of scattering lengths and very low-energy
r even sub-threshold regions. A contemporary study on ππ → KK̄ scattering lengths2 using an alternative dispersive
echnique is also found in [174]. Unfortunately the data at that time was not so good and the precision attained by all
hose works is comparatively poorer than more recent developments. In particular, more modern works used dispersion
heory to obtain sum rules for threshold parameters to compare with SU(3) ChPT [206,207]. Finally, the most rigorous and
obust dispersive analysis of πK → πK scattering was carried out in a series of works by the Paris group [43,97]. In the
irst work [43] they solved the partial-wave projected fixed-t dispersion relations, to obtain a prediction of low-energy
and P partial waves, below ∼1 GeV, using as input higher partial waves, data above 1 GeV and phenomenological

its to ππ → KK̄ scattering. The results describe well the data on the S-wave and just qualitatively the data on the
-wave, particularly around the K ∗

0 (892) resonance, see Fig. 2. Later on, they used their solutions inside partial-wave
rojected hyperbolic dispersion relations to determine with high accuracy the pole position of the light scalar κ/K ∗

0 (700)
esonance [97]. We definitely consider this work very robust. However, note that the dispersion relations used for this
ole extraction were not the same ones solved in the first work. Moreover, the ππ → KK̄ input was kept fixed from
imple fits to data, and not all the possible sources of uncertainty were considered. Despite the existence of this rigorous
etermination of the κ/K ∗

0 (700) pole, it still ‘‘Needs Confirmation’’ in the Review of Particle Physics.
Thus, even more recently, we have pursued an alternative ‘‘data-driven’’ dispersive program, whose completion we

inally present in this report. We have aimed at using several different dispersion relations, including hyperbolic ones,
o constrain data parameterizations up to as high as possible energies, simultaneously for πK → πK and ππ → KK̄
nd to use the resulting amplitudes also to determine the κ/K ∗

0 (700) pole. In particular, we first obtained [41] a precise
escription of πK → πK scattering consistent with forward dispersion relations (FDRs) up to ∼1.6 GeV. Next, keeping
hose πK amplitudes fixed, we obtained [42] a precise description of ππ → KK̄ scattering up to 1.47 GeV, consistent
ith hyperbolic dispersion relations. In all these cases we paid particular attention to uncertainties, both statistical and
ystematic. Our final result, that we will present below in full detail, is to use all dispersion relations together to constrain
imultaneously the data description of both πK → πK and ππ → KK̄ . In [47], we already advanced the result of this
nalysis for the κ/K ∗

0 (700) resonance, quite consistent with the result in [97].
We would not like to finish this state-of-the-art section without mentioning that there are several other applications

f dispersion relations related to πK → πK interactions [203,208–213], in which some simplifying approximations are
ade, or cutoffs are used, etc..., which lie outside the scope of this manuscript. These include ‘‘unitarized’’ ChPT for
K → πK or ππ → KK̄ [10,13,23–26,34,214–218] and in general chiral unitary approaches. In the elastic case they
an be justified from a dispersion relation for the inverse of the partial wave (since its imaginary part is known exactly
rom elastic unitarity), or in the coupled-channel case can be derived from Bethe–Salpeter equations [219] or the so-
alled N/D method [220] (see also [221] for a recent review). The latter assumes that, similarly to the elastic case, the
ight cuts, which are common to all coupled partial waves, can be obtained from unitarity in coupled channels together
ith a dispersion relation for the denominator. Such a dispersion relation is coupled to another one for the numerator
hat carries the other cuts (left cut, circular, etc...). In both the elastic and inelastic cases, subtractions are needed, whose
alues can be obtained from Chiral Perturbation Theory (ChPT) up to a specific order. These methods are very successful

2 For this inelastic process, scattering lengths are defined as ãI = lim + g I (s).
ℓ qK →0 ℓ
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henomenologically, although, due to the approximations they use, not so suited for the kind of precision we are after in
his report. For this reason, their success and details lie beyond the scope of this work. For a thorough discussion of the
dvantages and disadvantages of these unitarization methods versus fully dispersive approaches, we refer the reader to
he recent extensive review in [222].

Thus, in the next sections we will summarize the dispersion relations we will implement for our full dispersive analysis
ere. These are a total of sixteen dispersion relations that comprise:

• Two forward dispersion relations (FDRs), useful to constrain the πK → πK scattering amplitudes up to roughly
1.7 GeV. Contrary to partial-wave dispersion relations (PWDR), FDRs constrain the full partial-wave series instead of
individual partial waves. These dispersion relations are the ones reaching the highest in applicability and, in addition,
they help to obtain an improved description of the high-energy asymptotic region described in Section 4.3. One
obvious advantage is that they do not need ππ → KK̄ input. We already made use of them in [41]. Unfortunately,
they alone cannot reach the second Riemann sheet, in search of resonances.

• Four Hyperbolic partial-wave projected dispersion relations (HPWDR) for the crossed channel ππ → KK̄ . For our
purposes, it is enough to study dispersively the lowest three partial waves in this channel, for which data exist.
Note we will make use of an extra dispersion relation for g1

1 . The reason is that we found inconsistencies for the
continuation to the pseudo-physical region between subtracted and unsubtracted dispersion relations when using
unconstrained fits as input. This region of the P-wave is relevant for the determination of the κ/K ∗

0 (700) resonance
and we want to make sure both solutions are consistent in the end. We already enlarged their applicability region
to 1.47 GeV and made use of them in [42], but keeping fixed the πK input.

• Four Fixed-t partial-wave projected dispersion relations (FTPWDR) for the four πK → πK partial waves f ±

0,1.
These are mostly dominated by their own inputs, and thus offer a simpler dispersive constraint than the HPWDR.
Unfortunately, as explained in detail in Appendix D, their applicability region ends slightly above 1 GeV in the real
axis and in the complex plane does not reach the κ/K ∗

0 (700) pole. These were solved in the [43] analysis, keeping
the ππ → KK̄ input fixed, whose influence is small.

• Six Hyperbolic partial-wave projected dispersion relations (HPWDR) for the four πK → πK partial waves f ±

0,1. Again
as in the case of the crossed channel, extra dispersion relations will be used to obtain consistency between the
unsubtracted and once-subtracted anti-symmetric dispersion relations. These produce a more intricate realization
of the crossing between the two channels and this time the ππ → KK̄ crossed channel provides a quite significant
contribution, which therefore really links together the two channels. Although, as the FTPWDR, they reach only up
to ∼1 GeV in the real axis, we need these HPWDR because the κ/K ∗

0 (700) pole lies inside their applicability region.

As detailed in Section 5 these constraints are enough to obtain a very consistent result not only concerning dispersion
elations, but also with the existing πK → πK and ππ → KK̄ data within uncertainties.

Let us now describe in detail the derivation and subtleties of each one of these dispersion relations we have just
numerated.

.2. Fixed-t dispersion relations

In this review, we will show three relevant uses of fixed-t dispersion relations for F±(s): First, they will be an
ntermediate step for the derivation of more elaborated dispersion relations for partial waves [43,46,223]. Second, they
ill provide sum rules for low-energy parameters [171,174,207]. Third, FDRs, which correspond to the fixed t = 0 case,
ill be used as checks and constraints on amplitudes [41]. FDRs have the advantage that they converge for any value of s
see Appendix D). In contrast, partial-wave dispersion relations obtained from fixed-t dispersion relations have a limited
pplicability range, for πK → πK scattering amplitudes, up to roughly 1.05GeV . Finally, one might wonder why we
onsider fixed-t for πK → πK amplitudes but not fixed-u or fixed-s dispersion relations for ππ → K̄K amplitudes. The
eason is that, as shown in Appendix D, their applicability region does not reach the physical region where data exist.

According to Eqs. (6), F+ and F− correspond, by crossing, to the exchange of isospin 0 or 1 in the t-channel, respectively.
his means that, at high energies, F+ is dominated by the t-channel exchanges of the Pomeron and P ′ trajectories, with
o ρ trajectory contribution, whereas the opposite occurs for F−. If one looks only at either the right or the left-hand-side
ntegral, one would then need two subtractions to ensure the convergence of the Pomeron contribution and one for that of
he ρ trajectory. Thus, when used as intermediate steps for the derivation of other dispersion relations, fixed-t dispersion
elations for F+ are customarily written with two subtractions and those for F− at least with one. However, the s ↔ u
ehavior of the F± amplitudes implies that the leading Regge contributions in the right-hand and left-hand cuts cancel
gainst each other. As a consequence, it is enough to have one or no subtraction to ensure the convergence of the F+ and
− fixed-t dispersion relations, respectively. These minimally subtracted fixed-t dispersion relations have been recently

used for ππ scattering FDR in [48–51] and for πK in [41]. Generically, fewer subtractions are convenient to avoid the
propagation of the uncertainties in the subtraction constants becoming too large in the resonance region, whereas more
subtractions are useful when concentrating on the threshold region.

Thus, using crossing symmetry to write the left-hand cut contribution as an integral over the right one, the unsub-
tracted fixed-t dispersion relation for F− reads:

F−(s, t) =
1
∫

∞

ds′Im F−(s′, t)
[

1
′

−
1

′

]
. (37)
π m2
+

s − s s − u
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One of the main advantages of using this non-subtracted relation is that it provides a sum rule for the scattering length
a−

0 , which therefore is not input. Another relevant advantage is that it does not depend on the crossed channel ππ → KK̄ ,
thus avoiding an additional source of uncertainty.

In contrast, for the fixed-t dispersion relation of F+, we need two subtractions. For the moment and later convenience,
we choose the subtraction point at s = 0. Once again we can use crossing symmetry to rewrite the left cut in terms of an
integral over the right one. It can be shown [44,176] that it can always be recast into the following simple form:

F+(s, t) = c+(t) +
1
π

∫
∞

m2
+

ds′
Im F+(s′, t)

s′2

[
s2

s′ − s
+

u2

s′ − u

]
, (38)

here c+(t) is a subtraction constant once each value of t is fixed. In Section 3.4 below, we will show how this subtraction
constant can be determined using a hyperbolic dispersion relation for F+ and the resulting fixed-t dispersion relation,
Eq. (46), will therefore have some dependence on ππ → KK̄ .

Fixed-t dispersion relations will be used as intermediate steps for partial wave dispersion relations in later sections
where this subtraction constant will be rewritten using a hyperbolic dispersion relation. At that point, we will introduce
a mild dependence on the crossed channel.

Furthermore, we will also use the particular case when we fix t = 0, i.e., FDRs, that we describe in detail next.

3.3. Forward dispersion relations for πK → πK

The t = 0 case is useful because forward scattering is related by the optical theorem to the total cross-section, for
which there is experimental information at high energies for many hadron scattering processes. Moreover, this is the
only fixed value of t for which the integrands in the dispersion relation are given directly in terms of the imaginary part
of a physical amplitude. FDRs are applicable at any energy, in contrast to Roy-like equations which, in practice, have
a limited applicability energy range of O(1GeV ) due to the projection in partial waves (see Appendix D). Actually, we
recently used FDR to check different sets of πK data and to obtain a set of constrained data parameterizations of πK that
satisfy well these FDRs up to 1.6 GeV [41]. In this report, we go one step forward and we will impose them together with
Roy–Steiner-like equations, the latter both for πK and ππ → K̄K channels.

The unsubtracted FDR for F− can be obtained from Eq. (37) just by setting t = 0. The only subtlety is that, since we
will use the FDRs as checks or constraints on the amplitudes for physical values of s, we need the s variable to lie on the
eal positive axis above threshold. Therefore, we have to use the principal value as in Eqs. (33) and (34)

Re F−(s) =
2(s −Σ)

π
PV
∫

∞

m2
+

ds′
Im F−(s′)

(s′ − s)(s′ + s − 2Σ)
. (39)

For the F+ FDR, however, it is convenient to make the subtraction at threshold, instead of s = 0, so that the subtraction
constant can be recast later in terms of πK scattering lengths. For this reason the FDR is not obtained directly by setting
t = 0 in Eq. (38), but can be recast as:

Re F+(s) = F+(m2
+
) +

(s − m2
+
)

π
PV
∫

∞

m2
+

ds′
[

Im F+(s′)
(s′ − s)(s′ − m2

+)
−

Im F+(s′)
(s′ + s − 2Σ)(s′ + m2

+ − 2Σ)

]
. (40)

Their main drawback is that when looking for resonances, their associated poles appear in the second sheet of partial
waves with the same quantum numbers of each resonance. FDRs do not deal with partial waves, and even worse, just by
themselves, they do not provide access to the second Riemann sheet. These two drawbacks can be overcome by the use
of partial-wave dispersion relations, although then the advantages of the FDRs are lost.

3.4. Hyperbolic dispersion relations

In this kind of dispersion relations, abbreviated as HDR, the t variable is not fixed to the same value for all s, but by
mposing that u and s should lie in a hyperbola (s − a)(u − a) = b. In the literature, it has been usual to set a = 0, but
we have recently obtained in [42] HDRs for arbitrary a. As shown in Appendix D, the advantage of such generalization
is that the a value can then be chosen to modify the HDR applicability domain, as well as the weight of different parts
of the integral. In particular, in [42] we chose a to maximize the applicability of HDR for either πK or ππ → KK̄ in
their respective physical regions. Since in this report we are also interested in the precise determination of the κ/K ∗

0 (700)
resonance, in Appendix D we have determined the a value that maximizes the partial-wave HDR applicability reach in
the πK physical region while enclosing the κ/K ∗

0 (700) pole region in the complex plane.
In this section we will briefly review our results in [42]. In addition, we will also provide the expression for the

subtraction constant of the fixed-t F+ dispersion relation in Eq. (38) and the once-subtracted expression for the F− HDR.
Thus, in what follows sb and ub will be the values of s and u that lie in the hyperbola (s − a)(u − a) = b for a given

value of t . Together with the condition s + t + u = 2Σ , these values can be recast as:

sb ≡ sb(t) =
1 (

2Σ − t +

√
(t + 2a − 2Σ)2 − 4b

)
,

2
28
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ub ≡ ub(t) =
1
2

(
2Σ − t −

√
(t + 2a − 2Σ)2 − 4b

)
. (41)

Then we can write the following once-subtracted hyperbolic dispersion relation for F+

F+(t, b, a)=h+(b, a)+
t
π

∫
∞

4m2
π

Im G0(t ′, s′b)
√
6 t ′(t ′ − t)

dt ′+
1
π

∫
∞

m2
+

ds′
Im F+(s′, t ′b)

s′

( s
s′ − s

+
u

s′ − u

)
, (42)

where

s′b ≡ sb(t ′), u′

b ≡ ub(t ′), t ′b = 2Σ − s′ −
b

s′ − a
− a. (43)

Note that one subtraction is enough in Eq. (42) since the first term converges because at high energies its leading
Regge exchange is the K ∗-trajectory, whereas the second term is backward scattering.

Then, similarly to what was done in [207] for a = 0, by combining the fixed-t dispersion relation in Eq. (38) with
q. (42) right above at t = 0 and b0 = a2 − 2Σa+∆2, we can determine both subtraction terms c+(t) and h+(b, a). Thus
e can rewrite the HDR for F+ as follows:

F+(sb, t) =8πm+a+

0 +
t
π

∫
∞

4m2
π

Im G0(t ′, s′b)
√
6 t ′(t ′ − t)

dt ′

+
1
π

∫
∞

m2
+

ds′
Im F+(s′, t ′b)

s′
[
h(s′, t, b, a) − h(s′, 0, b, a)

]
+

1
π

∫
∞

m2
+

ds′
Im F+(s′, 0)

s′2
[
g(s′, b, a) − g(s′,∆2, 0)

]
, (44)

where we have defined

h(s′, t, b, a) =
s′(2Σ − t) − 2[b − a2 + (2Σ − t)a]

s′2 − s′(2Σ − t) + [b − a2 + (2Σ − t)a]
,

g(s′, b, a) =
s′(2Σ)2 − 2[b − a2 + 2Σa](s′ +Σ)

s′2 − s′2Σ + [b − a2 + 2Σa]
. (45)

Moreover, since we have also determined c+(t), we can now rewrite, as promised in the previous section, the fixed-t
ispersion relation in Eq. (38) as:

F+(s, t) = 8πm+a+

0 +
1
π

∫
∞

m2
+

ds′
Im F+(s′, t)

s′2

[(
s2

s′ − s
+

u2

s′ − u

)
− k(s′, t)

]
+

t
π

∫
∞

4m2
π

Im G0(t ′, s′b0 )
√
6 t ′(t ′ − t)

dt ′+
1
π

∫
∞

m2
+

ds′
Im F+(s′, t∆2 )

s′
[
h(s′, t,∆2, 0) − h(s′, 0,∆2, 0)

]
, (46)

here we have now defined

k(s′, t) =
1
s′2

s′(2Σ − t)2 − 2∆2s′ −∆2(2Σ − t)
s′2 − s′(2Σ − t) +∆2 . (47)

For the F− case, in this report we will use both the unsubtracted and once-subtracted hyperbolic dispersion relations.
This is just because, as we will show later, we have found that the unconstrained data fits do not satisfy well these two
dispersion relations simultaneously. For convenience one has to write the HDR for the s ↔ u symmetric combination
F−/(s − u). Thus, the unsubtracted relation reads:

F−(sb, t)
sb − ub

=
1
2π

∫
∞

4m2
π

dt ′
Im G1(t ′, s′b)

(t ′ − t)(s′b − u′

b)
+

1
π

∫
∞

m2
+

ds′
Im F−(s′, t ′b)

(s′ − sb)(s′ − ub)
, (48)

hereas the once-subtracted reads:

F−(sb, t)
sb − ub

=h−(b, a) +
t
2π

∫
∞

4m2
π

dt ′
Im G1(t ′, s′b)

t ′(t ′ − t)(s′b − u′

b)
+

1
π

∫
∞

m2
+

ds′

s′
Im F−(s′, t ′b)
(s′b − u′

b)

[
s

s′ − s
+

u
s′ − u

]
. (49)

or the latter, the subtraction constant can be determined, as done in [207] for the a = 0 case and for F+ above. Namely,
y using the once-subtracted fixed-t dispersion relation

F−(s, t) = c−(t)(s − u) +
1
π

∫
∞

2

ds′

s′2
Im F−(s′, t)

[
s2

s′ − s
−

u2

s′ − u

]
. (50)
m
+
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Thus, we can rewrite Eq. (49) as

F−(sb, t)
sb − ub

=
8πm+a−

0

m2
+ − m2

−

+
t
2π

∫
∞

4m2
π

dt ′
Im G1(t ′, s′b)

t ′(t ′ − t)(s′b − u′

b)

+
1
π

∫
∞

m2
+

ds′Im F−(s′, t ′b)
[
d(s′, t, b, a) − d(s′, 0, b, a)

]
+

1
π

∫
∞

m2
+

ds′Im F−(s′, 0)
[
f (s′, b, a) − f (s′,∆2, 0)

]
, (51)

with

d(s′, t, b, a) =
1

s′2 − s′(2Σ − t) + [b − a2 + (2Σ − t)a]
,

f (s′, b, a) =
1

s′2 − s′2Σ + [b − a2 + 2Σa]
. (52)

We have explicitly checked that setting a = 0 we recover the same expressions as in [173,176,207] for the once-
ubtracted HDR. However, as already commented and explained in Appendix D, with our a ̸= 0 HDR above we will be
ble to choose the a parameter to maximize the applicability region for the s or t channels of the HDR once projected
nto partial waves, while still reaching the κ/K ∗

0 (700) region.

3.5. Partial-wave dispersion relations. Roy-Steiner equations

Once the F (s, t, u) and G(t, s, u) amplitudes are calculated dispersively, one can just project Eqs. (37), (44),(46), (48) and
(49) to write partial-wave dispersion relations. Of course the partial-wave projection is different for the s and t channels
nd we will examine them separately in what follows.

.5.1. s-channel partial-wave dispersion relations
We now use Eq. (11) to obtain πK scattering partial waves. First, we project the fixed-t dispersion relations Eqs. (37)

nd (46), obtaining:

f +

l (s) =
m+a+

0

2
+

1
π

∑
ℓ

∫
∞

m2
+

ds′L+

l,ℓ(s, s
′)Im f +

ℓ (s′) +
1
π

∑
ℓ≥0

∫
∞

4m2
π

dt ′L0l,2ℓ(s, t
′)Im g0

2ℓ(t
′),

f −

l (s) =
1
π

∑
ℓ

∫
∞

m2
+

ds′L−

l,ℓ(s, s
′)Im f −

ℓ (s′), (53)

where the kernels L±

l,ℓ(s, s
′), LIl,2ℓ(s, t

′) were given in [176] and can be found here in Appendix E. Beware that when fixing
t , the zs variable changes within the range [−λ(s)/s, 0]. This makes the L kernels relatively simple. Note also that there
re no subtractions for F−(s, t).
In Appendix D we show that the applicability of these partial-wave relations obtained from fixed-t dispersion relations

eaches
√
smax ≃ 1.05 GeV in the real axis. Unfortunately, they do not reach the κ/K ∗

0 (700) region in the complex plane,
hich is one of the reasons why we have to resort to HDR.
In contrast, the projection over an HDR is more complicated, since now tb = 2Σ−s−b/(s−a)−a, and b is determined

mplicitly by b = (s − a)(2Σ − s − t − a). In addition, we will now find inside the integrands the crossed-channel partial
aves g I

ℓ(t), defined in Eq. (12).
Then, projecting into s-wave partial waves the HDR for F+ in Eq. (44), which has one subtraction, we find:

f +

l (s) =
m+a+

0

2
+

1
π

∑
ℓ≥0

∫
∞

4m2
π

dt ′K 0
l,2ℓ(s, t

′)Im g0
2ℓ(t

′) +
1
π

∑
ℓ

∫
∞

m2
+

ds′K+

l,ℓ(s, s
′)Im f +

ℓ (s′), (54)

here the kernels K 0
l,2ℓ(s, t

′) and K+

l,ℓ(s, s
′) were already obtained in [42] and are collected here in Appendix E for

ompleteness.
Let us recall that for the antisymmetric amplitude F− we are considering here both the unsubtracted HDR, Eq. (48),

nd the once-subtracted HDR, Eq. (49). When projected into s-channel partial waves, they read, respectively:

f −

l (s) =
1
π

∑
ℓ

∫
∞

m2
+

ds′K−

l,ℓ(s, s
′)Im f −

ℓ (s′) +
1
π

∑
ℓ≥1

∫
∞

4m2
π

dt ′K 1
l,2ℓ−1(s, t

′)Im g1
2ℓ−1(t

′),

f −

l (s) = δl,0
m+a−

0

2
3s2 − 2sΣ −∆2

8smπmK
+ δl,1

m+a−

0

2
m4
π + (m2

K − s)2 − 2m2
π (m

2
K + s)

24smπmK

+
1
π

∑∫
∞

2
ds′K̂−

l,ℓ(s, s
′)Im f −

ℓ (s′) +
1
π

∑∫
∞

2
dt ′K̂ 1

l,2ℓ−1(s, t
′)Im g1

2ℓ−1(t
′), (55)
ℓ m
+ ℓ≥1 4mπ
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here we have used a hat to denote the once-subtracted K̂−

l,ℓ(s, s
′), K̂ 1

l,2ℓ−1(s, t
′) kernels, which are provided in Appendix E

or the a ̸= 0 case. For completeness, we also provide there the K−

l,ℓ(s, s
′), K 1

l,2ℓ−1(s, t
′) unsubtracted kernels that were

btained in [42] for the a ̸= 0 case.
In Appendix D we show how we can now choose the a parameter to maximize the applicability reach of partial-

ave HDR. For instance, the applicability range in the real axis is maximized with the choice a = −13.9m2
π , reaching

smax ≃ 0.989GeV. However, this choice leads to an applicability domain that does not cover the κ/K ∗

0 (700) region
in the complex plane, which was shown in [97] to be reachable with the a = 0 choice. The latter, however, was only
applicable up to

√
smax ≃ 0.934GeV int the real axis. We have thus adopted an intermediate round value a = −10m2

π ,
which yields an applicability domain that encloses the κ/K ∗

0 (700) region and extends up to
√
smax ≃ 0.976GeV in the

real axis. This is only a small improvement in the applicability in the real axis for πK → πK scattering, but the choice of
a is much more relevant for the t-channel case that we study next.

3.5.2. t-channel partial-wave dispersion relations
For ππ → K̄K , we are only considering HDR. Now, recalling the s ↔ t crossing relation in Eq. (6) we see that these

HDR are once again those in Eqs. (44), (48) and (49) we have just used for the s-channel, but this time we will project
them into t-channel partial waves g I

ℓ, using Eq. (12). Of course, since the HDRs also need the crossed channel, we will find
the πK partial waves f Iℓ (s) inside the integrals. Specifically, we get the following once-subtracted partial-wave dispersion
relations for I = 0 and ℓ = 0, 2:

g0
0 (t) =

√
3
2

m+a+

0 +
t
π

∫
∞

4m2
π

Im g0
0 (t

′)
t ′(t ′ − t)

dt ′ +
t
π

∑
ℓ≥2

∫
∞

4m2
π

dt ′

t ′
G0
0,2ℓ−2(t, t

′)Im g0
2ℓ−2(t

′)

+
1
π

∑
ℓ

∫
∞

m2
+

ds′G+

0,ℓ(t, s
′)Im f +

ℓ (s′),

g0
2 (t) =

t
π

∫
∞

4m2
π

Im g0
2 (t

′)
t ′(t ′ − t)

dt ′ +
t
π

∑
ℓ≥3

∫
∞

4m2
π

dt ′

t ′
G′0
2,2ℓ−2(t, t

′)Im g0
2ℓ−2(t

′)

+
1
π

∑
ℓ

∫
∞

m2
+

ds′G′+

2,ℓ(t, s
′)Im f +

ℓ (s′). (56)

The explicit expressions of the G0
ℓℓ′

(t, t ′),G+

ℓℓ′
(t, s′) integration kernels are given in Appendix E for completeness, although

they were already derived in [42].
We also write two dispersion relations for I = 1, ℓ = 1, unsubtracted or once-subtracted. These read, respectively:

g1
1 (t) =

1
π

∫
∞

4m2
π

Im g1
1 (t

′)
t ′ − t

dt ′ +
1
π

∑
ℓ≥2

∫
∞

4m2
π

dt ′G1
1,2ℓ−1(t, t

′)Im g1
2ℓ−1(t

′)

+
1
π

∑
ℓ

∫
∞

m2
+

ds′G−

1,ℓ(t, s
′)Im f −

ℓ (s′),

g1
1 (t) =

2
√
2m+a−

0

3(m2
+ − m2

−)
+

t
π

∫
∞

4m2
π

Im g1
1 (t

′)
t ′(t ′ − t)

dt ′ +
t
π

∑
ℓ≥2

∫
∞

4m2
π

dt ′

t ′
Ĝ1
1,2ℓ−1(t, t

′)Im g1
2ℓ−1(t

′)

+
1
π

∑
ℓ

∫
∞

m2
+

ds′Ĝ−

1,ℓ(t, s
′)Im f −

ℓ (s′). (57)

The expressions for the once-subtracted Ĝ1
ℓℓ′

(t, t ′), Ĝ−

ℓℓ′
(t, s′) kernels have been obtained in this review and are given

in Appendix E, together with the unsubtracted G1
ℓℓ′

(t, t ′),G−

ℓℓ′
(t, s′) that were already derived in [42] but are also provided

for completeness.
Since we have left the a parameter-free, it can be used to maximize the applicability of the equations right above. Let

us remark that constraints are coming from the applicability of the HDR in Eqs. (44), (48) and (49) as well as from the
convergence of the partial-wave expansions. As shown in Appendix D, by setting a = −10.9m2

π the applicability range
of these equations is −0.286GeV 2

≤ t ≤ 2.19GeV 2. In other words, we can study the physical region from the KK̄
threshold ≃0.992GeV up to

√
t ≃ 1.47GeV . In contrast, the HDR projected into partial waves in the a = 0 case are

nly valid up to ≃1.3,GeV . Thus, with our choice of a, the applicability of the dispersive approach in the physical region,
where we can test or use data as input, can be extended by 55% in terms of the

√
t variable, or 67% in terms of t .

3.6. Muskhelishvili–Omnès Method for the unphysical ππ → KK̄ region.

A very important complication when dealing with dispersive integrals for the ππ → KK̄ channel is that the integration
region starts at ππ threshold. This implies that they should be calculated over an ‘‘unphysical’’ region where actual
31
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π → KK̄ scattering data cannot occur. Fortunately, below KK̄ threshold the inelasticity to more than two-pion states
s negligible in practice. Consequently, ππ is the only available state and then Watson’s theorem [118] implies that the
I
ℓ phase in that region is nothing but that of ππ scattering, i.e. φI

ℓ(t) = δIℓ,ππ→ππ (t). However, Watson’s theorem does
not provide any direct information on the modulus of g I

ℓ. Nevertheless, as already illustrated in [42,43,176,188,201,207],
once the phase is known, |g I

ℓ| in the unphysical region can be described using the rather standard Muskhelishvili–Omnès
ethod [224,225], which we describe next.
Let us first separate the left- and right-hand contributions in Eqs. (56) as follows:

g0
ℓ (t) = ∆0

ℓ(t) +
t
π

∫
∞

4m2
π

dt ′

t ′
Im g0

ℓ (t)
t ′ − t

, ℓ = 0, 2,

g1
1 (t) = ∆1

1(t) +
1
π

∫
∞

4m2
π

dt ′
Im g1

1 (t)
t ′ − t

, (58)

here ∆I
ℓ(t) contains both the left-hand cut contributions and subtraction terms. It is important to realize that ∆I

ℓ(t) does
ot depend on g I

ℓ itself, but on the other g I
ℓ′
with ℓ′

≥ ℓ+ 2. Fortunately, these last are much more suppressed than g I
ℓ in

he unphysical region, due to the centrifugal barrier.
In principle, the Muskhelishvili–Omnès method is only needed in the region between the two-pion and two-kaon

hresholds. However, its solution would then depend very strongly on the value of the amplitude at tK = 4m2
K . This is

inconvenient in practice, because, first, the experimental data starts above that energy and, second, this threshold is very
sensitive to isospin breaking. In particular for the scalar I=0 wave. The reason is that, in reality, there are two different
thresholds for K+K− and K 0K 0 separated by 8 MeV, which are felt by experiment but not accommodated by our isospin-
conserving formalism. For these reasons, following [207] and our previous analysis in [42], we apply the method up to
a ‘‘matching energy point’’ tm > tK . The best choice for tm is dictated by phenomenology and will be discussed in detail
elow.
It is now that we introduce the Omnès function

Ω I
ℓ(t) = exp

(
t
π

∫ tm

4m2
π

φI
ℓ(t

′)dt ′

t ′(t ′ − t)

)
, (59)

satisfying

Ω I
ℓ(t) ≡ Ω I

ℓ,R(t)e
iφI
ℓ
(t)θ (t−4m2

π )θ (tm−t), (60)

where, in the real axis, Ω I
l,R(t) is now defined as:

Ω I
ℓ,R(t) =

⏐⏐⏐⏐ tmtπ (t − tπ )−φ
I
ℓ
(t)/π (tm − t)φ

I
ℓ
(t)/π

⏐⏐⏐⏐ exp( t
π

∫ tm

4m2
π

dt ′
φI
ℓ(t

′) − φI
ℓ(t)

t ′(t ′ − t)

)
. (61)

ote that, for real values of s, Ω I
ℓ,R is nothing but the modulus of Ω I

ℓ, and hence a real function.
Since the Omnès function has the same cut from 4m2

π to tm as g I
ℓ(t), we can now define an auxiliary function

F I
ℓ(t) =

g I
ℓ(t) −∆I

ℓ(t)
Ω I
ℓ(t)

, (62)

hich is analytic except for a right-hand cut starting at tm. Therefore, it is possible to write dispersion relations for F I
ℓ(t)

long that cut, which, recast back in terms of g I
ℓ(t), read:

g0
0 (t) = ∆0

0(t) +
tΩ0

0 (t)
tm − t

[
α +

t
π

∫ tm

4m2
π

dt ′
(tm − t ′)∆0

0(t
′) sinφ0

0 (t
′)

Ω0
0,R(t ′)t ′2(t ′ − t)

+
t
π

∫
∞

tm
dt ′

(tm − t ′)|g0
0 (t

′)| sinφ0
0 (t

′)
Ω0

0,R(t ′)t ′2(t ′ − t)

]
,

g1
1 (t) = ∆1

1(t) +Ω1
1 (t)

[
1
π

∫ tm

4m2
π

dt ′
∆1

1(t
′) sinφ1

1 (t
′)

Ω1
1,R(t ′)(t ′ − t)

+
1
π

∫
∞

tm
dt ′

|g1
1 (t

′)| sinφ1
1 (t

′)
Ω1

1,R(t ′)(t ′ − t)

]
,

g1
1 (t) = ∆̂1

1(t) + tΩ1
1 (t)

[
1
π

∫ tm

4m2
π

dt ′
∆̂1

1(t
′) sinφ1

1 (t
′)

Ω1
1,R(t ′)t ′(t ′ − t)

+
1
π

∫
∞

tm
dt ′

|g1
1 (t

′)| sinφ1
1 (t

′)
Ω1

1,R(t ′)t ′(t ′ − t)

]
,

g0
2 (t) = ∆0

2(t) + tΩ0
2 (t)

[
1
π

∫ tm

4m2
π

dt ′
∆0

2(t
′) sinφ0

2 (t
′)

Ω0
2,R(t ′)t ′(t ′ − t)

+
1
π

∫
∞

tm
dt ′

|g0
2 (t

′)| sinφ0
2 (t

′)
Ω0

2,R(t ′)t ′(t ′ − t)

]
. (63)

Note that, as explained above, for the g1
1 wave we are interested in both the unsubtracted and once-subtracted relations,

whose expressions are provided in the equations above in that respective order. Of course, when t is real and larger
than the ππ threshold, a principal value must be taken on each integral, as illustrated with Eqs. (33) and (34) in the
introduction of this section. Beware that, since by construction the Omnès function removes the phase, on the left-hand
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ides of these equations the partial wave is reduced to its modulus between ππ threshold and tm. In contrast, it is reduced
o its real part above tm.

Note also that we have considered a once-subtracted relation for the g0
0 (t) Omnès solution. This is because, in what

ollows, we will choose tm with φ0
0 (tm) ≥ π and then a subtraction is needed to ensure the convergence when t → tm.

he corresponding subtraction constant α will be determined by imposing numerically a non-cusp condition for g0
0 (t) at

m.
Let us now explain the use of these equations. On the one hand, we need input from πK scattering, which in [41] we

ook as fixed input from the data analysis constrained with dispersion relations in [41]. However, in this report, we will
se these partial-wave HDR to analyze first and constrain later both the πK → πK and ππ → KK̄ data parameterizations
imultaneously. Thus, instead of fixing one set of partial waves when studying the other, we will allow both sets to vary
hen considering their coupled HDR.
On the other hand, let us recall we need the Muskhelishvili–Omnès method because in the unphysical region there is

o ππ → KK̄ data and it may seem that we will not know what input to provide. Nevertheless, the equations above
o not need the full knowledge of g I

ℓ(t) in the unphysical region, but only their phases and the ∆I
ℓ. As already explained,

atson’s theorem tells us that these phases are known from ππ scattering, since in that regime other possible states made
f more pions are negligible. For this purpose we will take these φI

ℓ(t) = δIℓ,ππ→ππ (t) phase shifts from the dispersive
nalysis of [48]. In addition, each ∆I

ℓ does not involve g I
ℓ(t) itself, but only other partial waves with ℓ′

− ℓ ≥ 2. However,
n the unphysical region, such higher partial waves are suppressed compared to that with ℓ. We have explicitly checked
hat the ℓ = 3 contribution to the g1

1 (t) is rather small indeed, and even higher waves are negligible. Thus, with our
imple phenomenological description of g1

3 (t) we can get a good dispersive representation of g1
1 (t). In addition, the ℓ = 4

ontribution to g0
2 (t), which we have also considered, is almost negligible. Once we have g0

2 (t) it can be used as input
or Eq. (63) to obtain the dispersive representation of g0

0 (t). (Note that the ℓ = 4 contributions for g0
0 (t) were neglected

n [41] but are considered here.)
There is one technicality worth mentioning here. Since we will parameterize the high-energy region in terms of Regge

mplitudes, which in principle contain all partial waves, we must subtract, from the Regge contribution to ∆I
ℓ(t), the

rojection of the Regge amplitude itself into the I, ℓ partial wave under consideration. Fortunately, this projection is
egligible, and we have explicitly checked that the integrals barely change whether we use the full Regge amplitude or
he one with its own projection into I, ℓ subtracted.

Finally, we have to choose a value for the matching energy tm, which should always be above the KK̄ threshold. It
s relevant to keep in mind that the derivation of the dispersion relations above implies goutput (tm) = ginput (tm). This
ondition will always occur for the integral output irrespective of whether the data at that energy has a statistical or
ystematic deviation or if it is in good or bad agreement with dispersion relations. As a consequence, if the data in that
nergy region were not close to the dispersive solution, the output will nevertheless be compelled to describe it, forcing
he dispersive calculation to be distorted in other regions. In practice, we have found that, given the existing data, the g0

0
ave is the most sensitive to this instability, the effect is more moderate on g0

2 and almost negligible for g1
1 because it is

lready very consistent for any tm choice. For that reason, we studied in [42] what energy region is most consistent for
0
0 when changing tm. We concluded that two regions yield systematically rather consistent results between input and
utput: one around

√
tm = 1.2GeV , which is also valid for g0

2 , and another one around
√
tm = 1.45GeV . For the latter

choice, however, we found that the resulting uncertainty in the dispersive calculation between KK̄ threshold and 1.2 GeV
is so large that there is no dispersive constraint at all. Actually, with such large uncertainties, we could even find that
the dispersive output using any of the two g0

0 (t) solutions as input (see Section 2), comes out compatible with itself as
well as with the other one. Furthermore, note that tm in Eq. (63) is the energy above which |g I

ℓ| is used as input for its
own equation. Since within our approach we are either testing or constraining the data parameterizations, we are then
interested in maximizing that region by choosing the smallest possible tm. Taking into account the previous considerations
e have finally chosen

√
tm = 1.2GeV for g0

0 and g0
2 , and tm = 1GeV for g1

1 . This energy is above KK̄ threshold where the
two most important inelasticities, i.e. KK̄ and ηη, show no cusps. Moreover, the g0

2 data are well understood and under
control at this energy, since its largest contribution comes from the well-established f2(1270) resonance, which lies very
near tm. As a final consistency check, we have shown in Appendix F that, once a constrained solution is obtained, the
different choices of tm produce negligible variations in the dispersive output, as expected.

4. Data parameterizations and unconstrained fits to data

In this section, we will present simple but rather flexible parameterizations that can describe the data and, very
importantly, a realistic estimation of the experimental uncertainties. Our aim for simplicity is to allow for easy imple-
mentation for later use in experimental or theoretical analyses. Our parameterizations will thus follow the spirit of what
was traditionally known as ‘‘energy-dependent’’ data analyses, just simple functions that describe data and we will avoid
any particular model dependence. Of course, some approximations will be performed, like imposing isospin conservation
or elastic unitarity on partial waves, not only in the strictly elastic regime but also where experiments have not found
evidence of inelasticity or imposing fundamental constraints as the correct dependence on the powers of momenta near
threshold. In the region where the existence of resonances is well established, we will introduce rather flexible resonant
shapes, but not necessarily pure Breit–Wigner formulae.
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Note that, with these parameterizations, we will first obtain a set of Unconstrained Fits to Data, that we will refer to
as the UFD set. This is what this section is about. The flexibility of the parameterizations is required so that later on we
can impose on them the dispersive constraints we have discussed in previous sections, while still describing the data. In
this way, the parameterizations will stay the same but their parameters will change to define a Constrained Fit to Data
(CFD) discussed in Section 5.

Concerning uncertainties, we will not only consider the statistical error provided by experiments but we will include
estimates of systematic uncertainties needed to reconcile the observed incompatibilities within the same data set and/or
between different experiments.

A word of caution is in order. As seen in Section 2, data are not precise nor numerous enough to exclude large
fluctuations between successive data points. And this is particularly evident in some relatively large energy regions
where just a few data points may exist. In principle, we cannot exclude complicated parameterizations that would adjust
perfectly every single piece of data but produce large fluctuations or structures between points. Thus, from the outset,
we make it clear that we assume such fluctuations not to occur and that the data can be fitted with simple and relatively
smooth parameterizations. Obviously, the size of our uncertainties depends on this assumption. We have chosen the
parameterizations we provide below because they satisfy the above assumption and yield uncertainty bands that do not
show wild fluctuations or become too large in the regions where data do not exist or do not require so. In addition, we
have explored many alternatives: different conformal expansions (with different centers and more terms in the expansion,
see Appendix A), simpler or more complicated polynomials in different variables, adding or removing resonant shapes,
etc. Of course, we can make them fit the data, but in so doing their central result is always very similar to our final
choice. Therefore, apart from a few exceptions of interest, we spare the reader the list of pros and cons of the many other
parameterizations we tried and we just present our final choice. Moreover, for a given parameterization, and once the
systematic uncertainty that affects the data has been estimated, we have decided to stop adding parameters when the
χ2/dof has roughly ‘‘converged’’ to 1, or normalize it in case it is needed.

The existing data for the πK → πK and ππ → KK̄ scattering have been reviewed in detail in Section 2. However, for
our purposes, we will also need parameterizations of the amplitudes up to, in principle, arbitrarily high energies, where
no data for strange trajectories exists. This region provides small, but non-negligible contributions to our integrals, and
here we will also provide high-energy parameterizations of πK → πK and ππ → KK̄ amplitudes in terms of Regge
theory. Thus, in Section 4.3, we will present the required Regge parameterizations that complete what we call the UFD
set since no dispersion relations will be imposed upon them in this first stage.

One might wonder why the dispersive constraints are not imposed from the very beginning. There are several reasons
for this. First, in the future more or better data may appear in a particular wave and then one may refit that wave without
altering the other ones. This will not be so easy once we impose the constraints, since dispersion relations will correlate
all waves among themselves. Second, we want to check if there are data points or sets of data that fare particularly
bad against the dispersive representation and then prune the experimental data before imposing any constraint. As long
as experimental analyses do not incorporate these relations, it seems natural to check the consistency of the data with
respect to causality and crossing symmetry, at least within experimental uncertainties. Since we have already seen that
meson–meson scattering data are affected by large systematic errors, which are not usually included in the experimental
uncertainties, it should not be surprising that unconstrained fits to ππ [48,50,51], πK → πK [41,97] or ππ → KK̄ [42]
data do not satisfy well these dispersive constraints.

Later on, we will construct a ‘‘Constrained Fit to Data’’ (CFD) set by imposing the fulfillment of dispersion relations
in the fits. But note that, although differing in the values of the parameters, the functional form of the UFD and CFD
parameterizations are the same. Therefore, the parameterizations will be presented in what follows, discussing for the
moment just the UFD values of the fit parameters and leaving the CFD for Section 5.

4.1. πK → πK Parameterizations and unconstrained fits to data

In principle, since the quantities of interest like resonance poles or threshold parameters, etc... will be obtained from
the output of dispersion relations, any parameterization that describes data could do as input, i.e. a model, polynomials,
or even splines. However, the whole approach becomes easier if some relevant physical features like cuts, unitarity, Adler
zeros, or some poles associated with resonances are already implemented in our parameterizations from the very start.
In addition, for many later applications, the full rigor of dispersion relations may not be needed, but it could be more
interesting to use a relatively simple parameterization that is consistent with the dispersive representation, the data and
that is also able to describe the most salient analytic features. Hence, in this section we will provide parameterizations
that we will use as input for our dispersion relations but that satisfy unitarity, display the required analytic structures
like thresholds, or possible poles to accommodate resonant structures. In addition, we will make a particular effort in
doing this while keeping them relatively simple for later applications while describing not just the data but also their
uncertainties. Moreover, we want them flexible enough to be able to satisfy the dispersive constraints when we will
impose them in a later section.

Thus, following the usual conventions, when the partial-wave decomposition is possible, we will provide the phase
shift (or its cotangent) and, in the inelastic regime, also the elasticity function for each partial wave. At high energies,
where no partial-wave data exist or the partial-wave expansion does not converge, we will use Regge theory.
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The πK → πK partial-wave parameterizations we will present here follow closely those we first introduced in [41],
although we have made some slight modifications in the S1/2, S3/2, P1/2 and P3/2 waves. Our main goal with these
modifications is to improve the description of the uncertainties associated with the data, especially when estimating
systematic errors.

In particular, we fit the data discussed in Section 2, but only up to ∼1.7 GeV, and thus we will only fit S, P , D and
F waves, since there are no data for G, H , and higher waves below 1.8 GeV. The reason to choose a common maximum
energy for all partial-wave fits is that above some energy we have to stop relying on partial waves for the input within
our integrals, and we have to use total amplitudes, which are the only ones for which data exist at high energies. We
choose to parameterize them with Regge theory, which in principle includes all partial waves, so, once we start using high-
energy parameterizations we cannot separate partial waves any longer. In addition, the convergence of the partial-wave
expansion becomes less reliable as the energy increases.

4.1.1. General form of our πK → πK partial-wave parameterizations
Some generic features will be shared by most of our partial-wave parameterizations. In waves with little structure, as

those that are elastic in the whole energy region, a single functional form will be used throughout the whole energy range.
However, more complicated waves will require different functional forms in different regions. Typically these piece-wise
functions will be matched at thresholds demanding continuity. Otherwise, a continuous matching will be imposed and if
possible even a continuous derivative at least for the central value of the fit. Let us then describe separately the elastic
and inelastic generic forms:

Partial waves in elastic regions
Following Eq. (17) in the Notation Section 1.3, πK elastic partial waves can be recast as

fℓ(s) =
1
σ (s)

1
cot δℓ(s) − i

, (64)

here for simplicity we have suppressed the isospin index with respect to Section 1.3. Thus, we will just provide a
arameterization of cot δℓ(s).
Although in principle any parameterization would do if we just want to calculate the dispersive integrals, from

ection 3 we know that in the complex s-plane, partial waves for the scattering of two particles with different masses
ave a distinct analytic structure in the first Riemann sheet, shown for the πK → πK case in the upper panel of Fig. 20.

First of all, there is a right-hand cut, also called ‘‘physical cut’’, extending from πK threshold to infinity. In addition, due to
the thresholds in the crossed channels, there is a left-hand cut extending from (mK −mπ )2 to −∞, as well as a circular-cut
t |s|2 = (m2

K −m2
π )

2. For πK scattering no other singularities appear in the complex plane since this system has no bound
tates that could give rise to poles in the real axis below threshold. The cut singularities are reproduced in the second
iemann sheet, where poles associated with resonances can appear.
Then, to describe the amplitude in the complex s-plane, it is customary to use the elastic unitarity condition in Eq. (17)

nd, defining an effective range function Φℓ(s), recast the partial wave as

fℓ(s) =
q2ℓ

Φℓ(s) − iq2ℓσ (s)
. (65)

f course, in the elastic region of the real axis,

Φℓ(s) =
2q2ℓ+1

√
s

cot δℓ(s). (66)

busing this notation it is usual to write:

cot δℓ(s) =

√
s

2q2ℓ+1Φℓ(s) (67)

s a complex function on the whole complex-s plane, although, of course, it is only the cotangent of a real angle when s
ies in the real axis between the elastic and any inelastic threshold.

At this point we will use a conformal expansion in order to incorporate the analyticity properties of the partial wave,
aking advantage of the fact that it is analytic in the whole plane except for the cuts shown in the upper panel of Fig. 20.
he conformal expansions we are interested in for πK scattering are explained in detail in Appendix A, and they are of
he type

cot δℓ(s) =

√
s

2q2ℓ+1 F (s)
∑
n

Bnω(s)n. (68)

Generically, we set F (s) = 1. For scalar waves, which have an Adler zero at sAdler , we take F (s) = 1/(s − sAdler ), as well as
F (s) = (s−m2

r ) for waves that exhibit a clear narrow resonance and whose phase shift crosses π/2 at mr . The conformal
variable is defined as:

ω(y) ≡ ω(y(s)) =

√
y(s) − α

√
y0 − y(s)

√ √ , y(s) =

(
s −∆Kπ

)2

, y0 = y(s0). (69)

y(s) + α y0 − y(s) s +∆Kπ
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his change of variables, which maps the complex s-plane into the unit circle, is relatively similar to those used for ππ
cattering in [51,226] or πK scattering in [227], and is explained in detail in Appendix A. Suffices here to say that such
conformal expansion ensures a rapid convergence of the series. Thus, in practice, we will find that no more than three
i coefficients are needed for the fits to each wave in the elastic region. Note that, for each partial wave, the s0 and α

constants are fixed, not fitted. The intuitive meaning of these two parameters is that s0 sets the maximum energy at
which this mapping is applicable on the real axis, whereas α fixes the energy around which the expansion is centered.
As explained in Appendix A, they are chosen so that the region where data exist lies well inside the convergence region
|ω| < 1 and with a fairly symmetric distribution of the data on the left and the right sides of the center of the expansion.

Partial waves in inelastic regions
First of all, an important remark is in order. Recall that the πK → πK partial wave is inelastic when |S Iℓ(s)πK→πK | < 1

r, using Eq. (18), ηIℓ(s) < 1. Let us drop the I , ℓ indices for a moment. With our parameterizations, we will fit the data on
he phase and the modulus of each πK → πK partial wave. Therefore we will have information about the inelasticity as
whole and we will not be able to discern what channels and by how much they contribute to η(s) being smaller than
ne. However, once we use our inelastic formalism all states that contribute physically to the inelasticity are taken into
ccount (within uncertainties). This is in contrast to the familiar ‘‘coupled-channel models’’, for which one chooses just a
ew coupled states (usually two-body states or approximated as such) that are the only ones to contribute to the whole
nelasticity. Within these models, it is possible to separate the sources of inelasticity and include information from other
hannels if it exists, but the caveat is that you can also miss states if they are not explicitly included in the model from
he start.

This said, in practice, we have to choose the energy from which we allow η(s) to be less than one. For the S-wave,
he inelastic region is dominated by the K ∗

0 (1430), whose branching fractions are ≃93% to πK and ≃8.5% to Kη. Thus
he Kη threshold at ≃1042 MeV seems the natural choice to allow for inelasticity. In contrast, when looking at the P ,
and F-waves, the main decay channels other than Kπ for the K ∗(1410), K ∗

2 (1430), K
∗(1680) and K ∗

3 (1780) resonances
re K ∗(892)π and Kρ(770)K . The thresholds of these two states are nominally placed at ≃1032 MeV and ≃1266 MeV.
ne might also wonder about the Kππ channel but, in practice, this state is observed as one of the previous two. For a
escription of the P-wave with a coupled channel formalism with the three Kπ , K ∗π and Kρ(770) channels, see [228].
nfortunately, the K ∗(892)π and Kρ(770) thresholds are not as sharply defined as the Kη threshold, due to the widths
f the K ∗(892) and ρ(770), which are ≃50 and ≃170 MeV, respectively.
Driven by our desire for simplicity we have decided to set our inelastic formalism to start at the Kη threshold, since it

s sharply defined, very close to the nominal one for K ∗(892)π and well below the nominal one for Kρ(770). An additional
ractical reason is that a well-defined threshold allows for a cusp, i.e. a discontinuity of the derivative, which facilitates
he matching between the elastic and inelastic regimes. Actually, we can easily take into account the inelastic parts using
step function ΘKη = Θ(s − (mK + mη)2) and ensure the continuity by using the qηK momenta, which vanishes at

he Kη threshold, in the equations. Only for one wave, we will also allow for a similar treatment of the Kη′ threshold.
evertheless, we insist that, once we allow for the inelasticity to exist, all possible inelastic channels contribute to it.
ur use of the Kη threshold to start our inelastic region by no means implies that we are assuming that the Kη channel
ominates the inelasticity in all channels, it is just that we allow our parametrizations to acquire an inelasticity from that
oint. The data will then tell us how big that total inelasticity is, irrespective of what channels are producing it.
Once we have decided from where we will allow our amplitudes to become inelastic, following [41], the majority of our

artial-wave parameterizations in the inelastic region have been chosen to implement in a relatively simple way several
esonances observed experimentally, while providing a continuous match with their corresponding parameterization in
he elastic regime. Note, however, that for the D1/2 and F 1/2-waves data only exist in the inelastic region, and thus we will
se an inelastic formalism throughout the whole energy region, which reduces to the elastic case below Kη threshold.
n [41] we tried different expressions, including polynomial fits and splines in powers of the πK , Kη momenta, or the s
r

√
s variables. However, we found that once fitted to data, the error bands of such parameterizations tend to be both

rather small near the elastic region and too big at larger energies. This does not reproduce well the uncertainty observed
by simple inspection of the data and leads to very large correlations.

As a matter of fact, in [41] we found, as others before us [43], that this region is most efficiently described in terms of
roducts of exponential or rational functions, as follows:

fℓ(s) =
1

2iσ (s)

(∏
n

Sn(s) − 1

)
. (70)

In this way it is far easier to implement resonant structures, usually overlapping, together with other background features,
while yielding more uniform uncertainty bands throughout the whole fit region. In particular, complex exponentials will
be used to describe a non-resonant background

Sn = Sbn = exp
[
2iq2ℓ+1

ij (φ0 + φ1q2ij + · · · )
]
, (71)

ith φk real parameters, whereas rational functions

Sn = Srn =
srn − s + i(Pn(s) − Qn(s))

, (72)

srn − s − i(Pn(s) + Qn(s))
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ill be used to accommodate resonances and their associated poles. Here srn are real parameters and Pn(s) and Qn(s) are
olynomials that have the same sign over the inelastic region. Let us remark that if these polynomials were constant, Srn
educes to the simplest form of the familiar Breit–Wigner parameterization. In the following subsections, we will explain
n detail our choice of polynomials for different waves.

Of course, these functional forms are also chosen because they satisfy |Sn| ≤ 1 and then unitarity is satisfied trivially,
ven in the inelastic regime.
A continuous matching with each corresponding elastic region is achieved by fixing the Pn(s) polynomial in Sn that

as the pole with the smallest srn. This formalism is a modification of the parameterizations used by [43] in this energy
egion. In order to recover the elastic case, it is enough to set Qn ≡ 0, which as explained above is of relevance for the
1/2 and F 1/2 waves.
As already commented, near a resonance (or more precisely, its associated pole) each of the Srn functions bears some

esemblance to the familiar Breit–Wigner functional form, which is just a simple model. Our parameterizations are much
ore flexible since they can incorporate inelastic resonances even if they overlap with other resonances or analytic
tructures. In particular, when combining the Sn in our complete functional form in Eq. (70), unitarity is satisfied exactly.
his is definitely not the case of a simple sum of Breit–Wigner amplitudes, which violates unitarity and is nevertheless
ften used in the literature. Let us emphasize that the actual resonance parameters have to be calculated with the full
artial-wave expression evaluated at the pole position in the complex plane, and never from just one individual Srn piece
n the real axis.
Finally, to conclude this introduction to the generic form of our parameterizations, let us recall that we will use partial

aves to describe data up to ∼1.8GeV for πK → πK , and ∼2 GeV for ππ → KK̄ scattering. Beyond that energy, we will
se Regge theory to describe the whole amplitudes F (s, t, u). These parameterizations will be described last in Section 4.3.

.1.2. S-wave
The S-wave πK → πK scattering data were discussed in Section 2.1.2. Let us recall that the main data sets,

hown in Fig. 7, are measured in the f 1/20 + f 3/20 /2 isospin combination. Since the I = 3/2 partial wave has been
easured independently, see Fig. 6, it can be used to separate the f 1/20 component. In practice, we will fit the two waves
imultaneously. In view of the data, it is evident that there are large systematic uncertainties between different data sets
nd even within the same data sets. In particular, there are a few points that provide most of the χ2 of the fit and are
argely incompatible with the rest of the sample.

In our first analysis of πK → πK [99], we chose not to discard any data point and we followed an elaborate procedure
o estimate the uncertainties of the resulting fit. In particular, we followed one of the techniques suggested in [229,230],
hich had been previously applied to NN and ππ scattering. In brief, we checked several Gaussianity tests on the data with
espect to the fit and then enlarged the uncertainties of those data points that spoiled the tests (typically those beyond
-standard deviations). This data purge leads to a new fit upon which the procedure is iterated until the Gaussianity test
s satisfied. We also tried other simpler approaches and we found that the uncertainty band was rather similar.

However, the method we used in [99] to estimate systematic uncertainties for this particular wave, is somewhat
umbersome and will be abandoned here. The reason why we can do this is that, as already remarked, in this case,
ost of the contribution to the χ2 of any fit is due to just a few data points which are abnormally separated from the

est. Hence, we will simply discard all data points that deviated from the best fit by more than 3.5 standard deviations.
s a matter of fact, and in agreement with the expectations derived from [230], given the total number of data points to
e fit for the S wave, deviations above 3.5 sigmas should be extremely unlikely, but we find many more than expected.
s a consequence, just by removing these dramatically inconsistent values, the χ2/dof of the fits in all regions of the f 3/20
nd f 1/20 + f 3/20 /2 combinations gets immediately reduced below 3. Remarkably, the residues of the fit still follow roughly
gaussian distribution, even if we have not imposed such a feature from the onset. Finally, it is enough to re-scale the
tatistical uncertainties of the remaining points by a given factor to normalize the χ2/dof . When these systematic errors
re taken into account, they translate into larger uncertainties for the fit coefficients. Of course, the data outliers still
emain outside the band, although in this way they do not contaminate the fit.

After removing the conflicting points we get χ2
S3/2
/dof = 2.6, χ2

e S1/2+S3/2/2
/dof = 1.4 and χ2

in S1/2+S3/2/2
/dof = 1.7,

here the χ2
e S1/2+S3/2/2

combination is the result of the fit in the elastic region, whereas the latter corresponds to the
nelastic one, above the Kη threshold. One could then re-scale the uncertainties of the data by a uniform factor to get a
2/dof ∼ 1, which is roughly normally distributed.
Let us then provide the specific details of the S-waves parameterizations, whose general features were previously

iscussed.

I = 3/2 S-wave
For this wave, we will keep the very same simple parameterization we already introduced in [99], although the values

f the parameters will change due to our new fitting strategy. It is worth noting that so far there is no evidence of
nelasticity up to ∼1.8 GeV and this wave can be considered elastic. Hence, we will make use of a truncated conformal
arameterization to fit the phase shift. We have checked that just three conformal parameters are enough since the
ddition of a fourth one does not improve the fit. Therefore, we use

cot δ3/20 (s) =

√
s (

B0 + B1ω(s) + B2ω(s)2
)
. (73)
2q(sA − s)
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Table 1
Parameters of the S3/2-wave. In GeV2 units.
Parameter UFD CFD

B0 2.15 ± 0.03 2.21 ± 0.03
B1 3.96 ± 0.13 3.46 ± 0.13
B2 3.15 ± 0.32 3.13 ± 0.32

Note the Adler zero is factorized explicitly and fixed to its leading order within Chiral Perturbation Theory (LO ChPT):
sA = ΣKπ ≃ (516GeV)2. For this particular wave, we choose the conformal variable in Eq. (69) with the following fixed
arameters:

α = 1.4, s0 = (1.84GeV)2. (74)

he parameters of the unconstrained fit to data (UFD) are shown in Table 1. Compared to the results using our
arameters in [41], this UFD will produce a much better agreement with dispersion relations to start with, even though
ts uncertainties have been reduced. It is worth noticing that a simple fit to the whole data collection, without removing
he conflicting data points as explained above, would lead to way greater deviations between the fit and the dispersive
esults. Moreover, its scattering length would lie further away from the sum-rule result than our new UFD.

Our resulting UFD phase is plotted as a dashed line with a light orange band in Fig. 6. Note that at low-energies the
urve follows closely the data of [2,3] whereas at high energies it is dominated by data from [5].
Finally, let us remark that we also considered leaving the Adler Zero as a free parameter, instead of fixing it to the

hPT leading order value. The motivation was that, in Section 7.1.3, we will provide the best value for this Adler zero,
0.550GeV, obtained from dispersion relations using a constrained fit, whereas the LO ChPT value that we have used here

s located at ∼0.516GeV. However, since S-wave data starts at energies around 0.75 GeV, roughly 200 MeV above the Adler
ero, the best fit with a free Adler zero does not improve the overall χ2 at all, whereas both the scattering lengths and the
esulting Adler Zero are at odds with the dispersive values that we will obtain later. In other words, the pure unconstrained
it to data does not provide sufficient information to determine accurately the threshold and subthreshold regions, which
s not unexpected considering that there are no data at threshold, and the lowest-lying data points are incompatible
etween themselves. Since, at this point, we are interested in a phenomenological parameterization of the data, and the
ubthreshold region is less relevant, we consider that setting the Adler zero to the LO ChPT position, i.e., within 10% of
ts actual value, is good enough for our purposes. We reiterate that the position of this Adler zero will be obtained in
ection 7.1.3 from dispersion relations with a ∼2% accuracy.
1/2 partial wave
For the I = 1/2 S-wave we will keep the very same functional form we already used in [41], although the values of

he parameters will change slightly due to our new fitting strategy. Let us recall that inelasticity in this wave has been
easured above 1.3 GeVand that, as we saw in Fig. 7, this part of the inelastic region is dominated by the K ∗

0 (1430)
esonance, whose width is estimated in the RPP to be Γ = 270 ± 80 MeV.

Let us start then with the elastic region, for which we use the general form discussed above in terms of a truncated
onformal expansion to fit the phase shift. For this particular wave we have found that just two conformal parameters
re enough and therefore we use:

cot δ1/20 (s) =

√
s

2q(s − sA)

(
B0 + B1ω(s)

)
. (75)

nce again, we have factorized explicitly an Adler zero at sA, whose position we take from leading order ChPT:

sA =

(
ΣKπ + 2

√
4∆2

Kπ + m2
Km2

π

)
/5 ≃ (0.486GeV)2 ≃ 0.236GeV2. (76)

Actually, there are two such zeros, but here we are considering the one closer to threshold since it has the largest
influence on the shape of the wave in the physical region. The other one is obtained by replacing the first plus sign with
a minus [217]. Hence, it lies inside the circular-cut and thus outside the applicability region of the conformal mapping.
As it happened with the I = 3/2 S-wave, we fix the Adler zero instead of considering it a free parameter, because for our
fits we are interested in the physical region, where data exist, and not so much in the subthreshold region. Since the data
lie quite far from threshold and thus even further away from the Adler zero, simple fits are not enough to determine it
with accuracy. Later on, in Section 7.1.3, we will obtain the value of this Adler zero from the dispersive representation
at ≃0.470GeV. Thus, the LO ChPT calculation we use here, which only deviates by 4% from our final value, is enough for
our purposes of fitting the data well, while keeping or approximating some basic features of the amplitude even outside
the physical region.

In order to keep the data region reasonably centered within the conformal circle without distorting the uncertainty
bands, we have found convenient to fix the constants that define the center of the conformal variable ω to the following
values (see Appendix A)

α = 1.15, s = (1.1GeV)2. (77)
0
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Table 2
Parameters of the elastic S1/2-wave. In GeV2 units.
Parameter UFD CFD

B0 0.402 ± 0.006 0.403 ± 0.006
B1 0.222 ± 0.031 0.173 ± 0.031

Fig. 21. S1/2(s) πK → πK partial wave. We show the UFD fit as a dashed line, compared to the final CFD result as a continuous line. The data
hown comes from [6] (empty squares) and [5] (solid circles).

The Unconstrained Fits to Data (UFD) parameters are given in Table 2, and they are pretty similar to our original fit
n [41].

The resulting phase and modulus of the f 1/20 + f 3/20 /2 combination can be seen as a dashed curve and a light-orange
ncertainty band in Fig. 7. These are the data that we fit together with those of the I = 3/2 S-wave. Nevertheless, in this
ubsection we also provide in Fig. 21 the δ1/20 phase-shift in the elastic region. The ‘‘data’’ in this figure are not measured
irectly but are extracted from the previous isospin combinations using [5,6]. Note that, even if there is a considerable
ise in the phase, it does not reach 90◦ below 1 GeV, and there is no clear sign of a resonance peak. This is the reason
or the longstanding debate about the existence of a κ/K ∗

0 (700) resonance. We will see in later sections that this shape
ogether with dispersion relations requires the existence of a pole very deep in the complex plane that is identified with
he very wide κ/K ∗

0 (700) resonance.
Actually, our very simple UFD parameterization does have a κ/K ∗

0 (700) pole in the second Riemann sheet, which can
e obtained using Eqs. (75) above with Eqs. (21). It is located at:

√
sp = (651 ± 14) − i(336 ± 5) MeV, which is in the

allpark of the precise value obtained from dispersion relations in [47,97], as will be explained in Section 6.3. Thus, as it
appened with the Adler zero, our simple UFD parameterization provides an approximation to another analytic feature of
he amplitude in the non-physical region. Nevertheless, this is still a model-dependent extraction from a fit of the elastic
egion only which has not been constrained with dispersion relations. The rigorous and accurate model-independent
xtraction will be provided in Section 6.3.
Let us now turn to the parameterization of the S1/2-wave in the inelastic region, i.e. for s ≥ (mK +mη)2. Once more we

se the very same functional form we considered in [41], but with updated parameters due to our new fitting strategy.
his parameterization follows the generic inelastic form of Eq. (70) discussed above, but for this particular case, it consists
f two resonant forms Sr1 and Sr2 and a background Sb0 . The first one will accommodate the K ∗

0 (1430) that was already
iscussed when we presented the S-wave data in Section 2.1.2. The second one is purely phenomenological, since

√
sr2

ill come out around 1.8 GeV, well above the maximum energy where we are going to check and/or impose dispersion
elations. Therefore we will only see its low-energy tail and for us, it is more like a background contribution. However,
t will give more flexibility to mimic the low tail of resonances heavier than 1.7 GeV in this channel, like the K ∗

0 (1950),
lthough not their precise position or parameters. Remember that above 1.84 GeV we will be using Regge theory, not
artial waves. Thus, our S1/2-wave parameterization reads:

f 1/20 (s) =
Sb0S

r
1S

r
2 − 1

, (78)

2iσ (s)
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Table 3
Parameters of the S1/2 inelastic fit.
Parameters UFD CFD

φ0 −0.08 ± 0.031 GeV−1
−0.002 ± 0.031 GeV−1

φ1 4.64 ± 0.16 GeV−3 4.65 ± 0.16 GeV−3

a −5.46 ± 0.03 GeV−2
−5.53 ± 0.03 GeV−2

b 8.1 ± 0.1 GeV−4 8.2 ± 0.1 GeV−4

c −1.65 ± 0.04 GeV−2
−1.62 ± 0.04 GeV−2

√
sr1 1.401 ± 0.004 GeV 1.412 ± 0.004 GeV

√
sr2 1.813 ± 0.013 GeV 1.800 ± 0.013 GeV

e1 1 1
e2 0.179 ± 0.026 0.138 ± 0.026
G1 0.443 ± 0.024 GeV 0.439 ± 0.024 GeV
G2 0.32 ± 0.10 GeV 0.25 ± 0.10 GeV

Fig. 22. S1/2 partial wave UFD vs CFD parameterizations for the modulus (left panel) and the phase (right panel). Notice that both fits are fairly in
he whole energy region.

here

Sb0 = exp
[
2iqηK (φ0 + φ1q2ηK )

]
. (79)

or Sr1 we use Eq. (72) with

P1(s) = (sr1 − s)β + e1G1
p1(qπK )
p1(qrπK )

qπK − q̂πK
qrπK − q̂πK

, (80)

Q1(s) = (1 − e1)G1
p1(qπK )
p1(qrπK )

qηK
qrηK

ΘηK (s), (81)

here p1(x) = 1 + ax2 + bx4, qrij = qij(sr ), q̂ij = qij((mη + mK )2) and ΘηK (s) = Θ(s − (mK + mη)2) is the step function at
η threshold. In addition, for Sr2 we use Eq. (72) with

P2(s) = e2G2
p2(qπK )
p2(qrπK )

qπK − q̂πK
qrπK − q̂πK

, (82)

Q2(s) = (1 − e2)G2
p2(qπK )
p2(qrπK )

qηK
qrηK

ΘηK (s), (83)

ith p2(x) = 1 + cx2.
Since we have chosen to match the elastic and inelastic parameterizations at Kη threshold, we only need to demand

ontinuity. This is ensured by defining β ≡ 1/ cot δ1/20 ((mK +mη)2), where the cotangent is now calculated from the elastic
art, using Eq. (75).
All in all, the resulting fit parameters for the inelastic region parameterization are listed in Table 3.
In Fig. 22 we show both the modulus and phase of the f̂ 1/20 = |f̂ 1/20 | exp (iφ1/2

0 ) partial wave from threshold up to
.7 GeV. The UFD parameterization of this wave is represented by a dashed line and the corresponding orange band for
ts uncertainty. There we can see the wide structure attributed to the κ/K ∗

0 (700) below 1 GeV, as well as the dominant
eature around 1.4 GeV due to the K ∗

0 (1430) resonance, whose fast increase in the phase is clearly seen between 1300
nd 1500 MeV. By comparing with the measured combination fS ≡ f 1/20 + f 3/20 /2 shown in Fig. 7, we see the appearance
f a zero around 1.7 GeV, which is not seen in Fig. 7 due to the presence of the f 3/2 component.
0
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Table 4
Parameters of the P3/2-wave. In GeV2 units.
Parameter UFD CFD

B0 −9.19 ± 2.4 −8.39 ± 2.4
B1 −3.2 ± 6.6 −2.4 ± 6.6
ŝ 0.57 ± 0.17 0.88 ± 0.17

4.1.3. P-waves
The data for these waves were discussed in Section 2.1.3. Let us describe here the specific details of our I = 3/2 and

I = 1/2 parameterizations, which follow the generic form described in Section 4.1.1.

P3/2 partial wave
Since no inelasticity has been observed for this wave, we use a purely elastic formalism. In this case, we have slightly

modified our two-parameter conformal map in [41]. The reason is that as seen in Fig. 10, there are no scattering data
below 1 GeV. When we did the two-parameter fit, the data were described nicely, but then the scattering length becomes
negative. However, this is in disagreement with the sum rule obtained from fixed-t dispersion relations in [43], where
t was found m3

πa
3/2
1 = (0.65 ± 0.44) 10−3. Moreover, as we will see in Section 7.1.2, when calculating our own sum

ules for this report we also find positive values for a3/21 , which is also the case of NLO and NNLO ChPT [85,131,231].
oreover, we have found that a negative scattering length could not be accommodated by the very accurate P-wave HDR
ear threshold. Therefore, we have included a purely phenomenological additional factor, only relevant at low energies,
o facilitate the phase-shift change of sign between threshold and the data region, i.e. the appearance of a zero of the
mplitude so that we can also fit the sum rule in [43].
Of course, we still fix the α and s0 parameters to the values we used in [41] and in the S3/2 partial wave right above

since they make the data to be centered within the conformal disk without producing unrealistic uncertainty bands. We
take

α = 1.4, s0 = (1.84GeV)2. (84)

ll in all, our new parameterization reads

cot δ3/21 (s) =

√
s

2q3
s

s − ŝ

(
B0 + B1ω(s)

)
. (85)

The ŝ parameter will be the energy where this amplitude becomes zero and the phase shift changes sign.
The fit parameters are given in Table 4 and the resulting phase shift is shown in Fig. 10 against the data as a dashed

curve whose uncertainties are covered by the orange band. Note that the phase shift is tiny and positive near threshold,
ensuring a very small but positive scattering length, it then crosses zero around 0.75 GeV and becomes negative, describing
the existing scattering data, which lies above 1 GeV. The fitted χ2/dof = 1.2.

P1/2 partial wave
In this case, we use the very same parameterization we introduced in [41], which follows the generic forms discussed

in Section 4.1.1 above. However, we will slightly modify the choice of data to be fit in the elastic region, whereas we will
keep the same choice in the inelastic region.

Let us start describing the fit to the elastic region, i.e. s ≤ (mη + mK )2, which, as seen in Fig. 11, is dominated by the
∗(892). We use again the conformal parameterization of [41], with just three conformal parameters, namely:

cot δ1/21 (s) =

√
s

2q3
(m2

r − s)
(
B0 + B1ω(s) + B2ω(s)2

)
. (86)

Note we have explicitly factorized (m2
r − s) so that the phase crosses π/2 at the energy of the peak associated with the

K ∗(892) resonance. At s = m2
r the phase shift reaches 90◦. As explained in Appendix A, the constants α and s0, which

define the conformal variable, are fixed from the choice of the center of the expansion and the highest energy of the fit
to be

α = 1.15, s0 = (1.1GeV)2. (87)

There are several reasons to revisit our fitting strategy in the elastic regime. First, although the Estabrooks et al. [5]
and Aston et al. [6] data in Fig. 11 may seem compatible, they are actually not, given their tiny statistical uncertainties.
In order to estimate them, we have first followed what we did in [41]. Namely, whenever two points of these data
sets are incompatible, we fit their average, taking as the uncertainty the combination of their statistical and systematic
errors, the latter defined as half of their difference. This procedure cannot be followed for isolated points and, initially,
we do not attach them any systematic uncertainty. We nevertheless fit the data. However, when we find some datum
severely deviated from this first fit – typically by more than 3 σ – we add a systematic uncertainty which is half of
its deviation from the fit. Then the procedure is iterated until a reasonable χ2

≃ 1 is found. In practice, this is only
41
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Fig. 23. πK → πK scattering phase shift for the P1/2 partial wave, we show the UFD fit as a dashed line, compared to the final CFD result as a
continuous line. The data shown comes from [6] (empty squares) and [5] (solid circles).

Table 5
Parameters of the P1/2-wave. Note that in this case the Bi are
dimensionless.
Parameter UFD CFD

B0 0.970 ± 0.025 1.054 ± 0.025
B1 0.56 ± 0.34 0.36 ± 0.28
B2 2.66 ± 0.83 0.89 ± 0.83
mr 0.8955 ± 0.0018 GeV 0.8946 ± 0.0018 GeV

needed for the two lowest-energy data from [5] seen as clear outliers in Fig. 11. Systematic uncertainties coming from
this procedure were the only ones considered in [41]. However, isospin-violating effects are at least of the same order of
statistical uncertainties. Measurements are done in the neutral channel but, due to our isospin-conserving formalism, we
are considering the same mass for the neutral and charged K ∗(892). Hence, we will now include an explicit systematic
uncertainty of ≃1.8MeV in the mr error bar. The rest of the data will be fitted as in [41]. Of course, we have checked
hat fitting the whole data set without including these systematic uncertainties worsens considerably the dispersive
escription, yielding large deviations for the scattering lengths compared to their sum-rule values.
The parameters of the unconstrained fit are listed in Table 5, and the resulting phase shift for the elastic region of the

1/2 is shown in Fig. 23 as a dashed line with its corresponding orange uncertainty band. Note that, as seen in Fig. 10 the
3/2 wave is almost compatible with zero in the elastic region, and therefore the P1/2 phase shift shown in Fig. 23 is, for
ll means and purposes, the same as those for fP ≡ f 1/21 + f 3/21 /2.
In Fig. 23 we also show, as a continuous green line, the solution of [43], obtained solving Roy–Steiner equations, which

learly deviates from all data. Furthermore, the mass and width associated to the K ∗(892) coming from this solution
s at odds with all determinations listed in the RPP, by several standard deviations. It should be noticed that the [43]
esult for the P-wave is still remarkable because they do not use data in that region and it is a prediction obtained by
olving Roy–Steiner equations with input from higher energies and other waves. Recall that in this report we are following
he ‘‘data-driven’’ approach, i.e. using dispersion relations as constraints on data fits, instead of ‘‘solving’’ the equations.
hus, our parameterizations describe very well the existing scattering data. Moreover, they actually contain a pole in the
econd Riemann sheet at:

√
sp = (892± 2)− i(28.6± 1.1) MeV. From this, we see that the K ∗(892) width that we obtain

is Γ ∼ 57 MeV.
At this point, it is worth noting that in some experiments other than scattering [120,121,123,133,232,233], the K ∗(892)

omes out somewhat narrower, between 45 and 50 MeV. For this reason, we have also studied an ‘‘alternative P-wave’’
n Appendix B, implementing a narrower K ∗(892), compatible with those other experiments. The relevant observation is
hat, when we impose the dispersive representation on our UFD, the width becomes narrower, whereas when we impose
t on the ‘‘alternative’’ P-wave, the width becomes wider. Thus, at the very end, the constrained fits turn out to be very
imilar. That is why we only comment on one solution in the main text and leave the alternative in the appendix. Finally,
ote that the dispersive solution in [43] (green line in Fig. 23) does not resolve this issue with the width, because it has
he wrong mass.
42



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

t
u

K
c
η

i

w

a
w
i

t
N
c

d
1
t
χ

4

D

t

Table 6
P1/2-wave parameters in the inelastic region.
Parameters UFD CFD

a1 −2.07 ± 0.14 GeV−2
−1.60 ± 0.14 GeV−2

a2 −2.11 ± 0.27 GeV−2
−1.79 ± 0.27 GeV−2

a3 −1.34 ± 0.09 GeV−4
−1.37 ± 0.09 GeV−4

√
sr1 0.896 GeV (fixed) 0.896 GeV (fixed)

√
sr2 1.344 ± 0.013 GeV 1.347 ± 0.013 GeV

√
sr3 1.647 ± 0.005 GeV 1.657 ± 0.005 GeV

e1 1 (fixed) 1 (fixed)
e2 0.049 ± 0.008 0.067 ± 0.008
e3 0.304 ± 0.016 0.324 ± 0.016
G1 0.034 ± 0.005 GeV 0.049 ± 0.005 GeV
G2 0.218 ± 0.043 GeV 0.212 ± 0.043 GeV
G3 0.301 ± 0.018 GeV 0.292 ± 0.018 GeV

Let us then turn to the inelastic region. Once more, our parameterization will be exactly the one we obtained in [41],
which is of the generic form discussed in Section 4.1.1. For this wave it has three resonant shapes to accommodate the
upper tail of the K ∗(892), which is still felt in the inelastic region, the K ∗(1410), which couples very little to πK , and
he K ∗(1680). As discussed in Section 2.1.3 the last two resonances are wide objects, and their pole positions are rather
ncertain in the RPP. According to the RPP, the dominant branching ratios of the K ∗(1410) are 40% to K ∗(892)π , 6,6%

to Kπ and less than 7% to Kρ(770). For the K ∗(1680), these are 38.7% Kπ , 31.4% Kρ(770), 30% K ∗(892)π and only 1%
η. Remember that, in our formalism, we set the inelastic region to start at the Kη threshold, but all possible inelastic
hannels contribute to make |S Iℓ| < 1, and we cannot separate individual contributions from each channel that makes
(s)Iℓ less than one. We only describe the total elasticity η(s) as given by the fit to the modulus of the Kπ amplitude. All
n all, we write:

f 1/21 (s) =
Sr1S

r
2S

r
3 − 1

2iσ (s)
, (88)

here all the Srk are of the form in Eq. (72), with

P1 = (sr1 − s)β + e1G1
p1(qπK )
p1(qrπK )

q2πK − q̂2πK
(qrπK )2 − q̂2πK

qπK
qrπK

,

P2,3 = e2,3G2,3
p2,3(qπK )
p2,3(qrπK )

q2πK − q̂2πK
(qrπK )2 − q̂2πK

qπK
qrπK

, (89)

Q1,2,3 = (1 − e1,2,3)G1,2,3
p1,2,3(qπK )
p1,2,3(qrπK )

(
qηK
qrηK

)3

ΘηK (s).

In addition,

pi(qπK ) = 1 + aiq2πK , (90)

nd ΘηK (s) = Θ(s− (mK +mη)2) is the step function at Kη threshold. Again, in order to impose continuity at Kη threshold
e have defined β ≡ 1/ cot δ1/21 ((mK + mη)2), where the cotangent is now calculated using the elastic parameterization

n Eq. (86).
As we saw in Fig. 10, the f 3/21 amplitude is small but not entirely negligible in this region, so we always fit together

he f 3/21 and f 1/21 + f 3/21 /2 combination. In Table 6 we provide the updated parameters of the inelastic parameterization.
ote that, in the inelastic region, although we fit the same parameterization and data we used in [41], there is a small
hange in the parameters since we are matching with the elastic part, for which we changed slightly our fitting strategy.
The result of our UFD for fP = f 1/21 + f 3/21 /2 in both the elastic and inelastic regions can be seen in Fig. 11, as a

ashed line with its corresponding orange uncertainty band. Note the small contribution of the resonant shape around
.4 GeV and a somewhat clearer resonant shape around 1650 MeV. The smallness of the partial-wave modulus in the 1.2
o 1.6 GeV region, translates into a rather large phase uncertainty in that interval. The fit to data in the elastic region has
2/dof = 1.1 and χ2/dof = 0.9 in the inelastic one.

.1.4. D-waves
For these waves, we keep the same parameterizations and the same fitting strategy and data that we used in [41].

3/2 partial wave
As we discussed in Section 2.1.4, and seen in Fig. 13, only data from [5] are available up to 1.74 GeV, which are shown

ogether with our fits. No inelasticity has been observed and we will thus apply our generic elastic formalism with a
43
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Table 7
Parameters of the D3/2-wave. In GeV4 units.
Parameter UFD CFD

B0 −1.70 ± 0.12 −1.78 ± 0.12
B1 −6.5 ± 1.7 −7.88 ± 1.7
B2 −36.1 ± 8.7 −56.4 ± 8.7

Table 8
Parameters of the D1/2 fit.
Parameters UFD CFD

φ0 2.17 ± 0.26 GeV−5 3.05 ± 0.26 GeV−5

φ1 −12.1 ± 1.7 GeV−5
−16.6 ± 1.7 GeV−5

√
sr1 1.446 ± 0.002 GeV 1.453 ± 0.002 GeV

e1 0.466 ± 0.006 0.455 ± 0.006
G1 0.220 ± 0.010 GeV 0.256 ± 0.010 GeV
a −0.53 ± 0.16 GeV−2

−0.82 ± 0.16 GeV−2

conformal mapping as in Eq. (65). We found that three terms are enough to get a good χ2 fit and we write

cot δ3/22 (s) =

√
s

2q5

(
B0 + B1ω(s) + B2ω(s)2

)
, (91)

where the parameters α and s0 are equal to those of the S and P I = 3/2 partial waves, namely α = 1.4, s0 = (1.84GeV)2.
The resulting fit parameters are exactly the same as in [41], but for the sake of completeness we repeat them here in
Table 7. The resulting UFD curve can be seen in Fig. 13, as a dashed line with an orange uncertainty band, without any
remarkable feature except for its smallness. Actually, most studies neglect this wave.

D1/2 partial wave
As for the S and P-waves, the I=1/2 D-wave is only measured together with the I=3/2-wave in the fD ≡ f 1/22 + f 3/22 /2

combination. However, we have seen that the D3/2 is minuscule and overwhelmed by the D1/2 contribution. The latter
is dominated by the K ∗

2 (1430) resonance, whose branching ratio to πK is approximately 50%, but also has smaller
although significant decay branching ratios to K ∗(892)π and Kρ(770). The centrifugal barrier suppression makes this
wave very small until this resonance is felt. Hence, it is most convenient to use our generic inelastic formalism, discussed
in Section 4.1.1 above, in our whole fitting range. As we found in [41], it is enough to consider a non-resonant background
and a resonant-like form, to write:

f 1/22 =
Sb0S

r
1 − 1

2iσ (s)
, (92)

here the background term is

Sb0 = e2ip(s), (93)

ith

p(s) = φ0q5ηKΘηK (s) + q5η′K (φ1 + φ2q2η′K )Θη′K (s),

and Θab = Θ(s − (ma + mb)2). The resonant term for the K ∗

2 (1430) shape, is written as

Sr1 =
sr1 − s + i(P1 − Q1)
sr1 − s − i(P1 + Q1)

, (94)

P1 = e1G1
p1(qπK )
p1(qrπK )

(
qπK
qπK ,r

)5

,

Q1 = (1 − e1)G1
p1(qπK )
p1(qrπK )

(
qηK
qηK ,r

)5

ΘηK (s),

ith p1(qπK ) = 1+aq2πK . Note that here we parameterize our inelasticity allowing for two possible cusps due to the sharp
two-particle thresholds of Kη and Kη′.

For our unconstrained fit, we get exactly the same parameters we found in [41], listed here in Table 8 for completeness.
The resulting curves can be seen as a dashed line in Fig. 14 with its corresponding orange uncertainty band attached. The
shape of the K ∗

2 (1430) is evident and well reproduced. The uncertainties are rather small except beyond 1.6 GeV where
the two existing data sets separate significantly.
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Table 9
Parameters of the F 1/2-wave.
Parameters UFD CFD
√
sr1 1.801 ± 0.013 GeV 1.840 ± 0.013 GeV

e1 0.181 ± 0.006 0.173 ± 0.006
G1 0.47 ± 0.05 GeV 0.60 ± 0.05 GeV
a −0.88±0.10 GeV−2

−1.06±0.10 GeV−2

4.1.5. F-waves
As we saw in Section 2.1.5 there are no measurements of the F 3/2-wave below 2.5 GeV and we will neglect it. For all

means and purposes the data in Fig. 15 is just given by the F 1/2-wave, showing a clear signal for a K ∗

3 (1780) resonance,
whose main branching ratios are roughly 30% to Kρ(770) and around 20% both to πK and K ∗(892)π . Note that scattering
data have only been measured above 1.5 GeV due to the large kinematic suppression. We will thus use, as in [41], an
inelastic formalism dominated by that resonance. Namely

f 1/23 =
Sr1 − 1
2iσ (s)

, (95)

ith

Sr1 =
sr1 − s + i(P1 − Q1)
sr1 − s − i(P1 + Q1)

, (96)

P1 = e1G1
p1(qπK )
p1(qrπK )

(
qπK
qπK ,r

)7
,

Q1 = (1 − e1)G1
p1(qπK )
p1(qrπK )

(
qηK
qηK ,r

)7
ΘηK (s).

Here, p1(qπK ) = 1 + aq2πK and ΘηK (s) = Θ(s − (mη + mK )2).
Since the data sample and the parameterization are the same, the UFD parameters for this wave are exactly those

e obtained in [41], listed again here in Table 9, for completeness. The resulting curves can be seen as dashed lines and
heir corresponding orange uncertainty bands in Fig. 15. The resonant shape of the K ∗

3 (1780) is nicely reproduced. The
ncertainty band is somewhat larger than for other waves because the data error bars are also somewhat larger.

.2. ππ → KK̄ Unconstrained Fits to Data

Let us now consider the parameterization of the t-channel ππ → KK̄ . Except for the g1
1 partial wave, all other

π → KK̄ partial-wave parameterizations we review here are those we introduced recently in our Roy–Steiner dispersive
nalysis [42]. Our main goal with the modifications in g1

1 is to improve the description of the uncertainties associated with
he data and make it flexible enough to achieve the refined level of accuracy we reach in this review.

Contrary to the πK → πK case, which had many resonant and non-resonant waves as well as elastic and inelastic
ases, for ππ → KK̄ we only need to fit three partial waves, g0

0 , g
1
1 and g0

2 , in the inelastic regime. In general, we will
escribe them with phenomenological but elaborated combinations of Breit–Wigner-like forms, whose shape is clearly
oticeable in the data. The only one treated differently is the g0

0 whose difficulty lies in the existence of conflicting data sets
hat cover different energy regions. Also, the presence and parameters of some resonances there, like the f0(1370), is still
omewhat controversial. Thus we have avoided resonant shapes in favor of a piece-wise but continuous and differentiable
arameterization in terms of polynomials. Let us start describing this wave first.

.2.1. g0
0 partial wave

We saw in Fig. 16 that there are data in the whole region of interest for both the modulus |g0
0 | and the phase φ0

0 . The
ata sets extend from KK̄ threshold up to t ≃ 2.4GeV, but we do not fit that whole region because from 2 GeV we will
se Regge parameterizations.
For the φ0

0 phase we have already shown that, due to Watson’s theorem, only one set of data makes sense. However, two
ets of incompatible data can be studied for the modulus. Thus, we will provide two alternative UFD parameterizations for
g0
0 |, both sharing the same UFD parameterization for the φ0

0 phase. Moreover, the applicability of ππ → KK̄ dispersion
relations only reaches 1.47 GeV, and this is why in [41] we decided to parameterize our amplitudes by a two-piece
function defined differently in the two regions of the inelastic regime explained in Section 2.2.1. In Region I, Roy–Steiner
equations will be used to test or constrain our parameterization, whereas in Region II amplitudes are just used as input
for dispersion relations.

In order to parameterize the partial wave on each region, we will make use of Chebyshev polynomials, because they
are simple and, in practice, yield very low correlations among their parameters. They are defined as:
p0(x) = 1, p1(x) = x,
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Table 10
Parameters of φ0

0 in the inelastic region. Note there is just one φ0
0 UFD

common to the two UFDB and UFDC for |g0
0 |. However, once we constrain

the fits there are two sets of parameters for the φ0
0 CFDB and CFDC .

Parameter UFD CFDB CFDC

B1 23.6 ± 1.3 22.6 ± 1.3 24.0 ± 1.3
B2 29.4 ± 1.3 28.1 ± 1.3 29.5 ± 1.3
B3 0.6 ± 1.6 1.9 ± 1.6 0.7 ± 1.6
C1 34.3932 fixed 29.2374 fixed 27.6328 fixed
C2 4.4 ± 2.6 4.8 ± 2.6 4.1 ± 2.6
C3 −32.9 ± 5.2 −29.3 ± 5.2 −29.1 ± 5.2
C4 −16.0 ± 2.2 −12.4 ± 2.2 −12.6 ± 2.2
C5 7.4 ± 2.4 8.9 ± 2.4 8.5 ± 2.4

pn+1(x) = 2xpn(x) − pn−1(x). (97)

Thus we first map each energy region i = I, II into the x ∈ [−1, 1] interval through the linear transformation

xi(t) = 2
√
t −

√
tmin,i

√
tmax,i −

√
tmin,i

− 1. (98)

ote that pn(1) = 1 and pn(−1) = (−1)n, for all n, which will be used to ensure a smooth matching at
√
s = 1.47GeV,

i.e. between the two pieces describing regions I and II, up to and including the first derivative (although only for the
central value of the derivative). Between the elastic and inelastic regions, the matching at tK only ensures continuity, thus
allowing for a proper cusp behavior.

Now, for the φ0
0 phase, our parameterization is just

φ0
0 (t) =

⎧⎨⎩
∑3

n=0 Bnpn(xI (t)), Region I,∑5
n=0 Cnpn(xII (t)), Region II,

(99)

where we need to impose

B0 = δ
(0)
0 (tK ) + B1 − B2 + B3, (100)

C0 = φ0
0 (tmax,I ) + C1 − C2 + C3 − C4 + C5, (101)

to ensure, respectively, continuity at KK̄ threshold as well as between Regions I and II. Here, δ(0)0 (t) is the ππ → ππ

phase shift that we take from [48], leading to δ(0)0 (tK ) = (226.5 ± 1.3)◦. Continuity is enough at tK since there is a cut
due to the opening of a new threshold. However, we will also impose a continuous derivative for the central value of our
fit between Regions I and II, and thus the C1 parameter is also fixed numerically. The parameters of the fit are given in
Table 10. The total χ2/dof = 1.5, which comes slightly larger than one due to the incompatibilities between data sets.
Consequently, the uncertainties of the parameters in Table 10 have been re-scaled by a factor

√
1.5.

In contrast to φ0
0 , which only had one data set, for the modulus |g0

0 | we want to provide parameterizations for the
wo incompatible sets of data. Hence, we have obtained two Unconstrained Fits to Data (UFD) in Region I: The one fitting
rookhaven-II data [9] is called UFDB, whereas the one fitting the ‘‘Combined’’ Argonne [7] and Brookhaven-I [8] data is

labeled UFDC. Both of them use the same data in Region II and thus they are almost identical there, although with slightly
ifferent parameters due to the different matching with Region I. All in all, we use:

|g0
0 (t)| =

⎧⎨⎩
∑3

n=0 Dnpn(xI (t)), Region I,∑4
n=0 Fnpn(xII (t)), Region II,

(102)

where, in order to ensure continuity between the two regions, we impose:

F0 = |g0
0 (tmax,I )| + F1 − F2 + F3 − F4. (103)

In addition, F1 is fixed numerically to secure a continuous derivative for the central value.
The parameters for |g0

0 | of both the UFDB and UFDC are listed in Tables 11 and 12, respectively. Let us remark that both
have χ2/dof ∼ 1. Their respective curves are shown as dashed lines with orange uncertainty bands in Fig. 16.

4.2.2. g1
1 partial wave

For this wave, we will keep the very same parameterization we used in [42], which we actually took from [43,234].
However, we will consider some minor changes in the way we implement the fit to the g1

1 partial wave, although we will
not modify the data choice, shown in Fig. 17. These minor changes are due to the way we added systematic uncertainties
46
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Table 11
Parameters of the UFDB and CFDB fits to |g0

0 |.

Parameter UFDB CFDB

D0 0.588 ± 0.01 0.591 ± 0.01
D1 −0.380 ± 0.01 −0.339 ± 0.01
D2 0.12 ± 0.01 0.13 ± 0.01
D3 −0.09 ± 0.01 −0.12 ± 0.01
F1 −0.04329 fixed −0.04312 fixed
F2 −0.008 ± 0.009 −0.008 ± 0.009
F3 −0.028 ± 0.007 −0.034 ± 0.007
F4 0.026 ± 0.007 0.038 ± 0.007

Table 12
Parameters of the UFDC and CFDC fits to |g0

0 |.

Parameter UFDC CFDC

D0 0.462 ± 0.008 0.446 ± 0.008
D1 −0.267 ± 0.013 −0.236 ± 0.013
D2 0.11 ± 0.01 0.10 ± 0.01
D3 −0.078 ± 0.009 −0.087 ± 0.009
F1 −0.04153 fixed −0.03765 fixed
F2 −0.010 ± 0.008 −0.016 ± 0.008
F3 −0.023 ± 0.007 −0.023 ± 0.007
F4 0.021 ± 0.006 0.028 ± 0.006

in the original fit of [42], which we have decided to improve here. In our work, [42] we included these systematic
uncertainties multiplying the errors of all data points by an overall factor so that we got a global χ2/dof ∼ 1 as is
ustomary. However, most of the χ2/dof is coming from the phase in the inelastic region, where, as seen in Fig. 17,
he data are clearly of less quality. Thus, when multiplying all data by the same common factor we were producing an
verestimated uncertainty in the other regions, which had a decent χ2/dof from the start. Hence, here we will only
ultiply the uncertainties of the phase data by a factor of ∼1.4 in the inelastic region, where a fit without any systematic
ncertainties would yield χ2/dof ∼ 2.
Apart from updating our strategy to estimate systematic uncertainties, we use the same functional form as in [42,43,

34,235]

g1
1 (t) =

C√
1 + r1q2π (t)

√
1 + r1q2K (t)

{
BW (t)ρ + (β + β1q2K (t))BW (t)ρ′ + (γ + γ1q2K (t))BW (t)ρ′′

}
.

his parameterization is devised to accommodate the three vector resonances ρ(770), ρ ′
= ρ(1450), ρ ′′

= ρ(1700), by
eans of a combination of three Breit–Wigner-like shapes:

BW (t)V =
m2

V

m2
V − t − iΓV

√
t 2Gπ (t)+GK (t)

2Gπ (m2
V )

,

GP (t) =
√
t
(
2qP (t)
√
t

)3

. (104)

ere mV and ΓV stand for the ‘‘Breit–Wigner’’ mass and width of the resonances under consideration, which are not neces-
arily those obtained from poles within a rigorous dispersive approach. For our purposes they are just phenomenological
arameters, whose values, together with those of the other parameters are listed in Table 13.
The resulting curves of our unconstrained fit to data are shown in Fig. 17 as dashed lines with an orange uncertainty

and. Note that our fit also describes the phase φ1
1 in the ‘‘unphysical’’ region below the KK̄ threshold, which, given

hat only two-pions are observed there, is nothing but the ππ → ππ phase shift according to Watson’s theorem. This
‘‘unphysical’’ region is completely dominated by the ρ(770) resonance. Observe that the uncertainties of our fit are fairly
small except for the phase above 1.4 GeV.

4.2.3. g0
2 partial wave

For this wave, we keep the same parameterization, data sample, and fit strategy for the unconstrained fit that we
followed in [42]. Our UFD is therefore exactly the same, but we provide it here again for completeness. The CFD will of
course change because here we will use the dispersive constraints simultaneously on πK → πK and ππ → KK̄ , instead
f just the latter, as we did in [42]. In practice, our [42] parameterization had two pieces. One piece, providing both the
odulus and the phase for the ‘‘physical region’’ above tK , where actual ππ → KK̄ data exist, and another piece, just for

the phase below tK . The latter, due to Watson’s theorem, is given by the isoscalar angular momentum-2 phase shift of
ππ → ππ scattering, for which we take the parameterization obtained in the dispersive analysis of [48].
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Table 13
Parameters of the g1

1 wave. Masses and widths are given in GeV
whereas, C , β1, γ1 and r1 are given in GeV−2 .
Parameter UFD CFD

mρ 0.7759 ± 0.0010 0.7756 ± 0.0010
Γρ 0.1517 ± 0.0016 0.1509 ± 0.0016
mρ′ 1.440 ± 0.031 1.464 ± 0.031
Γρ′ 0.310 ± 0.016 0.339 ± 0.016
mρ′′ 1.72 1.72
Γρ′′ 0.25 0.25
C 1.29 ± 0.08 1.35 ± 0.08
r1 4.54 ± 0.64 3.84 ± 0.64
β −0.163 ± 0.004 −0.167 ± 0.004
β1 0.36 ± 0.02 0.35 ± 0.02
γ 0.09 ± 0.02 0.08 ± 0.02
γ1 −0.03 ± 0.03 0.06 ± 0.03

We start describing the physical region and recall that, as discussed in Section 2.1.4, the main resonances in this
partial wave are the f2(1270) and f ′

2(1525), which are well established. Actually, there is a clear peak for the former in
the Brookhaven II data we showed in Fig. 18 and a hint of the latter, which appears as a hunchback to the right of the
main peak. However, the f ′

2(1525) mass and width used in the Brookhaven II and III fits are at odds with their present
values. This will be amended in our fits. In addition, we have considered an additional f2(1810), already introduced in
he Brookhaven II and III analyses [9,142], contrary to what the Brookhaven collaboration did in [236]. Nevertheless, the
eader should keep in mind that our dispersive representations do not reach such high energies. Thus, for us, this 1.8 GeV
esonance is just a convenient way of parameterizing the rise in the data on |g0

2 | starting around 1.8 GeV. However, this
choice implies a particular shape for the phase at those energies, for which there are no data.

We then use a phenomenological formula, rather similar to the one used for g1
1 , given by

ĝ0
2 (t) =

C
√

[qπ (t)qK (t)]5
√
t
√
1 + r22q4π (t)

√
1 + r22q

4
K (t)

{
eiφ1BW (t)1 + βeiφ2BW (t)2 + γ eiφ3BW (t)3

}
, (105)

with

BW (t)T =
m2

T

m2
T − t − imTΓT (t)

, (106)

ΓT (t) = ΓT

(
qT (t)
qT (m2

T )

)5 mT
√
t
D2(r qT (m2

T ))
D2(r qT (t))

,

where D2(x) = 9+ 3x2 + x4 provides the familiar Blatt–Weisskopf barrier factor for ℓ = 2, with a typical r = 5GeV −1
≃

1 fm. The index T = 1, 2, 3 refers to the f2(1270), f ′

2(1525) and f2(1810) respectively.
Concerning the unphysical region, t < tK , the relevant observation is that, since the contribution of the four pion

state is negligible, for all means and purposes ππ scattering is elastic there. Then Watson’s theorem allows us to identify
φ0
2 = δ

(0)
2 , where δ(0)2 is the ππ-scattering phase shift. At first, one could think about taking directly the result obtained in

the ππ → ππ dispersive analysis in [48]. However, we want a continuous matching with our parameterization. Thus, as
we did in [41] we just fit δ(0)2 to the CFD result from [48], using a truncated conformal expansion similar to that in [48]
but with one more parameter B2 that is then fixed to ensure the continuous matching of g0

2 at KK̄ threshold. Namely:

cotφ0
2 (t) =

f 1/2

2q5π

(
m2

f2(1270) − t
)
m2
π

(
B0 + B1w(t) + B2w(t)2

)
,

w(t) =

√
t −

√
t0 − t

√
t +

√
t0 − t

, t1/20 = 1.05GeV , (107)

where

B2 ω(tK )2 =
q5π (tK ) cot(φ

0
2 (tK ))

mK
(
m2

f2(1270)
− tK

)
m2
π

− B0 − B1 ω(tK ), (108)

has been fixed by continuity with the piece above tK in Eq. (105).
Let us note that using these parameterizations to fit the data as such, we would reproduce with remarkable accuracy

the description of the CFD phase-shift in [48], whereas in the inelastic part we would obtain a χ2/dof = 1.4. Looking at
Fig. 18, this is not really due to the existence of any other physical feature but rather it seems that there is some small
systematic uncertainty. Thus, as we did in [42], we have re-scaled the data uncertainties in that region by a factor of
48
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Table 14
Parameters of the g0

2 wave.

Parameter UFD CFD

mf2(1270) 1.271 ± 0.0036 GeV 1.272 ± 0.0036 GeV
mf ′2(1525)

1.522 ± 0.005 GeV 1.522 ± 0.005 GeV
mf2(1810) 1.806 ± 0.017 GeV 1.800 ± 0.017 GeV
Γf2(1270) 0.187 ± 0.009 GeV 0.184 ± 0.009 GeV
Γf ′2(1525)

0.108 ± 0.016 GeV 0.116 ± 0.016 GeV
Γf2(1810) 0.201 ± 0.028 GeV 0.180 ± 0.028 GeV
φf2(1270) −0.049 ± 0.015 −0.081 ± 0.015
φf ′2(1525)

2.62 ± 0.16 2.58 ± 0.16
φf2(1810) −0.72 ± 0.16 −0.88 ± 0.16
B0 12.5 ± 0.4 12.4 ± 0.4
B1 10.3 ± 1.0 13.2 ± 1.0
C 1.82 ± 0.09 GeV−2 1.80 ± 0.09 GeV−2

r22 6.68 ± 0.72 GeV−4 6.85 ± 0.72 GeV−4

β 0.070 ± 0.016 0.083 ± 0.016
γ 0.093 ± 0.02 0.103 ± 0.02

∼1.2 and refitted. In Table 14 we provide the parameters obtained when fitting together the inelastic part and the CFD
phase-shift in [48]. Once again, the latter is reproduced very nicely, but, in addition, in [42] we checked that the phase in
the elastic regime is also compatible within uncertainties with the dispersive analysis of the ππ D-wave using Roy and
KPY equations in [184]. In the inelastic region, our uncertainty band covers quite conservatively the data collection.
The resulting curves for our UFD D-wave parameterization are shown in Fig. 18 as a dashed line with an orange

uncertainty band. Note that for the phase we are also giving a few points obtained from ππ → ππ scattering by Hyams
et al. [152]. Of course, the phase in the inelastic region is a pure prediction based on our assumption that it is dominated
by the effect of resonances that are fitted to describe the data on the modulus. We will see that this assumption fares
reasonably well against the dispersive checks.

Let us remark once again that, as can be seen in Fig. 18 the original fit to data by the Brookhaven collaboration [236]
does not match continuously with the ππ D-wave phase shift at the KK̄ threshold, thus violating Watson’s theorem.
On top of that, they did not include the f2(1810) resonance in their first analysis, which produces a different phase at
higher energies. Our g0

2 (t) does include all these features instead. At this point, it is worth noticing that the Brookhaven
collaboration measured |g0

0 − g0
2 | and extracted their g0

0 assuming their g0
2 model. It is therefore pertinent to reconsider

the extraction of g0
0 (t) partial wave phase. This is the reason why we give in Appendix C an alternative solution for φ0

0 (t),
including its dispersive constrained results. Fortunately, the effect of this wave on the other wave dispersive constraints
is very small, and using our main fit or the alternative one is irrelevant. For the g0

0 dispersive treatment, the differences
between the main UFD fit or the alternative one appear at high energies, beyond the applicability range of our dispersion
relations, which barely change their output. This is why the alternative solution is relegated to the appendix.

4.2.4. ππ → KK̄partial waves with ℓ > 3
These waves are going to be just input for our dispersion relations and their contributions will be in general small. As

commented in Section 2.2.4, there are no scattering data and thus, as we did in [42], we will simply use Breit–Wigner
descriptions with the averaged parameters listed in the RPP. In particular, for the g1

3 (t) wave we will consider a single
ρ3(1690) resonance, whereas for the ℓ = 4 partial wave, we consider the f4(2050). Nevertheless, the latter will only be
input for the g0

2 (t) dispersion relation since its contribution is completely negligible for the g0
0 (t).

4.3. High-energy region. Regge parameterizations

The dispersive integrals we have seen in Section 3 extend to infinite energy, although the integrands will be sufficiently
suppressed at large energies to make them converge. However, we need another description, since at high energies the
partial-wave expansion is no longer valid. From the theoretical point of view this is because, strictly speaking, it is a
low-energy expansion. From the practical point of view, it is also because we only have data on a few partial waves
with the lowest angular momentum and not too high energies. In particular, there are no data for I = 3/2 πK → πK
scattering above 1.74 GeV, although these waves present a rather monotonous behavior and it seems fine to extrapolate
them a little further. For this reason, we have chosen 1.84 GeV, as done in [41], as the energy beyond which we will not
use πK → πK partial waves anymore. Concerning ππ → KK̄ scattering, we have chosen to stop using partial waves at
2 GeV. It is true that data for the g0

0 and g0
2 waves reaches as high as 2.4 GeV, however, the g1

1 scattering data ends at 1.6
GeV. Nevertheless, since the ρ ′′(1700) is well established in the RPP and has a 250 MeV width, we think we have a fairly
reasonable description of all waves up to those 2 GeV.

The problem now is that no direct high-energy experimental data on ππ → KK̄ nor on πK → πK exist.
Notwithstanding, the high energy behavior of both processes can be confidently predicted from the factorization of

Regge amplitudes of other hadron-scattering processes. In this regime, hadron–hadron scattering is understood as the
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ontribution of the so-called Pomeron exchange (a transfer of momentum and no other quantum number, fairly well
nderstood in terms of colorless exchanges of gluons) or families of resonances exchanged in the t-channel, called
eggeons. For pedagogical introductions we recommend [237–239]. This is a well-established approach that we already
sed in [41,42]. In particular, for πK → πK , which at high energies and low t is dominated by the exchange of non-strange
eggeons, we will follow our analysis in [41] and use here the Regge-model factorization analysis presented in [143],
lthough later on updated in [41,48]. In contrast, to describe ππ → KK̄ above 2 GeV, which involves the exchange of
trange Reggeons, we will follow our analysis in [42] and use the asymptotic forms of the Veneziano model [144,240–242],
ith the updated parameters in [43], but relaxing the degeneracy with the ρ trajectory assumed for simplicity in [143].

igh-energy Regge parameterizations for πK → πK
For the πK → πK symmetric amplitude we have both the Pomeron P(s, t) and the f2-Reggeon, or P ′(s, t), exchanges:

Im F+

πK (s, t) =
Im F (It=0)

πK (s, t)
√
6

=
4π2

√
6
fK/π

[
P(s, t) + rP ′(s, t)

]
. (109)

Since we follow the notation in [143] the Regge P and P ′ amplitudes refer to ππ → ππ scattering and for simplicity
absorb the ππ−Reggeon factor

P(s, t) = βPψP (t)αP (t)
1 + αP (t)

2
eb̂t
( s
s′

)αP (t)
,

P ′(s, t) = βP ′ψP ′ (t)
αP ′ (t)(1 + αP (t))
αP ′ (0)(1 + αP (0))

eb̂t
( s
s′

)αP ′ (t)
,

αP (t) = 1 + tα′

P , ψP = 1 + cP t,

αP ′ (t) = αP ′ (0) + tα′

P ′ , ψP ′ = 1 + cP ′ t. (110)

actorization allows us then to convert one ππ−Reggeon vertex into a KK−Reggeon vertex by multiplying by the fK/π
actor, as we have done in Eq. (109). The constant r is related to the branching ratio of the f2(1270) resonance to K̄K
nstead of ππ .

Just for illustration, the extraction of fK/π and r is particularly simple from combinations of data on total cross sections
or proton–proton, proton–antiproton, K+-proton, and K−-proton, which we show in Fig. 24. Then one should recall that
he optical theorem tells us that the total cross section is proportional to the imaginary part of the forward, i.e. t = 0,
mplitude. Hence, following [143], for large s, it is possible to write:

σpp + σpp̄ ≃
4π2

λ1/2(s,m2
p,m2

p)
f 2N/π

[
P(s, 0) + (1 + ϵ)P ′(s, 0)

]
, (111)

σK+p + σK−p ≃
4π2

λ1/2(s,m2
K ,m2

p)
fN/π fK/π

[
P(s, 0) + rP ′(s, 0)

]
, (112)

here λ is the Källén function defined in Eq (10). Fits of these two expressions to the data at sufficiently high energies,
hich are also shown in Fig. 24 to describe the data very well, yield the desired factors [143].
Several considerations about the Pomeron we use are now in order. When it dominates, the predicted cross-section

ends to a constant value. For example, the Pomeron πK cross-section tends asymptotically to ≃10.3mb, as seen in the
op left panel of Fig. 25. This is roughly twice the ≃5±2.5mb value used in [43], inspired by the ππ scattering asymptotic
alue of 6±5mb. However, this ππ value was revisited later by members of the same group [182] yielding 12.2±0.1mb
or ππ scattering, thus supporting our larger value ≃10± 3mb for πK . The constant asymptotic value is a simplification
hat works rather well up to 20–30 GeV, good enough for the accuracy we need in our amplitudes. However, it is well
nown now that the Pomeron cross-section, although it cannot grow asymptotically as a power of s, could still grow if
t does not violate the Froissart bound σP ≤ log2 s. This slow growth of hadron total sections has been observed (see
he ‘‘Total Hadronic Cross Sections’’ review at the RPP [95]), and it would require an slightly more complicated Pomeron
xpression than Eq. (110), which can also be found in [143]. Nevertheless, for our purposes here the simple Pomeron
xpression in Eq. (110) is accurate enough.
In addition, r is expected to come out very small, and indeed it does, due to the small coupling of the f2(1270) resonance

o KK̄ , which suppresses the P ′ contribution. Thus one may wonder whether more Regge subleading contributions should
e considered in Eq. (110). However, the next Reggeon, associated with the f ′

2(1525) trajectory, which couples strongly
to KK̄ scattering, couples very little to nucleons or pions. This, together with its small intercept αf ′2

≃ −0.3, makes this
Reggeon contribution very suppressed. Therefore, the KN and πK isospin zero high-energy exchange is almost only due
to the Pomeron, as assumed in Eq. (110).

Let us now consider the antisymmetric amplitude, which is dominated by the exchange of a Reggeized-ρ resonance.
Then, following [143] we write:

Im F− (s, t) =
Im F (It=1)

πK (s, t)
= 2π2gK/π Im F (It=1)(s, t), (113)
πK 2 ππ
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Fig. 24. High-energy hadron–hadron total cross-section data versus the Regge description in [143], that we also use here although updated to the
alues in [48].
ource: The figure is taken from [143].

here now gK/π is the factorization constant that converts the ππ−Reggeized-ρ vertex into a KK̄−Reggeized-ρ vertex.
he Reggeized-ρ contribution is:

Im F (It=1)
ππ (s, t) = βρ

1 + αρ(t)
1 + αρ(0)

ϕ(t)eb̂t
( s
s′

)αρ (t)
,

αρ(t) = αρ(0) + tα′

ρ +
1
2
t2α′′

ρ,

ϕ(t) = 1 + dρ t + eρ t2. (114)

There is not much information about the value of gK/π although, in practice, it can be obtained from factorization. Its
extraction is somewhat more complicated than the simple case for the Pomeron trajectory that we used as an example
above, and we refer the reader to [143].

Let us now discuss the parameters obtained from high-energy fits and factorization. For our purposes in this review,
we treat them differently depending on whether they depend on observables with strangeness or not.

In particular, all parameters in Eqs. (110) and (114) correspond to non-strange Reggeon exchanges (the Pomeron, P ′

or f2 and ρ) and have been determined in [143] and updated in [48], from processes that do not involve kaons. Their
updated values from the CFD parameterizations are given in [48] are listed in Table 15. Hence, as we did in [41], we will
keep their values fixed both for our unconstrained and constrained fits here.

In contrast, the determination of the fK/π , r and gK/π factors requires input from kaon interactions. In principle, both of
them were determined in [143] from KN factorization and we take the fK/π and r values from that reference. The values
and uncertainties of fK/π and r are rather robust. However, for gK/π we take our UFD updated value from the forward
dispersion relation study of πK scattering in [41], which is further constrained. We provide their values in Table 15. We
will also add in quadrature a systematic uncertainty associated with the errors coming from ππ that we keep fixed. Since
their determination involves kaon interactions, we will allow them to vary when constraining our fits with dispersion
relations, i.e. from the UFD to the CFD sets. However, in the tables it is seen that the change is always within 2 sigmas of
the UFD values.

Once the parameters needed for the high energy description of πK → πK have been determined, we obtain the curves
plotted in the left panels of Fig. 25. Note that, to ease the comparison with the other hadron total cross-sections shown
in Fig. 24, we have also plotted cross sections for the symmetric and antisymmetric isospin combinations in Fig. 25.

At this point, some technical remarks about Regge parameterizations are in order. It is often said that Reggeons and
resonances are dual representations of hadronic physics (see [103,239] for textbook introductions) and which one is better
suited to describe some energy region depends on whether it can be better approximated with just a few Reggeons or a
few resonances, instead of the full collection of them. However, this duality is semi-local, which, for our purposes, means
that Regge theory at low energies does not necessarily yield the correct value of an amplitude at every value of the energy,
but instead it yields the correct value on the average over a sufficiently large energy region. Of course, since we use Regge
theory only at high energies and only inside integrals, this is good enough. To illustrate this ‘‘on the average’’ description,
51



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

m
s
R
i
c
s
w
g
t

i
l

1
c
t
o
e
t
t
d
r
G
m
t
t
e
t

Fig. 25. High-energy total cross sections for πK or differential forward cross-sections ππ → KK̄ scattering (Left and right panels respectively), in
illibarns. They are both proportional to their corresponding imaginary part of the forward amplitudes provided in the main text. Note that for the
ymmetric πK → πK scattering σ+(s) tends asymptotically to a constant ≃10.3mb. All other cross-sections of interest tend to zero asymptotically.
egge parameterizations are used only above 1.84 GeV for πK → πK and 2 GeV for ππ → KK̄ (vertical lines). This is shown in detail in the
nsets up to 20 GeV. We show curves up to 20 GeV, since the dispersive integrals are suppressed by several factors at high energies, and their
ontributions from even higher energies are very small. Below 2 GeV, we use the corresponding partial wave expansion, whose central value is also
hown as a dashed curve. Nevertheless, it can be noticed that, in that region, Regge theory is a crude average of the result obtained from partial
aves. Note however that, plotting cross-sections, we cannot show the ππ → KK̄ case below KK̄ threshold, where more resonances appear. The
ray and orange bands stand for the uncertainties of the CFD and UFD, respectively, although when they overlap we do not plot the uncertainty of
he latter, to simplify the view.

n Fig. 25 we have extrapolated the Regge bands below the region where we use them, i.e. below 1.84 GeV (vertical dashed
ines). As expected, they do not describe the resonance peaks, but they seem to average them.

Still, one might wonder how well the detailed partial-wave reconstruction agrees with the Regge description around
.84 GeV, where we shift from one description to another inside our integrals for πK → πK scattering. In Fig. 25 we can
heck that they are fairly consistent within uncertainties, except for the symmetric amplitude (upper left panel) for which
hey do not match by several standard deviations. We insist this is not incorrect, because one description is local and the
ther is an averaged description. Furthermore, this mismatch does not produce any noticeable effects in the Roy–Steiner
quations below 1 GeV. However, it does produce a significant effect when studying the forward dispersion relations close
o this point. The dispersive output of the FDR, coming from and integral, will change smoothly between the values of
he partial-wave reconstruction below 1.84 GeV and the Regge values above. As a result, the partial-wave input and the
ispersive output for F+(s) are not compatible around 1.8 GeV, as will be shown in Fig. 27. Actually, this is one of the main
easons why we cannot claim to have a data description consistent with the F+ FDR up to 1.84 GeV, but only up to ∼1.7
eV. Of course, we have looked at whether it was possible to start using our Regge description from an energy where it
atches the partial-wave reconstruction. Unfortunately, the closest point available below 2 GeV is around 1.4–1.5 GeV,

oo low to rely on Regge theory for πK → πK scattering, whereas the closest point above is at around 2.2 GeV. Even
hough this last point may seem appealing, there are no data for the I = 3/2 partial waves above 1.74 GeV, and as already
xplained in [41] and in the introduction to this section, the partial-wave truncated series are not reliable much beyond
hat. In addition, we do not want to use the Regge description at too-low energies. All in all, we thus consider that a value
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Table 15
Values of Regge parameters obtained in [48,51]. Since these
could be fixed using reactions other than πK or ππ → KK̄
scattering, they will be fixed both in our UFD and CFD
parameterizations.
Regge Used both for
parameters UFD and CFD

s′ 1 GeV2

b̂ 2.4 ± 0.5 GeV−2

α′

P 0.2 ± 0.1 GeV−2

α′

P ′ 0.9 GeV−2

cP 0.6 ± 1 GeV−2

cP ′ −0.38 ± 0.4 GeV−2

βP 2.50 ± 0.04
cP (0) 0 ± 0.04
βP ′ 0.80 ± 0.05
cP ′ (0) −0.4 ± 0.4
αP ′ (0) 0.53 ± 0.02
αρ (0) 0.53 ± 0.02
α′
ρ 0.9 GeV−2

α′′
ρ −0.3 GeV−4

dρ 2.4 ± 0.5 GeV−2

eρ 2.7 ± 2.5
βρ 1.47 ± 0.14

around 1.84 GeV is well suited to shift from the partial-wave to the Regge description, and we then will not constrain
the amplitudes above 1.7 GeV.

High-energy Regge parameterizations for ππ → KK̄
To describe the high-energy region of ππ → KK̄ , we need to consider the exchange of strange Reggeons, which are

much worse known than the Pomeron, P ′, and ρ trajectories. Following [42] we will consider that the two dominant
trajectories, which are those of the K ∗

1 (892) and K ∗

2 (1430), are degenerate. Hence we will describe them with a common
trajectory αK∗ (s) = αK∗ + α′

K∗s, whose parameters are listed in Table 15. They are obtained from their linear Regge
trajectories and will thus be kept fixed for both our UFD and CFD sets. In practice, all these features are incorporated in
the dual-resonance Veneziano–Lovelace model [115,144,240–242], which was already used before us in the Roy–Steiner
context for πK scattering [43,207].

Nevertheless, let us recall that, as explained in Section 3, for the dispersive analysis of ππ → KK̄ we will make use
of hyperbolic dispersion relations defined along the curve (s − a)(u − a) = b. Then, for a given t , sb is the value of s that
lies in the previous hyperbola, which, in view of Eq. (41), for large t behaves as sb → a. Therefore, inside the integrals for
the high-energy region of t , we need:

Im G0(t, sb)
√
6

=
Im G1(t, sb)

2
=
πλ(α′

K∗ t)αK∗+aα′

K∗

Γ (αK∗ + aα′

K∗ )

[
1 +

α′

K∗b
t

(
ψ(αK∗ + aα′

K∗ ) − log(α′

K∗ t)
)]
, (115)

where ψ is the polygamma function. Note that, although numerically small, we have kept an O(b/t) term, since it allows
us to recover, as a check, the expressions in [43], where a = 0.

The last parameter λ was estimated in [42] assuming, for its central value, exact degeneracy between the ρ and K ∗

trajectories. Therefore, we take the ρ contribution in Eq. (113) at 2 GeV and match it with the expression from the
degenerate Veneziano model with its original parameter αV

ρ = 0.475. This leads to

λ ≃
2πΓ (αV

ρ )

α
′αVρ
K∗

4αρ−αVρ ≃ 10.6 ± 2.5. (116)

his value is compatible with the one estimated in [43], λ = 14±4. Conservatively we add in quadrature a 30% uncertainty
s a crude estimate of the breaking of degeneracy and, rounding up, we write

λ ≃ 11 ± 4, (117)

lso listed in Table 16. Once again, given that this trajectory involves strangeness and also because it is a crude estimate,
e will allow this value to vary from exact degeneracy when constraining our fits to obtain the CFD sets. As we will see in
ection 5, after imposing the dispersive constraints we will obtain λ = 13.4 ± 4.0, which, if we use degeneracy between

the ρ and K ∗ families, suggests gK/π ∼ 0.6 ± 0.2, in fair agreement with the CFD value used here that comes from the
dispersive πK → πK study.

Once these Regge parameters have been fixed, our Regge parameterizations of the πK total cross-sections and the
maginary part of the forward ππ → KK̄ amplitudes are shown in Fig. 25.
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Table 16
Values of Regge parameters involving strangeness.
They are all allowed to vary from our UFD to our
CFD sets except for αK∗ and α′

K∗ since they are
both determined from linear Regge trajectory fits to
strange resonances.
Regge UFD CFD

fK/π 0.67 ± 0.02 0.64 ± 0.02
gK/π 0.70 ± 0.09 0.52 ± 0.09
r 0.050 ± 0.010 0.056 ± 0.010

αK∗ 0.352 0.352
α′

K∗ 0.882 GeV−2 0.882 GeV−2

λ 11.0 ± 4.0 13.4 ± 4.0

Fig. 26. Comparison between the Regge model of [143] (red lines) and the Veneziano–Lovelace model [115,144,240–242] (green lines). Note that
although their results for ImF−(s, 0) (continuous lines) are very similar and overlap within uncertainties, their first and second derivatives (dashed
and dotted lines, respectively) can differ substantially from one another to the point of being clearly incompatible. The fixed-t sum rules for higher ℓ
partial waves are dominated by such contributions, so that for these dispersion relations we have added a systematic uncertainty for the derivatives
to cover both models, as detailed in Section 7.

To end this section, two technical remarks are in order.
First, the Regge models we have shown, either based on [143] or the asymptotic forms of the Veneziano model, are

particularly robust for the high-s dependence and small t . As shown in Fig. 26, for Im F−(s, t) these two models produce
consistent descriptions of the close to forward region in the s variable. As a result, it is irrelevant whether we use one or
the other inside our FDR and S, P partial-wave projected dispersion relations. However, the ℓ ≥ 2 fixed-t sum rules of
ection 7.1 receive substantial contributions from this asymptotic region from terms with derivatives on the t-variable,
n particular second and third-order derivatives. Unfortunately, the second or third derivatives with respect to t of these
models are no longer compatible. This is illustrated in Fig. 26 for the first and second derivatives. Thus, just for the
D-wave sum rules, we have considered the average of the two models with a combined uncertainty coming from the
statistical ones and a systematic error estimated as the difference between the two models. Fortunately, this contribution
is negligible for the sum rules obtained from hyperbolic dispersion relations, which are therefore much more precise and
reliable.

Second, let us recall that for ππ → KK̄ the only dispersive representation we have in the physical region comes
from partial-wave HDR relations obtained in Section 3 above. In such case, we take integrals over b for a family of
(s − a)(u − a) = b hyperbola, while keeping the negative value a = −10.9M2

π fixed (see Appendix D). This means that
the exponent αK∗ + aα′

K∗ < αK∗ and thus the Regge contribution to the ππ → K̄K dispersion relations, given the same
number of subtractions, is suppressed when compared to its size in [43], where a = 0. This allows us to consider fewer
subtractions without Regge contributions becoming too large. Of course, this same suppression occurs for the high-energy
ππ → KK̄ contributions to the πK → πK partial-wave dispersion relations obtained from HDR, where now a = −10M2 .
π
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.4. Tests of the dispersive representation

Once again, we recall the reader that we aim at providing a simple set of parameterizations that are consistent
ith basic requirements as analyticity, unitarity, and crossing. In the previous subsections, we have obtained such a
elatively simple description of data, paying particular attention to both statistical and systematic uncertainties. Our
arameterizations even contain some basic features known to exist in these two-meson amplitudes (cuts, poles, resonance
oles, Adler zeros...). However, in this section, we will show that they are still not good enough. Actually, we are going
o show now that, by itself, the previous Unconstrained Fit to Data (UFD) description fails to satisfy to different degrees
everal of the dispersion relations we have derived in Section 3. In passing, we will also show what is in practice the weight
f different contributions to each dispersion relation. The present section will then justify the need for a Constrained Fit
o Data (CFD) that we will present in Section 5 below.

Let us then list the dispersive equations detailed in Section 3 that we will study here: the forward dispersion relations
FDRs) in Eqs. (39) and (40), the partial-wave relations obtained either from fixed-t dispersion relations (FTPWDR) as
n Eq. (53) or from Hyperbolic dispersion relations (HPWDR) as in Eqs. (54),(55), (56) and (57). Let us recall that we
se two versions of the HDR for the F− amplitude, with a different number of subtractions, so that both f −

ℓ and g1
1

will have two versions of their HPWDR. The main reason to consider a different number of subtractions is that while the
unsubtracted F− relation is adequate to obtain a sum rule at threshold, thus constraining efficiently the low-energy region,
its Regge contribution is not negligible. Moreover, its crossed channel contribution, in particular, that from g1

1 , plays an
important role at low energies, which entails the correlated fulfillment of dispersion relations for both πK → πK and
ππ → KK̄ . Hence, in order to get a different constraint, keeping the Regge asymptotic region almost negligible, so that
the partial waves that build F− are dominated by their own input, we will consider also partial-wave relations from the
once-subtracted F− HDR. Note, however, that this is not needed for the FTPWDR, since in this case both the high-energy
region and the crossed channel contributions are largely suppressed.

How do we test then these integral relations? We follow a similar approach to what we did in [41,42]. Namely, we first
introduce a χ2/dof -like function measuring the deviation between the input coming from the data fits and the output of
a given dispersion relation

d̂2 =
1
N

N∑
i=1

(
di
∆di

)2

. (118)

y ‘‘output’’ we mean the integral part of the dispersion relation and by ‘‘input’’ the non-integral part that is calculated
irectly from the data fit. The di above, with i = 1, . . . ,N , are the differences between input and output at a set of

discrete energies, and ∆di are the uncertainties of the difference, obtained from the errors of the initial parameters. Each
ispersion relation will then have an associated distance which provides a fair estimate of its fulfillment. In particular, we
ill use N = 50 points equally spaced in

√
si between the πK threshold and 1.7 GeV for the two FDRs. We will then use

= 30 points, again equally spaced in
√
si, between the πK threshold and 0.98 GeV for both the πK → πK FTPWDR and

HPWDR. Finally, we define the ππ → KK̄ HPWDR distances by using again 30 points but now spaced between the KK̄
hreshold and 1.47 GeV. Furthermore, we will use as input our fitted partial waves below s′ ≤ 1.84 GeV2 for πK → πK
cattering, and below t ′ ≤ 2 GeV2 for ππ → KK̄ , using above those energies the Regge asymptotic contributions described
n Section 4.3 above.

We consider that a given dispersive equation is satisfied within uncertainties if this χ2/dof -like function is 1 or less.
f course, it is not enough that this d̂2 should be one in the whole energy region, we have to make sure that this happens
niformly and there are no regions where the fulfillment is bad but they are compensated by other regions where the
greement is very good. For this reason, we will present both global numbers, but also plots of the difference between
nput and output and their corresponding uncertainty.

.4.1. Dispersive tests for πK → πK

ests of forward dispersion relations
Starting then with the FDRs for πK → πK , our results here are very similar to those we obtained in [41], but updated

ith the new parameterizations and uncertainties. Thus, we show in the central panels of Fig. 27 the input and output
f the two FDRs for F+, i.e. Eq. (40), and F−, Eq. (39) (upper and lower panels respectively) as a function of

√
s. We show

ne error band, which is the uncertainty in the difference between the two, attached to the ‘‘output’’ central value. If a
ispersion relation is to be satisfied, both ‘‘input’’ and ‘‘output’’ curves should overlap within this uncertainty band. The
nconsistency of both FDRs when using the UFD as input is obvious. On average, the input and output lie more than 3
tandard deviations away from each other when considering most of the energy region from πK threshold up to 1.74
eV, although the deviation is larger above 1 GeV.
In addition, in the left panels, we provide the decomposition of the integral ‘‘output’’ for each relation. It is worth

oticing that up to 1.2 GeV both amplitudes are dominated by the P1/2-wave, i.e. the K ∗(892) resonance. The shape
round 1.4 GeV is dominated by the D1/2, which corresponds to the K ∗

2 (1430), and from that point there is no clear
ominance. Above 1.6 GeV Regge contributions become dominant, although they do not produce any distinct shape but
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Fig. 27. Checks of the F+(s) and F−(s) forward dispersion relations. The gray bands are the uncertainties in the difference between input and output,
although we attach them to the output to ease the comparison. Note the large inconsistencies between input and output for the UFD and the nice
consistency of the CFD, except in the region above 1.6 GeV for F+ , which we cannot fix while keeping a decent description of data there. In the
first column, we show the size of different contributions for each dispersion relation.

just a monotonous rise. Beyond 1.8 GeV , the UFD violates dispersion relations by more than 5 sigmas and we do not plot
it anymore.

Compared to the previous analysis we carried out in [41], the low-energy region is better described by the updated S
nd P fits. However, at higher energies, the observed inconsistencies are similar, if not worse as now our uncertainties
ave shrunk slightly with the update. Actually, we already saw in [41], and have found again with the updated
arameterizations, that, even imposing the FDRs as constraints, it is not possible to have a simultaneous fair description
f data and FDRs beyond 1.7 GeV for F− or 1.6 GeV for F+. This is partially due to the non-smooth match shown in Fig. 25,
ut also caused by the fact that there is no centrifugal suppression anymore so that many partial waves contribute to the
ull amplitudes with similar strength.

Hence, as we concluded in [41] and we have checked again here with updated fits, the UFD fails to satisfy the FDRs,
articularly at high energies, and asks for improvement. This will be achieved in Section 5 by constraining the data fits
ith dispersion relations, including these FDRs.

ests for partial waves from fixed-t dispersion relations
The previous FDR test the whole amplitudes F±(s, 0), which in the region of applicability are built as sums of partial

aves. However, in Section 3 we also derived dispersion relations for individual partial waves. For πK → πK scattering,
e will test the S and P partial waves, i.e. ℓ = 0, 1, both in the symmetric and antisymmetric isospin combinations.
igher partial waves are input for these. Remember that these partial-wave dispersion relations can be obtained either
rom fixed-t , i.e. FTPWDR, or HDR dispersion relations.

Thus, in the central panels of Fig. 28 we show the output versus input for the four FTPWDR, obtained from Eq. (53),
or the f ±

ℓ partial waves, with ℓ = 0, 1. As a technical remark, note that in Fig. 28 we only show our curves up to 0.98
eV, although these FTPWDR are applicable up to s ∼ 1.1GeV 2. However, for simplicity and the sake of comparison, we
ill only impose all partial-wave dispersion relations up to

√
s = 0.98GeV , which is the highest allowed value for the

PWDR.
Now, as can be seen in Fig. 28, the deviations between input and output are not as large as for FDRs. However, there

s a clear deviation in the f +

0 case (Top center), not only because the overall d̂2 = 6.2 but because the shapes of input and
output do not look very similar. The best one is f −

0 which, on the average, deviates by less than 1.3 standard deviations.
The input and output for both vector waves f +

1 and f −

1 seem to lie very close, but the uncertainties are very small and on
average they deviate by more than 1.8 and 2.2 sigmas, respectively.
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Fig. 28. Tests of the f +

ℓ (s), f −

ℓ (s) fixed-t partial-wave dispersion relations. The gray bands are the uncertainties in the difference between input
and output, although we attach them to the output to ease the comparison. Note the large deviations between input and output in the UFD and
the remarkable agreement within uncertainties of the CFD partial waves. We show in the first column the size of different contributions to each
dispersion relation.

On the left panels of Fig. 28 we show the size of different contributions to these FTPWDR. It is worth mentioning that
the P1/2-wave dominates completely the vector dispersion relations, the other contributions being practically zero. Thus,
the inconsistency of these relations will require some honing of the P1/2 and in particular our K ∗(892) description. For
scalar waves, the most salient feature is that the Regge contribution is completely negligible and the observed shape is
a cancellation between the dominant P1/2 contribution and the subdominant S-waves and, for the f +

0 , even the g0
0 wave

of the crossed channel. It is also worth mentioning that the contribution from the ππ → KK̄ crossed channel is small.
57



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

m

T
o

π

Fig. 29. Checks of the f −

ℓ (s) non-subtracted hyperbolic partial-wave dispersion relations. The gray bands are the uncertainties in the difference
between input and output, although we attach them to the output to ease the comparison. Note the large deviations between input and output
in the UFD and the remarkable agreement of the three CFD partial waves. In the first column, we show the size of different contributions to each
dispersion relation.

The largest one comes from g0
0 and we can see that is much smaller than the dominant ones. For this reason, it does not

ake any difference to use as input our UFDB or UFDC (which we actually used for these plots).
Let us remark that this check would be much worse in case we had used the original fits of [41] instead of the new

ones. The main effect comes from the UFD S3/2 partial wave, which is now much closer to the final constrained result.
herefore this comparison supports our updated parameterization and disfavors substantially the lowest lying data points
f [5].
In any case, although somewhat better satisfied than the FDRs, the partial-wave tests obtained from fixed-t dispersion

relations also suggest revisiting the data fits using them as constraints, as we will do in Section 5.

Tests for partial-waves from hyperbolic dispersion relations
First of all, recall that there are HPWDR for both the πK → πK channel, i.e. Eqs. (54) and (55), as well as for the
π → KK̄ channel, i.e. Eqs. (56) and (57). For the former, we only test the S and P-waves in the isospin symmetric

or antisymmetric combinations, whereas for the latter we test g0
0 , g

1
1 and g0

2 . Also, recall that we have two versions,
depending on whether we subtract the F− dispersion relation or not. In addition, we have two alternative fits for g0

0 ,
i.e. UFDB and UFDC , but we will see that their contribution to dispersion relations other than their own are very small, if
any, and taking one or the other yields the same result. Unless otherwise stated, we use UFDC when g0

0 is needed.
Thus, in the central column of Fig. 29 we show the tests for the f −

ℓ πK → πK partial waves, with the F− HDR
unsubtracted. The large inconsistency of the scalar wave in the top central panel is striking: the output lies uniformly
well below the input, by more than 3.7 standard deviations on the average. Moreover, the inconsistency for the vector
channel in the bottom central panel is as large as for the scalar one, i.e. an average of more than 3.6 standard deviations,
although since the uncertainty band is much smaller, the central values of the curves look very close in the plot. These
are the largest inconsistencies we will find when using the UFD.

On the left panels of Fig. 29 we show the size of the different contributions. In both cases, the dominant ones are the
P1/2-wave and the crossed-channel g1

1 contributions. In the scalar case they suffer a large cancellation among themselves,
and the curve shape is given by the scalar S1/2-wave. The Regge part is negligible in both cases. The strong violations we
report are also related to the deviation from the dispersive F− sum rule we found in [41]. Actually, note that, for the scalar
case, the low-energy region is dominated by the g1

1 partial wave. Even more specifically, the part that dominates the g1
1

wave is the pseudo-physical region, included as input between 4m2
π and 4m2

K . This may seem surprising, since the phase
in that region comes from the ππ → ππ P-wave, taken from the dispersive study of [48], but it is worth remembering
this is produced by the peak of the ρ resonance, as it appears in ππ → KK̄ , which cannot be measured. Actually, the
UFD modulus (Fig. 33), obtained employing an unsubtracted Muskhelishvili–Omnès dispersion relation as explained in
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ection 3 is small around the ρ resonance. This adds to the fact that the phase-shift crosses 90◦ there, producing a large
maginary part contributing to the dispersion relations. We will see that this modulus will suffer a remarkable change
hen imposing the dispersive constraints on g1

1 .
When looking at the f +

ℓ and f −

ℓ once-subtracted HPWDR tests in Fig. 30, we find again a rather large disagreement.
omewhat larger indeed for the scalar waves than the vector ones. The deviations between input and output are slightly
orse but relatively similar in size to those we already observed in Fig. 28 in the partial-wave tests coming from FTPWDR.
omparing the panels in the left column of Fig. 30 versus their counterparts in Fig. 28, we see that, for vector waves, the
∗(892) dominates both kinds of dispersion relations, as should be expected. However, for all waves, the respective sizes
f the other contributions for the two kinds of dispersion relations are rather different. As a consequence, FTPWDR and
PWDR provide independent tests, and both show a clear inconsistency of the UFD parameterization. Let us also remark
hat the g0

0 contribution is very small and therefore it is irrelevant whether we use our CFDB or CFDC parameterization
s input (we used the latter for these plots).
Compared to the HPWDR unsubtracted case in Fig. 29, we find a smaller disagreement for f −

0 but note that this time
he output comes above the input. Thus, the disagreement between the unsubtracted and subtracted f −

0 outputs, which
n principle should be equal, is dramatic. These tests would have been worse if the original fits of [41] had been used
nstead of the ones presented here. The g1

1 partial wave is now less dominant, albeit big, and several cancellations produce
a way more stable result, almost dominated by its own input. In particular, the Regge contributions have been suppressed.
However, the a−

0 scattering length is much more relevant now.
In summary, we find that the UFD no matter how nicely it describes the data, fails to satisfy well almost all the

dispersion relations under consideration: FDRs and partial-wave dispersion relations either coming from fixed-t or HDR.
We will dedicate the whole Section 5 to find a constrained fit that will describe fairly well and simultaneously all
dispersion relations and the data within uncertainties, not only for πK → πK but also for ππ → KK̄ , whose UFD
e will see next that also fails to pass the dispersive tests.

.4.2. Dispersive tests for ππ → KK̄ and prediction for the unphysical region
Let us now recall that only partial-wave dispersion relations from HDR can be used to test or constrain this process,

nd only up to 1.47 GeV (see Appendix D). These tests were already studied by us in [42], but here we have updated
hem to the new parameterizations, finding relatively similar results. In addition, the dispersive representation yields a
rediction for the modulus of the partial waves in the unphysical region, where data on the modulus do not exist, but the
hase can be obtained from ππ → ππ scattering. This region is relevant because it is input for other dispersion relations
n this and the crossed channel.

As a technical remark, we have slightly changed the value of the matching point of the g1
1 (t) Muskhelishvili–Omnès

rom
√
tm = 1.2GeV used in [42] to

√
tm = 1GeV. The reason is that this new point makes the pseudo-physical region

more sensitive to changes occurring in the low-energy physical one, thus allowing us to have more room for improvement
when using the dispersion relations as constraints. At the same time, it reduces our uncertainties and uses the fit to the
data on a larger input region, as explained in Section 3.6.

Thus, in Fig. 31, we show the results for both the unsubtracted and subtracted g1
1 dispersion relations (top and

bottom panels, respectively). Note that we can only compare input and output for the modulus in the physical region
since the unphysical one is just output. Both waves show some inconsistency with the dispersive output, milder for the
unsubtracted case. By comparing the upper and lower left panels, we can see how the weight of different contributions
changes considerably by subtracting or not the dispersion relation. While the unsubtracted output is largely dominated
by the g1

1 wave itself, the largest contribution to the subtracted one comes from S-waves, particularly in the region below
the ρ mass.

Concerning g0
0 , the dispersive test is shown in the top central panel of Fig. 32 for the UFDC . Once again, we find an

overall disagreement between input and dispersive output, although it is concentrated below 1.2 GeV and more intensely
in the ∼20 MeV region right above KK̄ threshold. Beyond this near-threshold region the agreement is much better. We
already found this behavior in [42]. Actually, this was the most likely place for our isospin-conserving approximation to
fail, since there are indeed two thresholds, one for K 0K̄ 0 and another for K+K−, separated by ≃8 MeV, but our isospin-
symmetric formalism only has one. In other waves this effect is less relevant, but in the S-wave it is enhanced by the
isospin-violating mixing of the nearby f0(980) and a0(980) resonances [243,244].

In the corresponding left panel, we also see that the dispersive output for the g0
0 wave is dominated below threshold by

the πK → πK P-wave, whereas g0
0 itself dominates above KK̄ threshold. However, right at threshold there is a cancellation

between three significant contributions, i.e. those from the g0
0 , P , and S-waves. The Regge contribution is rather small and

well under control. Note that we ππ phase contribution is always subsumed inside other terms through the Omnès
function and that is why we do not consider it separately.

In addition, in the lower panels of Fig. 32, we show the dispersive tests for the tensor wave g0
2 . In this case, the

greement is quite acceptable, save the very near threshold. Once again the isospin-violating splitting of the KK̄ threshold
ommented above may play a role in this mismatch, although it is milder than for the g0

0 wave since for g0
2 no resonances

re sitting right at tK . Well above KK̄ threshold, the wave is largely dominated by the f2(1270) resonance and by the
K → πK P-wave in the unphysical region.
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Fig. 30. Checks of the f +

ℓ (s) and f −

ℓ (s) once-subtracted hyperbolic partial-wave dispersion relations. The gray bands are the uncertainties in the
ifference between input and output, although we attach them to the output to ease the comparison. Note the large deviations between input and
utput in the UFD and the remarkable agreement of the four CFD partial waves. In the first column, we show the size of different contributions to
ach dispersion relation.

Finally, in Fig. 33 we show the dispersive predictions for the modulus of the g0
0 , both for UFDB and UFDC , as well as

the modulus of g1
1 , but this time down to the unphysical region and versus data in the physical region. Recall there

are no data for these moduli in the unphysical region. Our only input there is the ππ → ππ phase shift with the
corresponding quantum numbers. These moduli are calculated using the Muskhelishvili–Omnès formalism explained in
Section 3. Obviously, the predictions for the unphysical region of g0

0 differ when using the UFDB or UFDC , since they
provide different inputs. In both cases we clearly see a peak corresponding to the f0(980) resonances and a lower energy
‘‘bump’’ that is associated with the σ/f (500) resonance, which is well-known to be very wide and not a Breit–Wigner-like
0
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Fig. 31. Checks of the g1
1 (t) partial waves with none (Top) and one subtraction (Bottom) for the F− amplitude. The gray bands are the uncertainties

in the difference between input and output, although we attach them to the output to ease the comparison. Note the inconsistency for the UFD
case (central column), particularly for the once-subtracted case, which disappears for the CFD (right column). On the left column we show the size
of different contributions to the dispersive output. The vertical dashed line on the left panels signals the KK̄ threshold.

Fig. 32. Checks of the g0
0 (t) and g0

2 (t) partial waves with one subtraction for the F+ amplitude. The gray bands are the uncertainties in the difference
between input and output, although we attach them to the output to ease the comparison. Note the consistency improvement from the UFD to
the CFD results (central and right columns, respectively). For the g0

0 we show as UFD and CFD the UFDC and CFDC , since the UFDB and CFDB are
f similar qualitative behavior. Nevertheless, even for the CFD, the region close to the KK̄ threshold (vertical dashed line) cannot be well described
ith our isospin-symmetric formalism at this level of precision. This is particularly evident for the g0

0 since that region is enhanced by the presence
of the f0(980) resonance and its isospin violating mixing with the a0(980). On the left column, we show the size of different contributions to the
dispersive output.
61



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

S

r
p

5

5

r
s
a
T
o
i

r
r
r
r
n

c
c
a
o

t
f
d

Fig. 33. Dispersive result for the modulus of the UFD g0
0 (t) and g1

1 (t) partial waves. Left: We show the two alternative g0
0 fits UFDB and UFDC . Since

they differ in the physical region, they also differ below. Right: Notice the discrepancy between the unsubtracted and once-subtracted dispersion
relations for g1

1 (t), even if using the same UFD input in the physical region. We have calculated as an illustration the average d̂ distance between
the two g1

1 dispersion relations in the pseudo-physical region between 2mπ and 2mK , divided by the relative uncertainty between them. They are
clearly incompatible by more than 3 standard deviations.

shape [13]. In general, since the modulus of the UFDB is larger than that of the UFDC in the physical region, it is also larger
in the unphysical one. Fortunately, we have already seen that the contributions of this wave to other dispersion relations
are not significant, and thus they barely change when using one input or the other.

In contrast, we have seen that g1
1 plays a relevant role, if not dominant, for several dispersion relations, even for the

crossed channel and in particular for the πK → πK scalar waves (where the controversial scalar resonance κ/K ∗

0 (700)
lies). Remarkably, as seen in the right panel of Fig. 33, for the same UFD input, we get two incompatible predictions for
the unphysical region, depending on whether they come from the unsubtracted or once-subtracted dispersion relation. In
principle, they should be the same. As we have seen, this is in part responsible for the dramatic difference in the dispersive
output for the πK → πK S-wave. This will severely affect the extraction of the κ/K ∗

0 (700) pole that we will discuss in
ection 6.
Thus, the conclusion we reach from this first test is that fairly good-looking fits to the data do not fulfill the dispersive

epresentation. And this happens in different energy regions and affects different contributions in both the s and t channel
rocesses. Fortunately, it will be possible to amend this in the next section.

. Constrained fits to data

.1. Fulfillment of the dispersive representation

In the previous sections, we have first obtained, within the isospin-symmetric approximation, a set of 16 dispersion
elations, which are a consequence of first principles like causality and crossing symmetry, that the scattering amplitudes
hould satisfy. Next, we have obtained a relatively simple description of the existing scattering data on both πK → πK
nd ππ → KK̄ scattering, which also gives a fair representation of the existing statistical and systematic uncertainties.
hese are our Unconstrained Fits to Data (UFD). However, as we already found in [41,42], we have just seen that using
ur UFD as input for the dispersion relations, the output is inconsistent with the input, in some cases not by much, but
n others by a rather large difference.

To address these inconsistencies, in [41] we constrained the πK → πK amplitudes to satisfy forward dispersion
elations (FDR), whereas in [42] we constrained the ππ → KK̄ amplitudes with partial-wave hyperbolic dispersion
elations (HPWDR), i.e. hyperbolic Roy–Steiner equations, but keeping the πK → πK input from [41] fixed. We should also
ecall that there is also a πK → πK scattering dispersive analysis [43] solving, in the elastic region, partial-wave dispersion
elations coming from fixed-t dispersion relations and keeping the ππ → KK̄ input fixed from phenomenological models
ot constrained dispersively. This ‘‘solving’’ approach was also followed for other processes in [11,12,14,43,188].
However, no matter whether one solves the dispersion relations or uses them as constraints, one might wonder about

orrelations between the crossed πK → πK and ππ → KK̄ channels. Namely, whether solving or constraining one
hannel would require the modification of the other to ensure consistency. This kind of coupled analysis between the s
nd t channels, including both physical regions, has never been performed for the πK → πK system and is the main
riginal result of this review, from which all other original results derive.
How we impose the dispersion relations in our fit is similar to what we have done in our previous works. We will allow

he parameters of our fits to vary to improve the consistency with dispersion relations, but keeping their uncertainties
ixed, whose corrections we consider second-order effects. Then we make use of the averaged χ̂2-like distances d̂2i , already
efined in Eq. (118), as penalty functions, by minimizing them together with the χ2 of the data fits. In this work, each
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Table 17
List of weights used to determine our final penalty functions that constrain the data fits.

Weight/DR F+ F−

FDR 8 8
Weight/DR f +

0 f +

1

Fixed-t 3 3
HDR 3 3

Weight/DR f −

0 f −

1

Fixed-t 3 3
HDR 0-sub 3 3
HDR 1-sub 3 3

Weight/DR g0
0 g1

1 g0
2

HDR 0-sub 3
HDR 1-sub 5 3 4

Table 18
List of weights used to determine our final χ2

data for πK → πK and ππ → KK̄ scattering.

S1/2 S3/2 P1/2 P3/2 D1/2 D3/2 F 1/2 G1/2

Wpw i 12 3 12 3 5 2 3 2

g0
0 g1

1 g0
2

Wpw i 10 10 8

penalty function d̂2i is assigned the weight Wi given in Table 17. In order to arrive at those values of Wi, we first considered
ach Wi to be roughly the apparent number of degrees of freedom of the respective curve, and then we tune it until, after
inimization, we get a d2i reasonably close to one in the whole range of energies where the dispersion relation is applied.
he dependence of the minimization procedure on these weights is smooth and we have tried different choices, leading
o very similar final results consistent within uncertainties. The one we provide in the tables ensures a quite uniform
onsistency of the dispersion relations throughout their applicability region. We will see that some dispersion relations
ield a very small d̂2i once the other ones are satisfied.
In addition, we define another distance, ∆p, between the initial and final parameters of the high-energy asymptotic

ormulas described in Section 4.3, divided by their uncertainties. The weight of these parameters will be simply their
otal number. Finally, we will add these distances to the χ2 of the data, although the data χ2 for each partial wave has
lso been weighted by its apparent degrees of freedom Wpw i, that we list in Table 18. All in all, the final formula to be
inimized reads∑

i

(
Wpw iχ

2
i + Wid̂2i

)
+∆2

p + WFDR d̂2FDR + Wp′∆2
p′ . (119)

The result of minimizing this quantity is our Constrained Fit to Data (CFD), which satisfies all our dispersion relations
ithin uncertainties, while still providing a fairly good description of data. The parameters of this CFD have already been
rovided in the tables of Section 4 together with the UFD ones, but here we will comment on its features. A technical
emark is in order first, though. After minimization, most of the parameters vary by 1 and 2 σ from their UFD to their
FD values. However, in practice, there are a few highly correlated parameters, for which their CFD result could lie far
rom the UFD one. Nevertheless, there is always another solution, with a negligibly larger χ2, where these few parameters
emain closer to their UFD counterparts. Since we have decided to keep the CFD uncertainties fixed to their UDF values,
hose latter values are preferred. For this reason, we have also added once again the ∆2

pi of every parameter that deviates
y more than 3σ from its UFD value. We denoted by ∆2

p′ the sum of all these contributions, which is summed at the end
f Eq. (119) above. Given that any contribution to this sum starts at 9, and the other contributions to the total function
o be minimized are expected to be of order one, we have found that Wp′ ∼ 0.1 is enough to ensure that only a handful
f our parameters are deviated by a bit more than 3 σ from their UFD values, and very rarely beyond that. We have also
hecked that the dispersive results and the data description do not vary substantially when adding this penalty, it just
elps produce a CFD set of parameters without problematic outliers.
Let us then show the improvement in the fulfillment of dispersion relations by comparing the UFD versus CFD d̂2i for

ll our dispersion relations.
Thus, in Table 19 we have collected all the UFD d̂2i that we obtained for πK → πK dispersion relations in Section 4.4

nd we have displayed them together with the d̂2i resulting from the CFD. The improvement is dramatic: except for the
+ FDR, all the CFD averaged distances between input and output are one or less, showing a remarkable fulfillment of
ispersion relations. The d̂2 for F+ is 1.2, but in the top right panel of Fig. 27 we see that almost all the deviation comes
rom the region around and above 1.6 GeV. We already found this problem in [41] and it simply means that we are not
ble to obtain a consistent description of this FDR above 1.6 GeV if we still want to describe the data there. As discussed
n Section 4.3, the deviation is due to the non-continuous matching between the data and the Regge asymptotic formulas,
hich are an ‘‘average’’ description, which occurs at 1.84 GeV, as shown in Fig. 25 (top left panel). Nevertheless, below 1.6
eV the consistency is remarkable. The agreement is particularly impressive for the FDRs and the πK → πK unsubtracted
PWDR, taking into account the huge deviations they had in the UFD case.
A substantial improvement is also reached when using the CFD in the HPWDR for the ππ → KK̄ channel, as shown in

able 20. We show results for the CFDC set, but the CFDB set is very similar. All these dispersion relations are well satisfied,
ith a d̂2 smaller than one, except for the g0

0 , whose d̂2 = 2.1, which is nevertheless half of what was found with the
FD. Notwithstanding, as shown in the top right panel of Fig. 32, almost the whole contribution to d̂2 for this dispersion
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Table 19
Average d̂2 distances for the various πK → πK dispersion relations using the UFD
or the CFD parameterizations. The improvement in the CFD case is remarkable.

FDR UFD CFD

F+(s) 9.0 1.2
F−(s) 8.2 0.7

FTPWDR UFD CFD

f +

0 (s) 6.2 0.6
f −

0 (s) 1.6 0.1
f +

1 (s) 3.3 0.1
f −

1 (s) 5.1 0.8

HPWDR 0-sub UFD CFD

f −

0 (s) 14.1 0.7
f −

1 (s) 13.3 0.7

HPWDR 1-sub UFD CFD

f +

0 (s) 6.6 0.8
f −

0 (s) 3.5 0.4
f +

1 (s) 3.2 0.1
f −

1 (s) 3.0 0.3

Table 20
Average d̂2 distances for the various ππ → KK̄
dispersion relations. The improvement in the con-
sistency of the CFD with respect to the UFD is
remarkable. For the CFD, the only d̂2 > 1 is that
of g0

0 (t), but the largest contribution comes from the
10–20 MeV region right above the KK̄ threshold and
is mostly due to isospin breaking effects that cannot
be accommodated within our isospin symmetric
formalism. Otherwise, its CFD d̂2 is less than one.
HPWDR UFD CFD

g0
0 (t) 4.1 2.1

g0
2 (t) 1.7 1.0

g1
1 (t) 0-sub 2.6 0.9

g1
1 (t) 1-sub 5.2 0.2

relation comes from the region very near the KK̄ threshold, which we are afraid cannot be described consistently within
the isospin symmetric formalism. Beyond that threshold region, the agreement is once again remarkable and the averaged
d̂2 would be roughly one.

This said it is not enough to check that the averaged distances d̂2i are close to one or less. It is also important that
his global fulfillment of dispersion relations is uniform in their applicability domain. This is indeed the general case with
he only two exceptions already noted. We illustrate this rather uniform consistency throughout the energy regions of
nterest in the right panels of Figs. 27 to 32.

In particular, in the right column of Fig. 27 we show the output of the two FDRs versus the input when using the CFD.
he remarkable improvement in the whole energy region can be seen by comparing these figures to their UFD counterpart
n the central column of the same figure. For both F± FDRs, the CFD input and output now overlap within errors, except
in the region around 1.6 GeV. However, for the F− FDR (lower right panel), the deviation in that region is only very
slightly outside the uncertainty band, whereas for the F+ (upper right panel) the deviation between input and output is
rather large and we must conclude, as we already commented above and already found in [41] that, whereas the F− FDR
consistency is very good even up to 1.7 GeV, we cannot find a consistent description of the F+ beyond ∼1.6 GeV unless
we force a large deviation from data.

Let us now discuss the improvement in the consistency of the FTPWDR. Thus, in the right panels of Fig. 28 we show
their input versus output when using the CFD, which has to be compared with their UFD counterparts in the central
column of the same figure. Only for f +

0 and f −

1 we can see that the input lies very slightly outside the uncertainty band in
the region around 0.95 GeV. Thus, the consistency between CFD input and output for all partial-wave dispersion relations
from fixed-t is rather uniform.

Something similar happens with the πK HPWDR. We show first the CFD case for the f −

ℓ obtained with the unsubtracted
F− in the right panels of Fig. 29. The improvement with respect to the UFD case, shown in the central panel, is the most
striking of them all. The huge inconsistencies of the UFD case have disappeared, and only beyond 0.9 GeV we can observe
a very slight deviation outside the uncertainty band. Next, we show the once-subtracted CFD case in the right column of
Fig. 30. Once again we find a very nice and quite uniform consistency within uncertainties in the whole energy region,
correcting all the rather large discrepancies found in the UFD case (central panels).

The situation with the ππ → KK̄ HPWDR is illustrated in the right columns of Figs. 31 and 32. Once again, the
inconsistencies we found for the UFD set (central panels) disappear when using the CFD as input. The only exception, as
already commented, is the region close to KK̄ threshold, particularly for the g0

0 wave, which is enhanced by the presence
of the f0(980) resonance. We attribute this discrepancy to using an isospin-symmetric formalism, which is not well suited,
at this level of precision, to the actual existence of two different thresholds for K 0K̄ 0 and K+K−. As a matter of fact, it is
ell known that isospin violation is enhanced around these thresholds due to the simultaneous presence of the f (980)
0
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nd a0(980) and their mixing [243,244]. But beyond, say, 10 or 20 MeV above tK the agreement between input and output
s very nice again.

One might wonder if our dispersion relations become strongly correlated among themselves and then we overweight
heir combined constraint. Of course, some correlation is unavoidable, because they share the same input. Also, having
ne more subtraction we introduce a dependence on a combination of threshold parameters through the additional
ubtraction constant, which is not really an independent parameter from the parameterizations. However, we have seen in
he previous section that, by using different subtractions or fixed-t instead of hyperbolic dispersion relations, the input is
eighted very differently, to the point that different dispersion relations have different dominant contributions, yielding
ifferent central values and uncertainties. In an ideal world with perfect data without uncertainties, they should be the
ame, but when we have data and uncertainties weighted differently on each dispersion relation, it is not trivial that
hey are all satisfied for all values of s. In particular, the Wi are chosen so that the final d̂2 is uniformly close or smaller
han one in the whole applicability region. This said, the existence of correlations is seen because forcing the dispersion
elations with worse unconstrained d̂2 (larger than 5 or 10) to be satisfied uniformly, produces a general improvement
n the others, which, starting from not so large d̂2 end up with values much smaller than 1. This can be due to their
orrelations or to the different sizes of the uncertainties. Nevertheless, in practice, the penalty function of the dispersion
elations that start with the smaller distances has little real weight, and its contribution to the constrain is minimal.

Of course, now that we have shown the remarkable consistency of the CFD, one might wonder if the constraints in
he fits have spoiled badly the data description. We have already advanced that the CFD is still a fairly good description
f data, although some deviations from the UFD to the CFD are worth noticing and we will comment on them next in
etail.
When discussing the quality of the fits we should first recall that we have included systematic uncertainties in the data

nd that this makes the UFD have χ2/dof ∼ 1 on the average. After imposing the whole set of 16 dispersion relations on
he fits, and using the same procedures to calculate systematic uncertainties, we find that the CFD set has χ2/dof ∼ 1.6.
hus, the price to pay to satisfy the dispersion relations is that our fits central values lie on the average about 1.25 standard
eviation from data. This means that we will not find large deviations from CFD to UFD, except maybe in some particular
aves and regions. However, the d̂2 per dispersion relations decreases from 5.5 for the UFD to 0.6 for the CFD.

.2. πK → πK CFD

Let us start discussing how each πK → πK partial wave is modified in detail. Remember these are used only up to
.84 GeV. Beyond that, we use Regge parameterizations.

.2.1. CFD S-waves
As it can be seen in Fig. 7, the whole CFD S-wave barely changes with respect to its UFD in the whole energy region

rom πK → πK threshold up to 1.8 GeV. The very small deviations between the CFD and UFD central values are well
ithin their uncertainties. However, that is for the f 1/20 + f 3/20 /2 combination and we will see next that whereas the S1/2
arely changes, the S3/2 suffers a somewhat larger variation.

3/2 partial wave
The CFD is shown in Fig. 6 and it mostly changes with respect to the UFD curve below 1 GeV, becoming less negative

nd moving away from the Estabrooks et al. data [5], which is clearly disfavored by the dispersive constraint. This is the
ain cause why the χ2/dof goes from 2.6 to a bit above 3. As a consequence, we will see in Section 7.1.2 below that the
FD scattering length is also less negative and then remarkably consistent with its sum-rule value, contrary to the UFD
ase. In general this CFD variation makes the direct calculation of most threshold parameters and their combinations to
gree much better with the more robust results from sum rules, as we will see in Section 7.1.2.
The CFD parameters have already been provided in Table 1. There we can see that they are rather similar to their UFD

ounterparts, except for B2, which lies above 3 standard deviations away.
Up to here, we have been discussing our parameterization of the S3/2-wave. However, one of the goals of this report is

o provide robust and model-independent descriptions of πK → πK partial waves, by using the dispersive representation.
e may wonder if we have achieved our goal, but so far we have shown the consistency of the dispersive representation

or symmetric and antisymmetric f ±

ℓ waves. Consistency is then also expected for the f Iℓ in the isospin basis. Thus in Fig. 34
e show the three dispersive calculations of the real part of f Iℓ , namely, those coming from FTPWDR (orange) as well as
nsubtracted or subtracted HPWDR (blue and red, respectively). The input from the CFD parameterization is represented
y a continuous black line and the error bands represent the uncertainty on the difference between this input and the
orresponding dispersive representation.
In particular, in the second row of Fig. 34 we see the dispersive results for f 3/20 in the elastic region. The UFD results

left) are largely inconsistent since the different dispersion relations for this partial wave do not agree with each other.
owever, we can see that this inconsistency disappears for the CFD (right), and all the dispersive representations overlap
nd agree with our direct use of the CFD parameterizations, which is therefore very robust.
1/2
 partial wave
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Fig. 34. Dispersive and direct results for UFD (left) versus CFD (right) real parts of the f 1/20 (s), f 3/20 (s), f 1/21 (s) and f 3/21 (s) partial waves, in respective
rder from top to bottom. The uncertainty bands correspond to the uncertainty in the difference between the input and the respective dispersive
epresentation, although we have attached them to their dispersive central value for simplicity. In the HPWDR and HPWDRsub cases the F− HDR
as been used unsubtracted and once-subtracted, respectively.

In the elastic region, shown in Fig. 21, the change from UFD to CFD is almost imperceptible. Actually, the χ2/dof goes
rom 1.4 to around 1.8, and the UFD and CFD scattering lengths are compatible. In addition, we already commented that
ur simple parameterization of the elastic region does have a κ/K ∗

0 (700) pole in the second Riemann sheet, which for the
FD now lies at

√
sp = (673±13)− i(331±5) MeV. It is relatively close to the UFD pole we gave in Section 4.1.2. However,

it is interesting to note that, despite the CFD and UFD curves being almost indistinguishable in the real axis, their naive
continuation to the complex plane displaces the real part of this pole position by almost two-standard deviations. This
is an illustration of the instability of naive extrapolations of models to the complex plane, which cannot be trusted for
precision studies, particularly for wide resonances. This is why a dispersive approach is needed to determine rigorously
the κ/K ∗(700) pole position and residue, as we will review in Section 6 below.
0

66



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

A
r
e
w

U
d

o
F

P

i

r
t
w
v

The CFD versus UFD curves are shown in Fig. 22 in the complete energy range of the study. There we also see that in
the inelastic regime they are also consistent within uncertainties. Once more we find almost the same χ2.

The fact that we find fewer deviations between UFD and CFD than in our previous analysis in [41], is due to the
improvement in the S3/2-wave, needed to separate the S1/2 component, and to our new fitting strategy, since when we
constrain the fit now we also fit the data and not the parameters of the UFD fit as done in the past.

The CFD parameters of this wave were already given in Tables 2 and 3. Many of them barely move. However, there are
several that change by around two standard deviations. Nevertheless, correlations among them leave the curves within
one standard deviation.

So far, we have been discussing our parameterization of the S1/2-wave. Concerning the dispersive outputs, in the first
line of Fig. 34 we have gathered all the dispersive results for f 1/20 and compared them with the direct use of the CFD. On
the left, we see that, although the results coming from FTPWDR are roughly consistent with the input, the two hyperbolic
determinations are at odds with the UFD input and even more inconsistent among themselves. This is very important,
for instance, for the determination of the κ/K ∗

0 (700) pole, since, strictly speaking, that pole is only within the reach of
HPWDRs, not the projected fixed-t . Therefore, the same UFD input would yield incompatible κ/K ∗

0 (700) poles depending
on what HPWDR is used. We will see this in detail in Section 6.

Nevertheless, all these problems disappear for the CFD parameterization (top right), since the three dispersive
representations are consistent among themselves and with the CFD parameterization. We thus consider that the latter is
a very robust and consistent description of this controversial wave.

5.2.2. CFD P-waves
The CFD result for the P-wave, obtained in the fP ≡ f 1/21 +f 3/21 /2 combination was already shown in Fig. 11, versus data

and the UFD. There, it can be noticed that the CFD and UFD are pretty similar in the elastic region but there is some visible
deviation in the inelastic regime. Of course, since in the inelastic region the uncertainties are rather large, the deviation
between CFD and UFD is within or only slightly off the uncertainty, except maybe beyond 1.6 GeV, where our dispersive
representation does not reach. We, therefore, conclude that the CFD still provides a fairly reasonable description of data.
In terms of the separated isospin contributions the situation is as follows:

P3/2 partial wave
As it can be seen in Fig. 10, the P3/2 phase barely changes from the UFD (orange) to the CFD (black continuous curve

with the gray band). Recall that, for all means and purposes, this wave is elastic up to 1.8 GeV, and thus is completely
determined by its phase. The χ2/dof of the data, with the same systematic uncertainty estimations used for the UFD fit,
changes from 1.2 for the UFD to around 2 for the CFD.

However, it can be noticed that the central value of the CFD phase stays positive from threshold up to
√
s ≃ 1GeV.

s we will see in Section 7.1, this makes the scattering length larger and somewhat closer to the sum rule and ChPT
esults. Actually, all our dispersive sum rules in Table 29 in Section 7.1, the predictions coming from the ones of Büttiker
t al. [245] and the ChPT determinations [85,231] point to a slightly positive scattering length, even though the partial
ave far from threshold has to be negative according to the existing data, which lie above 1 GeV.
The CFD parameters of this wave are listed in Table 4. They lie within less than one-third of the uncertainties of their

FD counterpart, except for ŝ, which signals the energy where the phase changes sign, which has moved by two standard
eviations up to (0.88 ± 0.17) GeV2.
The consistency of this CFD parameterization with its dispersive representations can be seen in the bottom right panel

f in Fig. 34, whereas for the UFD case (bottom left) there was a considerable disagreement with the HPWDR when the
− is used unsubtracted.
1/2 partial wave
Given that the P3/2-wave is so small, the plot in Fig. 11 already tells us that the change from UFD to CFD for the S1/2

s very mild.
In particular, using the same systematic uncertainty estimates, the χ2/dof changes from 1.1 to around 2.1 in the

elastic region, which is plotted in Fig. 23. Nevertheless, the data error bars are so small that the CFD and UFD difference
is almost imperceptible to the eye, except in the region above the K ∗(892) nominal mass, which is mostly responsible for
the increase in χ2. This produces a non-negligible shift in the value of the phase at the matching point used by the Paris
group [43]. As already explained in [41], we think this might contribute to the deviation from the data of the dispersive
solution in [43], which is shown as a green line in Fig. 23.

The CFD parameters of the elastic part were given in Table 5 and although B1 and the peak mass of the resonance
mr are consistent with their UFD counterparts, B0 and B2 lie more than two standard deviations apart. As we will see in
Section 7.1, this has important consequences for the slope threshold parameter, which for the CFD becomes consistent
with the sum rule and the ChPT estimate, whereas the UFD result was not.

The elastic parameterization of this wave also has a pole in the second Riemann sheet associated with the K ∗(892)
esonance. For the CFD case this is found at

√
sp = (891 ± 2) − i(27 ± 1) MeV, which overlaps within uncertainties with

he UFD pole we gave in Section 4.1.3. Although this is a narrow resonance and its pole parameters are relatively stable
hen extracted from simple parameterizations of the data around its peak, we will also provide a rigorous dispersive
alue in Section 6.
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Once again we use Fig. 34 to illustrate the consistency and robustness of the CFD parameterization of this wave,
displayed in the third row of panels. Despite the small uncertainty bands, it can be noticed that using the UFD (left),
the input did not agree with the three dispersive representations. However, they all agree well within uncertainties for
the CFD. We, therefore, consider that the description of the scattering data in the elastic region is very robust.

As already commented in Section 2 the elastic phase shift could also be obtained from other sources. In Appendix B
we have studied this possibility, but the resulting CFD is almost indistinguishable from the CFD presented here.

In the inelastic region, the phase changes by a fair margin, better visible in Fig. 11, since the uncertainties are larger
and the χ2 increases from 0.9 up to somewhat more than 2. It seems that the K ∗(1410) interference with the other two
resonances should be slightly different than that obtained from unconstrained fits.

The parameters of the inelastic CFD for this wave were already given in Table 6. There we can see that they are very
similar to their UFD counterparts, but given the size of the uncertainties, the variations reach three standard deviations
in a few instances.

5.2.3. CFD D-waves
Contrary to the previous cases, we have not used their partial-wave dispersion relations as constraints. Nevertheless,

they are still modified because they are input for the forward dispersion relations and for the other partial-wave dispersion
relations.

D3/2 partial wave
Let us recall that this wave is tiny up to 1.8 GeV, barely reaching −2◦ at most. The CFD result can be found in Fig. 13. It

can be seen that it is fairly consistent with the UFD up to ≃1.2GeV, but beyond that energy, the CFD prefers an even less
negative phase, closer to −1◦. As a result the data χ2/dof increases from around 1.1 to around 1.6, which we consider
still fairly reasonable. Most of this χ2 comes from two outliers that were also inconsistent with the UFD and the rest of
the data and, in contrast, the last data point which was an UFD outlier overlaps with the CFD within uncertainties.

The CFD parameters of this wave were given in Table 7 and they are all consistent with their UFD counterparts, except
B2, which lies roughly 2.5 deviations away.

In any case, the effect of this wave is always very small and is even smaller for the CFD.

D1/2 partial wave
Given the fact that the f 3/22 wave is so small, the fD ≡ f 1/22 + f 3/22 /2 data and curves shown in Fig. 14 illustrate in

practice the f 1/22 changes from CFD to UFD. The modulus of this wave barely changes around the K ∗

2 (1430) peak region.
owever, there is a visible deviation in the modulus far from the resonance and in the phase right after the peak. This
hould not be surprising since the data far from the resonance are not very reliable or consistent with each other. All in
ll, the χ2/dof increases from 1.2 to roughly 3. Most of this deviation comes from the last three points above 1.6 GeV of
he modulus measured by Aston et al. [6] as well as a few points which are outliers both for the UFD and CFD and quite
istant from the other data. In general, it seems like the modulus clearly prefers the solution by Estabrooks et al. [5] over
he one by Aston et al. [6], particularly at higher energies.

The CFD parameters of this wave have already been listed in Table 8 and they all change by about 2 deviations. Once
ore, finding somewhat larger changes in this wave should not be surprising given the poor quality and/or consistency
f data outside the resonance peak, as shown in Fig. 14.

.2.4. CFD F-wave
For this wave, seen in Fig. 15, there are only data above 1.5 GeV, and very few for the phase, all of them dominated by

he K ∗

3 (1780). Both the UFD and CFD yield a fairly good description of the resonance although the χ2/dof increases from
around 1 to 1.5. The CFD parameters are given in Table 9 and their change is sizeable, often beyond 2 standard deviations,
although due to correlations the CFD and UFD overlap within uncertainties, as shown in Fig. 15.

5.3. ππ → KK̄ CFD

After discussing πK → πK , we turn our attention to ππ → KK̄ partial waves to show how they changed from the
FD to the CFD set. Remember these are used only up to 2 GeV. Beyond that, we use Regge parameterizations.

.3.1. CFD I = 0 S-wave
Let us recall that here we had two sets of incompatible data for the modulus and their corresponding UFDB and UFDC ,

hich differ substantially below 1.47 GeV. They both shared the same UFD fit for the phase. Their respective CFD were
lready shown in Fig. 16.
It can be noticed that in Region II, i.e. above 1.47 GeV, the new CFDB and CFDC are once again perfectly compatible

ithin uncertainties both with one another and with the UFD. The same can be said about the phase, although now in
he whole energy region.

However, there are sizable changes in the modulus of both UFDs to their respective CFDs in ‘‘Region I’’, i.e. below 1.47.
ctually, in both cases, the CFD modulus becomes smaller than its UFD counterpart below 1.25 GeV and larger between
.3 and 1.47 GeV. This leads to a more pronounced local minimum around 1.2 GeV and a maximum around 1.35 GeV
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Fig. 35. Dispersive results for the modulus of the g0
0 (t) and g1

1 (t) partial waves using CFD as input. Left: The existence of two acceptable g0
0 (t)

CFD descriptions above KK̄ threshold leads to two different solutions in the unphysical region. Right: Notice that the non subtracted and the
once-subtracted dispersion relations for g1

1 (t) are perfectly compatible even well below the physical region. We have calculated as an illustration
the average d̂ distance between the two dispersion relations, divided by the relative uncertainty. The vertical dashed line signals the KK̄ threshold.

than in their respective UFDs. This double structure is flatter for the CFDC . All in all the χ2/dof increases from roughly 1
up to 1.4 for CFDC , and up to 2 for the CFDB. Overall the CFD seems more stable compared to our previous determination
in [42] due to our constraining simultaneously πK → πK and ππ → KK̄ .

The parameters of both CFD fits for the phase were already given in Table 10. Note that although we only had
one UFD phase, we now have two phases CFDB and CFDC . This is because each one is constrained together with their
respective moduli, which are different. Nevertheless, the two CFDB and CFDC phases are almost identical and therefore
indistinguishable in Fig. 16, both overlapping with the UFD. Consequently, their parameters only differ slightly and are
always compatible well within uncertainties, both among themselves and with the UFD.

The parameters for the CFDB and CFDC moduli are given in Tables 11 and 12. In this case, the Di parameters controlling
the ‘‘Region I’’ clearly differ from their UFD counterparts, whereas the Fi are perfectly compatible with their respective
UFD values.

Concerning the dispersive solutions, which we showed in the physical region in Fig. 32 for the UFDC (Top center) and
CFDC (Top Right), the decrease in the modulus below 1.25 that we have just commented on makes the CFD consistent
with the dispersive result. This is the main reason for the improvement in d̂2. Something similar happens for the CFDB.
However, as we have repeatedly noted, we cannot accommodate well the 20 MeV near threshold, which we think is due
to our dealing with an isospin symmetric model. Nevertheless, apart from that region, our CFD result is very robust. As
it happened in our previous work [42], there is no clear-cut preference for the CFDB or CFDC description in terms of the
χ2 and d2. Fortunately, we have already shown that using one or the other as input for our other dispersion relations is
irrelevant. In order to illustrate the results of these other dispersion relations, in this work we have chosen the UFDC and
CFDC .

With ππ → KK̄ and πK → πK data and dispersion relations alone we cannot exclude any of the two incompatible
data sets. As it happened in [42], the ‘‘dip’’ solution of the elasticity, favored by the ππ → ππ dispersive analysis in [48], is
consistent with the CFDB assuming just the two coupled states ππ and KK̄ , whereas the CFDC would need a non-negligible
contribution from other states like, possibly, 4π . Nonetheless, as pointed out by one of the authors of [9] in [246] there
could be some normalization ambiguity affecting the CFDB solution. Indeed, the CFDB deviates somewhat more from its
UFDB than the CFDC from its UFDC . In any case, as we concluded in [42], we have found that both data sets can be
reasonably well described with consistent CFD parameterizations and none of them should be discarded a priori.

The CFD results in the unphysical region are shown in the left panel of Fig. 35, both for the CFDB and CFDC . Of course,
there are no data in this region, but they can be compared to their UFD counterparts that we showed in the left panel of
Fig. 33. Neither the CFDC nor the CFDB reveal significant changes.

Finally, let us recall that the phase of the tensor wave of the Brookhaven collaboration [236] is just a model that violates
Watson’s theorem near KK̄ threshold and does not include an f2(1810), listed in the RPP, as we have done for that wave.
Their phase is therefore different from ours, as shown in the right panel of Fig. 18. Unfortunately, this wave was used to
extract the data on the I = 0 S-wave. We have discarded this phase near threshold in our fits, which satisfy then Watson’s
theorem, but one might wonder what would happen if we used our UFD tensor wave to extract the I = 0 S-wave phase
instead of the Brookhaven model. Thus, we have also considered in Appendix C an alternative g0

0 UFD and CFD. Fortunately,
they only differ significantly from the UFD and CFD presented here in the phase, but not the modulus, and only above 1.6
GeV, i.e. outside the applicability range of our g0

0 dispersive analysis, and in a region whose contribution is insignificant
for other dispersion relations.
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.3.2. CFD I = 1 P-wave
As can be seen in Fig. 17, in the physical region, g1

1 (s) barely changes from UFD to CFD. The only small changes, still
consistent within uncertainties, occur in the modulus near the KK̄ threshold and in the phase and modulus above 1.5 or
.6 GeV, where scattering data cease to exist. As a consequence, the CFD parameters, already listed in Table 13, barely
hange with respect to their UFD values or vary within uncertainties. The only exceptions are γ1, with a different sign
nd three standard deviations away from its UFD counterpart and Γρ′ , two sigmas away. This is not surprising since the
′′(1700) and ρ ′(1450) parameters are not very robust.
The consistency of this wave either with its unsubtracted or subtracted hyperbolic dispersion relation is remarkable,

s already seen in the right panels of Fig. 31. Note in the left panels that the relative size of the contributions to these two
ispersion relations is rather different, which makes us even more confident in the correct determination of this wave in
he physical region.

Moreover, this new CFD parameterization also solves the inconsistency in the unphysical region that we showed in the
ight panel of Fig. 33. Recall that using the same UFD input, we obtained two incompatible predictions for the modulus of
1
1 below KK̄ . Notice that there are no data in that region, however, it yields an important contribution to other dispersion
elations. However, when we look at the CFD modulus, displayed in the right panel of Fig. 35, we see that there is an
mpressive agreement between the unsubtracted and subtracted results.

We, therefore, consider that this wave is very robust from the ππ threshold up the 1.47 GeV, i.e. both in the unphysical
nd physical regions. This is very important because this unphysical region is a relevant contribution to some dispersion
elations, in particular for the πK → πK scalar waves and the precise determination of the κ/K ∗

0 (700) pole that we will
rovide in Section 6.

.3.3. CFD I = 0 D-wave
The CFD g0

2 wave is almost identical to the UFD, as seen in Fig. 18. Actually, for the modulus, it may seem that there
s only one curve with its uncertainty, but this is because it almost perfectly overlaps with the UFD. For the CFD phase,
he central values deviate a little bit above 1.5 GeV, but always inside the uncertainty band, in a region where there are
o data at all on the phase. Let us also remark that the CFD we found here is also similar to the one we obtained in [42].
Given this little variation, it is not a surprise that the CFD parameters, listed in Table 14, change so little with respect

o their UFD values. Many parameters do not change at all, some in the last digit, and most within one standard deviation.
nly two of them lie above 2 standard deviations away.
Let us also recall that our solution does not suffer from the violation of Watson’s theorem in the model used by [8] for

he phase. In addition, we have also included an f2(1810) resonance, to describe the small bump in the modulus in that
egion whose shape is clearly visible in the phase, which therefore deviates from the Brookhaven-I model above 1.5 GeV.
ince Brookhaven-I used this tensor wave to extract the scalar–isoscalar wave, the use of our solution would have lead
o different g0

0 data. This alternative solution is studied in Appendix C. Fortunately, using it does not change our results
n the region of applicability of our dispersive analysis.

.4. High energy region. CFD regge parameterizations

Finally, our CFD Regge parameterization also does not change much. This can be seen in Fig. 25. All UFD central curves
ie within the uncertainties of their CFD counterparts. The only exception is the reggeized ρ resonance contribution to
K → πK scattering (bottom left panel), whose contribution clearly lies below the UFD curve. We already found this
ecrease when imposing only FDRs to πK → πK [41]. Actually, it is responsible for a substantial reduction in the d̂2F−

DR. It is not very surprising that this contribution, governed by the factorization constant gK/π , suffers a sizable change,
ince as already commented when we introduced it, there is little information on it, and its extraction from factorization
s somewhat more complicated than for other resonances, see [143].

The Regge parameters for the CFD are listed in Tables 15 and 16. Recall that those parameters that can be fixed using
eactions other than πK or ππ → KK̄ scattering are kept fixed for both UFD and CFD and are given in Table 15. In
ontrast, those parameters involving strangeness have been allowed to vary in the fits and are given in Table 16. Note
hat those related to the reggeized-K ∗ exchange barely change from UFD to CFD. In contrast, the factorization constant
K/π decreases by slightly more than two standard deviations, consistently with the observed decrease in the reggeized-ρ
ontribution commented above. The Pomeron and f2 factorization constants, fK/π and r , also change, but they compensate
ach other and the effect of this change is small as shown in the top left panel of Fig. 25.

. Strange resonances and the κ/K ∗

0 (700)

.1. State of the art

Despite the fact that Quantum Chromodynamics (QCD) was formulated almost half a century ago the existence and/or
recise properties of some of its lowest-lying states is still under debate, in particular in the strangeness sector. A reliable
etermination of these strange resonances is crucial for both their own classification in multiplets, as well as for our

nderstanding of intermediate-energy QCD interactions and the low-energy chiral perturbation theory regime. In addition,
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hese strange resonances appear as a result of πK scattering or re-scattering, and contribute as final states to many of
he hadronic processes with net strangeness. Hence, the shape of heavier decays, or their Dalitz plot, depends upon the
recise determination of these low-energy interactions. In particular, this is the case of the many hadronic decays of
he heavy B and D mesons, whose description nowadays relies on resonance-exchange models. Nonetheless, many of the
odern experimental efforts are being directed towards these heavier processes, in particular CP violation or new physics
earches. Thus a precise knowledge of these strange resonances is mandatory for model-independent studies of heavier
ectors.
Besides their interest as ingredients to describe other processes, the properties and nature of many of these light

esonances have been controversial for decades. This is the case of the famous κ/K ∗

0 (700) resonance, which ‘‘still needs
onfirmation’’ according to the RPP [233]. The confirmation of the existence of this resonance is crucial for completing
he lightest scalar nonet of mesons and, given its clear similarities with the σ/f0(500) resonance, it would rule out the
/f0(500) glueball interpretation, already quite disfavored in the literature (see [13] for a review). Additionally, there
re six other strange resonances that dominate πK → πK scattering amplitudes below roughly 1.8 GeV. These are: the

scalar K ∗

0 (1430), the vectors K ∗(892), K ∗(1410) and K ∗(1680), the tensor K ∗

2 (1430) and the ℓ = 3 resonance K ∗

3 (1780).
ost experimental studies on these resonances are based either on πK scattering experiments studying reactions like
N → πKN ′ [5,6,117,247–254] or πK rescattering from heavy-meson decays [52,123,255,256]. We have gathered in
ig. 36 the pole determinations of the K ∗

0 (1430), K
∗(1410), K ∗

2 (1430) and K ∗

3 (1780), as compiled in the Review of Particle
hysics [95]. The large spread of values for each resonance and the existence of multiple incompatible determinations are
vident. The main problem is that almost all of those values suffer from systematic deviations and crude model extractions.
heir biggest source of systematic uncertainty is that these resonance poles have not been extracted from a sound analytic
ontinuation of the T -matrix to the complex sp = M − iΓ /2 plane, but, for the most cases, their listed parameters come
ut from some sort of Breit–Wigner parameterization. This is not a model-independent definition of a resonance, but a
arrow-width approximation for isolated resonances and it has been applied to these strange resonances even though
hey are not particularly narrow, overlap often with other nearby resonances, or lie close to relevant thresholds. Moreover,
ven the definition of the Breit–Wigner mass and width has a sizable dependence on the particular choice of Breit–Wigner
arameterization, as well as on the background present in the process that is being fitted. In the following sections we
ill describe and summarize how analytic techniques can improve our amplitude analyses and produce robust and yet
imple ways of determining resonance parameters.
Regarding lattice QCD calculations on the strangeness sector, the first dynamical QCD determinations of resonances

ave only been published in the recent past. There exist several analyses regarding the prominent K ∗(892) resonance using
f = 2 + 1 staggered quarks [267] and Nf = 2 Wilson quarks [70,268,269]. The K ∗(892) is a rather narrow resonance
nd the use of a naive Breit–Wigner shape may be justified given the available precision, making its extraction from
attice QCD easier. Nonetheless, a precise determination of the parameters of this resonance is crucial from a lattice QCD
erspective, as it allows to compare different approaches and to extrapolate these results to physical pion masses, where
his channel is very well determined.

More challenging is the analysis and determination of the κ/K ∗

0 (700) resonance, for which a very elaborated use of
he Lüscher formalism is required [75,270–286]. Recent lattice QCD analyses, including Nf = 2+ 1 Wilson quarks [71,72,
00,287] have been able to extract both the S and P-waves at various quark masses. We already illustrated their phase
hifts in the introduction in Fig. 3. For nonphysically heavy pions [100,287], the κ/K ∗

0 (700) was found as a virtual bound
tate, compatible with unitarized NLO ChPT predictions [102,288]. Nevertheless, it seems that once the pion mass starts
pproaching the physical value the extraction of the κ/K ∗

0 (700) pole by analytic continuations becomes more unreliable.
owever, at higher pion masses the κ/K ∗

0 (700) resonance appears robustly and stably as a result of fitting the partial
ave. Other exploratory studies of the κ/K ∗

0 (700) and K ∗(892) resonances obtained from lattice QCD can be found in
91,268,289–292]. Heavier strange resonances become a great challenge for lattice QCD at close to physical pion masses,
s they can in principle couple to several multi-body hadron channels. However, some of these aforementioned works
ave been able to determine their parameters at higher pion masses.

.2. Analytic techniques for inelastic resonances

Let us first discuss the inelastic strange resonances. As pointed out throughout the previous sections, a dispersion
elation is the most rigorous tool for performing the analytic continuation of a given amplitude. Nevertheless, we do
ot know a simple set of partial-wave dispersion relations that could be applied up to arbitrarily high energies. We
aw in Section 3 that πK partial-wave dispersion relations are only applicable up to roughly the beginning of the
nelastic region [164,176]. More complicated dispersion relations which improve the convergence region exist for ππ
cattering [293–298], although they have never been applied to ππ experimental data. No equivalent set of equations
as been derived so far for πK scattering.
Moreover, even if we do have a dispersive representation of a partial wave in a given area, it is formulated in the first

iemann sheet, whereas resonance poles lie in the second or other Riemann sheets. In Section 1.3, and only for the elastic
ase, we provided a simple formula, Eq. (19), to access this second Riemann sheet and to obtain the pole position using
qs. (20) and (21). However, in the inelastic case, since more channels are open, giving access to more sheets, there is no
traightforward relation between the first and the contiguous or second sheet. Only within certain approximations, there
71
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Fig. 36. Determination of the K ∗

0 (1430) (top-left), K
∗(1410) (top-right), K ∗

2 (1430) (bottom-left) and K ∗

3 (1780) (bottom-right) poles obtained using the
Padé sequence method (‘‘Final Result’’ [99]). Other values correspond to those listed in the RPP compilation as main results [233], Zhou et al. [257],
D.Bugg [258], Anisovich et al. [259], Bonvicini et al. [123], Barberis et al. [260], Aitala et al. [52], Ablikim et al. [255], Lees et al. [256], Link et al. [133],
Boito et al. [261], Baubillier et al. [262], Bird et al. [263], Etkin et al. [264], Estabrooks et al. [5], Mccubbin et al. [250], Hendrickx et al. [251], Davis
et al. [247], Cords et al. [249], Aubert et al. [265], Aguilar et al. [248], Baldi et al. [252], Cleland et al. [254], Chung et al. [253], Beusch et al. [266].
Source: Figures taken from [99].

are simple equations to write the amplitude in different sheets, but they not only require the knowledge of the amplitude
in the first, but also the amplitudes to the other accessible channels. This is relatively simple to implement in coupled-
channel models restricted to two-body scattering in just a few different channels, particularly if all the complications of
left and circular cuts can be neglected, which is a fair approximation in the inelastic regime (but not in the elastic one).
Nevertheless, remember that we aim to avoid model dependencies.

For the reasons just explained, there is a growing interest in exploiting other analytic techniques to extract resonance
poles, which could eliminate or produce smaller systematic uncertainties than those of simple model-based extractions.
We list here a few of the most successful approaches: The conformal mapping expansion [226,227,299], which includes
the dynamical cuts into a conformal mapping variable, thus producing, as a result, a simple fit that could partially mimic
some of the analytic requirements. These mappings have been used in our UFD and CFD fits as explained in Section 4.1.
Other successful techniques are the Laurent [300,301] and the Laurent–Pietarinen [302–306] methods mostly applied
to baryon resonances, which disentangle the resonance pole (Laurent expansion), from a conformal map (Pietarinen
expansion) over the partial waves. Two other methods have been used to extract low-energy mesonic resonances. The
first one makes use of the Schlessinger continued-fraction method [307] and has been successfully implemented in several
different problems [308–310]. Finally, there is the method of sequences of Padé approximants [99,311–313], which will
be the central topic of this subsection. They are all different approaches to determine resonance poles without assuming
any model relating their coupling to their width parameters. Thus they are much less model-dependent and robust than
the usual Breit–Wigner approach used so far in most determinations, very often not even meeting the Breit–Wigner
applicability conditions.

All these analytic methods require the knowledge of the scattering amplitude, employing data or a previously fitted
parameterization. However, as explained in detail in the introductory sections, determining the experimental data on
meson–meson experiments is a complicated task, plagued with systematic uncertainties. As a result, fitting a model
to the original data samples may not be robust enough for some of these resonances, on top of which none of these
models implement analyticity, crossing, and unitarity at the same time so that the original fits would be partially lacking
first-principle constraints. Most often they only consider the scattering of two-body states.
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A satisfactory solution follows from applying these analyticity techniques over a parameterization previously con-
strained to satisfy dispersion relations, as the CFDs obtained either for ππ [48] or πK [41] scattering. This approach was
uccessfully carried out in [99,312,313], respectively. Thus, right below, we summarize the Padé-sequence method and
esults [99] when applied to πK .

The Padé approximant of order [N/M] of a function F (s) is defined as a rational function that satisfies

PN
M (s, s0) =

QN (s, s0)
RM (s, s0)

≃ F (s) + O
(
(s − s0)M+N+1

)
, (120)

where QN (s, s0) and RM (s, s0) are polynomials in s of N th and M th degree, respectively, and the expansion is centered
around a given point s0.

According to the Montessus de Ballore theorem [314] this sequence of Padé approximants can be used to reach the
next continuous Riemann sheet of an amplitude, which is where resonance poles exist [99,311–313]. Notice again that
these Padés do not assume any model relationship between the pole position and residue, so that there is way less model
dependence when extracting resonances with this method.

For simplicity, in this section we focus on the extraction of isolated resonances, although more resonances can be
included in a straightforward way [99]. For isolated poles, the denominator RM (s, s0) should be of first degree, and thus
the Padé approximant is defined as:

PN
1 (s, s0) =

N−1∑
k=0

ak(s − s0)k +
aN (s − s0)N

1 −
aN+1
aN

(s − s0)
. (121)

If one expands the amplitude as a Taylor expansion in the real axis around s0 then the constants an =
1
n!F

(n)(s0) are
iven by the nth derivative of the amplitude. Therefore the pole and residue read

sNp = s0 +
aN

aN+1
, ZN

= −
(aN )N+2

(aN+1)N+1 . (122)

Note that, customarily, the coupling of a resonance to an amplitude is defined as follows:

|g|
2

=
16π (2ℓ+ 1)|Z |

[2q(sp)]2ℓ
, (123)

where q(s) is the center-of-mass momentum of the scattering system and ℓ the angular momentum of the partial wave.
If the resonance is not isolated, i.e., there are several overlapping resonances or nearby thresholds, extra poles can be

introduced into the Padé by increasing the degree of RM (s, s0). These new poles will take account of the other resonances
r they will mimic the other analytic structures present in the amplitude. In principle, nearby thresholds are associated
ith cuts in the complex plane, which can be approximated up to the desired accuracy by including a sufficiently large
umber of extra poles.
The methodology implemented in [99] to extract strange resonances from the CFD fit in [41] can be summarized as

ollows:

• We define the variation in the pole position when changing our calculation from N th to (N + 1)th degree. Thus, for

each N , starting from N = 1, we define ∆
√
sNp

sys
≡

⏐⏐⏐⏐√sNp −

√
sN−1
p

⏐⏐⏐⏐, which is calculated for a grid of s0 in a big region

surrounding the resonance. We consider our best s0 as the one which minimizes these uncertainties, thus improving
the convergence of the series.

• The statistical uncertainty is thus added employing a Montecarlo re-sampling over the fits.
• We truncate the Padé sequence at a given N when ∆

√
sNp

sys
is considerably smaller than the statistical uncertainty.

This procedure makes use of the smallest possible number of derivatives, which usually offers better stability
nd smaller deviations for the statistical uncertainties. Unfortunately, different parameterizations compatible within
ncertainties with the CFD could yield somewhat different derivatives. This might be the only source of some relatively
ild model or parameterization dependence, which we will consider as an additional systematic error. Thus, in order

o estimate this systematic uncertainty, we extract the resonance pole implementing the whole Padé sequence method
ut using different functional forms fitted to describe the CFD within uncertainties. We consider this approach to
roduce a robust, precise determination of resonance parameters and their uncertainties but avoiding or at least reducing
onsiderably any model dependence.
Our recent results applying this Padé sequence method are shown in Fig. 36 for the poles of strange resonances

ppearing in the πK inelastic region below 1.8 GeV. They can be compared to the values listed in the RPP [233]. This
ncludes the scalar K ∗

0 (1430), the vector K ∗(1410), the tensor K ∗

2 (1430) and the ℓ = 3 resonance K ∗

3 (1780). The K ∗(892)
nd κ/K ∗

0 (700) have also been extracted as shown in Table 21. However, these two are not discussed here as they will
e discussed in more detail in the next section, since elastic resonances can be calculated directly from partial-wave
ispersion relations. From Fig. 36 it can be noticed that, even with the attached systematic uncertainty, our analytic
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Table 21
Poles obtained from the Padé sequence method [99] using as input the CFD
results obtained in [41]. The uncertainty for

√
sp and |g| include statistical

and theoretical (systematic) errors.
√
sp (MeV) |g|

κ/K ∗

0 (700) (670 ± 18) − i(295 ± 28) (4.47 ± 0.40) GeV
K ∗

0 (1430) (1431 ± 6) − i(110 ± 19) (3.82 ± 0.74) GeV
K ∗(892) (892 ± 1) − i(29 ± 1) (6.1 ± 0.1)
K ∗(1410) (1368 ± 38) − i(106+48

−59) (1.89+1.77
−1.34)

K ∗

2 (1430) (1424 ± 4) − i(66 ± 2) (3.23 ± 0.22) GeV−1

K ∗

3 (1780) (1754 ± 13) − i(119 ± 0.14) (1.28 ± 0.14) GeV−2

determinations, which do not assume a specific model parameterization, are competitive in precision with the other
existing values.

We want to remark that the region occupied by different determinations of each resonance pole in Fig. 36 is much
arger than the RPP estimated average. One of the reasons is that only the values with solid symbols are T -matrix poles
nd used to obtain such an estimate. The rest are just Breit–Wigner parameters, which as discussed above are not a
odel-independent definition of a resonance, but just a narrow-width approximation valid for isolated resonances. Let us

emark that most of these extractions rely on some, but not always the same, Breit–Wigner-like parameterization since
t is often modified with further crude model assumptions. In particular, often these parameterizations include barrier
actors, or fits with summations of Breit–Wigner forms which do not fulfill unitarity, etc... thus producing big systematic
preads. Notice also how the determination of the width for all these resonances is generally in worse shape than their
ass (note that the mass and width scale is different). This is not surprising since the apparent width can become easily
rocess-dependent when not extracted from a rigorous analytic continuation to the pole. Our analytic techniques avoid
ll these caveats and therefore yield a robust determination of the parameters, whose accuracy is competitive too, if not
etter than, present estimates.
Finally, this formalism can be adapted in a straightforward way to study other inelastic channels involving meson–

eson scattering processes. In a possible future application, we are planning to apply the method to the f0(1370), f0(1500)
nd f0(1710) resonance poles using as input the dispersively constrained parameterizations of ππ → ππ [98] and the
FD of ππ → KK̄ that we have just provided here in Section 5.

.3. Dispersive determination of the κ/K ∗

0 (700) resonance from data

‘‘The weight of the evidence should be proportioned to the strangeness of the facts’’

Principle of Laplace, as restated by T. Flournoy in ‘‘India to the Planet Mars’’ (1900),

when commenting Laplace’s ‘‘Essai philosophique sur la probabilité’’ (1825).

‘‘We are beginning to think that κ should be classified along with flying saucers, the Loch Ness Monster, and the
Abominable Snowman’’.

A.H.Rosenfeld et al. ‘‘Data on Particles and Resonant States’’ review (1967) [315].

As explained above the situation regarding the κ/K ∗

0 (700) resonance has been debated for several decades, partially
ecause of how unstable its determination is. First, there are several different extractions relying on relatively simple
odels [16,19,20,23–26,29,31–37,40,316–320]. Of course, as repeatedly explained, the use of conflicting data sets, which
o not fulfill first principle’s requirements, together with the large model dependencies produce a huge spread of results
s shown in Fig. 37. This is once again the situation explained in the previous section, and in Fig. 36, where simple models
an produce huge systematic spreads.
Furthermore, the κ/K ∗

0 (700) pole is one of the widest resonances and therefore its pole lies deep in the complex plane.
onsequently, as illustrated in the top panel of Fig. 20, the region of its nominal mass is as close to the pole as it is to the
K threshold, the Adler zero, or even the left and circular cuts. Hence a precise and reliable extraction cannot be fully
nderstood without a model-independent way of performing the necessary analytic continuation into the complex plane
for recent reviews we refer to Ref. [13,218]), making sure that all the required analytic structures are accounted for. Of
ourse, those models that include some of these basic features, as well as unitarity – which is essential for a resonant
ehavior – and some reasonable input from data, generically produce a pole that is not too far from its actual position.
ote that it is important to check that the pole lies within the applicability region of the partial-wave expansion in the
omplex plane (see Appendix D). At any rate, models cannot be used for a precise description of this resonance.
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Fig. 37. Determinations of the κ/K ∗

0 (700) pole in the complex plane as illustrated in [47]. Of course, the numbering of the references in [47] is not
he same as in here, which we provide next. In particular, Breit–Wigner parameterizations are taken from the RPP compilation [233] (called PDG
n [47]), which also includes: Descotes-Genon et al. [97], Bonvicini et al. [123], Bugg [321], Peláez [34], Zhou et al. [257] and the ‘‘Padé Result’’ [99].
he conformal CFD is the simple analytic extrapolation of our parameterization in [41]. The ‘‘PDG status’’ shaded rectangle covers the mass and
idth estimate in the RPP. Our dispersive extractions of the κ/K ∗

0 (700) pole are also included, using as input for the PWHDR either the UFD or CFD
arameterizations. Red and blue points use for the F− amplitude a once-subtracted or an unsubtracted dispersion relation, respectively. Notice that
ven when using dispersive approaches the extraction is not fully stable, and the UFD values are inconsistent with one another and deviated by
round 2 σ from the CFD ones. Only once Roy–Steiner equations are imposed as a constraint for the CFD parameterizations, both pole determinations
all on top of each other, thus producing a negligible systematic uncertainty, as explained in the text.
ource: Figure taken from [47].

All pole positions listed in Fig. 37 are taken from the RPP [233], although there are many other values, like those
uoted just above. Most of these determinations (light gray) are simply Breit–Wigner parameters obtained as a result
f several fits to different processes. However, not only this is not a model-independent definition of a resonance
ole, but it is actually a wrong approximation. Recall that the Breit–Wigner formula is devised for narrow resonances
ell isolated from other analytic features. From Fig. 20, it is evident that it is not suitable for a resonance so deep in
he complex plane, so close to a threshold and other singularities, and so close to the Adler zero imposed by chiral
ymmetry. The spread of the results in Fig. 37 using a Breit–Wigner formalism speaks for itself about this inadequacy.
he rest of the results shown in the figure for the κ/K ∗

0 (700) resonance include at least some basic features arising from
CD [99,123,257,258,321,321–324]. Some others resort to the unitarization of ChPT either by using the N/D or Inverse
mplitude Method (IAM) [23,25,26,34,102] (For recent reviews of ChPT unitarization see [13,218,221,222]). Generically,
hese approximate the left-hand cut contributions at a given order in ChPT, and make use of dispersion relations to
nitarize the ChPT amplitude of a given order. An alternative way of implementing dispersion relations over ChPT in
his channel is the one of the Beijing group [208,257], which produces a rather stable result for the pole position. Finally
very sound determination comes from the dispersive study of the Paris group [97]. Here the authors make use of a
olution to FTPWDR in [43] obtained without using data in that energy region for the S and P waves. Then they use that
olution as input into HPWDR to extract the κ/K ∗

0 (700) resonance. It is also very relevant to remark that in their analysis
hey showed that the κ/K ∗

0 (700) pole lies within the applicability range of their choice of HPWDR.
On the lattice QCD front, this resonance has also been tackled recently, following developments in the calculation of

eson–meson scattering phase shifts, which we illustrated in Fig. 3. Unfortunately, the pole is not a direct observable, but
nce again it has been extracted using models. Nevertheless, as can be seen in [100,287], at mπ ≃ 400 MeV the κ/K ∗

0 (700)
ppears as a virtual bound state, compatible with what we know from unitarized NLO ChPT [102,288]. However, using
ighter pion masses between 200 and 400 MeV the pole extraction becomes rather unstable [72], even though the basic
eatures of the partial wave are well described, as seen in Fig. 3. In the aforementioned work the Lüscher formalism [325]
as extensively used to produce many different energy levels for each pion mass, which produces a very constrained
esult on the real axis. The authors of this study, when referring to lighter mπ , stated on the scalar wave that ‘‘Even
ith precise information about the amplitude for real energies, the analytic continuation required to reach any pole is
ufficiently large that a unique result is not found’’ [72]. This supports our idea that a more elaborated, dispersive analysis
s needed at lower mπ to extract accurate information when performing analytic continuations. This same behavior can
e seen for the σ/f0(500), where for heavier mπ the extraction is pretty stable [289], but becomes rather unstable for
ion masses near the physical one [74,288,326].
It is not so clear how large the effect of the Adler zero is when the pion mass is really heavy, and these resonances

ppear as bound or virtual bound states. Nonetheless, the main problem when dealing with lighter extractions is that
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Fig. 38. κ/K ∗

0 (700) poles from lattice calculations [101] with mπ ≃ 317MeV (left) and mπ ≃ 176MeV (right). Note how the parameterizations
including the Adler zero (darker markers) have a smaller spread when the pion mass is lighter, and they produce little systematic spread between
themselves.
Source: Figure taken from [101].

the subthreshold features and left-hand cuts start playing a non-negligible role in the extraction. Thus one needs to
include as much information as possible to get a reliable determination of the resonance pole position. There exists
a very recent lattice QCD determination of the κ/K ∗

0 (700) resonance at close-to-physical pion mass [101]. We have
included their figure as Fig. 38 to illustrate our previous explanation. In the left panel, the heavier pion-mass results
(mπ ≃ 317 MeV) are depicted, whereas the lighter pion-mass results are shown on the right panel (mπ ≃ 176 MeV). Of
the four different parameterizations used by the authors, the darker ones are compatible among themselves, and their
uncertainties shrink when the pion mass decreases. These two include the Adler zero at LO in ChPT, which produces a
significant improvement when extracting the resonance, as the lighter mπ , the closer to the resonance lies the Adler zero.
The other two parameterizations are built with K -matrix and effective range formalisms. This picture may illustrate just
how challenging the extraction of broad resonances is, and why incorporating first principle features from QCD into our
amplitude analyses is paramount to the robust determination of the QCD spectra. Lattice QCD collaborations will be able
to access close-to-physical pion mass in the near future and thus, to extract their resonance poles, an approach based on
constraining the amplitudes and the data, like ours, seems to be a must.

Nevertheless, despite all this growing support for its existence and properties, the κ/K ∗

0 (700) still carries the ‘‘Needs
onfirmation’’ label in the RPP [95]. Thus, following the quotation at the beginning of this subsection, we have very
ecently proportioned further weight of evidence in support of the existence and precise parameter determination of this
trangeness carrying resonance.
Let us first remember that in Eqs. (53)–(55) we have provided several partial-wave projected fixed−t and hyperbolic

ispersion relations (FTPWDR and HPWDR, respectively) to constrain the partial waves. In principle, one could think about
sing FTPWDR rather than HPWDR, because their dependence on ππ → KK̄ is much smaller. However by comparing
heir respective applicability domains in Fig. D.49 versus Fig. D.51 we see that, even though their applicability on the real
xis is rather similar and overlaps widely with the region of the κ/K ∗

0 (700) nominal mass, the domain of validity in the
omplex plane of the FTPWDR is much smaller and, unfortunately, it cannot reach the position of the κ/K ∗

0 (700) pole.
his is why the Paris group, as so do we, have to resort to HPWDR. Note that the choice of the a parameter defining
ur hyperbolae is paramount. As explained in Section 3 and Appendix D, we could think of changing a to increase the
pplicability region of the HDR on the real axis, as we have actually done for ππ → KK̄ . However, this would narrow
own the applicability region in the complex plane, as depicted in Fig. D.51, leaving out the κ/K ∗

0 (700) pole. Thus a
ompromise between the best a on the real axis and the complex plane must be found, which we consider satisfactory
or a = −10m2

π . Of course, right outside their applicability domains, we do not expect an abrupt disruption, but just a
moothly increasing disagreement between both sides of the dispersion relations, as the discrepancies are produced by
he πK box diagrams shown in Fig. D.47. Nevertheless, the rigorous determination of the pole with precision demands
hat we remain inside the applicability domain.

Thus, in [47] we have used our data parametrizations inside the HPWDR and we have found that there is indeed a
ole in the expected region in the scalar channel with isospin 1/2. The values of the pole position and the modulus of the
oupling are shown in Table 22, compared with other existing determinations in Fig. 37.
Note that we have calculated the poles using both the HPWDR obtained with one or no subtractions for the

ntisymmetric F− amplitude (red and blue symbols in Fig. 37). In addition, we have used as input both the UFD (hollow
ymbols) and CFD (solid symbols).
The first striking feature when we observe our dispersive results in that figure is that the results using the UFD as

nput with one or no subtractions are incompatible with each other. Actually, the two poles, which should be the same,
iffer by around 3–4 σ even when they are obtained from the same input. This outcome comes from the fact that, as
lready seen in Section 5.1 and shown in Fig. 34, the UFD is inconsistent with the dispersive representation. This result
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Table 22
Comparison between various poles and residues of the κ/K ∗

0 (700) resonance. The last two
lines are our dispersive outputs using the CFD as input. We consider the last line as our
best result. Here we also provide the phase (in radians) of the coupling.
Source: Table taken from [47].

√
spole (MeV) |g| (GeV) φg (rad)

K ∗

0 (700) [97] (658 ± 13) − i(279 ± 12) — –
K ∗

0 (700) [99] (670 ± 18) − i(295 ± 28) 4.4 ± 0.4 –
K ∗

0 (700) 0-sub (648 ± 6) − i(283 ± 26) 3.80 ± 0.17 −1.50 ± 0.05
K*

0(700) 1-sub (648 ± 7) − i(280 ± 16) 3.81 ± 0.09 −1.49 ± 0.07

is very important because it illustrates how even using the same input in the real axis the extrapolation to the complex
lane can be rather unstable depending on the method used unless one makes sure that the input satisfies a whole set
f dispersion relations. Moreover, if this happens even using dispersion relations to make the analytic continuation, one
an imagine that using any model the instability could be even larger.
In contrast, when we use the CFD, the poles move away from their UFD values by around 2 deviations and the results

rom the unsubtracted and once-subtracted HPWDR agree perfectly well, as seen in the last two lines of Table 22. Actually,
hey agree so well that they are hard to distinguish in Fig. 37.

Although both CFD determinations agree remarkably well, we have highlighted in Table 22 the one obtained using the
ubtracted antisymmetric amplitude F− because we have found that it is the most stable under variations of the partial
aves and modifications of the a parameter. This is not surprising considering that the unsubtracted F− is dominated
ostly by the ππ → KK̄ g1

1 (t) partial wave, in particular by its pseudo threshold region, as shown in Figs. 29 and 35. We
hus consider that the result coming from the once subtracted case is more robust, and favor it as our final result.

In the second line of Table 22 we have also provided the value of the κ/K ∗

0 (700) pole that we obtained by applying
he method of Padé sequences reviewed in the previous section. It can be seen that, although it is much less precise, it
erfectly overlaps within uncertainties with our dispersive determinations, thus validating the method. In addition, in the
irst line of the same table we supply the previous dispersive result of the Paris Group [97], with which we agree well
ithin uncertainties. We want to emphasize once again that they did not use data on the S and P waves in the elastic
egion, but solutions of the FTPWDR equations with input from higher energy data and other partial waves. In contrast,
urs is obtained from a data fit using the data in that region. They are therefore independent determinations with different
nput and rather different extractions. For instance, this shows that the fact that their P-wave prediction in [97] does not
escribe data, as seen in Fig. 23, does not affect dramatically the κ/K ∗

0 (700) determination.
In conclusion, we are confident that this is the kind of confirmation required to settle the existence of this state.

oreover, the pole parameters and couplings are now known with great precision, about an order of magnitude less than
urrently evaluated in the RPP.
Finally, following the same methods, but applied to the P-partial wave, it is also possible to determine the pole and

esidue of the vector K ∗(892) resonance. Actually, as we saw in the third row of Fig. 34, the CFD agreement for the three
1/2
1 (s) dispersion relations is remarkable. Note that, since this resonance is much narrower, its associated pole lies very
ear the real axis and all three partial-wave dispersion relations (four, taking into account the two different subtractions
or F−) can be used for its determination. The difference between using one or another is in the 1 MeV range. We have
hus averaged them to find the pole that was already advanced in [47]:

√
sK∗(892) = (890 ± 2) − i(25.6 ± 1.2)MeV ,

nd its dimensionless residue has modulus |g| = (5.69 ± 0.12) and phase φg = −(0.076 ± 0.008) (in radians).

.4. On the nature of the κ/K ∗

0 (700)

There is growing evidence for the existence of hadrons whose composition falls beyond the ordinary quark–antiquark
lassification of mesons or the three-quark classification of baryons. Most modern investigations of the dynamical models
hat form exotic resonances focus on individual angular momenta. This provides a framework to extract the properties of
given resonance at complex-energy values. However, in this section we will briefly summarize our efforts in combining
ispersion relations and the analytic properties of amplitudes for complex angular momenta. This helps us to connect
esonances of different spins under their Regge trajectories in the squared mass vs. spin, (s = M2, J), plane (see [103] for
textbook introduction to Regge Theory). A well-known feature of ordinary hadrons is that they can be classified into
eal and linear Regge trajectories with an almost universal slope of around 0.9 GeV−2. In the case of mesons, it can be
aively interpreted in terms of the tension of the rotating flux tube between the quark and antiquark. As a result, strong
eviations from this behavior suggest a different microscopic nature.
We are particularly interested in the investigation of the internal structure of the κ/K ∗

0 (700) resonance, debated
or many decades. Many different models have determined its structure to be different than that of qq̄ mesons. In
articular, many past works show some predominant meson–meson (also called molecular) or tetraquark nature for
his state [16,25,26,29,31,34,317,318,320,327–330]. Moreover, many of these works find striking similarities between the
77
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/K ∗

0 (700) and σ/f0(500) resonances, pointing to a similar internal composition. This last property would rule out the
dea of the σ/f0(500) being a glueball, as the κ/K ∗

0 (700), due to its strangeness, cannot be one.
As explained above, Regge Theory emerges as an application of analytic constraints in the complex angular momentum

lane. Even though no such thing as an analytic formula for hadronic states exists, we know qq̄ meson states should be
lassified unambiguously by a straight Regge trajectory, with a universal slope. However, both κ/K ∗

0 (700) and σ/f0(500)
esonances are at odds with this classification [331,332], which illustrates that it is not possible to accommodate them
nto Regge families of resonances, or find suitable ‘‘Regge partners’’. Moreover, we shall review below how from dispersion
heory it can be shown that the κ/K ∗

0 (700) Regge trajectory does not follow the ordinary behavior and has non-ordinary
egge parameters. Its trajectory is not dominated by its real part, which is not linear, and its slope is 5 times smaller than
he universal one for ordinary hadrons. On top of that, the behavior of this trajectory at low energies is similar to that of
he σ/f0(500), as will be seen in Fig. 40. This is yet another piece of evidence supporting the idea that the κ/K ∗

0 (700) and
/f0(500) resonances are non-ordinary hadrons.
In the following, we will briefly summarize the elastic dispersive formalism that allows us to calculate the Regge

rajectory of a resonance just from its pole parameters. There are no fits to other resonances involved. More details can
e found for mesons in the following Refs. [104–106,237,333–336] or in Refs. [337–339] for baryons. This formalism
ill be applied here to the K ∗(892), K ∗

0 (1430), and κ/K
∗

0 (700) resonances. The K ∗

0 (1430) is not completely elastic, but
he formalism is still applicable since it predominantly decays to πK with a branching ratio of around (93 ± 10)%. The
ther two are purely elastic. The first two are considered ordinary qq̄ mesons, and their trajectories come out as such. In
ontrast, the κ/K ∗

0 (700) is believed to be a non-ordinary resonance and, as we will see next, this is supported by the fact
hat its trajectory does not follow the expected qq̄ behavior.

We first assume that the partial wave can be approximated by the nearest resonance that dominates the line shape as

tl(s) =
β(s)

l − α(s)
+ fbackground(l, s), (124)

here α(s) is the Regge trajectory and β(s) the residue of the resonance pole. Then, from elastic unitarity

Im α(s) = σπK (s)β(s), (125)

here σπK (s) is the two-particle phase space, already defined in Eq. (2). Finally by making use now of the Schwarz
eflection symmetry one gets α∗(s) = α(s∗) and β∗(s) = β(s∗). Note that β(s) is real in the real axis above threshold.

Since we are dealing with meson–meson scattering, we already saw in Fig. 20 that partial waves have three main
nalytic structures in the first Riemann sheet. First and foremost, the right-hand cut is created by s-channel unitarity.
econd, the left-hand cut is produced by crossed channel interactions, and lastly, the circular-cut is produced when the
wo mesons have unequal masses. However, it can be proven [237] that the Regge trajectory α(s) and the residue β(s)
re only related to the right-hand cut, starting at the first two-particle threshold. It is, therefore, possible to write the
ustomary dispersion relation for the Regge trajectory as

Re α(s) = α(0) +
s
π

∫
∞

sth

Im α(s′)
s′(s′ − s)

ds′, (126)

where we have included one subtraction to ensure convergence, and we have factorized out explicitly the intercept of the
trajectory. More subtractions can be included straightforwardly, as can be seen in [105]. It is now clear from these two
equations above that obtaining a closed dispersive description for both α(s) and β(s) demands solving a system of coupled
ntegral equations. In the case of the β(s) function, one first defines the reduced residue as γ (s) = β(s)ŝ−α(s)Γ (α(s)+3/2),
ith ŝ = 4p2/s0. In order to have the right dimensions, we have introduced a scale s0, conveniently set to s0 = 1GeV 2

ithout losing generality. This reduced residue is an analytic function except for a cut on the real axis above threshold,
here its phase is known and hence can be obtained from a Muskhelishvili–Omnès function, in a relatively similar
pproach to the one we followed in Section 3.6. For more details on the derivation, we refer the reader to Refs. [104–106].
The final closed system of equations, for the πK case, reads

Reα(s) = α0 + α′s +
s
π
PV
∫

∞

(mK+mπ )2
ds′

Imα(s′)
s′(s′ − s)

, (127)

Imα(s) =
σπK (s)b0ŝα0+α′s

|Γ (α(s) +
3
2 )|

exp
(

−α′s[1 − log(α′s0)] +
s
π
PV
∫

∞

(mK+mπ )2
ds′

Imα(s′) log ŝ
ŝ′ + arg Γ

(
α(s′) +

3
2

)
s′(s′ − s)

)
, (128)

β(s) =
b0ŝα0+α′s

Γ (α(s) +
3
2 )

exp
(

−α′s[1 − log(α′s0)] +
s
π

∫
∞

(mK+mπ )2
ds′

Imα(s′) log ŝ
ŝ′ + arg Γ

(
α(s′) +

3
2

)
s′(s′ − s)

)
, (129)

here PV denotes the principal value.
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Fig. 39. Ordinary vs. non-ordinary Regge trajectories obtained from a dispersive representation with only their lightest pole as input. Let us recall
that for ordinary Regge trajectories the imaginary part is negligible and the real part should be a rising straight line. Notice the ordinary linear
Regge trajectories of the K ∗(892) (Top left), K ∗

0 (1430) (Top right, we provide two extractions, either from its Breit–Wigner shape or with Padé
sequences from data constrained with FDRs) and ρ(770) (Bottom left). In contrast, the σ/f0(500) (Also bottom left) and κ/K ∗

0 (700) (Bottom right)
have non-ordinary trajectories.
Source: Figures are taken from [104–106], when the K ∗

0 (700) was still called K ∗

0 (800).

As can be easily seen this coupled system of equations depends on three free parameters, which are determined once
we impose that the partial wave of Eq. (124) should contain a pole at a given position with a given residue. In particular,
in [106], we used the pole positions extracted in [99] employing the Padé sequence method, just explained in Section 6.2
above, as the inputs for the κ/K ∗

0 (700) and K ∗

0 (1430) resonances. One minor technical remark is in order: for the scalar
wave, we also imposed on the integral equations the existence of an Adler zero at the LO ChPT position.

The real and imaginary parts of the resulting trajectories are shown in Fig. 39, compared to similar calculations for
other resonances [104,105]. All their resulting parameters are listed in Table 23. The method successfully yields the
required Regge parameters and at the same time, the resulting amplitude approximates reasonably well the energy region
surrounding each resonance (see the details in [104–106]), consistently with being the dominant contribution there.
Notice that the purpose is not to reproduce the partial waves within uncertainties in the whole elastic region, as that
could only be achieved by introducing backgrounds that are neglected here.

Let us now briefly discuss these results. The solutions for the ρ(770), K ∗(892) and K ∗

0 (1430) yield ordinary, straight
Regge trajectories, at least near and beyond the resonance under consideration, whose slopes are consistent with the
universal one. Moreover, when checking higher spin partners, these fall within these trajectories or very close to them,
even though the parameters of the ‘‘straight line’’ were not fitted, but obtained from the dispersive representation using
only the pole parameters of the lighter particle. On top of that, the real part of the trajectory dominates over the imaginary
part above the resonance mass. In contrast, the κ/K ∗(700) and σ/f (500) trajectories do not fit this universal pattern.
0 0
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Table 23
Dispersively calculated Regge trajectories [104–106].

α0 α′ GeV−2 b0
ρ(770) 0.52 ± 0.02 0.902 ± 0.004
K ∗

0 (1430) −1.28+0.01
−0.17 0.81+0.01

−0.04 2.5+1.1
−0.4

K ∗(892) 0.32 ± 0.01 0.83 ± 0.01 0.48 ± 0.03

σ/f0(500) −0.090+0.004
−0.012 0.002+0.050

−0.001
κ/K ∗

0 (700) −0.27 ± 0.03 0.11 ± 0.09 0.45+0.11
−0.08

Fig. 40. Trajectories of the σ/f0(500) (red line and area covering uncertainties) and κ/K ∗

0 (700) (blue line and area covering uncertainties) in the
(Re α, Im α) plane as functions of s. The lines are continuous and thick for s < 2GeV 2 , which is where, at most, the method could be justified.
Above that energy, we just show the extrapolation of the results. We also show, for comparison, three black dashed lines, labeled with different
values of G, which correspond to the trajectories of the corresponding Yukawa potentials V (r) = Ga exp(−r/a)/r [341,342,344,345] with a’s given
in the text. This is a colored version of our figure in [106].

These trajectories are highly nonlinear, and the slopes are many times smaller than the ordinary ones. This indicates that
the scale of the dynamics that govern the binding of these resonances is larger than typical quark–antiquark dynamics.
Furthermore, the imaginary part of the trajectory is larger than its real part, which is the opposite of what is expected
for ordinary mesons. This indicates a strong non-ordinary behavior for these two states.

Finally, we also show in Fig. 40 the behavior of both the σ/f0(500) and κ/K ∗

0 (700) Regge trajectories in the
Re α, Im α) plane. Let us remark that the low-energy part of these trajectories resembles those of non-relativistic
ukawa potentials [340–342]. In particular below 2 GeV both trajectories can be approximated by a given potential
(r) = Ga exp(−r/a)/r , which they match from s = −∞ to the two-particle thresholds. At the two-particle thresholds,

the imaginary part becomes greater than zero, with a very step rising, which once again can be described by the Yukawa
potentials. Up to s = 2GeV 2 the σ/f0(500) trajectory is almost equal to that of a G = 2 Yukawa potential, while the
line with G = 1.4 is quite similar to the κ/K ∗

0 (700) trajectory. We can thus estimate the effective ranges of the closest
Yukawa potential in the σ/f0(500) case, namely [104] aππ = 0.5GeV −1

≃ 0.1 fm, as well as in the κ/K ∗

0 (700) case:
aπK = 0.36GeV −1

≃ 0.07 fm. As explained in [106], the ratio between them is numerically very near the inverse of the
ratio between the reduced masses of the respective scattering systems. Thus, it seems that the pion and kaon masses set
the scale for the binding dynamics and therefore support again a possible ‘‘molecular’’ nature. Let us nevertheless remark
that the effective range of the Yukawa potentials needed to mimic these trajectories at low energies is rather small for a
meson [106], of the same order of the scalar radius found in [343] for the σ/f0(500).

Altogether, our results support a predominantly non-ordinary microscopic nature for the κ/K ∗

0 (700), whose behavior
s very similar to that of the σ/f0(500). These results may suggest that their properties are predominantly controlled by
eson–meson dynamics.

. Other applications

.1. πK → πK threshold and subthreshold parameters from sum rules

As we have already explained in the introduction, the values of the threshold parameters, defined in Eqs. (13) and (14),
re of interest for our understanding of low-energy hadron physics, since, in principle, this is the most suitable regime
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Table 24
Previous determinations of πK scalar scattering lengths from various approaches. Note that lattice results tend to yield lower
values than dispersive results for both scattering lengths

Reference mπa
1/2
0 mπa

3/2
0 Description

Büttiker et al. (2004) [43] 0.224 ± 0.022 −0.0448 ± 0.0077 Dispersive Roy–Steiner
Peláez-Rodas (2016) [41] 0.220 ± 0.010 −0.0540+0.010

−0.014 Fit constrained with FDR

Bijnens–Ecker (2014) [86] 0.142 −0.071 ChPT LO
Bijnens–Ecker (2014) [86] 0.173(0.169) −0.064(−0.066) ChPT NLO fit 14 (free fit)
Bijnens–Ecker (2014) [86] 0.224(0.226) −0.048(−0.047) ChPT NNLO fit 14 (free fit)

Miao et al. (2004) [87] – −0.056 ± 0.023 lattice, improved Wilson quenched
NPLQCD (2006) [88] 0.1725 ± 0.0017+0.0023

−0.0156 −0.0574 ± 0.016+0.0024
−0.0058 lattice. Domain-wall valence

Flynn–Nieves (2007) [89] 0.175 ± 0.017 – lattice+Omnès Dispersion Relation
Fu (2012) [91] 0.1819 ± 0.0035 −0.0512 ± 0.0018 lattice, staggered, moving wall source
PACS-CS (2014) [92] 0.182 ± 0.053 −0.060 ± 0.006 lattice, improved Wilson
ETM (2018) [93] – −0.059 ± 0.002 lattice, twisted mass.

for low-energy effective field theory. Namely, with the πK → πK threshold parameters, we are testing SU(3) Chiral
erturbation Theory (ChPT) and its convergence when the strange quark is taken into account since its mass is not as
mall as those of non-strange quarks. We emphasize again that we are working in the isospin conserving approximation
nd for studies of isospin violation in πK → πK we refer to [160–163]
The problem to extract these threshold parameters is that the kinematic suppression makes it very hard to obtain

recise data, or even data at all, close to threshold. For instance, see all the data plots in Section 2.1 for πK → πK partial
aves and note that the lowest energy data are at least 100 MeV above threshold, and even those points are rather

solated and usually with large uncertainties. Therefore, extracting threshold parameters directly from scattering data
epends strongly on the precise parameterization or model used for the extrapolation down to threshold. It is advisable
o avoid such a strong model dependence. As we will see below, some determinations from πK atom lifetimes provide
nformation on scattering lengths, although their uncertainties are rather large.

Sum rules are obtained from dispersion relations evaluated at particular points or limits and this makes their prediction
uch more robust than direct extractions using a parameterization of the data. The reason lies in the integral nature of the
um rule, which makes rather irrelevant the details of a particular parameterization around threshold, thus suppressing
ery strongly, if not completely, any model or parameterization dependence. In addition, an integral determination
ypically yields a much smaller uncertainty. Therefore, generically, sum rules provide the most accurate and robust method
o determine threshold parameters.

Moreover, sum rules for threshold parameters provide additional consistency tests for data parameterizations. In
his section we will first discuss the scalar scattering lengths, since they have attracted quite some attention recently,
iscussing also the Adler zeros in these waves. Next, we will present values for both scattering lengths and slopes for all
aves up to angular momentum 2 and finally discuss the subthreshold parameters.

.1.1. Scalar scattering lengths
At present, there is a great deal of interest in the values of the S-wave scattering lengths from ChPT, dispersion

heory, and lattice gauge theory communities, since some tension exists between the determinations using these different
echniques. This was illustrated in Fig. 4 in the introduction, where we can see in the (a1/20 , a3/20 ) plane that, for both
cattering lengths, lattice QCD results (in red) tend to produce lower values than dispersive results (in brown and green).
he tension is somewhat more evident for the a1/20 channel, which, as we have seen, is probably the most controversial
ne and includes the κ/K ∗

0 (700) meson. Concerning ChPT, the LO receives sizable NLO corrections that take the values
loser to lattice results, but in order to reach the dispersive results the NNLO corrections should be even bigger, casting
oubts about the good convergence of SU(3) ChPT. Actually, in the extensive ChPT review in [86] it is shown that the πK
cattering lengths have the worst convergence of all the observables under consideration. The precise values of all these
alculations are shown in Table 24.
Experimentally the best determination, avoiding model dependencies, is the combination

a−

0 =
1
3
(a1/20 − a3/20 ) = 0.11+0.09

−0.04m
−1
π (DIRAC), (130)

obtained in 2017 by the DIRAC Collaboration [94] by studying the lifetime of πK atoms at CERN. The relation between
the decay width of these atoms and the scattering lengths including isospin violation and QED corrections can be found
in [346,347]. The observation of these atoms and their decay lifetime is a remarkable experimental achievement, but
the uncertainty of the result, which is represented by a beige band in Fig. 4, labeled DIRAC 17, is not enough to discern
between present lattice QCD or dispersive results.

So far, the best dispersive determinations come from the 2004 Roy–Steiner analysis of [43] (Brown ellipse in Fig. 4)
or our 2016 fit to data constrained with forward dispersion relations [41] (Green result labeled ‘‘FDR-CFD-old’’ in Fig. 4).
Note, however, that their uncertainties are rather large and, as explained several times, that the authors of [43] solve the
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oy–Steiner equations without using data in the πK → πK elastic region. Also, our result in [41] does not have separate
ispersive constraints for each partial wave, but for the whole isospin amplitudes. Actually we only had a sum rule for
−

0 ; namely, Eq. (132) below. In what follows we will provide new independent values obtained from sum rules coming
rom Roy–Steiner equations for each partial wave. Let us emphasize that no convergent sum rule for a+

0 can be obtained
using the dispersion relations provided in this work. Therefore, whenever we quote the dispersive aI0 value in the isospin
basis, its component orthogonal to a−

0 comes directly from the CFD parameterization described in Sections 4.1 and 5.2.
In addition, we will provide different sum rules for the most controversial threshold parameters. In later subsections,

we will use them to obtain precise values of the scattering lengths and slopes. Having different sum rules for the
same observables, and therefore weighting differently the input, will also provide strong consistency tests of our data
parameterizations.

At this point, a technical remark is in order. Threshold parameters correspond to s = m2
+
, but setting s directly to this

value, which coincides with the lower integration limit, would not allow calculating the principal value needed for real s
in the dispersion relations. One should then exert caution to define these sum rules, as the s → m2

+
limit has to be taken

after the dispersion relation has been evaluated with its principal value. For example, a sum rule for the a−

0 scattering
length can be obtained from the F− FDR, (39), as:

a−

0 =
mπmK

2π2m+

lim
s→m2

+

PV
∫

∞

m2
+

Im F−(s′)
(s′ − m2

−)(s′ − s)
ds′. (131)

ortunately, the imaginary part of the amplitude Im F−(s′) ∝

√
s − m2

+ suppresses the singularity at threshold, and hence
he principal value can be removed when taking the limit, to yield

a−

0 =
mπmK

2π2m+

∫
∞

m2
+

Im F−(s′)
(s′ − m2

−)(s′ − m2
+)

ds′. (132)

Thus, in this case, the combined appearance of the s → m2
+

limit and the principal value allows us to get rid of both in
he final expression.

However, obtaining a simple algebraic expression for the S-wave bIℓ parameters requires a slightly more elaborated,
ut rather standard, manipulation [48,180,183] to deal with the divergent contribution arising from the Im f I0 (s)/(s

′
− s)

ehavior close to threshold. Namely, since this divergence is proportional to (aI0)
2/(s′−m2

+
)3/2 we can add to our dispersive

xpression this factor multiplied by

PV
∫

∞

m2
+

ds′

(s′ − s)
√
s′ − m2

+

= 0. (133)

When this is done the cancellation of the divergence is directly seen inside the integral, which allows us to get rid of the
principal value and the limit outside. The price to pay is the appearance of a new term in the integrand.

In particular, under these manipulations, we can write sum rules for scattering lengths and slopes coming from F+ [41]3

as follows:

SR1 ≡ b1/20 + 3a1/21 +
a1/20 m+

2mπmK
(134)

=
m+

8π2mπmK

∫
∞

m2
+

ds′
[
Im F+(s′) + 2Im F−(s′)

(s′ − m2
+)2

− 8m+π
√
mπmK

(a1/20 )2

(s′ − m2
+)3/2

−
Im F+(s′) − 2Im F−(s′)
(s′ + m2

+ − 2ΣπK )2

]
,

nd

SR2 ≡ b3/20 + 3a3/21 +
a3/20 m+

2mπmK
(135)

=
m+

8π2mπmK

∫
∞

m2
+

ds′
[
Im F+(s′) − Im F−(s′)

(s′ − m2
+)2

− 8m+π
√
mπmK

(a3/20 )2

(s′ − m2
+)3/2

−
Im F+(s′) + Im F−(s′)
(s′ + m2

+ − 2ΣπK )2

]
.

ote that in [41], as long as we only considered FDRs, which are not projected in partial waves, we took these sum rules
s additional constraints for our partial-wave fits. Since here we are also considering partial-wave dispersion relations,
hese are no longer needed as constraints and we will see they are still well satisfied.

If we used FTPWDR we would obtain for a−

0 the same sum rule already obtained from FDR in Eq. (132). However, using
he HDR at t = 0 and b = ∆2

+ a2 − 2∆a the dispersion relation for F−/G1 can be related to a−

0 , leading to the following

3 We fixed an errata with respect to our published expression in [41].
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Table 25
S-wave scattering lengths (mπ units).

Ref. [43] UFD CFD

a1/20 0.224 ± 0.022 0.241 ± 0.012 0.224 ± 0.010
a3/20 −0.0448 ± 0.0077 −0.067 ± 0.012 −0.048 ± 0.006

Fig. 41. Comparison between various sum rules and determinations coming from different Roy–Steiner equations, compared with both lattice QCD
redictions and ChPT calculations. The references in the legend are as in Fig. 4, except that we are now providing as a cyan diamond our new result
btained directly from our dispersively constrained fit to data (CFD), listed in boldface in Table 25, as well as our best or ‘‘Final value’’, shown as
blue ellipse and listed in Table 29. The latter is obtained by combining the dispersive sum rules explained in Section 7.1. Note that the two axes
re plotted with different scales to maximize the visibility of the region of interest.

um rule [43,348]:

8πm+a−

0

m2
+ − m2

−

=
1
2π

∫
∞

4m2
π

dt ′

t ′
Im

G1(t ′, s′b)√
(t ′ − 4m2

π )(t ′ − 4m2
K )

+
1
π

∫
∞

m2
+

ds′
Im F−(s′, t ′b)

λs′
. (136)

his sum rule is dominated by the ππ → KK̄ amplitude and thus, for all means and purposes, it is independent from
he value obtained with Eq. (132). In practice, we will calculate this sum rule with a = −10.9m2

π , which maximizes the
oy–Steiner applicability in the ππ → KK̄ channel. Note that we only obtain a sum rule for a−

0 from the HDR without
ubtractions for F−, since a−

0 is input in our subtracted F− HDR case.
At this point, we can use the UFD and CFD parameterizations to determine the πK → πK threshold parameters, which

can be done either directly from the parameterizations, or from the sum rules, which, being obtained from an integral
would suppress the πK → πK parameterization dependence. Thus, in Table 25 we have collected the scattering lengths
obtained directly from the UFD and CFD parameterizations. Of course, we think the constrained results are better because
they are consistent with dispersion relations. We can see that there is a change from UFD to CFD, by roughly 1.5 standard
deviations, which brings our CFD results very close to those of the dispersive calculation of the Bonn–Paris group [43]. We
are thus providing an independent dispersive confirmation of those older dispersive results, this time using data together
with the dispersive constraints, whereas in [43] they were obtained from Roy–Steiner solutions.

We are showing our results obtained directly from our CFD parameterization as a cyan diamond and cross in Fig. 41,
which overlaps nicely with the brown ellipse from [43]. Note that it also overlaps with our old result [41], where we only
used FDRs as constraints. The use of those FDRs together with the Roy–Steiner equations in this review has moved the
central value within the old error bars, and has reduced considerably our uncertainties. Note that the errors in Table 25,
plotted as a cross in Fig. 41, are given as uncorrelated since they come from the direct CFD parameterization, where
we treat all input parameters as uncorrelated and thus each partial wave as independent. This is a conservative error
estimate, but we will discuss below the correlation between scattering lengths once we use the a−

0 numerical values from
sum rules.

The nice consistency of the CFD versus the inconsistency of the UFD is illustrated in Table 26. There we see an almost
perfect agreement between the a−

0 obtained directly from the CFD parameterization, and the sum rules in Eqs. (132) and
(136) using CFD as input. In contrast, for the UFD, the inconsistencies reach the three standard-deviation level.

Therefore, sum rules not only provide stringent constraints but sometimes also the most reliable and precise results
for threshold parameters, suppressing model dependencies too. Thus, once we have shown that these two sum-rule
determinations with CFD input are consistent, they provide a very stringent and robust result for a− which we have
0
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Table 26
Comparison of the value a−

0 obtained directly from
the parameterization versus the value obtained from
different sum rules, coming from forward dispersion
relations (FDR) Eq. (132) or from hyperbolic dispersion
relations (HDR), Eq. (136).

UFD CFD

3mπa−

0, direct 0.309 ± 0.016 0.273 ± 0.012
3mπa−

0, FDR 0.290 ± 0.010 0.275 ± 0.010
3mπa−

0,HDR 0.253 ± 0.015 0.274 ± 0.016

Table 27
Comparison between the sum rules of Eqs. (134) and
(135) calculated using the UFD or CFD parameteriza-
tions as input, versus the values obtained directly from
each parameterization.

UFD CFD

SR1 0.187 ± 0.006 0.182 ± 0.006
DirectSR1 0.163 ± 0.010 0.176 ± 0.013
SR2 −0.042 ± 0.004 −0.039 ± 0.003
DirectSR2 −0.052 ± 0.005 −0.037 ± 0.006

included in Fig. 41 as light green and purple bands. Let us recall that they are rather independent since the sum rule from
FDR, i.e. Eq. (132) (the ‘‘FDR SR CFD’’ green band), is dominated by the scalar πK → πK scattering wave, whereas the
um rule from HDR, i.e Eq. (136) (the ‘‘HDR SR CFD’’ purple band) is dominated by the ππ → KK̄ scattering contribution.
ncidentally, had we used as input the UFD parameterization, which is not consistent with dispersion relations, these two
ands would not even overlap.
A relatively similar pattern is observed in Table 27, where we compare the results of the sum rules SR1 and SR2

n Eqs. (134) and (135) using as input either the UFD or CFD parameterizations with their respective values obtained
irectly from the fits. Once again the CFD results are wonderfully consistent, whereas the UFD shows some tension at the
standard deviation level.
So far we have not discussed partial-wave dispersion relations to obtain sum rules, but they can also be expanded

round threshold to obtain further integral expressions for threshold parameters. At first, it may seem we have three
ore sum rules since we can expand the partial-wave fixed-t dispersion relations (FTPWDR) as well as the unsubtracted
nd once-subtracted partial-wave hyperbolic dispersion relations (HPWDR). However, for the scalar scattering lengths,
he HPWDR sum rule with one subtraction coincides with the direct CFD calculation, whereas the unsubtracted HPWDR
s almost identical to (136), the only difference is that a = 0 for the latter. Finally, the FTPWDR sum rule is identical
o (132).

Hence, in practice we just have two independent a−

0 sum rules, i.e., Eqs. (132) and (136). We can now use them to get
ur final and more reliable values of the scalar scattering lengths in the isospin basis, which are more robust than those in
able 25, obtained directly form the CFD. Of course, for the orthogonal combination a1/20 + a3/20 (or for a+

0 when needed),
hich does not have a sum rule, we still take the direct CFD parameterization. Thus, the numerical values for the scalar
cattering lengths in the isospin basis are listed in Table 28. The first two columns are obtained by using values from each
ne of our a−

0 sum-rules: FDR Eq. (132) and HDR Eq. (136). Nevertheless, given that the two a−

0 sum rules have rather
ifferent inputs, we have calculated their weighted average and statistical error, to which we have added a systematic
ncertainty.4 This constitutes our ‘‘Final Value’’, provided in the third column, for which we quote correlated uncertainties
n the isospin basis, whose correlation matrix is provided in the next column. The reason is that, contrary to CFD direct
alues in Table 25, the calculation for our Final Values is not done from independent partial waves in the isospin basis.
nstead, we use the weighted average of sum rules for a−

0 . These correlated uncertainties are represented by an ellipse in
ig. 41. It can be seen that, after rounding up numbers, the central Final Values are almost identical to the CFD result, and
he uncertainties are very similar. It is also nicely compatible with previous dispersive or ChPT determinations, provided
n the last two columns of Table 28. Note that our estimated uncertainty is somewhat smaller than in [43], in particular,
ue to the small uncertainty from the FDR sum rule.
In summary, our calculations of the scalar πK scattering lengths show that simple unconstrained fits to data (UFD)

ield inconsistent values between the ‘‘direct’’ input and the sum rule output and even between different sum rules. This
s amended with the constrained fits to data (CFD), which show a remarkable consistency. In this review, we have thus
pdated our CFD values for the scattering lengths and we have also provided robust and model-independent results from
um rules for a−

0 , which lead to our ‘‘Final Values’’ in the isospin basis. Both the CFD and ‘‘Final Values’’ are remarkably

4 Calculated as the sum in quadrature of their separation from the mean, divided by two.
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Table 28
Determination of the πK scalar scattering lengths using the sum rule for a−

0 with our CFD as input. Let us remind that the combination orthogonal
to a−

0 comes directly from the CFD parameterization and not from a sum rule. This is why we provide the correlation matrix in the isospin basis.

This work sum rules with CFD input Correlation
matrix

Sum rules
[43] Fixed-t

NNLO ChPT
[85] and [86]∗FDR HDR Final value

mπa
1/2
0 0.226 ± 0.010 0.225 ± 0.012 0.225 ± 0.008

(
1 0.04

0.04 1

)
0.224 ± 0.022 0.224∗

mπa
3/2
0 × 10 −0.489 ± 0.052 −0.485 ± 0.066 −0.480 ± 0.067 −0.448 ± 0.077 −0.471∗

compatible among themselves and with previous dispersive determinations [43], including our own in [41], although our
uncertainties are now much smaller than then. In addition, the consistency between our different sum rules, which are
dominated by very different input, provides very robust and parameterization-independent constraints. We can therefore
conclude that the two standard deviation tension between dispersive analyses and the bulk of lattice results still remains.

In this subsection, we concentrated on the particular case of scalar scattering lengths. Let us now consider other partial
aves and higher orders in the threshold expansion.

.1.2. Sum rules for other threshold parameters of partial waves up to ℓ = 2
We provide in this subsection the sum rules for the ℓ = 1, 2 scattering lengths aIℓ as well as the ℓ = 0, 1, 2 slopes

I
ℓ. These are calculated from the low-momentum expansion around threshold of the partial-wave dispersion relations
btained either from ‘‘fixed-t ’’ dispersion relations (FTPWDR) Eq. (53) or from hyperbolic dispersion relations in Eqs. (54)
nd (55) (HPWDR). For this, we first expand their respective kernels (given in Appendix E) in a q2 power series that we
atch to the expansion in Eq. (14). We have truncated the expansion at second order on each wave and up to ℓ = 2

included. Not only do they provide tests for our amplitudes, but also, since all of them have been previously calculated
either from sum rules [43] or within ChPT [85], we will be able to compare with those predictions.

The analytic expressions are rather long and we will only provide here the most relevant ones, namely the P-wave
scattering lengths and the S-wave slopes for the + and — amplitude isospin combinations. Analytic expressions become
unmanageable as the order of the power of q2 grows, but can be obtained following the method we just described. We
will nevertheless provide numerical values for all scattering lengths and slopes up to ℓ = 2 at the end of the subsection.

Let us then provide first the sum rules for the aI1 scattering lengths, which we organize according to the type of
dispersion relation they come from:

• Scattering length sum rules from FTPWDR for ℓ = 1:

a+

1 =
1
π

∫
∞

m2
+

ds′
(

−2
3(s′ − m2

−)2
Im f +

0 (s′) +
2s′2 + 4m2

+
(s′ − m2

−
) − 2m4

+

(s′ − m2
−)2(s′ − m2

+)2
Im f +

1 (s′)

+
−10

3(s′ − m2
−)2

Im f +

2 (s′)
)

+
1
π

∫
∞

4m2
π

dt ′
2

3
√
3t ′2

Im g0
0 (t

′) +
5λ(t ′)

24
√
3t ′2

Im g0
2 (t

′) + da+

1
,

a−

1 =
1
π

∫
∞

m2
+

ds′
(

2
3(s′ − m2

−)2
Im f −

0 (s′) +
s′2 − 2s′m2

−
+ m4

+

(s′ − m2
−)2(s′ − m2

+)2
Im f −

1 (s′)

+
s′2 − 2s′(3m2

−
− 2m2

+
) + m4

+

3(s′ − m2
−)2(s′ − m2

+)2
Im f −

2 (s′)
)

+ da−

1
, (137)

where da+

1
, da−

1
stand for the contributions from higher partial waves, which are numerically very small but were

included in our numerical calculations.
• Scattering length sum rules from HPWDR for ℓ = 1:

a+

1 =
1
π

∫
∞

m2
+

ds′
(

−2
3(s′ − m2

−)2
Im f +

0 (s′) +
2m4

+

(
s′ − a

)
− 2s′

(
2am2

−
− 3as′ + s′2

)
+ 4m2

+
s′
(
m2

−
− s′

)
(a − s′)

(
s′ − m2

−

)2 (s′ − m2
+

)2 Im f +

1 (s′)

+

10
(

6as′(−am2
−+m2

+(m
2
−−a)+2as′−s′2)

(a−s′)2(s′−m2
+)

2 − 1
)

3
(
s′ − m2

−

)2 Im f +

2 (s′)

⎞⎟⎟⎠
+

1
π

∫
∞

4m2
π

dt ′
(

2

3
√
3t ′2

Im g0
0 (t

′) +
5(λ(t ′) + 6at ′)

24
√
3t ′2

Im g0
2 (t

′)
)

+ da+

1
,

a−

1 =
1
π

∫
∞

2
ds′
(

2(
′ 2

)2 Im f −

0 (s′) +
2m4

+

(
a − s′

)
+ 2s′

(
s′
(
a + s′

)
− 2am2

−

)
+ 4m2

+
s′
(
m2

−
− s′

)
a − s′

(
s′ − m2

)
2
(
s′ − m2

)
2

Im f −

1 (s′)

m+ 3 s − m−

( ) − +
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(
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)2 Im f −

2 (s′)×
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(138)

here the last one is obtained from an HDR with one subtraction for F−. Once again the di terms are due to higher partial
aves and they are very small, although we computed them in our calculations. Note that a is one of the parameters that
efine the hyperbolae, which we have chosen as a = −10m2

π to impose the HDR in our CFD parameterization.
Let us now provide the analytic expressions for the sum rules of the b±

0 parameters. Remember that, to perform the
ouble limit between the principal value and s → m2

+
, the singular part of the integrands must be removed, as explained

bove.

• Scattering slopes sum rules from FTPWDR for ℓ = 0:
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π
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+
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(139)

• Scattering slopes sum rules from HPWDR for ℓ = 0:
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where the last one is obtained from an HDR with one subtraction for F−. Recall that we have set a = −10m2
π . As before,

the di terms are due to higher partial waves, which we computed in our calculations, although they are numerically very
small.

Now, our CFD satisfies the dispersive representation and we have already seen that it yields consistent results for
the scalar scattering-length sum rules, whereas the UFD does not necessarily do so. Thus, we provide in Table 29 the
evaluation of all previous sum rules, as well as the scattering lengths for the D-waves and the slopes for the P and D-
waves – for which we have not provided analytic expressions – using as input our CFD parameterizations obtained in
Section 5. The first five columns are the results of this work. The first three correspond to sum-rule results from FTPWDR
and from HPWDR with one or no subtractions for F−. The fourth column contains what we consider our ‘‘Final Value’’
for each parameter, which we have obtained assuming that each one of the three sum-rule values, xi ± δxi, i = 1...3, for
a given observable x is an independent quantity. This is, of course, an approximation, although we have already shown
how different the size of the contributions from different input are for each kind of dispersion relation. We have then
used as weights their inverse squared uncertainties ωi = 1/(δxi)2 to define:

x̄ ± δx̄ ≡

( 3∑
i=1

ωixi
)
/

( 3∑
i=1

ωi

)
±

( 3∑
i=1

ωi

)−1/2
, ∆x̄ ≡ δx̄ + dSx, (141)

where x̄ ± δx̄ are the weighted average and the statistical uncertainty (see the RPP Introduction section [95]). However,
as we have repeatedly emphasized a substantial part of our uncertainties has a systematic nature. Thus, to stay in the
conservative side, we have also added linearly a systematic uncertainty dSx, defined as half the difference between the
maximum and minimum central values of the individual sum rules for that observable. Therefore what we are showing
in the ‘‘Final Value’’ column in Table 29 is x̄ ±∆x̄.

In the table we also list for comparison the ‘‘direct’’ calculations from the CFD parameterization, as well as, in the
column before the last, the results of the sum rules obtained from ‘‘fixed-t ’’ dispersion relations by the Bonn–Paris
group [43]. Finally, in the last column, we provide the NNLO SU(3) ChPT values from [85], except for the scalar threshold
parameters for which we use the ‘‘main numbers’’ in the review [86], in which the values of the scalar scattering lengths
from [43] were included in the fit and therefore they are very consistent with the previous column.

Note that we have imposed Roy–Steiner equations only for our CFD S and P-waves. These are the ones for which we
expect the best agreement, first between the different values of the sum rules and also with the direct CFD result. Actually,
in the previous subsection we have already seen that the agreement is remarkable for the scalar scattering lengths. For
the scalar slopes, there is a few-percent deviation which translates into a two-sigma level average deviation. We consider
this quite acceptable because one has to keep in mind that there are no precise data or simply no data at all for these
waves until roughly 100 MeV above threshold. Note that, as shown in Table 30, the largest contribution for each of the
scalar sum rules is a different one. Therefore, the fact that all our sum rules are fairly compatible among themselves is
highly non-trivial. In addition, we are quite consistent with the dispersive results of [43], except for the slope b1/20 , which
is lower than ours, but not too far from the direct CFD value, although the NNLO ChPT estimate seems to prefer our
sum-rule values.

Concerning the vector threshold parameters for the I = 1/2 wave, we find a remarkable agreement between our direct
CFD results and all our sum rules, partly due to the larger uncertainty of the CFD. Both the scattering length and slope

sum-rule results of [43], are significantly lower than all our sum rules, particularly the slope. This is most likely because
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Table 29
Determination of the πK threshold parameters using our CFD as input for the sum rules listed throughout this section calculated from the partial-wave
dispersion relations FTPWDR, HPWDR, or HPWDRsub . The latter refers to the HPWDR sum rules obtained when one subtraction is used in the F−

HDR. We also provide for comparison the direct values of the CFD parameterizations as well as previous results using sum rules from Roy–Steiner
equations obtained from fixed-t dispersion relations by the Bonn–Paris Group [43]. The last column lists NNLO ChPT results from [85] except for the
scalar scattering lengths for which we used the update in the main fit of [86]. Recall that we are only imposing the S and P Roy–Steiner equations,
so that our CFD D waves are not devised to describe the threshold region precisely, but just the region where they are not completely negligible far
from threshold. The same happens for the I = 3/2, ℓ = 1 wave. We consider our sum rule results to be more reliable than the direct CFD values,
particularly for the three last waves, for which no scattering data exist below 1 GeV. Our ‘‘Final Value’’ for each threshold parameter, obtained by
combining the three sum-rule results as explained in the text, is listed in boldface in the central column.

This work sum rules with CFD input This work
direct CFD

Sum rules
[43] Fixed-t

NNLO ChPT
[85] and [86]∗FTPWDR HPWDR HPWDRsub Final value

m3
π b

1/2
0 × 10 1.05 ± 0.04 1.05 ± 0.07 1.15 ± 0.04 1.09 ± 0.07 0.95 ± 0.04 0.85 ± 0.04 1.278

m3
π b

3/2
0 × 10 −0.43 ± 0.02 −0.41 ± 0.03 −0.45 ± 0.02 −0.43 ± 0.03 −0.36 ± 0.04 −0.37 ± 0.03 −0.326

m3
π a

1/2
1 × 10 0.228 ± 0.010 0.218 ± 0.008 0.222 ± 0.006 0.222 ± 0.009 0.20 ± 0.04 0.19 ± 0.01 0.152

m5
π b

1/2
1 × 102 0.58 ± 0.03 0.59 ± 0.03 0.60 ± 0.03 0.59 ± 0.02 0.5 ± 0.2 0.18 ± 0.02 0.032

m3
π a

3/2
1 × 102 0.15 ± 0.05 0.19 ± 0.05 0.17 ± 0.04 0.17 ± 0.05 0.15 ± 0.11 0.065 ± 0.044 0.293

m5
π b

3/2
1 × 103 −0.94 ± 0.09 −0.97 ± 0.08 −1.03 ± 0.07 −0.99 ± 0.09 −1.04 ± 0.8 −0.92 ± 0.17 0.544

m5
π a

1/2
2 × 103 0.60 ± 0.13 0.54 ± 0.03 0.55 ± 0.02 0.55 ± 0.05 0.53 ± 0.05 0.47 ± 0.03 0.142

m7
π b

1/2
2 × 104 −0.89 ± 0.10 −0.96 ± 0.09 −0.95 ± 0.09 −0.94 ± 0.09 0.20 ± 0.02 −1.4 ± 0.3 −1.98

m5
π a

3/2
2 × 104 −0.05 ± 0.60 −0.12 ± 0.16 −0.19 ± 0.15 −0.15 ± 0.18 −0.09 ± 0.03 −0.11 ± 0.27 −0.45

m7
π b

3/2
2 × 104 −1.12 ± 0.10 −1.14 ± 0.09 −1.14 ± 0.09 −1.13 ± 0.06 −0.03 ± 0.01 −0.96 ± 0.26 0.61

Table 30
Largest single contribution to each one of the sum rules listed in Table 29. Notice that for higher angular momentum the FTPWDR are dominated
by asymptotic physics. Thus we have included a systematic uncertainty associated with the different Regge models as described in the text. Recall
that for the scalar scattering lengths aI0 HPWDRsub is the same as the direct CFD calculation as it includes subtractions for both isospins.

Largest contribution to the sum rules

a1/20 b1/20 a3/20 b3/20 a1/21 b1/21 a3/21 b3/21 a1/22 b1/22 a3/22 b3/22

FTPWDR f 1/20 (s) f 1/20 (s) a+

0 f 1/21 (s) f 1/21 (s) f 1/21 (s) g0
0 (s) g0

0 (s) ReggeπK g0
0 (s) ReggeπK g0

0 (s)

HPWDR g1
1 (s) g1

1 (s) g1
1 (s) g1

1 (s) g1
1 (s) f 1/21 (s) f 1/21 (s) g0

0 (s) g1
1 (s) g0

0 (s) g0
0 (s) g0

0 (s)

HPWDRsub a1/20 a−

0 a3/20 a−

0 f 1/21 (s) f 1/21 (s) a−

0 g0
0 (s) g1

1 (s) g0
0 (s) g0

0 (s) g0
0 (s)

their description of the K ∗(892) resonance yields a larger mass than observed in πK scattering. Nonetheless, they are
fairly compatible with our direct CFD value, once again due to the large uncertainty of the latter.

When discussing the I = 3/2, ℓ = 1 wave, we have to keep in mind that it is so small that it is usually neglected in
the literature and it has no data below 1 GeV, very far from threshold (see Fig. 10). For this reason, we did not expect
our direct CFD result to be very reliable. However, the fact that the sum rules for this wave are dominated by other
waves allows us to obtain very accurate values for its threshold parameters. Remarkably, all three sum rules are perfectly
consistent among themselves at the one-sigma level, even when their uncertainties are much smaller than that of the
CFD direct result, which is nevertheless very consistent with them. The sum-rule results of [43] are perfectly compatible
with our direct CFD calculation and consistent at roughly the 2-sigma level with our sum rules.

The D-waves are the first for which we do not impose their own Roy–Steiner equations. They are modified from
UFD to CFD indirectly because they enter as input in the Roy–Steiner equations of the S and P-waves, and also in the
orward dispersion relations. Remember we have chosen existing Breit–Wigner-like parameterizations to describe the
ata around the resonance and that there are no data below roughly 1 GeV, where they are almost negligible. Hence,
he direct parameterizations carry little, if any, information about threshold dynamics. Thus, in principle, our CFD results
re not expected to be very reliable there. The situation may be even worse for the I = 3/2 case because it is almost

negligible everywhere (see Fig. 13). As a matter of fact, we were only interested in the bulk of their contribution to
dispersion relations above 1 GeV. Surprisingly, the scattering lengths from sum rules are perfectly consistent with each
other for both the I = 1/2 and I = 3/2 partial waves, and even with their CFD parameterization as well as with the
results in [245]. The slopes of the D-wave CFD are meaningless, but our sum rules are fairly consistent among themselves
and with [245]. Note that we confirm the negative sign for b3/22 , at odds with the positive NNLO ChPT estimate. Of course,
the direct CFD slope-parameters for the D-waves are less reliable than those obtained from sum rules, as there is a lack
of data, we chose very simple parameterizations and we have not imposed partial-wave dispersion relations on these
waves.

As a technical remark, let us note that, as shown in Table 30, while the asymptotic region for ℓ = 2 is almost negligible
for sum rules obtained from HPWDR, it dominates the FTPWDR sum rules for D-wave scattering lengths, and also plays
a significant role for the slopes. Unfortunately, these contributions present a sizable, although not dominant, dependence
on second or even third-order derivatives on the t-variable of the Regge model. As explained in Section 4.3 we use
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Table 31
Adler zero positions

√
sA (GeV), for the I = 1/2 and I = 3/2 S-waves from

dispersion relations using as input either the UFD or CFD parameterizations. Recall
that the LO ChPT result is ≃0.486 GeV for I = 1/2 and ≃0.516 GeV for I = 3/2.

UFD I = 1/2 CFD I = 1/2 UFD I = 3/2 CFD I = 3/2
√sAFTPWDR 0.477+0.0010

−0.007 0.466+0.006
−0.005 0.530+0.013

−0.016 0.549+0.008
−0.0010

√sAHPWDR 0.473+0.011
−0.009 0.466+0.007

−0.005 0.537+0.016
−0.019 0.551+0.009

−0.0010√
sAHPWDRsub

0.481+0.008
−0.008 0.470+0.010

−0.005 0.532+0.013
−0.016 0.552+0.008

−0.010

two different asymptotic models: On the one hand, the one for the πK channel [143], which comes from the ππ Regge
odel through factorization, and, on the other hand, the Veneziano model [144] for ππ → KK̄ . As shown in Section 4.3

these two models produce fairly consistent descriptions of the close-to-forward region on the s variable. As a result, it
is irrelevant whether we use one or the other inside our S and P-waves dispersion relations. But, unfortunately, their
second or third derivatives with respect to t are incompatible and this is precisely a relevant contribution to the D-wave
sum rules ( Fig. 26 illustrates that this incompatibility already occurs for the first and second derivatives). Thus, for our
D-wave sum rules, we provide in Table 29 the average of the two models with a combined uncertainty coming from the
statistical error and a systematic error estimated as the difference between the two.

All in all, we therefore consider that our CFD and its uncertainty estimates for the S and P waves give a very consistent
description of the threshold parameters. The D waves, which are needed as input and were devised to reproduce data
above 1 GeV and particularly their dominant resonance region, still provide a decent description at threshold of the
scattering lengths, but not the slopes, although we can obtain reliable values for them from our sum rules.

To summarize, our most reliable and accurate ‘‘Final Values’’ for threshold parameters are those coming from sum-rule
determinations and are listed in Tables 28 and 29. This is one of the main novelties in this report and one of the main
applications of our constrained parameterizations.

7.1.3. Adler zeros and subthreshold parameters
There are certain subthreshold quantities of interest. First of all, Adler zeros, which are zeros of scalar partial waves that

appear due to the spontaneous chiral symmetry breaking pattern of QCD. In particular, Goldstone bosons should couple
derivatively among themselves and therefore their scattering amplitude should have a zero at s = 0. However, pions and
kaons are not pure Goldstone bosons and have a small mass (not so small for kaons). At low energies and sufficiently far
and below threshold the amplitude basically behaves as a polynomial so we still expect a zero not exactly at s = 0 but
displaced by a magnitude of O(M2

P ) where MP is the mass of the pseudoscalar meson. These zeros are a dynamical feature
of chiral symmetry, which are not seen in other waves where there are always zeros right at threshold due to the q2ℓ
behavior. These zeros were first found by S.L. Adler [158] using current algebra, which is equivalent to LO ChPT. We have
already used their LO ChPT values inside our low-energy S1/2 and S3/2 parameterizations in Eqs. (73) and (75). These are
√
sA,LO =

√
ΣπK ≃ 0.516 GeV for I = 3/2 and ≃0.486GeV for isospin 1/2, as obtained from Eq. (76). Their position in

the complex s plane has been represented in Fig. 20.
Of course, their LO value does not have to be the true position, we just use it as a reasonable value to define our

parameterization. But we have calculated their actual values by looking for zeros of partial-wave dispersion relations
in the real axis below threshold, using either the UFD or the CFD parameterizations as input. The results are listed in
Table 31. There we see that the three kinds of dispersion relations yield very consistent values, which makes our result
very robust. The UFD results are closer to the LO ChPT result. However, the CFD values are somewhat different from those
of UFD and roughly 3-sigmas away from the LO calculation, which could be clear evidence that NLO ChPT corrections are
needed at this level of precision.

As a technical remark, one may wonder if we could change our value of the Adler zero in our parameterizations to
this CFD result. However, we should recall that our parameterizations are only chosen to describe data in the physical
region. We have indeed adopted a particular analytic form to be able to imitate some basic features (like Adler zeros,
or some resonant given shape), but our parametrizations are not model-independent, just a reasonable fit to data to be
used as input for the dispersion relations. We do not need them to be accurate outside the physical region. That is what
dispersion integrals are for. In addition, we chose our low-energy partial wave parameterizations as truncated conformal
expansions avoiding the circular-cut and the Adler zero is very close to that cut, or even inside as the I = 1/2 dispersive
CFD case. It makes no sense to try to be accurate with the truncated conformal expansion at the border or outside its
applicability limit. Thus, the robust results are the dispersive ones and, as it happened with the κ/K ∗

0 (700) pole, the UFD
and CFD parameterizations can only be expected to provide a fair but model-dependent approximation of features in the
complex plane outside the physical real axis.

Other interesting quantities are the coefficients of the so-called subthreshold expansion, obtained around the t → 0
and ν → 0 limit. In the πK scattering case this means s = u = ΣπK . The ChPT calculations are expected to converge
better in this region because there is no threshold singularity. Fortunately, our set of dispersion relations can be continued
below the physical region, so that we can make use of these sets to determine the amplitudes and their derivatives with
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Table 32
Determinations of the coefficients of the πK subthreshold expansion from various approaches. Although we use 3 different dispersive
families, for C+

00 and C+

01 the HDR is exactly the same as the fixed-t one. Note that the ‘‘+’’ cases do not have two different HDR
values because their HDR is always once-subtracted.

This work sum rules with CFD input Sum rules Büttiker
et al. [43]

NNLO ChPT Bijnens
et al. [85]

Sum rules Lang
et al. [349]Fixed-t HDR HDRsub

C+

00 1.52 ± 0.56 like fixed-t 2.01±1.10 0.278 −0.52 ± 2.03
C+

10 0.96 ± 0.11 1.04 ± 0.11 0.87±0.08 0.898 0.55 ± 0.07
C+

01 2.34 ± 0.05 like fixed-t 2.07±0.10 3.8 2.06 ± 0.22
C+

11 −0.047 ± 0.006 −0.050 ± 0.006 −0.066±0.010 −0.10 −0.04 ± 0.02
C−

00 9.11 ± 0.35 9.54 ± 0.38 9.04 ± 0.39 8.92±0.38 8.99 7.31 ± 0.90
C−

10 0.45 ± 0.05 0.38 ± 0.02 0.39 ± 0.02 0.31±0.01 0.088 0.21 ± 0.04
C−

01 0.68 ± 0.02 0.66 ± 0.02 0.68 ± 0.02 0.62±0.06 0.71 0.51 ± 0.10
F+

CD 3.55 ± 0.64 3.71 ± 0.64 3.90±1.50 2.11

high accuracy. We adopt the standard definition:

F+(s, t) =

∑
i j

C+

ij

(
t

m2
π+

)i (
ν

4mπ+mK

)2j

, F−(s, t) =
ν

4mπ+mK

∑
i j

C−

ij

(
t

m2
π+

)i (
ν

4mπ+mK

)2j

, (142)

where the parameters Cij are dimensionless and ν = s−u. We have obtained their algebraic expressions by expanding the
Kernels in Appendix E in terms of t, ν. These expansions are then introduced in Eqs. (53)–(55) to obtain the corresponding
sum rules. However, these are lengthy expressions and we will just list the numerical results in Table 32. Note we provide
values using our CFD parameterization as input for our three kinds of dispersion relations (without projecting on partial
waves) obtained either from Fixed-t or HDR (either with no or one subtraction for F−). We also provide the symmetric
amplitude evaluated at the Cheng–Dashen point ν = 0, t = 2m2

π , which is of interest for the next subsection. Previous
calculations obtained within dispersive and ChPT approaches are also listed for comparison.

Note that our sum-rule determinations are very consistent among themselves, all of them within one standard
deviation of the others. Our results, although equal in sign and relatively similar in size to those obtained in [43] are
sometimes significantly different in terms of standard deviations. Note also that our results have in most cases somewhat
smaller uncertainties.

7.2. πK σ -term

Another interesting application of our results is in the calculation of the so-called πK σ -term. This requires an extrap-
olation of the πK → πK amplitude to an unphysical point, which can be achieved in a robust and model-independent
way thanks to our dispersive formalism.

The relevance of σ -terms is due to their relation to ⟨H|mqqq̄|H⟩, which tests the QCD mass terms inside a hadron H .
The σ -term is nothing but the scalar form factor of the H hadron evaluated at zero momentum transfer, which intuitively
yields a contribution to the hadron mass and also sets the normalization of the scalar form factor itself. Unfortunately, no
single scalar hadronic probe is accessible experimentally at low-energies, and therefore it has to be obtained indirectly
through the scattering of two hadrons, one of which is the hadron of interest, which appears also in the final state. The
simplest possibility is, therefore, the scattering process Φ(q)H(p) → Φ(q′)H(p′), where Φ is a pseudo-Nambu–Goldstone
oson i.e. π, K , η, most frequently, a pion. Note that in the t-channel of this process it is possible to exchange two Goldtone
osons to form a scalar current that would therefore couple to the HH̄ system. The use of Goldstone bosons leads to a
ow-energy theorem [350,351], to be introduced below, that relates the scattering amplitude to the scalar form factor.

The archetypal example is the πN σ -term, because it probes the role of quark masses in the total mass of the nucleon
see [352] for an up-to-date pedagogical and historical introduction). This is actually the system for which the low-
nergy theorem was first introduced in [350], although it was later corrected in [351]. There are many phenomenological
eterminations [189–191,353–355] and effective-field-theory-based calculations [188,192–194,354,356–358]. Generically,
odern phenomenological data-driven determinations cluster around a value of ≃60 MeV. However, there is some tension
ith modern lattice-QCD calculations [359–363], which favor a value closer to ≃40 MeV.5 For our purposes, the most

nteresting study is the dispersive analysis of πN scattering in [188,192] since the authors used as their framework a
ystem of hyperbolic dispersion relations similar to the ones described in this work, hence allowing for robust extractions
f the πK σ -term for different low energy inputs [192–194].
Since our dispersive formalism is very similar, it is straightforward to apply it to calculate the πK σ -term [365,366],

etting H = K . Let us first define the scalar form-factor of the kaon, ΓK (t), as:

ΓK (t) =
⟨
K 0 (p′

)
|m̂(ūu + d̄d)|K 0(p)

⟩
, m̂ =

1
2
(mu + md) , t = (p′

− p)2, (143)

5 While this manuscript was under referee’s revision, a new Lattice-QCD determination was published [364], which value is compatible with the
dispersive determinations.
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hen, the πK σ -term is defined as:

σπK ≡
ΓK (0)
2mπ

. (144)

ow, as commented above, the scalar form factor is not directly measurable but, thanks to chiral symmetry, is related to
he πK symmetric amplitude through the following low-energy theorem, in which a ‘‘soft-pion’’ is probing the kaon [351]:

F 2
πF

+(t, ν) = ΓK (t) + q′µqνrµν, (145)

here Fπ is the pion decay constant and q′µqνrµν is the so-called remainder, which is not determined by chiral symmetry,
although it must have the same analytic structure than the scattering amplitude. This remainder is suppressed by
evaluating the expression at the Cheng–Dashen point [350], t = 2m2

π , ν = (s − u) = 0, where:

F 2
πF

+

CD = ΓK
(
2m2

π

)
+∆CD

πK . (146)

For brevity F+

CD,∆
CD
πK stand, respectively, for the scattering amplitude and remainder evaluated at the Cheng–Dashen point.

The final step to obtain σπK is to evaluate the difference

∆σ = ΓK
(
2m2

π

)
− ΓK (0). (147)

All in all, we can recast σπK as follows:

2mπσπK = F 2
πF

+

CD −∆σ −∆CD
πK . (148)

Of course, the very σπK and all these quantities can be evaluated using ChPT [85,366]. However, in the spirit of this
report, we aim at a data-driven determination. Remember that we expect the remainder to be small at the Cheng–Dashen
point. We also expect ∆σ to be relatively small since it is the difference between not too distant values of t (and the scalar
form factor only has the right cut starting at twice that distance). These expectations have been explicitly checked within
NLO ChPT [366]. Therefore the dominant term should be the one containing F+

CD, which is the part that we have indeed
calculated from data using our CFD as input for the sum rule.

Actually, in the previous section, we presented our evaluation of two subthreshold sum-rules for F+

CD: one obtained from
fixed-t dispersion relations and another one from HDR (note that for the symmetric case we always have one-subtraction).
The numerical results are displayed in the final row of Table 32 and they come out perfectly compatible with one another
and with similar uncertainties. In this case, we do not combine the two results as we did for the threshold parameters
in Eq. (141), because now the two values are strongly correlated by their subtraction constant. Hence, we have just taken
their average, and for the uncertainty we have added half of their difference to their statistical error, which is the same
for both. On the whole:

F+

CD = 3.6 ± 0.7, (149)

which is the main result of this section. In particular, this number is compatible with the estimate obtained by the Bonn–
Paris group [43], although our result is slightly lower and our uncertainties are twice smaller. In contrast, it is in a ∼2σ
ension with the value estimated from NNLO ChPT in [85] (no errors), which is already about 50% larger than the range
f values from 1.2 to 1.4 estimated to NLO in [366]. Note that with our F+

CD value, the relative sizes of the remainder and
σ terms become even smaller.
As a future prospect, in order to extract completely the σπK -term from data in a robust and precise way, one would

eed [365]:

• A data-driven determination of F+

CD, like the one we have just obtained here from a dispersive sum rule using our
CFD as input.

• A determination of the remainder ∆CD
πK . Remember this has been made small on purpose, by choosing the Cheng–

Dashen point. The best calculation is that of [366], based on NLO ChPT, that yields:

∆CD
πK = [0.013...0.021]m2

π .

Thus, the remainder estimate6 is about two orders of magnitude less than our value F 2
πF

+

CD = (1.6 ± 0.64)m2
π . This

is a consistency check that the use of the Cheng–Dashen point truly suppresses the remainder. In that work, it has
also been shown that, even though corrections can appear on each separated term, they cancel in the difference.
This should keep on happening even for higher-order corrections, so we think that the theoretical estimation of the
smallness of this difference might be fairly reliable, even when we have seen that one of the terms in the difference
is much larger than its NLO value.

6 We thank B. Kubis for explaining to us that, although in [366] other ranges were obtained when using F 2
= F 2

K or Fπ FK , which might be
egitimate from the point of view of the chiral expansion, being a soft pion SU(2) theorem the ‘‘correct’’ choice is F 2

= F 2 .
π
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• Calculate the ∆σ difference dispersively. Remember this only concerns the scalar form factor evaluated at two
different momentum transfers below threshold, where no further analytic structures exist and the dependence
should be smooth. We think it could also be obtained from data by using the coupled-channel MO formalism for the
ππ → KK̄ scalar form factor developed in [367]. Maybe it could even be possible to update some of the input used
there with our CFD.

Unfortunately, we have not been able to find any lattice calculations of the kaon sigma term. There are calculations of
he kaon mass dependence on quark masses (see for instance the review [368] and references therein) and in principle
n extraction of this sigma term seems feasible. However, such a calculation is far beyond our scope and capabilities,
ince one has to deal with the usual lattice technicalities of finite volume effects, continuum extrapolation, physical mass
xtrapolation, different actions, scale setting, etc... (see [369] and references therein for a review on light hadron masses
rom lattice). There are indirect extractions of the sigma term, or more precisely the scalar form factor of the kaon from
attice data, but using ChPT or a resummed version of it (see [370–372]. These result in an estimate of ΓK (0) in the range
0.4 to 0.6. We nevertheless hope that our result, and the persistent tension with ChPT calculations, or at least the apparent
need for large ChPT corrections, can raise interest in the lattice community to calculate this number.

In summary, using our CFD as input for two sum rules for the F+ symmetric amplitude, we have been able to provide
robust and precise determination, from a dispersive analysis of data, of the dominant contribution to the kaon σ -term.
s it happened with other quantities of interest, our value is consistent with previous dispersive results, although our
maller uncertainties reveal, once more, some tension with the perturbative calculations within SU(3) ChPT.

.3. ππ → KK̄ And (g − 2)µ

Another topic of interest, where dispersion relations provide a solid framework to work with, is the hadronic
ontribution to the (g−2)µ. Explaining in detail the different approaches towards the (g−2)µ determination is out of our
cope and we refer the reader to the recent review on Ref. [373]. Nevertheless, we comment very briefly on the motivation
or its study. The anomalous magnetic moment of the muon can be determined both theoretically, either data-driven or
rom lattice QCD, and experimentally (see for instance [374–376]). Of all the Standard Model contributions to (g − 2)µ
oth the QED and electroweak contributions have been obtained from perturbation theory to a high degree of accuracy.
owadays the largest factor to the final uncertainty comes from hadronic contributions, which have to be calculated
n a non-perturbative way. These are classified according to their diagram topology into the so-called Hadron Vacuum
olarization (HVP) and Hadronic Light by Light (HLbL) terms. In the past these contributions were determined using various
odels, hence producing large systematic uncertainties. However, in the last few years, considerable improvements have
een made to this topic, led by dispersive formalisms applied to existing data analyses including mesonic final states.
theoretical study group, the Muon g − 2 Theory Initiative [373] was recently formed, to lead the analyses as well

s weighting and averaging the theoretical evaluations regarding the various (g − 2)µ contributions. Their recent final
esult [373] reads

aSMµ = 116591810(43) × 10−11. (150)

The experimental determination made almost 20 years ago by the E821 collaboration at Brookhaven [374,375] had
t the time of the publication smaller uncertainties than both the HVP and HLbL theoretical predictions. At present, two
ajor experiments are underway to refine the experimental uncertainties with more data and higher statistics. The first
ne is the Fermilab Muon g − 2 collaboration (FNAL) [377], the second one is the proposed g-2/EDM experiment J-PARC
nitiative, which will perform a new experimental design [378]. Both of them expect to reduce the (g − 2)µ error by a
actor of 4. During the referee revision of this manuscript, the FNAL collaboration released its first result [379], which still
as not achieved the precision goal. It is in excellent agreement with the previous E821 measurement and, when both
re combined, yield the present experimental average

aexpµ = 116592061(41) × 10−11 (0.35ppm). (151)

This theoretical determination lies below the experimental value by 4.2 σ . Nonetheless, a recent lattice QCD determi-
ation of the leading-order hadronic vacuum polarization [380], with similar precision to dispersive studies, yields a larger
alue than those previous theoretical determinations. This result, together with the rest of the dominant contributions
ould eliminate the discrepancy with data.
Further studies will be needed to make the dispersive, lattice, and experimental numbers agree or to confirm the

iscrepancy.

.3.1. Hadronic-vacuum polarization
As explained above, both the HVP and HLbL contribute to similar order to the muonic (g − 2)µ term. Thus a precise

nd robust calculation of these quantities is paramount to extract the most rigorous value and compare properly between
he various approaches involved in the determination of this observable.

The hadronic vacuum polarization can be best extracted from e+e−
→ hadrons. The biggest contribution, by far, comes

rom the ππ channel, due to its low threshold. Recent dispersive analyses have been applied to this e+e−
→ π+π−
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Fig. 42. Cross sections of the reactions e+e−
→ π+π− (left panel), e+e−

→ KSKL (center panel) and e+e−
→ K+K− (right panel). Notice how the

main contribution to the HVP , which is the region around the ρ − ω resonances mixing, is purely elastic.
Source: Figures taken from [381] (left), [382] (center) and [383] (right).

channel [199], which includes modern high statistic data samples. This work is a dispersive implementation based on
the well-known Roy equations [44], and is an update over a previous solution on ππ scattering [182], with a slight
modification of the P-wave. After taking into account the various subtleties required to analyze the new experimental
data, the most robust determination of the two-pion contribution to the Hadronic-vacuum polarization reads

aππµ
⏐⏐
≤1GeV

= 495.0(1.5)(2.1) × 10−10. (152)

One may wonder if including the KK̄ inelasticity could potentially modify this result, however as seen in Table VI of
Ref. [373] the contribution saturates very close to the ρ − ω peaks, which are shown in Fig. 42 (left panel). If one takes
into account that the KK̄ threshold of a P-wave does not produce any noticeable cusp effect then the result quoted above
should not vary appreciably. However the uncertainties are dominated by statistics, and as seen above they are pretty
low, so including a larger region and the inelasticity could produce in principle a non-negligible effect.

The second and third biggest contributions to the HVP of the muon are π+π−π0 and K+K−/KSKL (center and right
anels of Fig. 42) respectively. These are already one order of magnitude smaller both in the magnitude and uncertainty
han the ππ contribution. Of the two, the latter is dominated by the φ(1020) resonance decay into two kaons, which
annot be determined from our dispersive approach. The next low energy contribution would be the 4π channel, which is
f the same order as the 3π and KK channels. Finally, only a few higher-energy channels add relatively small contributions
ompared to the dominant ππ final state.

.3.2. HLbL
One of the largest sources of uncertainty to the calculation of the (g − 2)µ is the HLbL scattering. Unfortunately, this

contribution cannot be calculated perturbatively, and thus must be determined from data analyses or lattice QCD, as it is
done for the HVP .

However, the HLbL contribution is much more challenging in structure, as it is created by four-point functions. As can
be seen in Fig. 1 of [384], at low energies the mesonic contribution is dominated by several resonances, in particular the
f0(980) and a0(980), as well as by charged pion and kaon loops and the pion/kaon box. For a recent and detailed review,
we refer the reader again to Ref. [373].

Modern approaches consist of implementing dispersive formulations to relate the off-shell contributions to the (g−2)µ
with on-shell, measurable quantities. Then, each of these contributions has a physical unambiguous definition. These
projects aim to determine with high accuracy separated contributions to the (g − 2)µ, and elucidate the experimental
uncertainties required to improve the knowledge on the anomalous magnetic moment.

One of the first dispersive formalisms is explained in detail in Ref. [385], where they define a dispersion relation for
the Pauli form factor. Albeit successful in reproducing the pion-pole contribution of a VMD model to the (g − 2)µ, no
xplicit formulas have been derived so far for generic contributions.
The other main approach [386,387] consists of describing in a dispersive way the polarization tensor for off-shell

hoton–photon scattering, for which the analytic structures of all the components must be first derived. The contribution
o the anomalous magnetic moment of the muon can thus be determined from projections over this four-point function.
his would be the equivalent of the dispersive description of the HVP . However, the fact that we are now dealing with
our-point functions makes the task highly complicated.

Several works have been recently published making use of this formalism to determine different pion contributions to
he (g − 2)µ like the pion pole [388,389], two pion contributions [390,391] or the pion box [392]. These are considered
o be part of the dominant HLbL contributions to the (g − 2)µ.

Extensions to the kaon box seem to be straightforward [373]. However, as seen from Dyson–Schwinger equations, the
aon-box contribution is very suppressed compared to the leading pion one [393], once again due to the larger kaon mass.
evertheless, as explained in section 4.6.1. of Ref. [373] two-kaon contributions could produce larger effects. This channel
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Fig. 43. Cross-sections of the reactions γ γ → π+π− (left panel) and γ γ → π0π0 (right panel). Notice the enhancement at around 1 GeV as a
esult of including the KK̄ channel, which gives rise to the f0(980) resonance contribution, depicted as the continuous red line in both figures.
ource: The figure is taken from [203].

ot only produces some contribution to the rescattering effects inside the pion/kaon loops but also gives rise to a better
onstraint over the f0(980), a0(980) and f2(1270), f ′

2(1525) resonances contributing to the (g − 2)µ.
Finally, several recent dispersive analyses have been published studying the one or doubly virtual photon scattering

nto hadrons γ (∗)γ ∗
→ ππ (KK̄ ) [203,204,210,212,213], most of them including both ππ and KK̄ final states, and

heir contributions to the anomalous magnetic moment of the muon. In some of these works, a previous dispersive
etermination carried out by our group [42] was already implemented, as shown in Fig. 43, which entails the relevance
f this reaction for the precise extraction of the (g − 2)µ. For more details on the topic, we refer the reader to Ref. [394].
e hope that our final dispersive results presented in this report will help these groups to obtain a more reliable
etermination of the HLbL contribution to the (g − 2)µ following their various approaches.
Note: While this manuscript was under referee’s revision, an analysis of the f0(980) contribution to HLbL was

ompleted [395]. It studies γ γ → ππ (KK̄ ) with a Muskhelishvili–Omnès method, whose functions are taken from an
/D analysis [396] that fits the ππ → ππ Madrid–Krakow dispersive analysis [48] and the ππ → KK̄ analysis presented
ere. The result, well below 10−11, is fairly similar to previous narrow widths estimates, although it illustrates how to go
eyond this simple approximation and include rescattering effects using as an ingredient our dispersive results.

. Summary & conclusions

Let us come to an end by summarizing the main items we have reviewed and our main new results. For the sake of
larity and brevity, we omit in this summary any citation since we have provided aplenty in the main text.
Studies of πK → πK and ππ → KK̄ scattering have been the subject of considerable interest since they were first

easured around four decades ago. These interactions are not only relevant by themselves, but also because they appear
n the final states of numerous hadronic processes. In addition, they are key to hadron spectroscopy, providing one of the
ain sources of information on the existence and properties of strange resonances — and therefore on the classification of
esons in symmetry multiplets as well as their inner structure. Moreover, in their low-energy regime, these interactions
onstitute a test-ground for Chiral Perturbation Theory (ChPT) as well as the most recent lattice QCD developments.
Unfortunately, for many decades, the study of πK → πK and ππ → KK̄ scattering data has been hindered by the

onflict within and between different data sets and affected by large model dependencies. Moreover, we have reviewed
ere how these data are also in severe conflict with several dispersion relations. However, the wealth of data on hadronic
rocesses collected over the last years, the unprecedented statistics obtained in present and planned experiments, together
ith the recent theoretical advances in lattice QCD and ChPT, call for a consistent, precise, model-independent, and easy
o implement description of πK → πK and ππ → KK̄ amplitudes.

In this review, we have shown how this demand can be met by constraining the data description with dispersion
elations. As a matter of fact, the two problems commented above can be overcome with the use of dispersion theory,
hich is a direct consequence of the strong analyticity constraints derived from causality and relativistic crossing
ymmetry.
Hence, the main result of this review is:

• a dispersively constrained and precise, but still rather simple, simultaneous description of πK → πK and ππ → KK̄
scattering data and its uncertainties, which is consistent with an ample sample of dispersion relations. This is what
we have called the ‘‘Constrained Fit to Data’’ (CFD) parameterization set.
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e have then illustrated several applications of using this CFD as input to obtain other results of interest:

• a rigorous dispersive determination of the existence and parameters of the controversial κ/K ∗

0 (700) scalar meson,
• model-independent determinations of other strange resonances below 2 GeV, reducing their model dependencies

employing analytic techniques,
• precise and model-independent values of the threshold and subthreshold parameters, using sum rules derived from

different dispersive representations.

n addition, we have reviewed other dispersive applications that use or may profit from some of the previous results,
amely, the dispersive study of the non-ordinary κ/K ∗

0 (700) Regge trajectory, the πK sigma term, as well as the
ontribution of ππ → KK̄ to some hadronic corrections in the calculation of (g − 2)µ.
Hence, after stating our motivation and goals in Section 1, we have reviewed in Section 2 the existing data, explaining

he conflicts both within some given data sets and between different experiments.
In Section 3 we have presented first a brief pedagogical introduction to dispersion relations, reviewing also seminal

orks and the state of the art for πK → πK and ππ → KK̄ dispersive approaches. Next, we have derived the different
inds of dispersion relations of relevance for our purposes, although the detailed and lengthy expressions of their integral
ernels are provided in Appendix E. The reason to use several types of relations is twofold. On the one hand, they have
ifferent applicability regions, both in the real axis and on the complex plane. On the other hand, even for the same
bservables, they may have different inputs or they may weigh them in non-equivalent ways. The discussion of the
pplicability ranges, which we have shown how to maximize, is probably the most technical one and has been relegated
o the long and thorough Appendix D. In particular, we use forward dispersion relations (FDR) because, apart from their
implicity, they only involve πK amplitudes, and constrain them up to 1.6 GeV. However, in order to study πK partial
aves individually, we need to project them out of either fixed-t (FTPWDR) or hyperbolic dispersion relations (HPWDR).
oth of them are limited to ∼1 GeV for real values of the energy. The FTPWDRs depend little on ππ → KK̄ , but cannot
each the κ/K ∗

0 (700) pole in the complex plane, whereas the HPWDRs reach this pole region, but have sizable contributions
rom this crossed channel. At this point, it is therefore relevant to consider also FTPWDR and HPWDR for the crossed
hannel ππ → KK̄ , which, as a technical difficulty, need input from the pseudo-physical regime below the KK̄ threshold,
here no data exist and the amplitude has to be treated with the so-called Muskhelishvili–Omnès method, explained in
ection 3.6.
Thus, after the various dispersive representations have been introduced, we have presented in Section 4 a set of

nconstrained Fits to Data (UFD), paying particular attention to the evaluation of systematic uncertainties. For this we
ave used very simple parameterizations, but flexible enough to accommodate later the dispersive constraints. Our aim
ith these simple choices is that they should be easy to implement in future studies, either of phenomenological or
xperimental nature. However, at the end of Section 4, we have reviewed how, this UFD, which is a very nice looking
it to data, was shown in some of our previous works to be inconsistent with FDR for πK → πK and HPWDR for
π → KK̄ . Moreover, we have shown here that the UFD also fails to satisfy the πK → πK FTPWDR and reach the
argest inconsistencies for the πK → πK HPWDR. It is therefore evident that simple fits to data, including fits using
articular models, are not adequate to produce a precise and reliable description of πK → πK and ππ → KK̄ .
Consequently, in Section 5, we have presented our main result: the Constrained Fit to Data (CFD). We have explicitly

hown that it satisfies our collection of dispersion relations while still describing fairly well the data. Of course, some
eviations from the best possible fit to experiment occur, but these are in general relatively mild and are needed to
nsure the fulfillment of the dispersive representations. It is also worth noticing that this is the first time that both the
K → πK and ππ → KK̄ channels are constrained simultaneously, which completes our previous dispersive analyses.
Once the CFD is available, we use it in Section 6 to study the strange resonances that appear in πK → πK scattering.

irst, it is used as input to build sequences of Padé approximants out of successive derivatives of the amplitude. This
s relevant because dispersion relations are formulated in the first Riemann sheet, whereas the poles associated with
esonances lie on the contiguous one. Remarkably, these Padé series are shown to converge to the analytic continuation
f the amplitude to the next continuous Riemann sheet. The advantage of the method is that the existence of poles and
heir parameters can thus be determined by avoiding model-dependent assumptions. The only caveats are the sources
f uncertainty, which, apart from those of the CFD, come from the numerical calculation of higher derivatives and the
runcation of the series. Nevertheless, the results are very robust and competitive with model-based determinations.

In the elastic region it is even possible to get rid of those additional caveats and uncertainties since there is a direct
elation between the first and second sheets and resonances can be studied with a fully model-independent and precise
ispersive formalism. Actually, in Section 6 we have reviewed our recent work where, using our dispersive analysis of data,
e confirmed the existence of the κ/K ∗

0 (700) that the Review of Particle Physics is asking for. In addition, we supply a high
recision determination of its parameters, which come in fair agreement with a previous dispersive determination using
he FTPWDR prediction inside HPWDR by the Paris group. We concluded this section with a dispersive determination of
he κ/K ∗

0 (700) Regge trajectory, which strongly supports its non-ordinary nature.
We started Section 7 using the CFD as input for a precise and model-independent determination of πK threshold and

ubthreshold parameters. We provide the expressions of these sum-rules, derived from dispersive integrals. Threshold and
ubthreshold parameters are of relevance to test Chiral Perturbation Theory or to determine its low-energy constants. In

his context, the most significant result is a new dispersive and precise determination of the scalar πK → πK scattering
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engths. Our values are consistent with the dispersive solution of the Paris group, although our result is obtained from
ispersively constrained data fits rather than a solution to dispersion relations. Therefore, the tension between dispersive
alues and existing lattice results lingers on.
Finally, also in Section 7 we address other possible applications of the dispersive constraints, which require further

nput besides our scattering parameterization. This is the case of the σ -term determination, as well as the ππ → KK̄
ossible contribution to the (g − 2)µ.
In conclusion, dispersion relations are a very powerful tool for hadron physics. In this report we have not only reviewed

ut also provided new results concerning their application to πK → πK and ππ → KK̄ scattering data up to ∼1.6 and
1.5 GeV, respectively. Our main new outcome is a consistent and precise constrained description of these data in terms
f simple parameterizations easy to implement for further studies. We have shown here how the use of this approach
llows us to determine the existence and/or properties of strange resonances, to provide precise determinations of low-
nergy observables, as well as several other applications. We hope these results can be of use for further studies both for
he phenomenology and experimental communities working on hadron physics.
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ppendix A. Conformal expansion for elastic waves

Let us briefly describe here the kind of parameterizations that we have been using for our fits in the elastic region,
ommenting on the features that make them particularly well suited for that case. Similar conformal expansions have
een used for a long time in hadron physics [397–403] and have been recently revived for the particular cases of ππ
cattering in [51,226,299] or πK scattering in [101,227]. The specific parameterization described here was introduced by
s in [41].
As explained in Section 4.1, thanks to the elastic unitarity condition in Eq. (17), elastic partial-wave amplitudes in the

omplex s-plane can be recast as

fℓ(s) =
q2ℓ

Φℓ(s) − iq2ℓσ (s)
. (A.1)

Note we have introduced the effective range function Φℓ(s) which in the elastic region in the real axis, satisfies:

Φℓ(s) =
2q2ℓ+1

√
s

cot δℓ(s). (A.2)

onsequently, Φℓ(s) is real in the real axis between πK threshold and the first inelastic threshold. Hence, Φℓ(s) does not
ave an elastic cut, but still has left-hand, circular, and inelastic cuts, as shown in Fig. A.44. Since Φℓ(s) has no singularities
rom πK threshold to the next inelastic threshold s0, we can expand Φℓ(s) in powers of momentum q. This is the so-called
‘Effective range expansion’’, whose radius of convergence is small because the circular cut lies rather close to q = 0,
.e., s = m2

+
.

There is however a better way to use the largest possible domain of analyticity, which is to perform an expansion in
owers of a conformal variable that maps the whole complex plane into the unit circle. For πK scattering, due to the
ircular-cut, it is convenient to introduce first another change of variable

y(s) =

(
s −∆Kπ

s +∆Kπ

)2

, (A.3)

which maps the circular cut into the left real axis. As a result, Φℓ(y(s)) only has a right-hand ‘‘inelastic’’ cut and a left-hand
ut, as shown in Fig. A.44.b. It is now that we define the conformal variable

w(y) =

√
y − α

√
y0 − y

√ √ , y0 = y(s0), (A.4)

y + α y0 − y
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Fig. A.44. Analytic structure in different variables of the πK effective range function Φℓ(s): (a) Φℓ(s) in the s-plane has the same structure as f (s)
(see top panel of Fig. 20), except for the absence of the elastic cut. (b) In the y(s)-plane the circular-cut disappears. (c) The conformal variable ω(y)
maps the whole analyticity domain of Φℓ(y) inside the unit circle, whereas the cut singularities are confined to |ω| = 1. Note that ω will be defined
so that the data region is roughly centered around ω = 0 and not too close to the border.

to map the cut y-plane into the unit circle in the ω-plane. This leads to the structure seen in Fig. A.44. The s0 constant,
with units of energy squared, will set the maximum energy where this conformal series is real and applicable in the real
axis. In principle, we could use the truncated expression beyond that point, but then, it does no longer have the desired
analytic properties, and actually cot δℓ may become a complex number. In practice, we could use this fact to accommodate
some inelasticity contributions, in a purely phenomenological way.

Except for the tiny P3/2 and D3/2-waves, the parameter α is chosen so that the center of the conformal expansion ω = 0
corresponds to the intermediate point between the πK threshold and the energy of the last data point to be fitted with
the conformal formula. In this way, we ensure that the fitted data lies well inside the ω = 1 circle, far from the border
and roughly centered around ω = 0, as shown in Fig. A.44. Actually, for the S1/2 and P1/2 waves, the data fitted with the
elastic formalism lie at |ω| < 0.45. In contrast, for the S3/2-wave the data lie at |ω| < 0.6. The P3/2 and D3/2-waves are an
exception, because their data starts at 1 GeV, far from the πK threshold. Thus we have chosen their α parameters so that
the center of the conformal expansion corresponds to the intermediate point where their data exist. With this choice, the
data fitted with this conformal expansion lie at |ω| < 0.6.

It is important to realize that, after these two changes of variable, the singularities now lie at the boundary |ω| = 1.
Thus, the effective range function has an analytic expansion Φℓ(s) =

∑
n Bnw(s)n convergent in the whole |ω| < 1 circle.

Therefore, in terms of s, the domain of analyticity of the conformal mapping extends to the whole complex plane outside
the circular cut, with a left-hand cut from (M − m)2 to −∞ and a right-hand cut above the first inelastic threshold. This
is the power of conformal mappings.

Finally, as explained in the main text, it is customary to abuse the notation and write:

cot δℓ(s) =

√
s

2q2ℓ+1Φℓ(s) (A.5)

as a function in the complex s plane. With this definition, in the elastic region of the real axis, we can write

cot δℓ(s) =

√
s

2q2ℓ+1Φℓ(s) =

√
s

2q2ℓ+1

∑
n

Bnw(s)n. (A.6)

This is still not the general form we presented in Eq. (68) in Section 4.1, that we repeat here

cot δℓ(s) =

√
s

2q2ℓ+1 F (s)
∑
n

Bnω(s)n. (A.7)

So far we have seen the F (s) = 1 case. But, let us recall that, due to chiral symmetry, scalar partial waves have a so-called
Adler zero below threshold, which is easily implemented in the partial waves by writing a pole factor in front of the Φ (s)
ℓ
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Table B.33
P1/2-wave alternative solution parameters. The first four parameters cor-
respond to the elastic parameterization Eq. (86), whereas the rest of the
parameters correspond to the inelastic formula Eq. (88).
Parameters UFD CFD

B0 1.144 ± 0.048 1.137 ± 0.048
B1 0.90 ± 0.60 0.45 ± 0.60
B2 1.72 ± 1.01 0.78 ± 1.01
mr 0.8955 ± 0.0018 GeV 0.8947 ± 0.0018 GeV

a1 −2.17 ± 0.18 GeV−2
−1.66 ± 0.18 GeV−2

a2 −2.10 ± 0.28 GeV−2
−1.74 ± 0.28 GeV−2

a3 −1.33 ± 0.09 GeV−4
−1.36 ± 0.09 GeV−4

√
sr1 0.896 GeV (fixed) 0.896 GeV (fixed)

√
sr2 1.343 ± 0.013 GeV 1.344 ± 0.013 GeV

√
sr3 1.647 ± 0.005 GeV 1.655 ± 0.005 GeV

e1 1 (fixed) 1 (fixed)
e2 0.048 ± 0.008 0.067 ± 0.008
e3 0.307 ± 0.016 0.320 ± 0.016
G1 0.029 ± 0.005 GeV 0.046 ± 0.005 GeV
G2 0.218 ± 0.042 GeV 0.210 ± 0.042 GeV
G3 0.303 ± 0.018 GeV 0.290 ± 0.018 GeV

expansion, as follows:

Φℓ(s) =
1

s − sAdler

∑
n

Bnw(s)n. (A.8)

In other words, choosing F (s) = 1/(s − sAdler ) above. In addition, when there is a narrow well-established resonance and
the phase crosses π/2 at mr it is also convenient to extract a factor out of the conformal expansion as:

Φℓ(s) = (s − m2
r )
∑
n

Bnw(s)n, (A.9)

to accelerate the convergence of the fit. This is nothing but choosing F (s) = (s − m2
r ) above.

These are the expressions, truncated to the minimum number of terms needed to get an acceptable χ2/dof , that we
ave used for our parameterizations of πK scattering in the elastic region. However, note that the expression above also
rovides an analytic extension of Φℓ to the complex plane, which, by means of Eq. (65), yields a fairly good approximation
o the partial wave fℓ, as long as one is not too far from the elastic region. Actually, we have seen that we find poles
or the κ/K ∗

0 (700) and K ∗(892) resonances using our conformal parameterizations and, in particular, the CFD conformal
arameterization yields reasonable values for both poles and residues. But, of course, these values are model-dependent,
ince their extraction relies on a particular parameterization. To obtain model-independent results for resonances, one
as to rely on dispersion relations, as we do in this report.

ppendix B. Alternative P-wave and form factors

As explained in Section 2, there are P-wave measurements from other processes than scattering. In particular, Ref. [134]
etails how it could be possible to determine the elastic phase shift of the P-wave around the resonance region from the
esults of the FOCUS collaboration [133]. The main motivation is twofold. First, there exists some tension between the
∗(892) parameters coming from production experiments and those coming from heavier decays as listed in the RPP [233],
articularly for the width of the resonance. Second, should the width be smaller, it would affect our dispersive results,
nd it could also lead to different results for those works which use the πK vector form factor in their analyses [136–
41,228,261]. On top of all the above, our P-wave UFD does not agree very well with the final CFD result, which is
urprising considering how small the data uncertainties are. It seems that there might be a non-trivial systematic deviation
ithin the original experimental data, which could help explain this tension [141].
For all these reasons we will implement an alternative fit for the P-wave elastic phase shifts, based on the ‘‘pseudo-

ata’’ produced by V. Bernard in [141] (Fig. 2 therein) as a result of re-sampling the P-wave fit by the FOCUS
ollaboration [133]. The rest of the partial waves will remain untouched and are given in Section 4. Once we obtain
n Unconstrained Fit to these new Data (UFD) we then procure an alternative Constrained Fit to Data (CFD), following
he approach detailed in Section 4.4. We list in Table B.33 the alternative UFD and CFD parameters for this P-wave.

Including this ‘‘pseudo-data’’ into the fits is a bit problematic, as it has been produced from a smooth parameterization.
This results in strong, unknown correlations between different bins, both for the central values and uncertainties. As a
consequence, no flawless fit to this partial wave can be attained. For simplicity, we have decided to use an ordinary χ2

function, for which we have produced many O(103) fits to different re-samplings over the ‘‘pseudo-data’’. Hence, instead
of using the Minuit [404] crude estimate of the uncertainties, we have calculated the variance of its parameters over the
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Fig. B.45. Comparison between the original CFD fit (blue) to the P-wave from production data [5,6], and the alternative CFD (orange) obtained by
using the FOCUS collaboration [133] data.

many re-samplings. On top of that, we have taken some of these re-samples as data samples so that we can define several
χ2 over this partial wave, which are combined into an averaged χ2 afterward. This way we obtain a stable and normalized
efinition of a pseudo-χ2-like function for this partial wave and thus all partial waves and dispersion relations can now
e imposed following our approach. An alternative description could be obtained using bootstrapping techniques, but this
ould demand a bigger set of fits to the Montecarlo re-sampling of the initial parameterization and we should deal with
he values of each bin rather than the parameters themselves. This is incompatible with our simplistic approach, where
e focus on one fit with simple parameter uncertainties, and thus it will not be used.
First, notice that the alternative and original inelastic parameters of Tables 6 and B.33 are very similar. This result is

ot surprising as we are using the same data input on this inelastic region. The main difference now is that the alternative
FD describes a narrower K ∗(892) resonance, which contributes a bit less to the dispersive inputs.
Additionally, the alternative CFD result is quite compatible with the original fit as seen in Fig. B.45, with a small

eviation associated with the different width of the K ∗(892). Moreover, both CFD results bend towards one another,
roducing a much similar pole position for the K ∗(892) than the UFD fits. On top of that, the result of the rest of the
artial waves is barely any different from before.
Taking into account that we do not have access to measured data here, and the null improvement altogether we cannot

ay we favor this alternative solution over the original scattering data. However, we have decided to include its parameters
ere, in case data from heavier decays were extracted in the future. Once additional data were measured for this partial
ave, they could be compared to this alternative solution to see if the new information favors this alternative fit over the
lder data.
Finally, should one use this fit instead of the original one, the CFD dispersive resonance pole for the K ∗(892) would

ead
√
sp = (891 ± 2) − i(23.9 ± 3.0)MeV, |g| = (5.49 ± 0.19), φg = −(0.065 ± 0.011), CFD FOCUS

√
sp = (890 ± 2) − i(25.6 ± 1.2)MeV, |g| = (5.69 ± 0.12), φg = −(0.076 ± 0.008), CFD Original (B.1)

where we have taken the average between the fixed-t and the two HDR dispersive values. Notice that the mass is almost
equal to the original CFD, although the width has moved by around 1.3 σ from the original value.

Besides the little changes to the alternative P-wave, the rest of the partial waves barely change, if they change at all.
The κ/K ∗

0 (700) resonance extracted from this analysis is perfectly compatible with our original value, and the new S-wave
scattering lengths obtained using this P-wave are almost identical to the CFD ones, as listed in Table B.34. Notice we have
called this new solution CFDFOCUS for practical purposes.

In summary, let us recall once again that the idea of implementing an alternative P-wave comes from the fact that the
production data [5,6] could potentially suffer from a faulty extraction in the region around the K ∗(892) mass. Alternatively,
in this section, we have provided a dispersive study of a fit compatible with that of the FOCUS collaboration [133], which
is consistent with new analyses performed in the recent past for form factors, as well as heavier decays and Dalitz plots
extractions.
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Table B.34
S-wave scattering lengths (mπ units).

CFDFOCUS CFD Ref. [43]

a1/20 0.220 ± 0.011 0.224 ± 0.011 0.224 ± 0.022

a3/20 −0.049 ± 0.007 −0.048 ± 0.006 −0.0448 ± 0.0077

Table C.35
Parameters of the alternative φ0

0 .

Parameter UFD CFDB CFDC

B1 23.5 ± 1.3 22.1 ± 1.3 23.5 ± 1.3
B2 29.0 ± 1.3 27.6 ± 1.3 29.1 ± 1.3
B3 0.01 ± 1.60 1.7 ± 1.6 0.6 ± 1.6
C1 12.0890 fixed 10.0142 fixed 9.0032fixed
C2 13.6 ± 2.6 11.1 ± 2.6 10.9 ± 2.6
C3 −12.9 ± 2.3 −16.0 ± 5.2 −16.0 ± 5.2
C4 −13.1 ± 2.2 −14.3 ± 2.2 −13.9 ± 2.2
C5 4.0 ± 2.4 4.5 ± 2.4 4.6 ± 2.4

Table C.36
Parameters of the UFDB and CFDB fits to |g0

0 |.

Parameter UFDB CFDB

D0 0.588 ± 0.010 0.590 ± 0.010
D1 −0.380 ± 0.013 −0.339 ± 0.013
D2 0.12 ± 0.01 0.13 ± 0.01
D3 −0.09 ± 0.01 −0.12 ± 0.01
F1 −0.04329 fixed −0.04195 fixed
F2 −0.008 ± 0.009 −0.008 ± 0.009
F3 −0.028 ± 0.007 −0.034 ± 0.007
F4 0.026 ± 0.007 0.038 ± 0.007

Table C.37
Parameters of the UFDC and CFDC fits to |g0

0 |.

Parameter UFDC CFDC

D0 0.462 ± 0.008 0.447 ± 0.008
D1 −0.267 ± 0.013 −0.237 ± 0.013
D2 0.11 ± 0.01 0.10 ± 0.01
D3 −0.078 ± 0.009 −0.087 ± 0.009
F1 −0.04153 fixed −0.03658 fixed
F2 −0.010 ± 0.008 −0.016 ± 0.008
F3 −0.023 ± 0.007 −0.023 ± 0.007
F4 0.021 ± 0.006 0.027 ± 0.006

Appendix C. Alternative g0
0 wave

As explained in Sections 4.2, 5.3 and in [42] the Brookhaven experiment [236] used only two resonances, f2(1270) and
′

2(1525), to describe their data on the g0
2 (t) partial wave. However, we have included a third resonance f2(1810) following

everal experiments that claimed its existence and because we have found that it helps obtain a better data fit. Of course,
ince their g0

2 wave was used to extract their g0
0 data, if one now assumes that the f2(1810) resonance exists, this should

roduce non-negligible deviations in the data on the scalar–isoscalar phase above roughly 1.6 GeV. On top of that, the
arameterization used by the Brookhaven collaboration violates Watson’s theorem at lower energies. This is evident if
ne notices that they obtain a different value for their g0

2 (t) phase right above the KK̄ threshold from the ππ phase they
hould match right below (see Fig. 18). Hence, the first few data bins by [236], shown in Fig. 16, should also be corrected.
We list in Table C.35 the parameters of the ‘‘Alternative CFD’’ g0

0 (t) solution shown in Fig. C.46, obtained by extracting
he g0

0 (t) phase from [236] using our own g0
2 (t) wave, rather than the faulty one used by the experimental collaboration.

ne could wonder if this modification would produce a significant effect in the dispersive results of the g0
0 (t), and thus

ropagate it to the rest of the partial waves through the dispersion relations. Fortunately, the affected region lies above
.6 GeV, which is already highly suppressed as input to the g0

0 (t) dispersion relation itself, and its modulus is small
here, yielding a negligible effect when changing the parameters between the fit to the original data ( Table 10) and the
lternative one. Let us recall here that our dispersion relations can be applied only up to 1.47 GeV, and thus they cannot
onstrain the region where this new g0

0 (t) deviates substantially from the original one. Moreover, no other dispersion
elation is modified by this new solution.
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Fig. C.46. Alternative ππ → KK̄ scattering data on the scalar–isoscalar partial wave g0
0 , coming from [7] (Argonne), [8] (Brookhaven-I) and [9]

(Brookhaven-II). As explained in the main text, below KK̄ threshold, due to Watson’s Theorem and the fact that no multi-pion states are observed,
the ππ → KK̄ phase shift is precisely that of ππ → ππ scattering. Thus, in that region, we provide a representative sample of such data coming
from scattering experiments which is the data we plot in that region [145] (Grayer et al. solution b), [146,147] (Kaminski et al.), or the very precise
Kℓ4 decays from [148] (NA48/2).

Notice, as shown in Fig. C.46 that the solutions of the ‘‘Alternative CFD’’ g0
0 (t) and the original one shown in Fig. 16

are very similar for the modulus. This is also reflected in the parameters listed in Tables C.36 and C.37, which are almost
equal to those fitting the original data, shown in Tables 10 and 11. Of course, there is a difference between the phases
above 1.6GeV, which could be relevant if one is trying to describe this process up to higher energies.

All in all, we consider this alternative solution as slightly favored over the one in the text, although there we have
preferred to stick to the data quoted in the original experimental works, without introducing these further complications.
There are several experimental pieces of evidence for the f2(1810) resonance, which could in principle decay copiously
to this channel, and including it clearly improves our fit to the data as explained in [42]. However, using one solution
or the other does not modify in any way our dispersive results nor does it introduce any noticeable systematic effect.
We have checked that the scattering lengths and the κ/K ∗

0 (700) resonance remain perfectly compatible with the original
g0
0 (t) values.

Appendix D. Applicability regions for dispersion relations

In this appendix, we will describe how to calculate the applicability domain of different dispersion relations and how
to maximize it, either in the real axis or to make it reach the complex plane in the κ/K ∗

0 (700) region. For Hyperbolic
ispersion Relations (HDR) this translates into specific choices of the a parameter defining the hyperbolae. Our approach
ill be similar to that in [188,201] and we will study the applicability range both for the s-channel πK → πK and for
he t-channel ππ → KK̄ .
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Fig. D.47. Unitarity box diagrams that are used to calculate the double spectral regions of πK scattering. Contrary to Feynman diagrams, unitarity
r Cutkosky diagrams have all internal lines on-shell. Continuous lines denote pions while dashed lines denote kaons.

To this end, we will first calculate the double spectral regions, where the imaginary part of the amplitude becomes
lso imaginary and therefore the Mandelstam analyticity hypothesis does not hold (see [405] for a textbook introduction).
his is necessary for the partial-wave projections of the dispersion relations themselves and thus apply directly to the
‘external’’ or ‘‘unprimed’’ s, t, u variables. Second, we have to ensure the convergence of the partial-wave expansion of the
maginary parts inside the dispersive integral, which means that it is to be used only inside the (large) Lehmann ellipse
406–408]. This constraint affects directly the ‘‘internal’’ or ‘‘primed’’ variables s′, t ′, u′ as well as z ′

s, λs′ , etc.

D.1. Double spectral regions and Lehmann ellipses

Our analysis follows the general scheme of [97,188,201,245,409,409]. Namely, we assume that the F (s, t, u) matrix
elements, considered as functions of two independent complex variables, obey Mandelstam (or maximal) analyticity [155].
This means that the amplitude has only those singularities that are required by bound states (poles in the real axis below
threshold) or unitarity (cuts) in each of the s, t , and u channels. Let us very briefly explain the mathematical consequences
of this assumption, although for a detailed and pedagogical introduction we refer the reader to [405].

In the two-body scattering of pions and kaons there are no bound states, at least not at the physical pion mass, so that
F (s, t), for a given t , can be written as a dispersion relation over the right and left kinematic cuts in the s variable. These
cuts are the consequence of intermediate particles becoming real. For instance if real particles can be produced in the
s-channel for a given energy s then we find a singularity in the form of a discontinuity Ds(s, t) = [F (s+iϵ, t)−F (s−iϵ, t)]/2i,
whose value is constrained by s-channel unitarity. Note that, due to Schwarz reflection, i.e. F (s∗, t) = F∗(s, t), in the real
s axis Ds(s, t) is nothing but the imaginary part of F , and therefore real. However, if we now continue Ds in the complex
t variable, Ds might turn complex. We can then write a dispersion relation in the t variable, not for the amplitude F , but
for Ds over the regions where it has a discontinuity due to a kinematic cut in the t channel. Such a discontinuity of Ds in
the t variable is called the double spectral function ρst = [Ds(s, t+ iϵ)−Ds(s, t− iϵ)]/2i and is once again constrained by t
channel unitarity. Similarly, we can define ρsu and ρtu. Therefore, Mandelstam analyticity implies that πK and ππ → KK̄
scattering amplitudes can be written as a sum of double integrals over the regions where the spectral functions ρst , ρsu
and ρtu have support. These areas are called double spectral regions. Intuitively, the lowest kinematic discontinuities are
found when the lowest possible number of particles can become on-shell on each diagram. Since the minimum number
of legs in pion and kaon interaction vertices is four, the ‘‘unitarity’’ or Cutkosky box diagrams that we show in Fig. D.47
will give us the double spectral regions. Since these regions contain the singularities of F in the Mandelstam plane, they
have to be avoided when writing dispersion relations and limit the applicability of the dispersive approach. Let us then
calculate the boundaries of the double spectral regions, using the unitarity box diagrams in Fig. D.47.

The equations that describe the boundary of the support of the spectral function ρst are:

bI (s, t) : (t − 16m2
π )λs − 64m4

π s = 0, (D.1)

bII (s, t) : (t − 4m2
π )(s − (mK + 3mπ )2) − 32m3

πm+ = 0,

where the subscripts I and II indicate what diagram yields each constraint. For the s-channel they apply at s > m2
+

and
s > (mK + 3mπ )2, respectively. By means of s ↔ u crossing, similar equations are obtained for ρut . The equations that
describe the boundary of the support of ρus are

bIII (s, t) : (s − m2
−
)(t + s − m2

+
)
((

(3mπ − mK )m+ + s
)2

+ t(s − m2
+
)
)

= 0, (D.2)

bIV (s, t) : (s − m2
−
)(t + s − m2

+
)
(
(m2

K + 2mKmπ + 5m2
π − s)2 + t(s − (mK + 3mπ )2)

)
= 0.

For the s-channel they apply at s > m2
+
, u > (mK + 3mπ )2 and s > (mK + 3mπ )2, u > m2

+
, respectively.

The support of these double spectral regions can be seen in Fig. D.48 as black areas in the (s, u) plane. Note the s ↔ u
symmetry of the plot. In order to write a dispersion relation, these areas must be avoided. This is one kind of constraint

on the applicability of dispersion relations.
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w

Fig. D.48. Mandelstam (s, u) plane for the πK scattering amplitude. Note we use units of m2
π . The physical regions for πK → πK scattering (s and

u-channels) as well as that for ππ → KK̄ (t-channel) are shown as light gray areas. The double spectral regions ρst , ρut and ρus are represented by
black areas. The arrows, starting at (t, ν) = (0, 0) show the directions of increasing t and ν = s−u. Also shown are several parallel lines of constant
t . The dark gray area is the region excluded by the s-channel Lehmann ellipse.

In addition, there is another constraint because partial-wave expansions of Im F (s, t) in terms of Legendre polynomials
Pℓ(z) converge in the complex z plane within the so-called Lehmann ellipse [406–408]

(Re z)2

A2 +
(Im z)2

B2 = 1, (D.3)

of foci z = ±1. Here A2
−B2

= 1, i.e., the A semi-axis along the real axis is larger than that along the imaginary direction,
B. The size of this ellipse of convergence is given by the real zmax

= A where it first touches a singularity of Im F (s, t),
i.e., reaches the double spectral region.

In this report, we have to consider four Lehmann ellipses. The reason is that we have been discussing both πK → πK
and ππ → KK̄ scattering, which correspond to the s-channel and t-channel of the same amplitude F (s, t, u), respectively.
Therefore, we are interested in both the s-channel partial-wave expansion, using the zs variable, and the t-channel partial
waves in terms of the zt variable. Note that these are ‘‘external’’ variables, in the sense that they are not integrated
inside dispersion relations. However, we also use each one of these s-channel and t-channel partial-wave expansions with
respect to the zs′ and zt ′ ‘‘internal’’ variables, respectively. All these Lehmann ellipses give rise to different constraints on
the applicability of the dispersion relations.

Let us now see how all these constraints limit the applicability region of different kinds of dispersion relations.

D.2. Constraints on fixed-t dispersion relations

Fixed-t dispersion relations are very effective in the study of both equal mass and different mass particles. In Fig. D.48
we have plotted several straight lines corresponding to fixed values of t . The first relevant observation is that for forward
scattering t = 0, the double spectral regions are avoided for all s. Therefore the forward dispersion relations for πK
scattering that we have used in Section 3.3 are well-defined for any value of s. However, it is also obvious that this is an
exceptional case. Actually, it can be noticed that the most restrictive boundary for fixed positive t is that of ρst (or, by
symmetry, ρut ). Thus, if we define T (s) as the solutions of the boundary conditions, by solving Eqs. (D.1) we find:

Tst (s) = 16m2
π +

64m4
π s

λs
, ∀s ≤ s0, (D.4)

Tst (s) = 4m2
π +

32m3
πm+

s − (mK + 3mπ )2
, ∀s ≥ s0, (D.5)

here

s = m2
+ 4m m + 5m2

+ 2m
√
5m2

+ 12m m + 8m2 . (D.6)
0 K K π π π K K π π
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sing Eq. (D.5), we find that t = 4m2
π is the first fixed-t line that touches the double spectral regions, for t positive.

e have plotted it as a continuous red line in Fig. D.48, asymptotically tangent to ρst and ρut for ν = ∞ and ν = −∞,
espectively. For negative t , if we use Eq. (D.4), we find that the ρus region is touched by the fixed-t = −16mπm+ ≃

−72.75m2
π line, which is shown as a dotted red line tangent to two points of ρus. Recall that for fixed-t dispersion relations

we are integrating Im F (s′, t) over some polynomial of s′, for all values of s′. Thus, if we want Im F (s′, t) to be real for all
values of s′ we find a first constraint:

−16mπm+ < t < 4m2
π , (D.7)

required to avoid the double spectral regions.
Let us now remark for completeness that fixed-s or fixed-u dispersion relations are of little use in the physical regions.

This is clearly seen in Fig. D.48 for πK scattering, since for the s-channel the highest fixed-u straight line touches the ρut
double spectral region almost at the s channel threshold, and would therefore be practically useless. It is actually below
threshold once we explain in the next section that we should also avoid the dark gray region. The situation is similar for
the u-channel and fixed-s. For ππ → KK̄ it is not straightforward from the figure, but the applicability region of fixed-s
or fixed-u dispersion relations is very limited, well below the KK̄ threshold, as shown for ππ → NN̄ in [45]. Moreover,
from the figure it is also clear that forward dispersion relations for ππ → KK̄ , i.e. ν = 0, are of no use since that straight
line passes right through the ρus double spectral region. Thus, in practice, fixed-variable dispersion relations for the πK
amplitude are only useful for fixed-t .

However, Eq. (D.7) is not the only constraint. There are others, even more stringent, due to the fact that we have to
build Im F (s′, t) through the partial-wave expansion in zs′ = 1−2s′t/λs′ . The first value where the corresponding Lehmann
ellipse touches the double spectral region is As′ ≡ zmax

s′ ≡ 1+2s′Tst (s′)/λs′ , which we have seen that for fixed-t lines occurs
at t = 4m2

π . Once we have obtained the positive end of the ellipse, the negative end is just −zmax
s′ . Thus the convergence

of the internal partial wave series demands −zmax
s′ ≤ zs′ ≤ zmax

s′ , which translates into the following restriction for t

−
λs′

s′
− Tst (s′) ≤ t ≤ Tst (s′). (D.8)

The upper applicability bound is given directly by the double-spectral region Tst (s′) and we have already seen in Fig. D.48
hat for fixed-t straight lines it lies at 4m2

π . However the lower bound in Eq. (D.8) depends also on λs′/s′ and is given by
the dark gray dashed curve that encloses the dark gray region in Fig. D.48, which thus has to be avoided for our fixed-t
dispersion relations. This implies t > −32m2

π . All in all, the applicability of fixed-t dispersion relations is limited to:

−32m2
π < t < 4m2

π . (D.9)

Both the fixed-t = −32m2
π and t = 4m2

π straight lines are plotted as a red continuous lines in Fig. D.48. It is only between
these two lines that fixed-t dispersion relations are well defined.

So far we have not projected the outcome of the dispersion relation in partial waves. What we have seen up to
now would be valid to constrain F (s, t). However, we want to constrain partial waves using Roy–Steiner equations to
rewrite unphysical cuts in terms of the physical ones within the dispersion relation, as explained in the main text. This
representation has its own constraints on its applicability that we review next.

D.3. Complex applicability domain of partial-wave relations from fixed-t dispersion relations

Here we follow closely the excellent account in [97]. Hence, if we want to obtain partial-wave dispersion relations using
the Roy–Steiner representation from fixed-t dispersion relations (FTPWDR), we have to project the amplitude obtained
from the latter, as follows:

fℓ(s) =
1

32πN

∫ 1

−1
dzs Pℓ(zs)F (s, t (zs)) =

s
16πNλs

∫ 0

−λs/s
dt Pℓ(zs(t))F (s, t) , (D.10)

where N = 1, 2 for non-identical and identical particles, respectively, and F (s, t (zs)) will be obtained from fixed-t
ispersion relations. Note that now we are interested in the applicability domain within the complex plane of the external
ariable s. From the definition of the s-channel cosine of the scattering angle, zs = 1 + 2st/λs, which is integrated over
eal values in (D.10), we see that if s is complex then t is integrated along a complex segment. Hence, in the integrand
f the fixed-t dispersion relation we now need Im F (s′, t) for real values of s′ but complex values of t .
Let us then rewrite the zs′ Lehmann–Martin ellipse [406–408] in terms of the t variable. The t ellipse has now foci

t real t = −λs′/s′ and t = 0 and the new semi-axes are Ã = λs′A/2s′ and Ã2
− B̃2

= (λs′/2s′)2. Its eccentricity is

ϵ =

√
1 − B̃2/Ã2 = 1/A.

It is now convenient to rewrite the equation of the ellipse in polar coordinates (T (θ ), θ ) with respect to the second
oci t = 0 at the origin of the plane. Namely

T (s′, θ ) =
Ã(1 − ϵ2)

=
Tst (s′)(λs′ + s′Tst (s′))

2 θ ′ ′
. (D.11)
1 + ϵ cos θ λs′ cos 2 + s Tst (s )
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Fig. D.49. The domain of validity for the Roy–Steiner representation of partial waves obtained from fixed-t dispersion relations (FTPWDR) for
πK → πK scattering, in mπ units. The shadowed areas represent the region where the κ/K ∗

0 (700) pole lies in the second Riemann sheet.

This equation defines the maximum allowed value for the modulus of t for a given value of the integration variable s′.
Beware, however, that t lies inside the applicability region only if it falls inside all the ellipses for all possible s′ over
which we integrate. Therefore, the boundary of the applicability region is given by

T (θ ) = min
sth≤s′

T (s′, θ ). (D.12)

Finally, the allowed values for s in the complex plane are those for which |t| ≤ T (θ ). But t = T (θ ) exp(iθ ) = λs(zs − 1)/2s,
with 0 ≤ zs − 1 ≤ 1 real, so that the largest modulus of t for a given value of s is t = −λs/s. Therefore the boundary in
he s complex plane is given by

λs + sT (θ ) exp(iθ ) = 0, (D.13)

hich corresponds to the red line shown in Fig. D.49. Within that line, we can safely apply FTPWDR. Note that in the real
xis this means that we can use FTPWDR relations up to s ∼ 57m2

π , or
√
smax ≃ 1.05GeV . Unfortunately, this region does

not reach the position of the κ/K ∗

0 (700) pole and is the main reason to use partial-wave dispersion relations obtained
from hyperbolic dispersion relations (HPWDR), whose applicability region we study next.

D.4. Constraints on hyperbolic dispersion relations

Relatively similar constraints appear if, instead of fixed-t dispersion relations we choose other ways of fixing one
variable. Actually, Steiner and Hite [164] showed, for πN scattering, that hyperbolae of the form (s − a)(u − a) = b
re the most convenient curves to avoid the double spectral regions passing through both direct and crossed channels,
ithout introducing further cuts and provide reasonably simple integration kernels after the partial-wave projection.
he applicability of the a = 0 case for πK scattering was studied in [97]. In [42] the general case with a ̸= 0 was
nalyzed, paying particular attention to maximizing the πK and ππ → KK̄ applicability regions in the real axis, in order
o constraint data fits. In this appendix we will review the general case, but now it is also very relevant that, with an
ppropriate choice of a, the κ/K ∗

0 (700) pole should lie within the πK applicability domain, while still having a rather
arge applicability region in the real axis.

In contrast to the fixed-t case, we use hyperbolic dispersion relations (HDR) both for the s-channel and t-channel,
.e. both for πK and ππ → KK̄ scattering. Let us emphasize again that we have to consider the projection in terms
f ‘‘external’’ variables of F (s, t) into partial waves for the two channels, according to Eq. (11) and (12), respectively. In
ddition, the applicability of both projections will have to be studied concerning ‘‘internal’’ integration variables, since in
ractice Im F (s′, t ′) is built from the sum of partial waves.
Thus, on the one hand, for a fixed value of a, the family of hyperbolas (s−a)(u−a) = b has to avoid all double spectral

egions for all values of b needed to perform the partial-wave projection. On the other hand, for a fixed a, we have to
alculate the restrictions on b to remain within the corresponding Lehmann ellipse.
Let us then explain in detail how to calculate these applicability domains.
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D

f

.4.1. Lehmann ellipses for the partial-wave expansion in internal variables
In contrast to the fixed-t case, now t ′ also changes in Im F (s′, t ′) simultaneously with the integration variable s′. Thus,

or a given a, neither s′ nor t ′ are fixed, but instead, they determine the value of the parameter

b(s′, t ′, a) = (s′ − a)(2Σ − s′ − t ′ − a), (D.14)

that characterizes the hyperbola in the Mandelstam plane. Thus, the applicability constraints will be given in terms of
this parameter.

• Internal s-channel partial-wave expansion
This case is very similar to the fixed-t analysis of πK scattering. Thus, the internal partial-wave expansion for the
s-channel converges for angles zs′ (s′, t ′) = 1 + 2s′t ′/λs′ inside the Lehmann ellipse [406–408]

(Re zs′ )2

A2
s

+
(Im zs′ )2

B2
s

= 1, (D.15)

with foci at zs′ = ±1. The maximum value of zs′ , which defines the large semi-axis, touches the double spectral
region at t ′ = Tst (s′), namely

As ≡ zmax
s′ = 1 +

2s′Tst (s′)
λs′

, ∀s′ ≥ m2
+
. (D.16)

The minimum real value of the ellipse is therefore zmin
s′ = −zmax

s′ and thus zs′ is constrained to lie within

−zmax
s′ ≤ zs′ ≤ zmax

s′ , ∀s′ ≥ m2
+
, (D.17)

which translates into the following restriction on t ′

−
λs′

s′
− Tst (s′) ≤ t ′ ≤ Tst (s′), ∀s′ ≥ m2

+
. (D.18)

Now, using Eq. (D.14) we obtain a set of bounds for b:

b−

s (s
′, a) ≤ b ≤ b+

s (s
′, a), ∀s′ ≥ m2

+
> a

b−

s (s
′, a) ≡ (s′ − a)(2Σ − s′ − Tst (s′) − a),

b+

s (s
′, a) ≡ (s′ − a)(2Σ − s′ +

λs′

s′
+ Tst (s′) − a). (D.19)

Thus, the final range of values allowed for b to avoid the double spectral regions in the s-channel contributions to
the HDRs is

b−

s (a) ≤ b ≤ b+

s (a), ∀s′ ≥ m2
+
> a, (D.20)

where

b−

s (a) ≡ min
sth≤s′

b−

s (s
′, a), b+

s (a) ≡ max
sth≤s′

b+

s (s
′, a). (D.21)

Note that it is required that a < m2
+
, independently of b.

• Internal t-channel partial-wave expansion
For the t-channel the partial-wave expansion in the angle zt ′ (s′, t ′), also converges within a Lehmann ellipse

(Re zt ′ )2

A2
t

+
(Im zt ′ )2

B2
t

= 1, (D.22)

of foci zt ′ = ±1 and A2
t − B2

t = 1. However, now we cannot follow a similar argument as for the s-channel because
the angle in the t ′ channel is

z2t ′ =
ν ′

4qπ (t ′)qK (t ′)
, ν ′

= s′ − u′, (D.23)

which becomes pure imaginary in the pseudo-physical region tπ ≤ t ≤ tK and one cannot write an ordering relation
as in Eq. (D.17). Nevertheless, we are interested in the bounds for b and these can be recast in terms of z2t ′ , since,
along the hyperbolae

ν ′2
= (t ′ − 2Σ + 2a)2 − 4b(s′, t ′, a), (D.24)

so that

z2t ′ =
(t ′ − 2Σ + 2a)2 − 4b(s′, t ′, a)

, (D.25)

16qπ (t ′)2qK (t ′)2
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where all squares are real, although not necessarily positive. We can then obtain an ellipse for z2t ′ by simply squaring
the ellipse for zt ′ in Eq. (D.22) above. Namely:

(Re z2t ′ −
1
2 )

2

Â2
t

+
(Im z2t ′ )

2

B̂2
t

= 1, (D.26)

where Ât = (A2
t +B2

t )/2 = A2
t −1/2 and B̂t = AtBt = At

√
A2
t − 1 are the new semi-axes of the ellipse. The new center

lies at (1/2, 0) and the new foci are located at 1/2 ±

√
Â2
t − B̂2

t = 1/2 ± 1/2. Therefore, for real z2t ′ , the condition to
remain within the ellipse 1/2 − Â2

t ≤ z2t ′ ≤ 1/2 + Â2
t can be recast as

1 − A2
t ≤ z2t ′ ≤ A2

t . (D.27)

We still have to determine At . Once again, the most restrictive bound comes from ρst . Given the s ↔ u symmetry of
the t channel, visible in Fig. D.48, and the proportionality between zt ′ and ν ′, it is convenient to rewrite the double
spectral boundaries in (D.1) in terms of t, ν to obtain, respectively

νst (t) =
1

t − 16m2
π

[
(t − 8m2

π )
2
+ 4mπ

√
t
√
(t − 16m2

π )m
2
K + 16m4

π

]
, (D.28)

νst (t) =
16m3

πmK + 12mπm+t + t2

t − 4m2
π

, (D.29)

where in the s-channel they apply for all t ≥ 4tπ and t ≥ tπ , respectively. Denoting the first value of ν that touches
the boundary by

Nst (t) ≡ min νst (t), (D.30)

we obtain the maximum value of the angle and therefore the semiaxis as

zmax
t ′ (t ′) =

Nst (t ′)
4qπ (t ′)qK (t ′)

≡ At ∀t ′ ≥ tK . (D.31)

Now, using Eq. (D.27) together with (D.30), we obtain the restriction for ν ′

16[qπ (t ′)qK (t ′)]2 − Nst (t ′)2 ≤ ν ′2
≤ Nst (t ′)2, ∀t ′ ≥ tK . (D.32)

Finally, the restriction for b is obtained just by translating ν ′2 into b

b−

t (t
′, a) ≤ b ≤ b+

t (t
′, a), ∀t ′ ≥ tπ > a, (D.33)

with

b−

t (t
′, a) =

(t ′ − 2Σ + 2a)2 − Nst (t ′)2

4
,

b+

t (t
′, a) =

(t ′ − 2Σ + 2a)2 − 16[qπ (t ′)qK (t ′)]2 + Nst (t ′)2

4
. (D.34)

Once again, since we are integrating in the internal variable t ′, the total bounds are defined as

b−

t (a) = max
t ′>tπ

b−

t (t
′, a),

b+

t (a) = min
t ′>tπ

b+

t (t
′, a), (D.35)

and the allowed values of b for a fixed a that do not touch any boundary while expanding in partial waves the
t-channel contributions inside the HDR are

b−

t (a) ≤ b ≤ b+

t (a), ∀t ′ ≥ tπ ≥ a. (D.36)

Note that now we are requiring tπ > a, independently of b.

D.4.2. Lehmann ellipses for the partial-wave projection on external variables
In the previous subsection we have studied the constraints due to the fact that the imaginary parts of the amplitude

inside dispersion relations are integrated from threshold to infinity either on the internal variable s′ or t ′. In practice,
these imaginary parts of the amplitude are obtained from their partial-wave expansions, which only converge within
their respective Lehmann ellipses. Besides, the whole amplitude should not touch the double spectral representation.

We are now interested in hyperbolic dispersion relations projected into partial waves (HPWDR), in order to compare
with the existing data and to continue them to the complex plane in search for poles associated with resonances. We will
see next that, in contrast to the FTPWDR, the HPWDR apply to both the s-channel and t-channel partial waves. Hence,
we will now be integrating HDRs, either with respect to the external s-channel cos zs or the t-channel cos zt , between −1

and 1. In addition, we should require that these partial-wave expansions in external angles should also converge.
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• s-channel partial-wave projection
We have already seen that the ρst constraints are the strongest ones. We have also shown that the values of b must
lie within the intervals in Eqs. (D.20) and (D.36), for all s′ ≥ m2

+
and t ′ ≥ tπ . For brevity, we write the two intervals

together using the two labels separated by a comma as b ∈ [b−

s,t (a), b
+

s,t (a)]. Now, the external s, t must also fall in
the hyperbolae and thus we have to make sure that b(s, t, a) = (s − a)(2Σ − s − t − a) lies within those intervals.
Since the integration range −1 ≤ zs ≤ 1 translates into

−
λs

s
≤ t ≤ 0, (D.37)

then, given a fixed a, the parameter b(s, t) due to the s-channel projection will vary between

bmin(s, a) ≤ b ≤ bmax(s, a), s ≥ m2
+
> a, (D.38)

bmin(s, a) = (s − a)(2Σ − s − a),

bmax(s, a) = (s − a)
(
2Σ − s +

λs

s
− a

)
= (s − a)

(
∆2

s
− a

)
.

Therefore, the interval [bmin(s, a), bmax(s, a)] has to be fully included in the [b−

s,t (a), b
+

s,t (a)] intervals. For a given a,
we define smax(a) as the largest value of s for which this occurs, which is calculated as follows: First, let us define
s−s,t (a) and s+s,t (a) as the values of s such that:

b−

s,t (a) = bmin(s−s,t (a), a), b+

s,t (a) = bmax(s+s,t (a), a). (D.39)

In view of the definition of bmin
s,t and bmax

s,t in Eq. (D.38), these are quadratic equations with two solutions each:

s−(±)
s,t = Σ ±

√
(Σ − a)2 − b−

s,t (a), (D.40)

s+(±)
s,t =

1
2a

[
[∆2

+ a2 − b+

s,t (a)]
2
±

√
[∆2 + a2 − b+

s,t (a)]2 − 4a2∆2

]
. (D.41)

Let us consider a given a < 0, which ensures a < m2
+

(similar arguments follow if 0 < a < m2
+
, but are of less

relevance to have large applicability regions). Then, the applicability of the HPWDR is reduced to those s belonging
to the intervals [s−(−)

s,t (a), s−(+)
s,t (a)]∩[s+(+)

s,t (a), s+(−)
s,t (a)]. Now, since we want to compare with data we need to choose

a so that some physical region m2
+

≤ s ≤ smax(a) lies inside those intervals. The calculation of that smax is done
numerically and for a < 0 it is smax = min{s−(+)

s,t (a), s+(−)
s,t (a)}.

For instance, if we choose a to maximize the domain of applicability of the s-channel projection, the strongest
restriction comes from the t-channel Lehmann ellipse and we should use

a = −13.9m2
π , smax ≃ 50m2

π ≃ 0.98GeV 2 ,
√
smax ≃ 0.989GeV ,

b−

t (a) ≃ −592m4
π , b+

t (a) ≃ 1070m4
π . (D.42)

In the left panel of Fig. D.50 we show a representative sample of these hyperbolae, showing in blue the intersection
with the s-channel physical region. The boundary cases correspond to the thicker lines.
However, in Appendix D.5, we will see that this choice is not so good for our purposes, because the applicability
domain in the complex plane does not reach the κ/K ∗

0 (700) pole and its uncertainties.
In contrast, the authors of [97] choose a = 0, so that smax

≃ 45m2
π , i.e.

√
smax ≃ 0.934GeV , but they showed that

the κ/K ∗

0 (700) pole lies within their applicability region, as we will also show in Appendix D.5.
Finally, in this review, we will mostly use

a = −10m2
π , smax ≃ 49m2

π ≃ 0.954GeV 2 ,
√
smax ≃ 0.976GeV ,

b−

t (a) ≃ −690m4
π , b+

t (a) ≃ 997m4
π , (D.43)

which ensures that the applicability domain covers the κ/K ∗

0 (700) pole region, but still reaches rather high in the
real axis, since we only lose 13 MeV of applicability compared to the a = −13.9m2

π case. Our choice will be explained
in detail in Appendix D.5.

• t-channel partial-wave projection
The relation between b and the cosine of the scattering angle zt is now quadratic and is then better to carry out the
analysis in terms of z2t . Thus, to perform the t-channel projection we need to consider the whole interval

0 ≤
ν2

16q2πq
2
K

=
(t − 2Σ + 2a)2 − 4b

16q2πq
2
K

=
(t − 2Σ + 2a)2 − 4b

(t − tπ )(t − tK )
≤ 1. (D.44)

For a given a, it can be translated into an interval of applicability for b, by defining:

bmin(t, a) =
1
(t − 2Σ + 2a)2 ≥ 0, bmax(t, a) = a(t − 2Σ) + a2 +∆2. (D.45)
4
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Fig. D.50. We plot in the Mandelstam (s, u) plane explained in Fig. D.48, a representative sample of the (s− a)(u− a) = b hyperbolae used to obtain
HPWDR, in mπ units. They are represented as dashed red lines when they lie outside the corresponding physical region and as continuous blue
lines when they lie inside. The thicker ones correspond to the limiting b values. On the left panel, we show those that maximize the applicability
region in the real axis for the πK analysis (s-channel), with a = −13.9m2

π . Green straight lines mark the minimum and maximum values of s valid
for these dispersion relations. Let us recall that we do not use exactly this value of a when we want to reach the κ/K ∗

0 (700) region in the complex
plane. For this, it is better to use a = −10m2

π which has only a slightly lower reach, as explained in the main text. On the right panel we show the
hyperbolae used for ππ → KK̄ (s-channel), with a = −10.9m2

π . Green straight lines mark the minimum and maximum values of t valid for these
dispersion relations.

Paying attention to the signs of t − tπ and t − tK , then b must lie within:

bmin(t, a) ≤ b ≤ bmax(t, a), ∀tπ ≤ t ≤ tK , (D.46)

bmax(t, a) ≤ b ≤ bmin(t, a), ∀t > tK (or t < tπ ). (D.47)

Thus, we need these ranges above to be fully contained in the [b−

s,t (a), b
+

s,t (a)] that we obtained from the internal
variable constraints in Eqs. (D.20) and (D.36). In particular, in order to maximize the domain of applicability in the
real t axis by choosing a we search for the value t = tmax where both the maximum and minimum values of b
coincide with b−

s,t (a) and b+

s,t (a). Using Eq. (D.44) and taking into account that the projection is made between z2t = 0
and z2t = 1 this means

z2t (tmax, b−

s,t (a)) = 1,

z2t (tmax, b+

s,t (a)) = 0. (D.48)

Once again, the restriction from the t-channel is stronger than that from the s-channel, and we find that the
applicability range is maximized with the following choice:

a = −10.9m2
π , −0.286GeV 2 (∼ 15m2

π ) ≤ t ≤ 2.19GeV 2 (∼ 112m2
π ),

b−

t (a) = −672m4
π , b+

t (a) = 1010m4
π . (D.49)

Note that this means that the applicability domain in the physical region extends from KK̄ threshold
√
tK ≃

0.992GeV up to
√
t ≃

√
2.19GeV ≃ 1.47GeV , which is the interval we used in the Roy–Steiner dispersive analysis

of ππ → K̄K data [42]. In the right panel of Fig. D.50 we show a representative sample of this family of hyperbolae,
whose intersection with the s-channel physical region we have highlighted in blue. The boundary cases correspond
to the thicker lines.
In contrast, for the choice a = 0, as in [43],

√
tmax ∼ 1.3GeV 7. It is then clear that the optimization of a is more

relevant in ππ → KK̄ than in πK → πK since an optimal choice of a enlarges the applicability interval to study
ππ → KK̄ data by an additional 67% in terms of t for its physical region.

7 In [43] the authors wrote tmax = 70m2
π , or

√
tmax ≃ 1.17GeV , but in [97] they corrected their double spectral boundary equations. When using

the correct ones the actual value is ∼1.3GeV .
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.5. Complex applicability domain of s-channel partial-wave hyperbolic dispersion relations

In the main text we have reviewed the model-independent and precise extraction of the pole parameters associated to
trange resonances that are produced in the elastic regime of πK scattering, i.e. the scalar κ/K ∗

0 (700) and K ∗(892) vector
esonance. This can be done because in the elastic regime there is a zero in the first Riemann sheet for each pole in the
econd and they are easily related through Eqs. (19), (20) and (21). In Appendix D.3 we just saw that the FTPWDR does
ot reach the region of interest for the κ/K ∗

0 (700). We, therefore, need to study the applicability domains of HPWDR in the
omplex s plane, which can differ substantially from one another, depending on the choice of a. Actually, the domain for
he a = 0 case for πK scattering was already shown in [97]. Here we will give the details for the general case a ̸= 0, for
hich we will follow the account given in [188] for πN scattering, in order to determine the semi-axes of the Lehmann
llipses, which can be done from real values of s, t .
Thus, we are now interested in complex values of the external variable s of the partial waves fℓ(s). These are obtained

s an integration over 0 ≤ zs = 1+ 2st/λs ≤ 1, which means that t is integrated over a complex segment between 0 and
s/s. Therefore, in the dispersive integrals from s-channel contributions we will now need Im F (s′, t ′) for real m2

+
≤ s′

ut complex t ′. This is relatively similar to the fixed-t case, although now s′ and t ′ are related through the hyperbolae
(s − a)(u − a) = b. Consequently, the b parameter will also be complex.

In addition, in contrast with the case of fixed-t dispersion relations, for HDR we also have s-channel contributions
where we have to study the convergence of Im F (t ′, s′) with tπ ≤ t ′ real and s′ related to t ′ through the hyperbolae
equation.

Let us then start with the derivation of the range of validity over the s-channel Lehmann–Martin ellipse, which is again
defined throughout the ellipse with foci at t = −λs′/s′ and t = 0. However, since s and t are now related by a hyperbolae,
it is better to recast our conditions in terms of the parameter b = (s − a)(2Σ − s − t − a). With this change of variable,
the partial-wave projection in Eq. (D.10) is recast as:

fℓ(s) =
−s

16πN(s − a)λs

∫ (s−a)(2Σ−s−a)

(s−a)(∆2/s−a)
db Pℓ(zs(t(s, b, a)))F

(
s, 2Σ − s − a −

b
s − a

)
. (D.50)

Thus we have to consider an ellipse on b with foci at bs = (s′ − a)(2Σ − s′ − a) and bs = (s′ − a)(2Σ − s′ + λs′/s′ − a).
he calculation is now more complicated since this ellipse does not have any fixed foci. Nonetheless, we have seen
n Eqs. (D.38) above how the maximum and minimum of b can be calculated. Then, denoting the ellipse boundary by
Bs(s′, θ ), θ ), calculated in polar coordinates from the origin of coordinates, B falls inside all possible ellipses if

Bs(θ ) = min
sth≤s′≤∞

Bs(s′, θ ). (D.51)

Next, we have to consider the t-channel Lehmann–Martin ellipse. As discussed above, the relation between b and zt
s quadratic, so it is better to write the ellipse in terms of z2t . Also, for the ππ → KK̄ contributions it is better to use
he t, ν variables. We already did this in Eqs. (D.26) to (D.34), where we found the extremes of the bt ellipse. Once again
e rewrite that ellipse in polar coordinates (Bt (t ′, θ ), θ ). However, since t ′ is integrated from ππ threshold, we have to
onsider only the values of b inside all possible ellipses as t ′ varies. All things considered, the final applicability bound on
due to the s-channel contributions is given by

Bt (θ ) = min
4m2

π≤t ′≤∞

B(t ′, θ ). (D.52)

Finally, the s variable will remain inside the boundary anytime the b values needed for the s-channel partial wave
rojection are inside their limits. We use again the partial wave projection formula of Eq. (D.10), and perform the
orresponding change of variables from t to b. At the end of the day, we get that the boundary of applicability in the
omplex s plane is given by these two equations

(2Σ − s − a)(s − a) + Bs,t (θ ) exp(iθ ) = 0. (D.53)

The regions of applicability corresponding to both ellipses are shown in Fig. D.51, where we have used a = −10m2
π to

aximize the applicability in the real axis while the κ/K ∗

0 (700) pole and its uncertainties still lie within the boundaries.
here it can be noticed that the boundary due to the s-channel contribution (Green line, using Bt in the equation above)
s more restrictive than that due to the s-channel (Red line, using Bs in the equation above). The blue line represents the
-channel boundary of the a = 0 case, used in [97], where they first showed that with HPWDR it was possible to reach
he κ/K ∗

0 (700) pole, although the applicability domain in the real axis is somewhat smaller.

ppendix E. Integral kernels

In Section 3, we detailed the derivation of several Roy–Steiner-like equations, which, after projecting into partial waves,
rovide us with the necessary tools to perform a rigorous and model-independent coupled study of both ππ → KK̄ and
πK → πK scattering. The integral kernels corresponding to the t-channel dispersion relations for F+ and F−, with one
and no subtractions, respectively, were already given in [42]. Here we will compile not only those but the whole system
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Fig. D.51. The domain of validity in the complex s-plane of partial-wave hyperbolic dispersion relations for πK → πK scattering, in mπ units. The
ed curve depicts the allowed region due to the s-channel contributions, whereas the green line encloses the very same region for the t-channel
ontributions, both calculated for a = −10m2

π . The blue line represents the applicability area for a = 0, as used in [97]. The shadow areas represent
he region where the κ/K ∗

0 (700) pole lies at. Although the applicability region can be extended in the real axis by choosing a = −13.9m2
π , then

the κ/K ∗

0 (700) pole would lie outside the applicability domain. This is why a = −10m2
π was used in [47] to obtain its parameters. The black lines

represent the physical, left and circular cuts characteristic of πK scattering partial waves.

of integrands we have used in this review. Namely, we present kernels for fixed-t and hyperbolic dispersion relations in
the s- and t-channels.

Let us recall that the hyperbolae we use for our dispersion relations are defined through the equation (s−a)(u−a) = b,
as well as some previous useful definitions:

zs = 1 +
2st
λs
, λs = (s − m2

+
)(s − m2

−
) = s2 − 2sΣ +∆2

= 4s q2Kπ (s) .

In addition, to simplify our equations, we will now define

x(t, s′) =
4qK (t)qπ (t)
2s′ + t − 2Σ

, A(t, s′) = artanh
(
x(t, s′)

)
,

B(s, s′) =
s
λs

[
log
(
s′ + s − 2Σ

)
− log

(
s′ −

∆2

s

)]
,

C(s, s′) = 1 −
2s(s′ + s − 2Σ)

λs
. (E.1)

eware that C(s, s′) ̸= C(s′, s) and that both expressions will appear below.
Let us recall that the s variable corresponds to the ‘‘output’’ partial wave, while s′ and t ′ correspond to the ‘‘internal’’

ariables of the ‘‘input’’ amplitudes that are integrated. At the same time, in what follows, ℓ and ℓ′ stand for the ‘‘output’’
nd ‘‘input’’ angular momenta respectively.

.1. Fixed-t kernels

In this subsection we provide the explicit expressions for the LI
ℓℓ′

(s, s′) and L±

ℓℓ′
(s, t ′) kernels needed in the partial-wave

ispersion relations in Eq. (53), only up to vector waves, as no tensor wave dispersion relation is implemented in this
ork. Nevertheless, tensor waves are used as input for the dispersion relations of the other waves. Then, the dominant
-channel kernels we need read

L+

0,0(s, s
′) =

s2
−

2Σs′ − 2∆2
+
∆2

+ s′s + 2Σs
+ B(s, s′),
s′2(s′ − s) s′λs′ s′2s
111



J.R. Peláez and A. Rodas Physics Reports 969 (2022) 1–126

E

E

w

L+

0,1(s, s
′) = 3

(s′3 + s′2s − s′s2 + s∆2)
s′2λs′

+ 3C(s′, s)B(s, s′),

L+

1,0(s, s
′) = −

2s
λs

+ C(s, s′)B(s, s′),

L+

1,1(s, s
′) =

sλs
λs′s′(s′ − s)

+
λs

s′λs′
+

6s(∆2
− s′(2s + s′ − 2Σ))

λs′λs
+ 3 C(s′, s)C(s, s′)B(s, s′),

L−

0,0(s, s
′) =

1
s′ − s

− B(s, s′),

L−

0,1(s, s
′) = 3

[
1

s′ − s
−

2s′

λs′
−

s′λs
(s′ − s)sλs′

− C(s′, s)B(s, s′)
]
,

L−

1,0(s, s
′) = −C(s, s′)B(s, s′) − 2

s
λs
,

L−

1,1(s, s
′) =

s′λs
(s′ − s)sλs′

− 3C(s′, s)
(
C(s, s′)B(s, s′) + 2

sC(s′, s)
λs

)
. (E.2)

In addition, the t-channel contribution kernels are way simpler

L00,2ℓ(s, t
′) =

2(2ℓ) + 1
√
3

(qπ (t ′)qK (t ′))2ℓ
s
λs

[
log
(
1 +

λs

st ′

)
−
λs

st ′

]
,

L01,2ℓ(s, t
′) =

2(2ℓ) + 1
√
3

(qπ (t ′)qK (t ′))2ℓ
s
λs

[(
1 +

2st ′

λs

)
log
(
1 +

λs

st ′

)
− 2

]
. (E.3)

.2. Hyperbolic kernels

.2.1. t-channel projection
In this subsection we provide the explicit expressions for the GI

ℓℓ′
(t, t ′), G±

ℓℓ′
(t, s′), ĜI

ℓℓ′
(t, t ′) and Ĝ±

ℓℓ′
(t, s′) kernels, with

ℓ ≤ 2, needed in the partial-wave dispersion relations in Eqs. (56) and (57). Note that, in the input, partial waves with
ℓ′ > 2 will be safely neglected, except for the ℓ′

= 4 partial wave used for the g0
2 equation, which nevertheless gives a

very small contribution.
We start by listing the kernels appearing in the g1

1 (t) dispersion relation. As in the main text of [42], for the
antisymmetric case, those with a hat correspond to one-subtraction and those without to the unsubtracted case

G1
1,3(t, t

′) = Ĝ1
1,3(t, t

′) =
7
48

(t ′ + t − 4Σ + 10a), (E.4)

G−

1,0(t, s
′) = 4

√
2
[
(2s′ − 2Σ + t)A(t, s′) − 4qK (t)qπ (t)

16(qK (t)qπ (t))3

]
,

G−

1,1(t, s
′) = 12

√
2
[
P1(zs′ )

(2s′ − 2Σ + t)A(t, s′) − 4qK (t)qπ (t)
16(qK (t)qπ (t))3

−
2s′

3(s′ − a)λs′

]
,

G−

1,2(t, s
′) = 20

√
2
[
P2(zs′ )

(2s′ − 2Σ + t)A(t, s′) − 4qK (t)qπ (t)
16(qK (t)qπ (t))3

−
2s′z ′

s

(s′ − a)λs′

+
s′2(2s′ + t − 2Σ)2

2(s′ − a)2λ2s′
−

24s′2(qK (t)qπ (t))2

5(s′ − a)2λ′2
s

]
,

Ĝ−

1,0(t, s
′) = 4

√
2
[
(s′ −Σ + t/2)

A(t, s′) − 4qK (t)qπ (t)
16(qK (t)qπ (t))3

−
1

3λs′

]
,

Ĝ−

1,1(t, s
′) = 12

√
2
[
(s′ −Σ + t/2)P1(zs′ )

A(t, s′) − 4qK (t)qπ (t)
16(qK (t)qπ (t))3

−
1

3λs′

]
,

Ĝ−

1,2(t, s
′) = 20

√
2
[
(s′ −Σ + t/2)P2(zs′ )

A(t, s′) − 4qK (t)qπ (t)
16(qK (t)qπ (t))3

−
1

3λs′
−

2s′2t
λ2s′ (s

′ − a)

]
,

here Pl(zs′ ) are the Legendre polynomials. For the symmetric case, we find

G0
2,4(t, t

′) =
3
8
(t + t ′ − 4Σ + 7a), (E.5)

G+

2,0(t, s
′) =

√
3(2s′ + t − 2Σ)2

32qK (t)5qπ (t)5
[
(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)

]
,

G+

2,1(t, s
′) =

3
√
3(2s′ + t − 2Σ)2

P1(zs′ )
[
(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)

]
,

32qK (t)5qπ (t)5
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G+

2,2(t, s
′) = 5

√
3
[
(2s′ + t − 2Σ)2

32qK (t)5qπ (t)5
P2(zs′ )

(
(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)

) 16s′2t
5(s′ − a)2λ2s′

]
.

Finally, for the g0
0 (t) dispersion relation the kernels we need are

G0
0,2(t, t

′) =
5
16

(t + t ′ − 4Σ + 6a),

G+

0,0(t, s
′) =

√
3
[

A(t, s′)
qK (t)qπ (t)

+
2(Σ − s′)
λs′

]
,

G+

0,1(t, s
′) = 3

√
3
[

A(t, s′)
qK (t)qπ (t)

P1(zs′ ) −
(2s′ + 2t − 2Σ)

λs′
−

2at
(s′ − a)λs′

]
,

G+

0,2(t, s
′) = 5

√
3
[

A(t, s′)
qK (t)qπ (t)

P2(zs′ ) −
2s − 2Σ
λs′

−
6st(∆2

+ s′(3s′ + 2t − 4Σ))
(s′ − a)λ2s′

+
3s′2t(2s′ + t − 2Σ)2

2(s′ − a)2λ′2
s

−
8s′2t(qK (t)qπ (t))2

(s′ − a)2λ2s′

]
. (E.6)

E.2.2. s-channel projection
Finally, we provide the K±

ℓ,ℓ′
(s, s′), K̂±

ℓ,ℓ′
(s, s′), K I

ℓ,ℓ′
(s, t ′) and K̂ I

ℓ,ℓ′
(s, t ′) kernels needed for the dispersive integrals in

Eqs. (54) and (55). Let us recall that in this case we neglect ℓ ≥ 2, since their contribution to the partial waves of interest
is very small. The conventions regarding the variables and angular momenta are the ones explained above. The s-channel
kernels of the unsubtracted antisymmetric amplitude thus read

K+

0,0(s, s
′) =

2((s′ +Σ)∆2
− 2s′Σ)

s′2λs′
−

s′2 + 2s′(Σ − s) − 2sΣ
s′2(s′ − s)

+ B(s, s′), (E.7)

K−

0,0(s, s
′) =

1
s′ − s

− B(s, s′),

K+

0,1(s, s
′) = 3

[
s(s′ + 2Σ) −∆2

λs′s
−

s′λs
(a − s′)λs′s

+ C(s′, s)B(s, s′)
]
,

K−

0,1(s, s
′) = −3

[
(s′s +∆2)
λs′s

−
s′(3s2 − 2Σs +∆2)

(a − s′)λs′s
+ C(s′, s)B(s, s′)

]
,

K+

1,0(s, s
′) = −K−

1,0(s, s
′) = C(s, s′)B(s, s′) + 2

s
λs
,

K+

1,1(s, s
′) = 3C(s′, s)

[
C(s, s′)B(s, s′) + 2

s
λs

]
+

s′(a − s)λs
(s′ − s)s(a − s′)λs′

,

K−

1,1(s, s
′) = −3C(s′, s)

[
C(s, s′)B(s, s′) + 2

s
λs

]
+

s′(a − s)λs
(s′ − s)s(a − s′)λs′

, (E.8)

hereas the once-subtracted kernels for the antisymmetric case read

K̂−

0,0(s, s
′) =

1
s′ − s

− B(s, s′) +
λs

2sλs′
− 2

(s −Σ)
λs′

,

K̂−

0,1(s, s
′) = 3

[
1

s′ − s
− 2

(s′ + s −Σ)
λs′

−
λs(s′ + s)

2(s′ − s)sλs′
− C(s′, s)B(s, s′)

]
,

K̂−

1,0(s, s
′) = −C(s, s′)B(s, s′) −

2s
λs

−
λs

6sλs′
,

K̂−

1,1(s, s
′) = −3C(s′, s)

[
C(s, s′)B(s, s′) +

2s
λs

]
+

(s′ + s)λs
2s(s′ − s)λs′

. (E.9)

Next, we provide the kernels for the t-channel contribution, which read

K 0
0,0(s, t

′) =
1

√
3

s
λs

[
log
(
1 +

λs

st ′

)
−
λs

st ′

]
,

K 0
0,2(s, t

′) =
5

√
3
[qπ (t ′)qK (t ′)]2

s
λs

[
log
(
1 +

λs

st ′

)
−
λs

st ′

]
+

√
3λs(s − a)
16st ′

,

K 0
1,0(s, t

′) =
1

√
s
[
P1(zs) log

(
1 +

λs
′

)
− 2

]
,

3 λs st
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Fig. F.52. Comparison of the unsubtracted (top) or once-subtracted (bottom) HPWDR output, when using different matching points tm for g1
1 (t).

Notice the much better agreement between outputs with different choices of matching points when using as input the CFD (right) rather than the
UFD (left), particularly for the subtracted case.

K 0
1,2(s, t

′) =
5

√
3

s
λs

[qπ (t ′)qK (t ′)]2P1(zs)
[
log
(
1 +

λs

st ′

)
− 2

]
+

5λs(s − a)

16
√
3st ′

,

K 1
0,1(s, t

′) =
3

4
√
2

s(t ′ + 2s − 2Σ)
λs

[
log
(
1 +

λs

st ′

)
−

λs

s(t ′ + 2s − 2Σ)

]
,

K 1
1,1(s, t

′) =
3

4
√
2

s(t ′ + 2s − 2Σ)
λs

[
P1(zs) log

(
1 +

λs

st ′

)
− 2

]
,

K̂ 1
0,1(s, t

′) =
3

4
√
2

s(t ′ + 2s − 2Σ)
λs

[
log
(
1 +

λs

st ′

)
−

2λs
t ′s

+
λ2s

t ′s2(t ′ + 2s − 2Σ)

]
,

K̂ 1
1,1(s, t

′) =
3

4
√
2

s(t ′ + 2s − 2Σ)
λs

[
P1(zs) log

(
1 +

λs

st ′

)
− 2

]
−

λs

8
√
2t ′s

, (E.10)

where once again we have used a hat for the once-subtracted kernels of the F− amplitude.
All these kernels produce smooth integrable inputs in the physical region, they are suppressed at higher energies and

match the kinematic behavior of every partial wave. They also produce the left and circular-cut structures required by
partial-wave projection.

Appendix F. Muskhelishvili–Omnès Matching conditions

In Sections 3 and 4.4 we detailed our choice of the matching point tm for the different ππ → KK̄ partial waves. We
decided to modify slightly our previous value in [42] from

√
tm = 1.2 GeV to

√
tm = 1 GeV for the g1

1 (t) partial wave for
ractical convenience, and used

√
tm = 1.2 GeV for the other two partial waves studied here, i.e. g0

0 (t) and g0
2 (t).

One may wonder if varying this tm substantially modifies the dispersive constraint for the crossed-channel partial
waves, as it imposes a mathematical matching condition between the dispersion relations of Section 3.6 right below t
m
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Fig. F.53. Comparison of the HPWDR output, when using different matching points tm for g0
0 (t). Notice the much better agreement between the

outputs with different choices of matching points when using the CFD (right) instead of the UFD (left) as input.

and the fitted partial waves right above. Of course, if the CFD fits were perfect, this matching condition would not produce
any noticeable effect, and thus the dispersive partial wave would always be compatible within uncertainties regardless
of the matching point.

Of the three partial waves, only g1
1 and g0

0 contribute substantially to the πK system and g0
2 can be considered

‘‘decoupled’’ from the rest. In the following, we will focus on the former two.
Regarding g1

1 (t), different choices of tm within a rather large region produce perfectly compatible results for its CFD
dispersive output, both in the unsubtracted and once-subtracted cases, as shown in Fig. F.52. This is an improvement
upon the UFD case, which nevertheless also yields quite similar results with different choices of tm within that range.
However, the higher the matching point tm, the larger the dispersive uncertainty band. This is the main reason why we
have chosen tm as small as possible, namely, tm = 1 GeV2, taking advantage of the fact that the cusp and isospin breaking
effects around KK̄ threshold are negligible in this wave.

The situation concerning g0
0 (t) is more complicated, mostly because using

√
tm ≤ 1.1 GeV produces significant

deviations from data and thus matching points close to KK̄ threshold should be avoided. As detailed in Sections 4.4 and 5.3
this could be explained by isospin breaking effects, which, among other things imply the existence of a double threshold,
one for K+K− and another one for K 0K̄ 0. These effects are enhanced in this wave due to the nearby f0(980) resonance and
annot be well reproduced by our dispersive formalism, which is isospin-symmetric. Nevertheless, as seen in Fig. F.53,
f one chooses tm above this energy, different matching points again produce dispersive results fairly compatible within
ncertainties in the physical region. Moreover, there is a clear improvement in the pseudo-physical region when using
he CFD as input instead of the UFD. In terms of the d̂2 function defined in Section 4.4, and excluding the region within
20 MeV of the KK̄ threshold, the CFD d̂2 vary between less than 1 and 1.4 σ , which we consider perfectly acceptable for
ur purposes. On top of that, the contribution of this partial wave to the rest of the coupled system is already small, so
hat varying this matching condition produces negligible effects, well within our original statistical uncertainties.
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