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We discuss the structure of the parton quasi-distributions (quasi-PDFs) Q (y, P3) outside the “canonical” 
−1 ≤ y ≤ 1 support region of the usual parton distribution functions (PDFs). Writing the yn moments of 
Q (y, P3) in terms of the combined xn−2lk2l⊥-moments of the transverse momentum distribution (TMD) 
F(x, k2⊥), we establish a connection between the large-|y| behavior of Q (y, P3) and large-k2⊥ behavior of 
F(x, k2⊥). In particular, we show that the 1/k2⊥ hard tail of TMDs in QCD results in a slowly decreasing 
∼ 1/|y| behavior of quasi-PDFs for large |y| that produces infinite yn moments of Q (y, P3). We also 
relate the ∼ 1/|y| terms with the ln z2

3-singularities of the Ioffe-time pseudo-distributions M(ν, z2
3). 

Converting the operator product expansion for M(ν, z2
3) into a matching relation between the quasi-

PDF Q (y, P3) and the light-cone PDF f (x, μ2), we demonstrate that there is no contradiction between 
the infinite values of the yn moments of Q (y, P3) and finite values of the xn moments of f (x, μ2).

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the original Feynman approach [1], the parton distribution 
functions (PDFs) f (x) were introduced as the infinite momentum 
P3 → ∞ limit of distributions in the longitudinal k3 = y P3 mo-
mentum of partons. These distributions basically coincide with the 
quasi-PDFs Q (y, P3) introduced more recently by X. Ji [2].

As is well-known, “x” of the parton model corresponds to the 
ratio x = k+/P+ of the light-cone-plus components of the parton 
and hadron momenta, rather than the ratio y = k3/P3 of their 
third Cartesian components. However, in the P3 → ∞ limit, the 
difference between y and x disappears.

In the parton model, f (x)’s were treated as k⊥-integrals of 
more detailed f (x, k⊥) distributions that involve also the trans-
verse momentum k⊥ . From the start, it was understood by Feyn-
man that the P3 → ∞ limit exists only if f (x, k⊥) rapidly de-
creases with k⊥ , so that the integral over k⊥ does not diverge. This 
happens, in particular, in the theories/models with transverse mo-
mentum cut-off k⊥ � �, e.g., in super-renormalizable models, but 
not in QED and other renormalizable field theories.

One may ask two natural questions. First, why the shape of 
Q (y, P3) for a finite P3 differs from that of f (x)? Second, how 
does the shape of Q (y, P3) convert into that of f (x) when 
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P3 → ∞? A qualitative answer is that the parton’s longitudinal 
momentum k3 = y P3 comes from two sources: from the motion of 
the hadron as a whole (xP3) and from a Fermi motion of quarks in-
side the hadron, so that (y − x)P3 ∼ 1/Rhadr. As P3 → ∞, the role 
of the y − x ∼ 1/P3 Rhadr fraction decreases and Q (y, P3) → f (x).

In this picture, the (y − x)P3 part has the same physical ori-
gin as the parton’s transverse momentum. Hence, one should be 
able to relate quasi-PDFs to the transverse momentum distribu-
tions (TMDs) and quantify the difference between Q (y, P3) and 
f (x) in terms of TMDs f (x, k⊥).

An important point is that the components of k⊥ may take any 
values from −∞ to ∞, even when the distribution in k⊥ is mostly 
restricted to a limited range, like in a Gaussian e−k2⊥/�2

. Similarly, 
the (y − x)P3 part of the k3-distribution may take any values. 
As a result, Q (y, P3) formally has the −∞ < y < ∞ support re-
gion, though possibly with a rapid decrease (say, like e−y2 P 2

3/�2
) 

for large y.
In other words, for a finite P3, there is no requirement that 

the fraction y is smaller than 1 or positive. Even in a fast-moving 
hadron, there is some probability that a parton moves in the op-
posite direction, and hence, that some other parton has the mo-
mentum k3 larger than P3. Still, with increasing P3, the chances 
for fractions outside the [0, 1] segment decrease rapidly, reflecting 
the large-k⊥ dependence of the relevant TMD f (x, k⊥).

When Q (y, P3) ∼ e−y2 P 2
3/�2

, one may consider yn moments of 
quasi-PDFs Q (y, P3) calculated over the whole −∞ < y < ∞ axis 
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and study their relation to the xn moments of the light-cone PDFs 
f (x).

Still, starting with the first papers [2,3] on quasi-PDFs, it was 
known that the simplest perturbative calculations produce ∼ 1/|y|
behavior for quasi-PDFs at large |y|. Such a behavior reflects a 
slow ∼ 1/k2⊥ decrease of the perturbative hard tail of TMDs in 
renormalizable theories. Clearly, if Q (y, P3) ∼ 1/|y|, then even the 
zeroth moment of Q (y, P3) diverges, so that it apparently makes 
no sense to consider yn moments of Q (y, P3). Since the standard 
procedures of extracting PDFs from the lattice [4–6] do not involve 
a calculation of the moments, the divergence of these moments 
did not attract much attention.

However, recently it was argued by G.C. Rossi and M. Testa [7,8]
that the divergence of the yn moments of Q (y, P3) poses a serious 
problem for extraction of PDFs from lattice QCD simulations. The 
basic claim is that the infinite values of 〈yn〉Q quasi-PDF moments 
are in conflict with the finite values of the 〈xn〉 f moments of the 
usual PDFs.

Irrespectively of these claims, we find that the structure of 
quasi-PDFs Q (y, P3) outside the central |y| ≤ 1 region is an inter-
esting problem on its own, and we analyze it in the present paper. 
Our study is based on the concept [9] of the Ioffe-time pseudo-
distributions (pseudo-ITDs) M(ν, −z2). They are basically the ma-
trix elements M(z, p) of bilocal operators ∼ φ(0)φ(z) treated as 
functions of the Lorentz invariants, the Ioffe time ν = −(zp) [10,
11] and the invariant interval z2. [Our convention is to add “pseu-
do” to the name of distributions defined for nonzero z2, and skip 
it for their light-cone analogs.]

While M(ν, −z2) does not involve momentum fraction vari-
ables like y and x, quasi-PDFs Q (y, P3) and pseudo-PDFs P(x, z2

3)

may be obtained [9] from M(ν, −z2) as Fourier transforms. The 
advantage of this approach is a direct use of the coordinate repre-
sentation that greatly simplifies further considerations of pseudo-
PDFs, TMDs and quasi-PDFs.

Furthermore, as we will show, the fact that the quasi-PDFs 
Q (y, P3) do not vanish outside the |y| ≤ 1 region, is directly con-
nected with the presence of a non-trivial z2

3- dependence in the 
relevant pseudo-PDFs P(x, z2

3).
The paper is organized as follows. In Section 2, we start with 

reminding the definition of the pseudo-ITDs and their relation to 
pseudo-PDFs, quasi-PDFs and TMDs. We write a formal 1/P 2l

3 se-
ries expansion for the 〈yn〉Q moments of the quasi-PDFs in terms 
of the combined 〈xn−2lk2l⊥〉F moments of TMDs F(x, k2⊥). In the 
case of “very soft” TMDs, i.e., those vanishing faster than any in-
verse power of k2⊥ for large k⊥ , this expansion allows to study 
〈yn〉Q moments (which are finite in this case) and their relation 
to 〈xn〉 f moments of the usual PDFs.

In Section 3, we study the consequences of having a hard 
∼ 1/k2⊥ tail of TMDs, present in renormalizable theories, includ-
ing QCD. In this case, the combined 〈xn−2lk2l⊥〉F moments diverge. 
For l = 0, one has a logarithmic divergence corresponding to the 
usual perturbative evolution. For l ≥ 1, one faces power diver-
gences equivalent to those discussed in Refs. [7,8]. We show that 
they reflect the slowly ∼ 1/|y| decreasing perturbative contribu-
tions to Q (y, P3). We also show that the |y| > 1 parts of Q (y, P3)

are generated by the z2
3-dependence of the pseudo-PDFs P(x, z2

3). 
In Section 4, we study possible forms of the z2

3-dependence.
In Section 5, we discuss the matching relations connecting 

the lightcone PDFs to pseudo-ITDs and quasi-PDFs. According to 
the operator product expansion (OPE), the reduced pseudo-ITD
M(ν, z2

3) is given by the MS-ITD I(ν, μ2) plus O(αs) perturba-
tive contribution that contains the ∼ ln z2

3 term responsible for the 
slowly varying ∼ 1/|y| terms in the |y| > 1 part of the quasi-PDF 
Q (y, P3). The latter, hence, is given by the MS-PDF f (x, μ2) plus 
O(αs) perturbative contribution that contains the slowly varying 
∼ 1/|y| terms in the |y| > 1 part.

Vice versa, f (x, μ2) is given by the difference between the lat-
tice quasi-PDF Q L(y, P3) and that O(αs) perturbatively calculable 
contribution. This means that the implementation of the matching 
condition includes a subtraction, though not of the kind discussed 
by Rossi and Testa in Refs. [7,8]. The final point is that, for large 
P3, the quasi-PDF Q L(y, P3) must be purely perturbative in the 
|y| > 1 region. Hence, the above difference vanishes outside the 
|y| ≤ 1 segment, and the moments of the light-cone PDF f (x, μ2)

extracted in this way are finite.
Section 6 contains summary and conclusions.

2. Parton distributions

2.1. Ioffe-time distributions and pseudo-PDFs

Defining a parton distribution either in a continuum theory or 
on the lattice, one starts with a matrix element 〈p|φ(0)φ(z)|p〉 ≡
M(z, p) of a product of two parton fields. We use here simplified 
scalar notations, since the details of parton spin structure are not 
central to the concept of parton distributions, and may be added, 
if needed, at later stages.

By Lorentz invariance, M(z, p) is a function of two scalars, the 
Ioffe time [10,11] (pz) ≡ −ν and the interval z2

M(z, p) =M(−(pz),−z2) . (2.1)

As shown in Refs. [12,13], for any contributing Feynman dia-
gram, the Fourier transform of M(ν, −z2) with respect to the Ioffe 
time ν has the −1 ≤ x ≤ 1 support, familiar from the studies of the 
usual parton densities,

M(ν,−z2) =
1∫

−1

dx eixν P(x,−z2) . (2.2)

When z is on the light cone, z2 = 0, we deal with the ordinary 
(or light-cone) parton distributions

M(ν,0) =
1∫

−1

dx eixν f (x) . (2.3)

Thus, P(x, 0) = f (x), and the function P(x, −z2) generalizes the 
concept of PDFs onto the case of non-lightlike intervals z. Follow-
ing Ref. [9], we will refer to it as pseudo-PDF or parton pseudo-
distribution function.

2.2. Quasi-PDFs

The simplest example of a spacelike interval is obtained when 
just one component is nonzero, z = {0, 0, 0, z3}. Choosing p =
(E, 0⊥, P ), one can define the quasi-PDF [2] as the Fourier trans-
form of M(z3, P ) with respect to z3

Q (y, P ) = P

2π

∞∫
−∞

dz3 e−iy P z3 M(z3, P ). (2.4)

Combining Eqs. (2.2) and (2.4) gives a relation between the 
quasi-PDF Q (y, P ) and the pseudo-PDF P(x, z2

3) corresponding to 
the z = z3 separation

Q (y, P ) = P

2π

1∫
−1

dx

∞∫
−∞

dz3 e−i(y−x)P z3 P(x, z2
3) . (2.5)
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One can see that though the pseudo-PDFs have the −1 ≤ x ≤ 1
support, the quasi-PDFs Q (y, P ) are defined for all real y.

Another observation is that if the pseudo-PDF does not depend 
on z2

3, i.e., if P(x, z2
3) = f (x), then the quasi-PDF Q (y, P ) does not 

depend on P , and Q (y, P ) = f (y).
Thus, it is the dependence of P(x, z2) (or, equivalently, of 

M(ν, z2)) on z2 that determines the deviation of quasi-PDFs from 
PDFs. In particular, it generates the parts of Q (y, P ) outside the 
PDF support region |y| ≤ 1.

In QCD and other renormalizable theories, the presence of the 
z2

3-dependence is unavoidable, because M(ν, z2) has ∼ ln z2 con-
tributions for small z2. Furthermore, these terms are singular in 
the z2 → 0 limit which complicates the definition of the light-cone 
PDFs.

2.3. Transverse momentum dependent PDFs

A very convenient way to parametrize the z2-dependence for 
a space-like z is provided by a description in terms of the trans-
verse momentum dependent PDFs. Using again p = (E, 0⊥, P ) and 
choosing z that has only z− and z⊥ = {z1, z2} components, while 
z+ = 0, we have ν = −p+z− , z2 = −z2⊥ , and the TMD is defined by

P(x, z2⊥) =
∫

d2k⊥ e−i(k⊥·z⊥)F(x,k2⊥) . (2.6)

Due to the rotational invariance, this TMD depends on k2⊥ only. 
Integrating over the angle between k⊥ and z⊥ gives

P(x, z2⊥) = 2π

∞∫
0

dk⊥ k⊥ J0 (k⊥z⊥) F(x,k2⊥) , (2.7)

where J0 is the Bessel function.
Now recall that P(x, −z2) is a function defined in a covariant 

way by Eq. (2.2). This implies that this TMD representation [14] may 
be written for a general spacelike z. One should just change z⊥ →√−z2 and k⊥ → k in Eq. (2.7). In particular, one may take z =
{0, 0, 0, z3}, i.e., choose z in the purely longitudinal direction, and 
write

P(x, z2
3) = 2π

∞∫
0

dk k J0 (kz3) F(x,k2) . (2.8)

While F(x, k2) is a function that coincides with the TMD, one does 
not need to specify a “transverse” plane and treat k as the magni-
tude of a 2-dimensional momentum in that plane.

2.4. Support mismatch

Using the TMD parametrization (2.8) in the quasi/pseudo-PDF 
relation (2.5), and expanding J0 (kz3) into the Taylor series, we get 
a formal 1/P 2l expansion for the quasi-PDF Q (y, P )

Q (y, P ) =
∞∑

l=0

∫
d2k⊥

k2l⊥
4l P 2l(l!)2

∂2l

∂ y2l
F(y,k2⊥) . (2.9)

To shorten formulas, we have switched here back k → k⊥ in the 
notation for the integration variable of the TMD representation 
(2.8), and also wrote the resulting 2πk⊥dk⊥ as d2k⊥ . We can do 
this because the TMD F(x, k2⊥) does not depend on angles. As a 
matter of caution, we repeat again that k or k⊥ should be under-
stood simply as scalar variables of the TMD parametrization. There 
is no need to specify in which plane k⊥ is.
According to Eq. (2.5), the quasi-PDF Q (y, P ) has the −∞ <
y < ∞ support region. However, the quasi-PDF Q (y, P ) in Eq. (2.9)
is given by a sum of terms involving the TMD F(y, k2⊥) that has 
the −1 ≤ y ≤ 1 support. The explanation of the apparent discrep-
ancy is that the innocently-looking derivatives of F(y, k2⊥) in the 
expansion (2.9) may generate an infinite tower of singular func-
tions like δ(y), δ(y ± 1) and their derivatives. To this end, we 
recollect that, even when a function f (y) has a nontrivial support 
	 (say, −1 ≤ y ≤ 1), one may formally represent it by a series

f (y) =
∞∑

N=0

(−1)N

N! MN δ(N)(y) (2.10)

over the functions δ(N)(y) with an apparent support at one point 
y = 0 only. Here, MN are the moments of f (y),

MN =
∫
	

dy yN f (y) . (2.11)

Hence, the support mismatch may be explained by the fact that 
the delta-function and its derivatives are integration prescriptions 
(mathematical distributions) rather than ordinary functions. But 
this also means that while the difference between Q (y, P ) and 
f (y) is formally given by a series in powers of 1/P 2, its coeffi-
cients are not the ordinary functions of y.

2.5. Moments of very soft quasi-PDFs

In order to get relations involving usual functions, one may 
wish to integrate the equations in which these distributions en-
ter, e.g., to take moments. Indeed, the derivatives disappear if we 
calculate the yn moments 〈yn〉Q of the quasi-PDFs

〈yn〉Q ≡
∞∫

−∞
dy yn Q (y, P )

=
[n/2]∑
l=0

n!
(n − 2l)!(l!)2

〈xn−2lk2l⊥〉F
4l P 2l

, (2.12)

where 〈xn−2lk2l⊥〉F are the combined moments of TMDs

〈xn−2lk2l⊥〉F ≡
1∫

−1

dx xn−2l
∫

d2k⊥ k2l⊥ F(x,k2⊥) . (2.13)

In the case of very soft distributions which vanish faster than any 
power of 1/k2⊥ for large k⊥ , all the combined moments 〈xn−2lk2l⊥〉F
are finite and Eq. (2.12) tells us that then 〈yn〉Q differs from 〈xn〉 f

by terms having the (〈k2⊥〉F/P 2)l structure.
Two lowest moments n = 0 and n = 1 do not involve l ≥ 1

terms. For the normalization integral, Eq. (2.12) gives

∞∫
−∞

dy Q (y, P ) =
1∫

−1

dx

∫
d2k⊥ F(x,k2⊥)

=
1∫

−1

dx f (x) . (2.14)

Thus, the area under Q (y, P ) does not change with P and is equal 
to the area under f (x), the phenomenon corresponding to the 
quark number conservation.
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Similarly, the first y-moment is given by

∞∫
−∞

dy y Q (y, P ) =
1∫

−1

dx x f (x) , (2.15)

which corresponds to the momentum conservation. These two sum 
rules have been originally derived in our paper [12].

3. Hard part

3.1. Perturbative evolution

In renormalizable theories (most importantly, in QCD, but also 
in models with Yukawa gluons), i.e., theories having a dimension-
less coupling constant g , the perturbative corrections to all “twist-
2” φ(0)φ(z)-type correlators (in QCD we have in mind ψ̄(0)�ψ(z)
quark and G(0)G(z) gluon operators) unavoidably contain terms 
that are logarithmic in z2 for small z2, e.g. ∼ g2 ln(−z2m2) at 
one-loop level, m being some infrared cut-off. For DIS struc-
ture functions F (xBj, Q 2), such terms produce the logarithms 
∼ g2 ln(Q 2/m2) generating their perturbative evolution [15–17]
with Q 2.

For pseudo-PDFs P(x, z2⊥) that define TMDs through Eq. (2.6), 
the ∼ g2 ln(−z2m2) terms result in the ∼ g2 ln(z2⊥m2) contribu-
tions for small z⊥ . The 2-dimensional Fourier transform with re-
spect to z⊥ converts such terms into contributions with a ∼ 1/k2⊥
“hard tail” for large k⊥ (see, e.g., Ref. [12]).

Thus, in general, TMDs F(x, k2⊥) in renormalizable theories 
must have a hard part that has the 1/k2⊥ behavior for large k⊥ . 
For non-singlet densities in QCD, it is given at one loop by

Fhard(x,k2⊥) = �(x)

πk2⊥
, (3.1)

where �(x) is obtained from the PDF f soft(x) (corresponding to a 
primordial soft TMD) through

�(x) = αs

2π
C F

1∫
x

du

u
B(u) f soft(x/u) , (3.2)

and B(u) is the Altarelli–Parisi (AP) evolution kernel [15]

B(u) =
[

1 + u2

1 − u

]
+

. (3.3)

Since the parton densities f (x, μ2) are obtained from the TMDs 
by a d2k⊥ integration, the well-known logarithmic evolution of 
f (x, μ2) with a cut-off μ, is a direct consequence of the 1/k2⊥ be-
havior of the relevant TMDs in QCD.

If one calculates the combined moments 〈xn−2lk2l⊥〉F for the 
hard term, they diverge, starting from the lowest l = 0 moment 
in k2⊥ . In the l = 0 case, the divergence is logarithmic. Let us see 
that it just reflects the fact that the quasi-PDF Q (y, P ) for large P
in this case has the logarithmic perturbative evolution with respect 
to P 2. To begin with, we write the hard part in the coordinate rep-
resentation

Phard(x, z2
3) = − ln(z2

3m2)�(x) , (3.4)

where m is some infrared regularization scale. Rewriting the quasi-
PDF definition in terms of the pseudo-ITD as

Q (y, P ) = 1

2π

∞∫
−∞

dν e−iyν M(ν, ν2/P 2) (3.5)
we find that

Mhard(ν, ν2/P 2) = − αs

2π
C F ln(ν2m2/P 2)

×
1∫

0

du B(u)

1∫
−1

dx e−iuxν f soft(x) . (3.6)

As a result, the hard part of the quasi-PDF Q (y, P ) has the evolu-
tion ln P 2 part

Q ev(y, P ) = ln(P 2/m2)�(y) . (3.7)

Comparing with Eq. (3.1), we conclude that, calculating the evo-
lution part, one should cut-off the k⊥ integral at |k⊥| ∼ P values, 
so that it is given by

Q ev(y, P ) =
∫

|k⊥|�P

d2k⊥ Fhard(y,k2⊥)  ln(P 2)�(y) . (3.8)

3.2. Two lowest moments

As we have seen, for very soft distributions, the n = 0 and n = 1
moments of quasi-PDF Q (y, P ) coincide with these moments of 
the PDF f (x). To proceed with the hard part, we use

1∫
0

dx xn �(x) = − αs

2π
C F γn

1∫
0

dζ ζn f soft(ζ ) , (3.9)

where γn ’s are related to anomalous dimensions of operators with 
n derivatives,

γn = −
1∫

0

du un B(u) . (3.10)

Thus, for the zeroth moment of Q ev(y, P ), the coefficient in front 
of ln P 2 is proportional to the anomalous dimension γ0 of the 
vector current. Since γ0 vanishes, the area under Q (y, P ) does 
not change with P and is equal to the area under f (x), the phe-
nomenon corresponding to the quark number conservation.

Similarly, the first y-moment of the hard part of Q (y, P ) has 
the ln P 2 part proportional to the anomalous dimension γ1 = 4/3
that is nonzero. This reflects the fact that the quark-gluon interac-
tions change the momentum carried by the quarks, and only the 
total momentum of quarks plus gluons is conserved in the evolu-
tion process.

3.3. Higher moments and large-|y| behavior

According to the general formula (2.12), the y2-moment is 
given by

〈y2〉Q = 〈x2〉F + 〈k2⊥〉F
2P 2

, (3.11)

(see also Ref. [18]), where

〈k2⊥〉F =
1∫

−1

dx

∫
d2k⊥ k2⊥ F(x,k2⊥) . (3.12)
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When F(x, k2⊥) vanishes faster than 1/k4⊥ for large k⊥ , the 
k⊥-integral converges. Then the difference between 〈y2〉Q and 
〈x2〉F decreases as 〈k2⊥〉F/2P 2 for large P .1

However, for a hard ∼ 1/k2⊥ TMD, the 〈k2⊥〉F integral diverges 
quadratically. If, by analogy with Eq. (3.8), we would set the upper 
limit of k⊥ integration to be proportional to P , the k2⊥-weighted
integral (3.12) would be proportional to P 2.

Because of the compensation of the initial 1/P 2 suppression 
factor by the P 2 factor resulting from the quadratic divergence of 
the k⊥-integral, the contribution of the 〈k2⊥〉F/2P 2 term does not 
disappear in the P → ∞ limit. One may also argue that, on the 
lattice, the upper limit on the k⊥ integral may be set by the lat-
tice spacing. Then, a cut-off for the k⊥ integral at the ∼ 1/a value 
would result in a ∼ 1/a2 P 2 contribution.

These worries have been formulated in recent papers by 
G.C. Rossi and M. Testa [7,8], who warned that one might need to 
perform a nonperturbative subtraction of such terms in lattice cal-
culations. The questions raised in Ref. [7] have been subsequently 
addressed in Ref. [20] by X. Ji et al., who stated that the extrac-
tion of PDFs does not involve taking moments of quasi-PDFs. It 
was also argued that the moments of quasi-PDFs do not exist be-
cause Q (y, P ) decreases as 1/|y| for large y. While we agree with 
these statements in general, we think that the problem deserves a 
more detailed investigation.

4. Sources of z2 dependence

As we discussed already, the |y| > 1 parts of quasi-PDFs 
Q (y, P ) are generated by the z2

3-dependence of the ITD M(ν, z2
3). 

In particular, for large z2
3, M(ν, z2

3) has a fast decrease with z3. 
This reflects a finite size of the system. Such a behavior should 
appear in any reasonable theory/model used to describe hadrons. 
The second type of the z2

3-dependence appears in renormalizable 
theories. As already mentioned, then P(x, −z2) and M(ν, −z2)

contain, for small −z2, the terms ∼ ln(−z2) corresponding to the 
∼ 1/k2⊥ hard tail of F(x, k2⊥). The tail is generated by hard gluon 
exchanges and is proportional to a small parameter αs/π ∼ 0.1.

Finally, in QCD (and other gauge theories), there is the third 
source of the z2-dependence related to some special contributions 
originating from the gauge link. These contributions vanish on the 
light cone z2 = 0, but do not vanish for spacelike z2. Moreover, 
they contain link-specific UV divergencies, similar to those one en-
counters in the heavy-quark effective theory (HQET). Let us discuss 
these types of z2-dependence.

4.1. Long-distance z2-dependence

To begin with, P(x, z2
3) describes a finite-size system (more-

over, a system of confined quarks). Hence, it should rapidly de-
crease for large z3, say, like a Gaussian ∼ e−z2

3/R2
or an exponential 

∼ e−z3/R , where R characterizes the size of the system. A finite size 
of the system imposes no restrictions on the behavior of P(x, z2

3)

for small z2
3. Such a behavior is determined by the short-distance 

dynamics. In models involving just soft interactions, one would 
expect that P(x, z2

3) is finite in the z3 → 0 limit, like in the Gaus-
sian and exponential cases. Then one may simply take z3 = 0 in 
P(x, z2

3) to get f (x). In terms of TMDs, soft models usually are 
chosen to have a Gaussian e−k2⊥/�2

or a power-law ∼ 1/(k2⊥ +�2)n

behavior for large k⊥ . If n > 1, then the relevant pseudo-PDFs are 
finite for z2

3 = 0.

1 W. Broniowski and E. Ruiz-Arriola [18] have checked that quasi-PDFs obtained 
by ETMC [19] satisfy Eq. (3.11), with 〈k2⊥〉F = 0.27 GeV2.
4.2. Evolution-related z2
3-dependence

Since the small-z2 limit in QCD is perturbative, one would ex-
pect that the only singularities of P(x, −z2) for z2 = 0 are those 
generated by perturbative corrections. As already mentioned, at 
one loop one gets ∼ αs ln(−z2) terms. Hence, it makes sense to 
treat P(x, −z2) as a sum of a “primordial” soft part Psoft(x, −z2)

that has a finite z2 → 0 limit, and a logarithmically singular hard 
part reflecting the evolution, and generated by hard gluon cor-
rections to the original purely soft function. The same applies to 
M(ν, −z2).

A singularity at z2 = 0 means that the lightcone object
M(ν, −z2 = 0) is a divergent quantity. In perturbative calculations 
of the lightcone matrix element, the ln(−z2) singularities convert 
into ultraviolet logarithmic divergences. These UV divergences are 
then additional to the usual UV divergences related to the propa-
gator and vertex renormalization.

Still, as far as z2 is kept finite, one does not have these addi-
tional UV divergences, and does not need to introduce a regulariza-
tion for the ψ̄(0) . . .ψ(z) operator. One should deal with the usual 
UV divergences and their renormalization only. Such a renormal-
ization (characterized by some parameter λ) would produce (in a 
covariant gauge, say) just a trivial Zψ(λ/m) renormalization factor 
for the ψ-fields (m being an infrared cut-off, e.g., a mass of the ψ
field). This factor is the same whether z is on the light cone or not.

Except for this trivial dependence on the UV cut-off λ, the 
pseudo-ITDs M(ν, −z2) in a general renormalizable (but non-
gauge) theory, depend on ν and z2 only. The ln(−z2) terms are 
just a particular form of the z2-dependence, and they do not re-
quire any regularization as far as z2 is finite, which is the case in 
lattice simulations.

Theoretically, one may take z on the light cone. Then one 
should regularize the resulting extra UV divergences in some way, 
e.g., by imposing a momentum cut-off or by incorporating the MS
scheme, etc. The resulting lightcone ITD I(ν, μ2)

I(ν,μ2) =
1∫

−1

dx eixν f (x,μ2) (4.1)

introduced in Ref. [11] naturally depends on the parameter μ in-
volved in the regularization of these ultraviolet divergences gener-
ated by taking ln z2 for z2 = 0.

4.3. UV singular terms generated by the gauge link

Furthermore, in QCD, the gauge link factor connecting ψ̄(0) and 
ψ(z) generates contributions that are absent on the light cone, 
and moreover, are ultraviolet divergent. These divergences may 
be regularized using, e.g., the Polyakov prescription [21] 1/z2 →
1/(z2 − a2) for the gluon propagator in the coordinate space. Then 
one finds that, for a fixed UV cut-off a, these terms vanish in 
the z2

3 → 0 limit, like |z3|/a for the linear UV divergence and like 
ln(1 + z2

3/a2) for the logarithmic one. That is why such terms are 
invisible on the light cone. Hence, we must make an effort to com-
pletely exclude these terms from M(ν, z2

3). We emphasize that we 
need to eliminate the terms invisible in the light-cone limit even if 
they are UV finite.

As a matter of fact, in QCD they are UV divergent, and this 
fact has shifted the whole subject to the discussion of the UV 
divergences. These UV divergences were considered as the main 
problem in many recent papers [23,22,24,25]. Having UV singular-
ities, one should add the regularization parameter (a in this case) 
to the argument of the regularized pseudo-ITD: M(ν, −z2) →
M(ν, −z2; a). These UV divergences are similar to those known 
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from the HQET studies, and are multiplicatively renormalizable 
[22–24].

Since the parameter a appears only in the combination z3/a, 
the UV-sensitive terms form a factor Z(z2

3/a2). As discussed above, 
this factor is an artifact of having a non-lightlike z, and has noth-
ing to do with the lightcone PDFs. Thus, constructing the latter, 
we should exclude Z(z2

3/a2) from the pseudo-ITD M(ν, z2
3; a). In 

other words, one should build quasi-PDFs from the modified func-
tion Z−1(z2

3/a2)M(ν, z2
3; a).

By construction, Z−1(z2
3/a2)M(ν, z2

3; a) does not have a → 0
UV divergences. However, if the goal is just to remove the diver-
gences, then one may use any combination of the Z−1(1/μ2

UVa2)×
M(ν, z2

3; a) type for the renormalized ITD. But the result then 
will have the dependence on the renormalization scale μUV. The 
renormalized ITD will also contain the z2

3-dependence of the 
Z(z2

3/a2)-factor, that should be excluded in the construction of the 
light-cone PDFs. In the approaches of Refs. [23–25], this is done at 
the final stage, when the matching conditions are applied.

Our point of view is that it is more beneficial to remove the UV 
divergences together with the associated z2

3-dependence from the 
very beginning. This may be done by multiplying M(ν, z2

3; a) with 
the Z−1(z2

3/a2) factor. To do this, one should know the Z(z2
3/a2)

factor. Another possibility, proposed in our paper [9], is to use the 
reduced pseudo-ITD

M(ν, z2
3;a) ≡ M(ν, z2

3;a)

M(0, z2
3;a)

. (4.2)

Then the UV-sensitive factor Z(z2
3/a2) automatically cancels in the 

ratio (4.2), since it is ν-independent. So, there is no need to know 
it explicitly. The Zψ(λ/m) factors reflecting the anomalous dimen-
sions of the ψ fields also cancel in the ratio (4.2). The result-
ing function has a finite a → 0 limit, which will be denoted by 
M(ν, z2

3). This function does not depend on any UV cut-off or a UV 
renormalization scale like μUV.

We may say that M(ν, z2
3) is a physical observable, just like the 

deep inelastic (DIS) structure functions W (xBj, Q 2). The latter de-
pend on the external variables xBj, Q 2, but do not depend on any 
ultraviolet cut-off or a renormalization scale μ, even if they are 
calculated in a renormalizable theory.

A widespread statement is that W (xBj, Q 2) describes the 
hadron at the distance scale ∼ 1/Q . In this sense, M(ν, z2

3) and 
the pseudo-PDF P(x, z2

3), by construction, describe a hadron at the 
distance z3, literally.

Thus, for the reduced ITD M(ν, z2
3), there are just two sources 

of the z2
3-dependence: the long-distance nonperturbative depen-

dence reflecting the finite size of the system, and the short-
distance perturbative ∼ ln z2

3 dependence related to the usual 
perturbative evolution. In this respect, the reduced pseudo-ITD 
M(ν, z2

3) in QCD has the z2
3-structure similar to that in non-gauge 

renormalizable theories, in which we also have just two first types 
of the z2

3-dependence.

5. Matching

The relations for the moments, like the formula (3.11) for 
〈y2〉Q , and the general formula (2.12), that have been used in our 
preceding discussion, are based on the Taylor expansion of P(x, z2

3)

over z2
3. Rossi and Testa in Refs. [7,8] also appeal to a Taylor expan-

sion in z3. The basic reason for using the Taylor expansion is that 
the z3-dependence of the matrix element is, in general, unknown. 
So, a natural idea is to parametrize it through the values of the 
matrix elements of local operators.
While this may be reasonable in a very soft case (in which all 
the derivatives with respect to z2

3 exist at z2
3 = 0), it is clear that 

to use the Taylor expansion at z2
3 = 0 for the hard logarithm ln z2

3
is problematic. Fortunately, the hard contribution also has an ad-
vantage: its z2

3-dependence at small z2
3 (unlike that of the soft 

contribution) is known: at one loop it is given by ln z2
3. Thus, if one 

needs to find a quasi-PDF corresponding to the ln z2
3 part of the 

matrix element, one can do this by simply calculating the Fourier 
transform of ln z2

3 dictated by the quasi-PDF definition (2.4) rather 
than to use a Taylor expansion at a singular point.

5.1. OPE and matching conditions for ITDs

When ln(−z2) terms are present, a formal light-cone limit 
z2 → 0 is singular. Still, the PDF community wants lattice predic-
tions for the light cone PDFs. In the continuum, the singular nature 
of the z2 → 0 limit is perceived as an ultraviolet divergence in 
the Feynman integrals for operators on the light cone. It is worth 
repeating once more that these UV divergences are just a conse-
quence of our desire to take z2 = 0. As far as z2 is finite, these 
divergences are absent.

To work at z2 = 0, we need to arrange an UV cut-off for these 
hand-made divergences. Using, say, the dimensional regulariza-
tion and MS scheme, one would define the light-cone ITD (4.1)
I(ν, μ2). Its connection to the pseudo-ITD M(ν, z2

3) is given by 
the operator product expansion. At one loop in QCD, we have [20,
25–27]

M(ν, z2
3) =I(ν,μ2) − αs

2π
C F

1∫
0

du I(uν,μ2)

×
{

B(u)

[
ln

(
z2

3μ
2 e2γE

4

)
+ 1

]
+

[
4

ln(1 − u)

1 − u
− 2(1 − u)

]
+

}
+O(z2

3) . (5.1)

The OPE tells us that, for small z2
3, the dependence of M(ν, z2

3)

on z2
3 must be given by the ln z2

3 term on the right-hand side. 
Hence, to get the light-cone ITD I(ν, μ2) from, say, lattice calcula-
tions of M(ν, z2

3), one should subtract from the lattice pseudo-ITD 
M(ν, z2

3) its perturbative ln z2
3 part present in the r.h.s. of Eq. (5.1). 

For an appropriately chosen/fitted αs , the result of such a sub-
traction should be z2

3-independent. Such a procedure of extracting 
I(ν, μ2) from the lattice data of Ref. [28] was described in our 
Ref. [27].

5.2. Matching conditions for quasi-PDFs

Multiplying Eq. (5.1) by Pe−iyz3 P and integrating over z3, we 
get a relation between the quasi-PDF Q (y, P ) (obtained from the 
reduced pseudo-ITD) and the light cone PDF f (x, μ2). It has the 
following structure

Q (y, P ) = f (y,μ2) − αs

2π
C F

1∫
0

du

u
f (y/u,μ2)

×
{

B(u) ln
(
μ2/P 2

)
+ C(u)

}
+ αs

2π
C F

1∫
−1

dx f (x,μ2) L(y, x) +O(1/P 2) , (5.2)
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where the kernel L(y, x; P ) is formally given by

L(y, x) = − P

2π

1∫
0

du B(u)

×
∞∫

−∞
dz3 e−i(y−ux)z3 P ln(z2

3 P 2) . (5.3)

It involves the Fourier transform of ln z2
3 and, for large P , it 

is the only perturbative term that produces contributions in the 
|y| > 1 region. Eq. (5.2) tells us that the quasi-PDF Q (y, P ) must
have O(αs) contributions in the |y| > 1 region. In actual lattice 
calculations it is desirable (though challenging) to try to check if 
the lattice quasi-PDF in the |y| > 1 region is indeed close to the 
convolution of the fitted PDF with the L-kernel.

For large P , the soft contributions disappear from the |y| > 1
region, and the perturbative terms are the only ones remaining 
for |y| > 1. This means that extracting the PDF f (y, μ2) from the 
lattice data for Q (y, P ), one deals with the combination, the “re-
duced” quasi-PDF

Q̃ (y, P ) ≡ Q (y, P ) − αs

2π
C F

1∫
−1

dx f (x,μ2) L(y, x) , (5.4)

that vanishes in the |y| > 1 region for large P (provided that we 
trust perturbative QCD!). We may say that the f ⊗ L contribution 
cancels the perturbative slow-decreasing terms of the |y| > 1 part 
of Q (y, P ). After that, all the remaining terms in Eq. (5.2) have the 
|y| ≤ 1 support.

In other words, the process of getting MS PDFs from quasi-PDFs 
involves a subtraction of the perturbative |y| > 1 contributions gen-
erated by the ln z2

3 term.

5.3. Hard part of quasi-PDFs

An evident observation from the study of the hard contribution 
is that the quasi-PDFs do not simply convert into the usual PDFs 
in the large-P limit. They convert into PDFs only in the case of soft
TMDs and quasi-PDFs generated from them.

When the hard part is included, Q (y, P ) contains the terms 
that are not present in the lightcone PDFs and which are, more-
over, finite (for a fixed αs) in the P → ∞ limit. Such terms appear 
both in the “canonical” −1 ≤ y ≤ 1 region and, most importantly, 
outside it. The presence of such terms was known since the first 
papers on quasi-PDFs [2,3].

In the context of pseudo-PDFs, these terms are generated by 
the Fourier transform of the ln z2

3 hard term. In the momentum 
representation, ln z2

3 (equivalent to ln z2⊥) corresponds to the 1/k2⊥
behavior, which needs some infrared regularization. Let us choose 
the mass-type modification 1/k2⊥ → 1/(k2⊥ + m2). Then ln(z2

3) →
−2K0(z3m), and we have (see Ref. [26])

Q hard(y, P ) = C F
αs

2π

1∫
−1

dx

|x| R(y/x,m2/x2 P 2) f soft(x) , (5.5)

where the kernel R(η, m2/P 2) is given by

R(η;m2/P 2) =
1∫

0

du
B(u)√

(η − u)2 + m2/P 2
. (5.6)
In lattice extractions, the real part of the pseudo-ITD corre-
sponds to an even function of y, while the imaginary part corre-
sponds to an odd function of y. Hence, in both cases, it is sufficient 
to consider positive y only. For η, we need then to analyze three 
regions, η < 0, 0 ≤ η ≤ 1 and η > 1.

In the central 0 ≤ η ≤ 1 region, the P → ∞ limit is singular, re-
flecting the presence of the evolution ∼ ln P 2/m2 term (3.7). There 
are also terms [26]

Rmiddle(η) = 1 + η2

1 − η
ln [4η(1 − η)]

+ 3/2

1 − η
+ 4

ln(1 − η)

1 − η
− 1 + 2η (5.7)

that are independent of P in the P → ∞ limit. For |y| > 1, we can 
neglect m2/P 2 in the P → ∞ limit and get

Q hard,out(y, P → ∞) = αs

2π
C F

1∫
0

dx

x
R(y/x;0) f soft(x) , (5.8)

with the kernel R(η; 0) ≡ R(η) specified by

R(η) =
1∫

0

du

|η − u| B(u) . (5.9)

At first sight, one would expect a ∼ 1/|η| behavior for large 
|η| from Eq. (5.9). However, the 1/|η| term is accompanied by the 
integral of B(u) which vanishes because of the plus-prescription 
structure of B(u). This is also the reason why γ0 in Eq. (3.10) van-
ishes. Hence, in the region η > 1, we can write the kernel as a 
series in 1/η starting with n = 1,

R(η)|η>1 = −
∞∑

n=1

γn

ηn+1 , (5.10)

or, in a closed form [26],

R(η)|η>1 ≡ R>(η) = 1 + η2

η − 1
ln

(
η − 1

η

)
+ 3

2(η − 1)
+ 1 .

(5.11)

Similarly, for negative values, we have the expansion

R(η)|η<−1 =
∞∑

n=1

γn

ηn+1 , (5.12)

and a closed-form expression [26]

R(η)|η<0 ≡ R<(η) =1 + η2

1 − η
ln

(
1 − η

−η

)
+ 3

2(1 − η)
− 1 . (5.13)

5.4. Large-|y| behavior in QCD

According to Eq. (3.10), we have γ1 = 4/3. Thus, the asymptotic 
behavior for large |η| is given by

R(η;0)||η|�1 = −4

3

sgn(η)

η2
+O(1/η3) . (5.14)

The ∼ sgn(η)/η2 behavior of R(η) translates into the ∼ sgn(y)/y2

behavior of the quasi-PDF Q (y, P ) for large values of |y|. As a 
result, the y0 moment of Q (y, P ) converges for large |y|, while 
further moments involve divergences, in agreement with obser-
vations made in Sect. 3.2. In particular, the y2 moment involves 
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a linear divergence. If B(u) would not have the plus-prescription 
property, the divergence would be quadratic. This agrees with the 
estimate made in Sect. 3.3.

Hence, the divergences of the yn integrals correspond to the 
presence of the P -independent terms ∼ 1/y2 in the hard part of 
the quasi-PDFs Q (y, P ) outside of the 0 ≤ y ≤ 1 region.

As we discussed, the ln z2
3 part of the pseudo-ITDs contributes 

slowly-decreasing (∼ 1/y or ∼ 1/y2) terms into the |y| > 1 part of 
quasi-PDFs. It is these terms that lead to the divergence of the yn

moments of the quasi-PDFs Q (y, P ).

5.5. Large-P matching

These terms are not eliminated by just taking the P → ∞ limit. 
However, they disappear when one extracts f (y, μ2) using the 
matching condition (5.2). Namely, we have

f (y,μ2) =Q̃ (y, P ) + αs

2π
C F

1∫
0

du

u
f (y/u,μ2)

×
{

B(u) ln
(
μ2/P 2

)
+ C(u)

}
+O(1/P 2) . (5.15)

Since both the O(1/P 2) soft part and the Q̃ (y, P ) combina-
tion of Eq. (5.4) vanish for |y| > 1 in the P → ∞ limit, Eq. (5.15)
resolves the problem of the support mismatch between f (y, μ2)

and Q (y, P ). As a result, one can calculate the yn moments of 
the light-cone PDFs f (y, μ2) using Eq. (5.15) without getting di-
vergences in its right-hand side.

As already noted, if we separate quasi-PDFs corresponding to 
the real [Q −(y, P )] and imaginary [Q +(y, P )] parts of the ITD, it 
is sufficient to consider positive y only. Using the fact that pertur-
bative part of Q̃ (y, P ) vanishes outside the |y| ≤ 1 region, we may 
write the iterative solution of Eq. (5.15) for y > 0 as

f∓(y,μ2) = Q ∓(y, P ) θ(0 ≤ y ≤ 1)

− αs

2π
C F

1∫
0

dx

x
[Q ∓(x, P ) − Q ∓(y, P )]

×
[
θ(x ≥ y)

{
1 + y2/x2

1 − y/x

(
ln

[
4y(x − y)

P 2

μ2

]
− 1

)

+ 3/2

1 − y/x
+ 1

}
+ θ(x ≤ y)R>(y/x) ± R<(−y/x)

]
+O(1/P 2) . (5.16)

Here the function f−(y) corresponds to the real part of the ITD 
and is given by q(y) − q̄(y), while f+(y) corresponds to the imag-
inary part of the ITD and is given by q(y) + q̄(y). The kernels 
R>(η), R<(η) are given by Eqs. (5.11) and (5.13). The third line 
of Eq. (5.16) comes from Rmiddle(η) of Eq. (5.7) and terms from 
Eq. (5.1). All the terms explicitly written in Eq. (5.16) involve quasi-
PDFs in the y < 1 region only. The y > 1 part of Q̃ (y, P ) is in-
cluded in O(1/P 2) term and vanishes in the P → ∞ limit.

We remind that the starting point for the derivation of Eq. (5.16)
is based on Eqs. (5.1) and (5.2). Hence, Eq. (5.16) applies to quasi-
PDFs built from the reduced pseudo-ITDs (4.2).

6. Summary and conclusions

In this paper, we discussed a specific feature of the quasi-PDFs 
Q (y, P3) in which they differ from the usual PDFs f (x), namely, 
the presence of terms outside the |y| ≤ 1 region.
In a model with a transverse momentum cut-off, such terms 
disappear in the P → ∞ limit. However, in renormalizable theo-
ries, including QCD, one has |y| > 1 terms persisting (for a fixed 
αs) even in the P → ∞ limit. These terms have a perturbative ori-
gin that may be traced to the ln z2

3 singularities of the generating 
matrix element 〈p|ψ̄(0) . . .ψ(z3)|p〉.

Since one knows that such terms, absent in the light-cone PDFs 
f (x), must be present in the quasi-PDFs Q (y, P3), one should just 
subtract them from Q (y, P3) obtained on the lattice. The resulting 
“reduced” quasi-PDF Q̃ (y, P ) for large P has support in the canon-
ical region |y| ≤ 1 only. On a formal level, such a subtraction is 
automatically provided by implementing the matching conditions.

Eq. (5.16), that is given at the end of the paper, provides an 
explicit expression for the lightcone PDF f (y, μ2) involving the 
quasi-PDF Q (y, P ) in the |y| ≤ 1 region. Hence, in actual lattice 
PDF extractions, one may ignore the |y| > 1 region altogether and 
operate with Q (y, P ) obtained in the |y| ≤ 1 region only.

A related practical question is if the complications with the 
|y| > 1 region may be avoided? Indeed, according to the OPE (5.1), 
the reduced pseudo-ITD M(ν, z2

3), a function directly “coming out 
of the computer box”, may be used, without intermediaries, to 
extract the lightcone ITDs I(ν, μ2). The latter are the Fourier 
transforms of the lightcone PDFs f (x, μ2), the functions that have 
the canonical |x| ≤ 1 support. Such an approach has been already 
applied in the exploratory lattice calculation [28] and in the con-
struction [27] of MS ITD I(ν, μ2) based on its results.
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