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We complete the procedure of extracting parton distribution functions (PDFs) using large momentum
effective theory at leading power accuracy in the hadron momentum. We derive a general factorization
formula for the quasi-PDFs in the presence of mixing and give the corresponding hard matching kernel at
O(ay), both for the unpolarized and for the polarized quark and gluon quasi-PDFs. Our calculation is
performed in a regularization-independent momentum subtraction scheme. The results allow us to match the
nonperturbatively renormalized quasi-PDFs to normal PDFs in the presence of mixing and therefore can be
used to extract flavor-singlet quark PDFs as well as gluon PDFs from lattice simulations.
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I. INTRODUCTION

Understanding the internal structure of hadrons from
quarks and gluons—the fundamental degrees of freedom
of the QCD Lagrangian—has been a key goal in hadron
physics. However, this is profoundly difficult because it
requires solving QCD at large distance scales and thus at
strong coupling. In high-energy collisions, the hadron
and/or the probe moves nearly at the speed of light; the
hadron structure greatly simplifies and can be characterized
by certain parton observables such as the parton distribu-
tion functions (PDFs), distribution amplitudes (DAs), etc.,
The parton observables are defined as the expectation value
of light-cone correlations in the hadron state and therefore
cannot be readily computed on a Euclidean lattice.
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Currently, the most widely used approach to determine
them is to assume a smoothly parametrized form and fit the
unknown parameters to a large variety of experimental data
(for a recent review, see e.g., Ref. [1]). Lattice efforts
on determining the parton observables have been mainly
focused on the computation of their moments, which are
matrix elements of local operators. The parton observables
can be reconstructed, in principle, if all their moments are
known. However, to date only the first few moments can be
calculated in lattice QCD [2-5] due to power divergent
mixing between different moment operators and increasing
stochastic noise for high moment operators.

In the past few years, a breakthrough has been made
to circumvent the above difficulty, which has now been
formulated as large momentum effective theory (LaMET)
[6,7]. According to LaMET, a parton observable, instead
of its moments, can be directly accessed from lattice QCD
using the following procedure: (1) Construct an appro-
priate static-operator matrix element (quasiobservable)
that approaches the parton observable in the infinite
momentum limit of the external hadron. The quasiobserv-
able constructed in this way is usually hadron-momentum
dependent but time independent, and thus can be readily
computed on the lattice. (2) Calculate the quasiobser-
vable on the lattice and renormalize it nonperturbatively
in an appropriate scheme. (3) Match the renormalized
quasiobservable to the parton observable through a fac-
torization formula accurate up to power corrections that are
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suppressed by the hadron momentum. The existence of
such a factorization is ensured by construction; for a proof
in the case of isovector quark distribution, see Refs. [§—10].

Since LaMET was proposed, much progress has been
achieved both in the theoretical understanding of the
formalism [10—61] and in the direct calculation of
PDFs from lattice QCD [25,26,31,32,34,62—73]. In par-
ticular, multiplicative renormalization of both the quark
[20,29,30] and the gluon [53,54] quasi-PDF has been
established in coordinate space. Nonperturbative renorm-
alization in the regularization-independent momentum
subtraction (RI/MOM) scheme as well as a perturbative
matching in the same scheme has been carried out for
the isovector quark quasi-PDFs in Refs. [18,31,67,70]
(see also [19,32,66]). Despite limited volumes and rela-
tively coarse lattice spacings, the state-of-the-art nucleon
isovector quark PDFs determined from lattice data at
the physical point have shown a reasonable agreement
[66,67,70] with phenomenological results extracted from
the experimental data [74-78]. Of course, a careful study of
theoretical uncertainties and lattice artifacts is still needed
to fully establish the reliability of the results.

So far, the lattice calculations of PDFs have been focused
on the isovector quark PDFs only, which do not involve
mixing with gluon PDFs and therefore are the easiest to
calculate. In the past few years, there has been increasing
interest in calculating flavor-singlet quark PDFs and gluon
PDFs from lattice QCD. Such calculations are possible
only if the renormalization and mixing pattern of gluon
quasi-PDFs are fully understood. The ultraviolet (UV)
structure of gluon quasi-PDFs was first studied in
Refs. [22,23] by using a simple cutoff regularization, where
it was found that the power divergences cannot be removed
by a multiplicative renormalization factor. However, as we
pointed out in Ref. [53], such a cutoff scheme, in general,
breaks gauge invariance in QCD and therefore obscures the
structure of genuine power divergences of the theory. To
avoid this, we have chosen in Ref. [53] to work in
dimensional regularization and keep track of the power
divergences by expanding at d < 4. For example, at one
loop the linear divergence appears as poles at d = 3. In this
way, we are able to extract the power divergences gauge
invariantly. Based on this, we perform a systematic study of
the renormalization property of gluon quasi-PDF operators
and show that with an appropriate choice they are indeed
multiplicatively renormalizable. We also identify four
independent gluon quasi-PDF operators that have an easy
implementation on the lattice. Moreover, a general factori-
zation formula for the gluon as well as the quark quasi-PDF
in the presence of mixing has been conjectured.

In this paper, we provide all necessary inputs for
extracting both the flavor-singlet quark PDF and the gluon
PDF from lattice QCD, thereby completing the procedure
of calculating PDFs using LaMET at leading power
accuracy in the hadron momentum. We explain how to

nonperturbatively renormalize the quark and gluon
quasi-PDFs, and derive a general factorization formula
for the renormalized quasi-PDFs in the presence of
mixing, following the operator product expansion
(OPE) method in Refs. [9,10]. We then present the
complete one-loop results for the hard matching kernels
that appear in the factorization of quasi-PDFs. The
computation of the matching kernel has been considered
in Ref. [22] but in a scheme that is inappropriate for
lattice implementation.

The rest of the paper is organized as follows: In Sec. II,
we briefly review the renormalization and factorization of
quark and gluon quasi-PDFs. In Sec. III, we present our
one-loop calculation of the hard matching kernel connect-
ing the RI/MOM renormalized quasi-PDFs to the PDFs in
the MS scheme, with a particular focus on the unpolarized
case. Section IV is devoted to the polarized case. We then
conclude in Sec. V and give some computational details in
the Appendix.

II. RENORMALIZATION AND FACTORIZATION
OF QUARK AND GLUON QUASI-PDFS

In this section, we give a brief review of the renormal-
ization and factorization of quark and gluon quasi-PDFs
in LaMET.

A. Quasi-PDFs in LaMET

In high-energy collisions, the PDFs are defined as the
hadron matrix elements of quark and gluon nonlocal
correlators along the light cone. For example, the unpo-
larized quark distribution is defined as

Famen) = [ S e P ) WE0)ai0))
m

for a given flavor i, where x = k™ /P is the longitudinal
momentum fraction carried by the quark of flavor i, u is
the renormalization scale in the MS scheme, P* =
(P°,0,0, P?) is the hadron momentum, &* = (1 4 z)/v/2
are the light-cone coordinates, and

W(E,0) =exp <—ig A : dﬂ_fﬁ(’?_)) (2)

is the Wilson line inserted to maintain the gauge invariance
of the nonlocal correlator. Note that AT = A} t* with ¢
being the generators in the fundamental representation of
the color SU(3) group.

Analogously, the unpolarized gluon distribution can be
defined as [79]
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fg/H(x’ /’t)

_ / 2%6 (PIF(E)W(E . 0)F(0)|P).
(3)

where Fy" = 0"AY — 0"Al — gf upcALAY is the gluon field
strength, and i runs over the transverse indices. The above
Wilson line WV takes a similar form as the quark case but is
defined in the adjoint representation.

The quark and gluon PDFs defined above cannot be
directly computed on the lattice due to their real-time
dependence. However, according to LaMET, they can be
extracted from lattice calculations of appropriately con-
structed quasi-PDFs via a factorization procedure. For the
unpolarized quark PDF, a well-suited quasi-PDF candidate
is given by

- dz .
Fapulon. ) = N [ 42 (Play Wiz, 0)a,(0)1P)

4)

where z is a spatial direction and I' = {y%,y'} is a Dirac
matrix with the corresponding normalization factor
N = {1, P?/P'}, respectively. As shown in Ref. [29],
the renormalization of the quark quasi-PDF defined
above is of a multiplicative form so that the matrix
elements at different z do not mix with each other. In
addition, the choice with I' =y’ has the advantage of
avoiding mixing with the scalar PDF when a nonchiral
lattice fermion is used [19,33]. We focus on this choice in
the rest of the paper.

In comparison with the quark case, the most appropriate
operator to define the gluon quasi-PDF is less obvious. In
principle, one can use

0y"(2.0) = F**(2)WV(2.0)F¢(0). (5)

with u,v = {t,z} and a running either over all Lorentz
indices or only over transverse indices. However, such a
choice could, in principle, mix with other relevant
operators under renormalization. Using the auxiliary field
approach [80], we have explicitly shown [53] that differ-
ent components of O* indeed renormalize differently,
which complicates the construction of appropriate gluon
quasi-PDFs. A brief review of the formalism used in
Refs. [53] and [29] will be given in the forthcoming
subsections. Nevertheless, we have identified four gluon
operators [53] that are multiplicatively renormalizable
and therefore are suitable for defining the gluon quasi-
PDF. These operators are

= F#(z)W(z.0)F5(0), (6)

where a summation over transverse (all) components is
implied for i(u). The corresponding gluon quasi-PDF is
then defined as

Tn z n dz izxP? n
Fiten Py =0 [ et plof G o)p). (1)

The normalization factors are chosen by

2
NO — N® — 1 NO — EP;)Z, NGO — g, (8)
P
so that all partonic gluon PDFs at tree level are
PO (x, u, P7) = 5(x = 1 9
fg/g (x’l'l7 ) - (.X )’ ( )

with the hadron state H being replaced by a gluon
state. Note that in the above result (also in the sections
below unless stated otherwise), we have ignored the
contributions from the crossed diagrams, which corre-
spond to interchanging the contraction between the two

external gluons and gluon fields from the operators OE,").
These crossed diagrams can be easily obtained from
T ) = ~Fyi(=5).

All of the above gluon quasi-PDF operators are defined
in terms of an adjoint gauge link. Alternatively, these
operators can also be parametrized using gauge links in the

fundamental representation U(z,,z;) [80-85]. Taking the

©)

operator Oy’ as an example, one could use

05 (22,21) =2Tr[F(20)U (20,21 F#(21) U z1,22)].~ (10)

Here F* = Fj,t%, and 1* is the generator in the funda-

mental representation with tr[ts’] = 1/25". We stress
that Eq. (5) facilitates the renormalization study of gluon
quasi-PDFs, whereas Eq. (10) makes the implementation
on the lattice simpler. In the following, we mainly focus on
the definition Eq. (5), as has been done in Ref. [53], but
the results also apply to Eq. (10).

In the forthcoming subsections, we briefly review the
renormalization of quasi-PDFs in the auxiliary field
approach, following our earlier work in Refs. [29,53].
Other studies have been available using a similar formalism
[20] or using the Feynman diagrammatic approach [30,54].
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B. Auxiliary field approach

In the auxiliary field approach [80], one introduces an
auxiliary “heavy quark” field into the QCD interaction
such that the Wilson line can be reinterpreted as a two-
point function of the auxiliary field. For the quark or gluon
quasi-PDF, this auxiliary field is chosen to be in the
fundamental or adjoint representation of the color SU(3)
group, respectively. Similar to the ordinary heavy quark,
the auxiliary heavy quark has trivial spin degrees of
freedom. An advantage of this approach is to convert the
study of renormalization of nonlocal operators into the
analysis of two local operators. In the following we present,
as an example, the auxiliary Lagrangian that can be used to
study quark quasi-PDFs, while for gluon quasi-PDFs the
procedure is completely analogous.

The effective Lagrangian with an auxiliary fundamental
heavy quark field (denoted as Q) can be written as

L = Locp + Q(x)in - DO(x), (11)

where D, = 0, + igt,A,, is the covariant derivative in the
fundamental representation. The unit vector n* is chosen
as n* = (0,0,0,1).

As shown in Ref. [29], the two-point function of the
auxiliary heavy quark is evaluated as

[ P0D00IQ0) =Sy y)e 5w 12

The above equation holds up to a determinant det(in - D)
which can be absorbed into the normalization of the
generating functional [86]. The propagator S,(x,y) in
the above is the Green function of the n - D operator, with

n-DSy(x,y) =¥ (x—y). (13)
The solution

So(x,y) = 0(x7 — y7)8(x® — y0)5P) (X = § )W (x%, y7)
(14)

can be derived with an appropriate boundary condition.
One should notice that Eq. (14) is nothing but a spacelike
Wilson line along the z direction. One can always restrict
oneself to x* > y*, without loss of generality.

C. Renormalization of quasi-PDFs
in auxiliary field approach

1. Quark quasi-PDFs

From the discussions above, one can see that the Wilson
line W(z,,z,) appearing in the quark quasi-PDFs can be
replaced by the product of two auxiliary heavy quark fields
Q(z,)0O(z;). The quark bilocal operator

04, (22,71) = 4i(22)TW(z2,21)qi(21) (15)

then reduces to the product of two local composite
operators

0,.(22.21) = §:1(22)TQ(22) 0(21)q(z1) = J(22)j(z1).
(16)

with

J(22) = 4:(22)TQ(22).  Jj(a1) = Q(z1)qi(z1).  (17)
Since the heavy quark has trivial spin degrees of freedom,
one can also move the Dirac matrix I into j(z;).

In dimensional regularization (DR), the local operators
j(22),j(z;) are “heavy-to-light” like and are multiplica-
tively renormalized:

J(z2) = Z;jr(22). i(z1) = Z;jr(zi),  (18)

with (D =4 —2¢)

a
Z:=Z =14+—+0(a?). 1
; j e O(a3) (19)

When the auxiliary field is integrated out, the nonlocal
operator renormalizes as [29]

0, r(22.21) = Zjlzfléi(zz)FW(ZLZ1)¢1i(21)~ (20)

In lattice regularization, when going beyond leading-
order perturbation theory, the self-energy of the heavy
quark generates a linear divergence that does not show up
in DR. Such a linear divergence can be absorbed into an
effective mass counterterm,

oL, = _5mQQ’ (21)

where m ~ O(1/a), with a being the lattice spacing
[87]. As shown in Ref. [29], apart from the structures
given in the Lagrangian Eq. (11), this is the only possible
renormalizable counterterm allowed by the symmetry of
the theory. Moreover, Becchi-Rouet-Stora-Tyutin (BRST)
invariance requires a dependence of dm on the signature
of n in Eq. (11) [80]. For a spacelike n*, ém = iom is
imaginary.

Including the effective mass term Eq. (21) in the
Lagrangian and integrating out the auxiliary heavy quark,
we obtain the following renormalization for the nonlocal
quark bilinear operator [29]:

0, r(22,21) = Zflzflem‘zz_z"fli(Zz)FW(ZL 21)q(21).
(22)
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2. Gluon quasi-PDFs

For the nonlocal gluon quasi-PDF operators, the desired
auxiliary Lagrangian has exactly the same form as that for
the quark, except that now the auxiliary heavy quark and
the covariant derivative are defined in the adjoint repre-
sentation. To distinguish from the fundamental auxiliary
field used in the previous subsection, we denote the adjoint
field as Q below.

With the auxiliary Q, one can decompose the nonlocal

gluon operator in Eq. (6) into the product of two local

composite operators. For example, the 0<g3> has

O (22, 21) = I (22)T5 (1), (23)
where

Ti(z2) = FZ(Zz)Qa(Zz)jii(Zl) = Qb(ZI)FZb,i(ZI)' (24)

Again, the renormalization of the gluon quasi-PDF operator
then reduces to the renormalization of the local gluon
composite operators J;, J;, which is easier to handle.

The operator J4{* can mix with operators of the same or
lower mass dimension under renormalization. The mixing
operators can be of the following three types: (1) gauge-
invariant operators, (2) BRST exact operators or operators
that are the BRST variation of some other operators, or
(3) operators that vanish by the equation of motion (see
e.g., [88]). Let us start with the renormalization in DR for
simplicity. In DR, it has been shown in Refs. [53,80,81] that
the operators that mix with J{" are

T =n,(Fi'n" - F!'n")Q,/n?,
S8 = (—in*AY + in*AL)((in - D — 6m)Q),/n*,  (25)

where a potential mass term for the auxiliary field is
included. Such a mass term is absent in DR but can be
generated by radiative corrections in a cutoff regularization
such as the lattice regularization. The operator J4” is gauge
invariant, whereas J4" is proportional to the massive
equation of motion of Q and therefore vanishes in a
physical matrix element. The above mixing pattern has
been verified by us in an explicit one-loop calculation [53].

|

The renormalization of the above three types of
composite operators then takes the following form:

TR Zy Zin Zis Jy
Brl=1 0 Zn zy; J5. (26)
Jg‘f/R 0 0 Zs ng

where the mixing matrix Z is triangular. However, the
renormalization constants in Eq. (26) are not all inde-
pendent, as demonstrated in Ref. [53]. A first observation
is the degeneracy of J3 and J{, which leads to the
following relation between the renormalization constants
in Eq. (26):

Zy+Zyy = 2o, Zy3 =Zn. (27)
An explicit one-loop calculation in Ref. [81] has
indeed verified the above expectation. Since J5° is not
independent, it can be ignored in the studies of operator
renormalization. In addition, Eqs. (26) and (27) indicate
that J¥ and J% (i = 1, 2) renormalize independently. As
a result, the renormalization pattern can be simplified to

<J§’,‘R) B (Zzz ZB> (Ji”)
Ji% 0 Zy/\J?)
Jlii.R = ZUJ?’ Jil{R = Z11Jlij- (28)

The reason that (J{, J{) and J}¥ have different renorm-
alizations is due to the Lorentz symmetry breaking in the
presence of a four-vector n* along the z direction.

To extract the UV divergences, in particular, the genuine
power divergences inherited from the operator J4*, one
should introduce a proper UV regulator in a gauge-invariant
manner. In Ref. [53], we worked in DR and kept track of
the linear divergences by expanding the results around
d =3, as the linear divergences appear as poles around
d = 3 at one loop.

The one-loop diagrams that give rise to linearly divergent
contributions to the operator J{* are shown in Fig. 1, and
other diagrams are neglected. We have performed a detailed
calculation in coordinate space in Ref. [53], and the
result reads

C 1
I = Usta {— (Avn? — Agn*)n - 0Q,/n* + % (n”AY, — n*AL)Q, + reg.},

V3 d—4
C 1 1 1 1
I = asﬂ A {d . [4 FP'Q, + 3 (Filn*n, — Fn’n,)Q,/n* + 3 (AGn* — Abn”)n - 8Qu/n2}
- dnzg (nAY — n*AR)Q, + reg.}, (29)
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FIG. 1. One-loop corrections with linear divergences to the J4".
The double line represents the auxiliary adjoint field Q.

where y is the regularization scale and reg. denotes regular
terms at both d =4 and d = 3. Combining the results in
Eq. (29), we find that the linear divergences cancel. Our
results show an identical mixing pattern as in Ref. [81] (note
the difference in the normalization of the direction vector).

Based on the renormalization analysis above, one can
derive useful building blocks for the construction of appro-
priate gluon quasi-PDFs. To this end, we may use one of the
indices in J{* with z or 7 and let the other indices run either
over all Lorentz components or over the transverse compo-
nents only. It is necessary to point out that the operator J4
only yields contact terms when integrating out the heavy
quark field since the equation of motion operator acting on
the heavy quark propagator yields a é-function. The non-
vanishing contact terms at z, = z; indicate that an extra
renormalization is required when the distance between two
local composite operators shrinks to zero. When z; # z,, the
operator J4” is irrelevant and can be ignored.

In a cutoff scheme like the lattice regularization, the mass
term of the Q could appear beyond leading order in
perturbation theory even if it does not exist at leading
order. This is indeed what happens here. In perturbation
theory, m = &m starts from O(a;). Such a mass term serves
the purpose of absorbing power divergences arising from
the Wilson line self-energy. Apart from this, there is no
other power divergence in the theory. Therefore, in a gauge-
invariant cutoff scheme, the operator renormalization
remains the same as Eq. (28).

With J§'p, Ji 5, J{., and their conjugate as the building
blocks, four multiplicatively renormalizable unpolarized
gluon quasi-PDF operators have been constructed [53], and
their explicit form has been given in Sec. II A. To illustrate
how the gluon quasi-PDF operators renormalize, let us take

OSk(z2.21) = T p(22)T 1 2 (21) (30)
as an example. When the auxiliary heavy quark field is
integrated out, the O_Ef,)e (z0,z1) operator renormalizes
multiplicatively as (5m = idm)

3 i
O (z2.21) = (Fi(2)W(z2.21) Fi(21))g
= Zy1 Zype® P (25)W (20, 20 ) F 2 (21).

(31)

The renormalization of other operators is analogous with
different renormalization factors [53].

Actually, the operators (’);'}e (i=1,2,3,4)belong to the

same universality class [89] and differ only by power
corrections in the large momentum limit. Bearing in mind

the different renormalizations of O% one may use any

combination of them to study the gluon quasi-PDE. A
notable example is

0% (z2,21) = (F*(2)W(z2, 21)F'u(21))i
= -0 3(z2.21) = OPh(z2.21) = O (22, 21).

(32)

This operator (minus the trace term) has been used in
a recent simulation [71]. Since the renormalizations for

OEJTI)e(zz,z]) and OEJ?;'?)(ZZ,ZJ are different, Oﬂ(zz,zl) is
not multiplicatively renormalizable.

D. Renormalization in RI/MOM scheme and
implementation on the lattice

From the discussions above, it is clear that the nonlocal
operators at different z do not mix under renormali-
zation. This allows us to carry out a nonperturbative
renormalization of the quasi-PDF in the following manner:
(1) Calculate the endpoint renormalization factors [e.g.,
Z{1122) in Eq. (31)] and the Wilson line mass counterterm

[6m in Eq. (31)] nonperturbatively. The calculation of
the former is rather straightforward, while the latter can be
determined by using the static-quark potential for the
renormalization of Wilson loops [90]. This has been used
in early studies of nucleon PDFs and meson DAs
[26,28,65]. (2) Calculate the renormalization factors as a
whole for each z. This is analogous to the renormalization
of local composite operators, which is usually carried out in
the RI/MOM scheme [91] on the lattice. In the RI/MOM
scheme, the renormalization of local composite operators
is done by demanding that the counterterm cancels all
loop contributions to their matrix element between off-
shell external states at specific momenta [18,31] (for the
application to quark and gluon momentum fractions, see
Ref. [92].) For multiplicatively renormalizable nonlocal
correlators such as the quasi-PDFs given above, the
renormalization is similar, but now one requires calculating
the renormalization factors at each z.

The quark and gluon quasi-PDFs can, in general, mix
with each other under renormalization. In Ref. [53], we
have argued that inserting the gluon quasi-PDF operator
into a quark state only yields finite mixing as long as all
subdivergences have been renormalized (note the differ-
ence from the quark and gluon light-cone PDF operators
which mix with each other under renormalization [93,94]).
The mixing effect can, in principle, be deferred to the
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factorization stage. Here we find that taking into account
the mixing at the renormalization stage will help improve
the convergence in the implementation of the matching
in the RI/MOM scheme. To this end, it suffices to consider
the following mixing of quasi-PDFs:

(1E0) - (L1 mory (o)

(33)

where 05 (21.22) =1/2(7i(21)TW(z1.22)4i(22) = (21 <> 22)]
is the C-even combination of quark operators, Z;;(z) are
dimensionless factors, and z compensates for the different
mass dimension between the quark and gluon quasi-PDF
operators. In the limit z — O (taken after combining the
entries of the mixing matrix and the operators), the above
mixing pattern reduces to the mixing pattern of local
operators.

The renormalization factors in the above mixing matrix
can be determined using the following renormalization
conditions:

Tr[Ag (P, 2)Plg 1
Tr[Aos (P, 2) Plueel” 5
ab.ij
[P?iju J(PvZ)]R 1
b,ij 2,2
[P;lijﬂlll ](p’ Z)]tree ppz:plng
Tr[Al2(p’Z)P]R Pr=—i2 =0,
pz:pr
bij
[P?ijgl N (p’ Z)}R JR— =0, (34)
pz:pf

where Agy112) (Ag2122)) denote the amputated Green’s

functions of 0" (0%) in an off-shell gluon and quark state,
respectively. Here P and P?jb are projection operators that
are associated with the quark and gluon matrix elements
and define the RI/MOM renormalization factors; y and p¥
are unphysical scales introduced in the RI/MOM scheme to
specify the subtraction point; and b, ¢ are color indices
and i, j Lorentz indices. In the nonsinglet quark PDF case
with T" = y’ [49], the amputated Green’s function has the
following structure:
t pt ﬂ
P’
(35)

p'r*
pZ

Ap(p.2) = fip. )y + F.(p.2) =+ f,(p.2)

and P was chosen in such a way that it projects out the
coefficient of y" only, which captures all terms in A,(p, z)
that lead to UV divergences in the local limit. However, in
general, both the coefficients of y* and y* can lead to UV
divergences in the local limit. This is the case, e.g., in the
mixing diagram to be considered below. We need both
coefficients to define the RI/MOM counterterm. As for P?}’ ,
a simple choice is P{f = &g, ;;/(2— D), where g, ;
denotes the transverse metric tensor and D is the spacetime
dimension.

Defining the inverse of the renormalization matrix in
Eq. (33) as

Z_ ( le(Z)
ZZ2I(Z)

we then have, from Egs. (33), (34) and (36),

212(2)/2) _ (le(Z)

le(Z)/Z>_l
Zx(2) 2Z5(z) ’

Z(z)
(36)

Z(z) = [P&ATT (. ) Tr[An (p. 2) P
11 - b - = ) ’
([P?ijli” '(p, 2)|Tr[Ay (p. 2)P] = [Pi].b/\zi’ ](p,z)]Tr[Alz(p, 2)P)) Pt = _/fje
pZ = pz
Zp(2)/z= [PZbA?f’l](p’Z)}treeTr[Au(P,Z)P]
12 =- T el i |
([P;l]bAlf /(P, Z)]TY[AZZ(pv Z)P] - [PlleZIb /(p’ Z)]TY[A]z(p,Z)P]) p2 — —lﬁe
P: =Pz
ZZ (Z) = [P?ijgf’ij(p,Z)}TI‘[AZZ([)’Z)’]D]“%
21 - - ENT - o ) |
([P?].h/\lf'J(P,Z)]Tr[Azz(P,Z)P] - [PU.”AZi’ 1(p, 2)]Tt[Ap(p. 2)P)) = _/*:{2%
P: =Pz
_ Pl»l»hAab’ij ’ TrlA ’ D
75 (2) = [P AT (P, 2)| Tr[ A (. 2) Pliee -

([P AT (p. )] Te[Asa(p. 2)P] = [P AST (p. 2)] Te[Apa(p. 2) )| p? = —Hp ‘
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Denoting the hadron matrix element of O(z,0) as h(z, P*,1/a), i.e., hj(z, P*,1/a) = (P|0;(z,0)|P), i = q, g, the
renormalized hadron matrix elements then read

W'z P i, PX) = Zu1 (2o R 1/ @) (2. P 1 /@) + Zo(z g pR. 1/ @) /2y (2 P2, 1 ),
h;,R<Z7PZ7.“R7p§) = Zn(z. g, P, 1/a)h oz P 1/a) + 2251 (2, > PY, 1/4) (Z P 1/a). (38)

The renormalized quasi-PDF in the R/MOM scheme can be obtained from the above renormalized matrix elements by a
Fourier transform given in Eqgs. (4) and (7), respectively. Note that we can take the continuum limit a — 0 in A since all
terms singular in @ have been removed by the renormalization procedure. This means that the factorization of the
renormalized matrix element can be studied in the continuum, as will be done in the next subsection.

E. Factorization

In Ref. [53], we have given a general factorization formula for the quark and gluon quasi-PDFs in the presence of mixing.
In this subsection, we give a detailed derivation of it using the OPE, along the same line as that used for the isovector quark

quasi-PDF [10]. For illustration purposes, we choose I' = y for the quark quasi-PDF and OE,4> for the gluon quasi-PDF. The
derivation for other operators follows straightforwardly from what is presented below.

The renormalized quark and gluon nonlocal operator matrix elements can be expanded in terms of gauge-invariant local
operator matrix elements to the leading-twist approximation as

~ 1 a (—iZ)n_l n—1 Leen n—1
hqi,R<z,PZ,u>z;Z—n_l)![c;.q_,.)( )Pl my,.my, O (W)|P) + Coy ) (W222) (P, my, .m,, 05 () P)].

n=1

ZZ n -2 ol 1)y
(3 P p) = P”Z G yr (G W2 (Pl oy, O (0)IP) 4 €™ (222) (Pl .y, O~ ) |P))

(39)

where we have introduced extra normalization factors so that the two matrix elements have the same mass dimension.
For simplicity, we have also denoted all renormalization scales with u. Note that n'* = (1 0,0,0) and n” = (0,0,0, 1),

Cg,;j =6 +5 quq/ + O(a?), C?;)ggq} =gt C<({qggq} +0(a?) and Clp) =1 + 5= ng '+ O(a?) denote the Wilson

coefficients. Here 0’,}} #and 04" are the renormalized symmetric traceless twist-2 quark and gluon operators

Ot — z [C_Ij(O)Y{”‘ iDF2 ... iDﬂn}qj(()) — trace],
oyt = Zr[Fv(0)iD#e - - - iD”"-lF,’f”}(O) — trace], (40)

where {- - -} denotes a symmetrization of the enclosed indices. Their matrix elements are related to the moments of quark
and gluon PDFs, respectively,

<P|02;ﬂu |P> — 2aq,-,n (ﬂ)(Pﬂl e P/"n — trace>’
(P10 *"|P) = 2ay,,(u) (P - - - P* — trace), (41)

with

1 1 /1
) = [ e a0 =3 [ e . (42)

Owing to the symmetry of the gluon PDF, a,, does not vanish only for even n.
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Let us first consider ﬁth(z, P%, u). Ignoring all trace terms, we can write

hg.r(z. P p) = i%[ v P2 ag (1) + Coy (122 ag ()

© [ ne (n=1)¢ 2 2

—iv . Lo C Uz b

= E : ((n _)1)| |:C£qu1'1)(ﬂ222) /1 dxx ]qu/H(xv /4) + %/1 dxx 1fg/H(x’ﬂ)
n=1 ’ - -

S e [

v .,
dxx”‘l/%e”‘” hy, (V. p)

-1

= (=iv)™! Cq'z] D) L [d) .,
+ Z (= 1)1 > /_1 dxx" /Ze’x” hy(V, ), (43)
n= CVCH
where we have introduced the Ioffe time v = —z- P = zP*and v/ = ¢ - P = —P*&7, by, /, g denote the coordinate space

matrix elements used to define the quark and gluon PDFs at lightlike separation £ = 0. Defining

dv . = (=iv)™!
/Ze Z n— 1), C(qxq/ >(/'l < ) Cq;t]j(u’/’tzzz)’

(
© =2 =1 2 2
/@em 3 ((—W) Cog " (W°27) _ iCyy(u, u?2?), (44)

with u being in the range (-1, 1) [38,95], we then have

/

dav d
qR(z P p) / dx/ due~ ””‘”[C a; (s uz )/2 ”‘”h (u’,u)+qug(u,/42z2)/§

—/ dquiqj(u,/tzzz)hqj(uv,u)—|—/ durCy(u, 22 ) hy(uv, ). (45)
-1

eixy/hg(l/vﬂ>:|

This is the general factorization of the coordinate space matrix element in the presence of mixing. To convert it to the
factorization of quasi-PDFs, we need a Fourier transform of the above relation:

~ dz . .~
fqyu(x, P*p) = P* / %e’“}’ h, g(z. P* )

] (=izP?)"! =V (2, 1
= / e Z { Cora (W2 )/ dyy"- lfq//H(y)_‘_%ﬂ)/ dyy"‘lfg/ﬁ(y)]

n—l

/ dy/dz’éz —2y)

-/ 5 'DX/yi%{cﬁf'f‘zl)(y”(;))f%“’(” +yC )<yﬂ<y>>fg/”( )

n=

[ o, (Eb ) ) + Can( ) 1) (46)

1]yl v yP?

z n—1) 2
oy CRE | et ) + G )

where we have defined
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2.2
X M o wx lU n l) I
Cuo (33im) = [ 5 X i ()
I R eV x/y (2 2 47
q"’<y’yPZ> / Z n—l (y (Pe)? >/ ' “7)

Now let us turn to IZQ.R(z, P, u). By ignoring all trace terms, one can write, as before,

gR (z, P%, ) :Z { 99 >(ﬂ212)/ dxx"" lfy/H(x ﬂ)+2C( 2)( )/ldxX”“fq,./H(x,ﬂ)
o ! _
— S (_iy)n_2 (n=2) 2.2 ! n—2 dv ixt/ /
" S G O W) [ A e
o~ (=) 2 2oy [N (A /
+;mzcg,, (4222) [ dxx 5. hy, (V). (48)
Defining

dv . (=) e
/2,,‘31”” > <_)2)!ng D (222) = Cyyu.422%),

n=2.even (l’l
dv (=iv)"! (n=2) 2 2 . 2.2
7 mem (?2%) = =iCyy(u. p?2%), (49)
n=2 :

we then have the following factorization in coordinate space:

- v ., Cog(u, 1?2%) [ dv
N ) O e e e

1 C , 2,2
:/ dung(u,/Azzz)hg(uu,u)—i—/ duM
-1

-1 14

h, (uv,p). (50)
The factorization in momentum space reads

dz
2mx

dzP? o) ! n- Ly
_/ 2an e Z ,:Z_ { Coy 2 (4?2) /_ dyy"™ f () +2Chy ) (122) /_ 1 dyy" 1fq,-/H(y)}
— 1dyy wx/\ —iv )n 2 (n-2) /'t U n-2) ﬂ l/
_/ |y| / a I’l—2)' |:Cfl‘} y ( ) fg/H(y) + CG‘J y (PZ) fql/H( )

LB o]

where we have defined

Foyu e P p) = P / ¢ oy (2 P )

2.2
X M _y wx n ) KV
a5 ) =[5 ”Z <n— ; (y%PZ)Z)’
2.2
E H — eV'x/y E ll/ -2)( KV 52
gq<y’yPZ> / (n-2 <y 2(Pe)? ) 52

Restoring all renormalization scales, the general factorization of the quark and gluon quasi-PDFs reads
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#(n Ldy X pr yP* yP?
f!(J/)I‘I(x?szpgﬂﬂR)_/ _|:C <_ _R’—

1]yl y pR w7 pk
oM Age
(P27 (P2)?)"

Fon(x, P2 pRou )=/ — ,
att o IR -1 |}7| y pz

+O<(1Afz> <A1$ZC>D>’

where a summation of j over all quark flavors is implied.
The factorization for the polarized quasi-PDFs has the same
form as Eq. (53) with all unpolarized distributions being
replaced by the polarized ones and also different hard
coefficients. It is worthwhile to point out that the higher-
twist contributions behave like 1/[x*(1 — x)(P%)?] instead
of 1/(P%)?, as demonstrated in Ref. [55].

III. ONE-LOOP MATCHING FOR UNPOLARIZED
QUASI-PDFS IN R/MOM SCHEME

As shown in the previous section, when the hadron
momentum P? is much larger than the hadronic scale, the
higher-twist contributions get suppressed (except for very
small or large x), the quasi-PDFs can be factorized into the
light-cone PDFs with perturbatively calculable hard match-
ing coefficients. In this section, we present the one-loop
calculation of the hard matching coefficients for unpolar-
ized quark and gluon quasi-PDFs in the presence of mixing.
The polarized case will be discussed in the next section.
Our result is obtained in the RI/MOM scheme, which can
be used to connect the RI/MOM renormalized quasi-PDFs
to the PDFs in the MS scheme. Since the matching depends
on UV physics only and not on the external state, we can
calculate it in quark or gluon external states |¢(p)), |g(p)).
The infrared (IR) divergences can be regularized using their
off-shellness.

A. Gluon in gluon
Let us start with the gluon matrix element of the gluon
quasi-PDF operator, which is the most complicated among
all calculations. At tree level one finds

U (xp)=6(x=1). xf) (xp)=6(x—1),  (54)

where p = (—p* —ie)/p? and ie allows for an analytic
continuation from p <1 to p > 1. As before, we have
ignored the crossed terms which can be obtained from
{F.f}(x) = ={f. f}(=x). Ignoring such terms has no
impact on the extraction of the matching coefficient. The
above results lead to the following tree-level matching
coefficient:

)fg/y(y 1)+ Cyq <— R

Idy [C (x tr yP° yP:
ol ppE

x pg ypP* yp*

)fq,/ﬁ(y u)}

y' ¥ pk

X U yP yPZ
>fq,/H(y /'l) + ng (y pfe > u ]) )fg/H(y ﬂ):|
b4 z

(53)

Cl(x/y) = 8(x/y = 1). (55)

At one-loop level, the partonic quasi-PDF can be written
as follows:

gy P+ 85 =1). (56)

xfU) (x.p) =

withn = 1, 2, 3, 4, and the “+” subscript denotes the usual
plus prescription,

)], = £(x) = 8(1 ) / af().  (57)

Integrating Eq. (56) over the momentum fraction, one
arrives at

/dxxfg/q( )= ¢, (58)

which corresponds to the matrix element of local operators,

. 1 n
& = — N (g(p)|0)"
Pz

(0,0)[g(p))- (59)

Before we proceed, a few general remarks on the
calculation below are in order.

(1) The above equations apply to bare operator matrix

elements. One can write down similar equations for
the renormalized ones. In our calculation of the
matching coefficients, the PDF is renormalized in
the MS scheme, while the quasi-PDF is renormal-
ized in the RI/MOM scheme. The renormalized local
operator matrix elements in these two schemes differ
from each other, in general.
The off-shell gluon matrix elements of gauge-
invariant operators can mix with those of gauge-
variant operators. To illustrate this point, it is
worthwhile to consider the UV divergence from
the off-shell gluon matrix element of the local gluon
operator F**(0)F“#(0):

(i)
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(p. p|F"*(0)F*7(0)

p.o)

a,C 1
_ _ A { 9g(wglfag;4p _ 9ga/}g;4pguo' _ gowgﬁﬂg/w + gaﬁgﬂﬁ v g(w gﬁﬂgﬂv gﬁ#g”ﬁ)

4me 12?7

+ O P — 979 = 20" g + 297 g )

1 1
+e PPt (g7 g + 1097 gP7 — T1gP g7o) — gpﬂ Pr(4g% g + 109 ¢*° = Tg™ ¢°)

1 1
— =P P (104797 + 4P — TP ") + = ptpl (40 + 109747 ~Tg" ")

4 4

4 6

6

with the crossed contributions being neglected. This
leads to the following contributions to the UV
divergences in ¢():
C 2
e = % Ap_ O(e°)
127e p* + p? '

C
~(29> (XS Ap O
¢ 127e p? 2oL ")

5(3’.‘/) = O(eo),

N a,Cy p*
c4a) = 3ﬂ€*‘ p2+0( %), (61)

o8 1t

(al) (a2) (a3) (ad)

et

(a5) (a6) (a7)

E
R

1

-

(D)

3 1
+=pPpo (g g — g™ g*) — - p*p° (¢ 9" — g

1 1
+=pp° (P g — P’) + 51’”1)”(9""9“”

_ §pyp/1 (gm/g/}rf _ gaﬁguﬁ) _ §pup ( a/)g/iu _ ga/}gyp) + i papp gﬁ{fgﬂb gﬁugmf

1
aﬁgyp) - gpypp(gwgﬁ” - gaﬁg/w)
1
S+ PP - ) O, (@

if a physical projection Pl?“jb =6%g,;;/(2—D) is
employed. As can be seen from the above equa-
tions, the UV divergences might depend on the off-
shellness of external gluons, which is a sign of the
potential mixing with gauge-variant operators. It is
interesting to note that the UV divergence of &(*9)
is independent of p?. This is because it corre-
sponds to the ¢z component of the gluon energy
momentum tensor for which all gauge-variant
mixing operators vanish [96,97]. As we will see
below, such a behavior is consistent with the
asymptotic behavior at large x of the quasi-PDF

defined with 0( >(Z 0), which does not depend

on p? either. Thls feature helps achieve a better
convergence in the implementation of the match-
ing. Thus, in the following we focus on O;?I)Q(z, 0)
and present the one-loop matching calculation for
the gluon quasi-PDF defined with this operator.
For completeness and comparison purposes, the
results for other definitions are also collected in the
Appendix.

In pure Yang-Mills theory, 0( )(O O) does not
renormalize, as shown by the results in Eq. ©61).!
In QCD, quarks can enter the gluon diagrams
relevant for the above calculation but only through
gluon wave function renormalization at one-loop
level; they lead to the following contribution to &%)
and ¢39 (the counterpart of 39 for the gluon
PDF) after renormalization:

(cl)

In general, one should be cautious about off-shell gluons,
as calculating the matrix element of the gluon energy
momentum tensor in off-shell gluon states and then taking

FIG. 2. One-loop diagrams for the gluon quasi-PDF. The gluon the on-shell limit is rather tricky due to the existence of IR

self-energy diagrams are not shown.

divergences [96,98].
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2 2
269 Ty —P 59 _ 4 Ty -r- 5
e i 3z (—ln 2 ) s =1~ 3z (—ln 2 3) (€2)

This will be needed in the calculation of the matching coefficient below.
Now we present the one-loop results for the partonic quasi-PDF and PDF. The calculation is carried out in Landau gauge,
and the steps are similar to those presented in Refs. [22,23]. Given Egs. (56) and (62), we only present the distribution part,

i.e., the first term in Eq. (56). To this end, we need to calculate the one-loop matrix element of 0;3) (z,0) in an off-shell
gluon state. The relevant Feynman diagrams are shown in Fig. 2, and the result reads

[—(p=4)2(p—1)+8(p+2)x* ~16(p-+2) x> =2(p>+8p—24) x>+ (6p* +20p—32) x In2=1= Vi—p
8(p—1)2(x—1) \/_ 2x—14++/T—p
43 8xt—16x3-22x2+34x—9 _ _ 8x*(x—1) 32x=Dx _ 4x41
+ (2x—1)(p+4x>—4x) + 4(p—1)(x-1)(2x—1) (p+4x>—4x)? T 2(p-1)? 4()‘_1)}+ x> 1
[—(p=4)2(p=1)+8(p+2)x* —16(p+2) x> =2 (> +8p—24) x>+ (6p*+20p—32)x Inl= Vi=p
~(3.1 a,Cy ) | 8(p—1)*(x—1) \/—' 14+/T=p
[xf(g/ g)(x,p)h T —30x2434x-9 | 3(43—4+x) | 6+l 0 | (63)
T A=) T -7 A 1>L <x<
_ =(p=4)*(p=1)+8(p+2)x*~16(p+2)x* =2(p* +-8p—24) x>+ (6p*+20p—32)x In2=1= Vi—p
8(p—1)2(x—1) \/_ 2x—14++/T—p
453 —8x*+16x34+22x%—34x49 8x3 (x—1) 32x=Dx | 4x41
T (@1 (p+ax—4y) T 4(p=1)(x=1)(2x—1) + (p+4x7=4x? ~ 2(p-1) 4(x—1)} T x <0.

It is worthwhile to point out that the leading logarithmic terms in the p — O limit are consistent with those presented in
Ref. [22]. A similar agreement also exists in the results presented below. As in the quark case [18,49], the bare quasi-PDF
result is obtained by taking the on-shell limit p — O of the above expression, except where it has to be kept as an IR
regulator:

R R R
~(3.1 _a,C 212422 1 p | 12243130217
[x é/g)(xﬂﬁo)} 2”A [( e In o412 242&32) 17 +5L’ 0<x<l1 (64)

C2(1=x+x)% 0 x1 43 —6x218x—5
[ = In% e I x <0.

The renormalized light-cone PDF can be calculated analogously, and it gives

2 2\2 2
(1) u B a,Cy [2(1 =x+x*)* —p“x(1 —x) 3 5 a,Cy [ x
{xfg/g<x,_—pz)]+—9()6)9(1—)6){ o |: T—1 In /,{2 +2x —2x +3x—2 +— in 1 —x . s

(65)

where the result in the first square brackets is the same as the Feynman gauge result.
The one-loop matching coefficient is given by the difference in the renormalized quasi-PDF and light-cone PDF,

2
3.1 P: P: ~(3.1 H ~(3.1 3,
xCS ><x, r,j,p—;) = {xfé/g)(x p—0) —xfg/g(x —pz) - (xf;/g))cj}+ + (C;I/QKAOM c%)é(x— 1), (66)

Z

where the In(—p?) dependence in each individual term cancels out in the combination on the rhs, and the counterterm in the
RI/MOM scheme can be determined from the renormalization condition above as

7(3,1 )4 )4
(xfE]/q))CT = _IZQ‘xf((]/g)< [ZQ(x_l)+17r> (67)
Pz P:

with r = g/ (p%)>.
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B. Quark in quark

This case has already been considered at one-loop level in Ref. [49]. For completeness, we also quote the results here and
briefly explain how they were obtained. As we see below, our definition of the counterterm differs from that defined in
Ref. [49] by a finite piece. The relevant Feynman diagrams are shown in Fig. 3.

Owing to the off-shellness of the external quark, the one-loop quark quasi-PDF contains two more Dirac structures apart

from the tree-level one y’, and it is given by the following projection [49]:

Tr{([ff;/q,,(x,p)] 7+ e ()] 2 e+ 7Gx P, pﬂ> }

where the coefficients of y’ and y° read, in Landau gauge,

(3p-+4x2+(p—8)x) In=m
2x% 4x-3 3 2i-1+4/1
B +a=an T 2N T 3G 0= ) ,oox>1
»(1) a,Cr In= \/1—(3/)+4x +(p—8)x)
X = 4x—3 14+y/1=p
fq/%z( /)) o0 (o1 )+ 2<X 0 =) , 0<x<l1
(Bpa2+(p—8)x) 2 V12
2x 3—4x 3 2-1+/1
~ Bl(par—ag T 2p-neeD T 2e-n T 0= D) . x <0,
(2024 3p+4(p+2)2—(13p+8)x+4) lni::;\/\/g% L ey
4(1=p)>%(x~1) (2x—1)3 (p+4x?—4x)
8(x°—x?) 8x*—34x34+40x2—17x+2 3(4x-3)
_(2x—1)(p+4x2—4x)2+ (p=1)(x=1)(2x—=1)? + 2(p—-1)%(2x-1)"’ x>1
0 a,Cr ) 120024 3p 4 4(p4+2)x2—(13p+8)x-+4)
X, = — 1 \/1_ 2-3x 3(4x-3)
f(j/q’z( p) 2” 4(1—[))5/2()6—1) + (/}—1)(.76—1) + 2(/)_1)2 s 0 <x < 1
@A (138 In 23222
4(1=p)>?(x~1) (2x—1)3(p+4x2—4x)
8(x*—2?) —8x*4+34x3 —40x2 +17x—2 3(4x-3)
+ (2x—1)(p+4x>—4x)? + (/Jtl)()c—l)(b::l)3 T 20-1%(2x-1)° x <0.

In Ref. [49], a so-called minimal projector for /P has been used, which determines the bare quark quasi-PDF as

[f;/)q(x p—0), [f;l/)qt(x,p - 0)]+ + [f;l/)qnz(x,p N 0)]+’

with the following explicit form:

asCF |:x2+11n/_1 +8x2—8x+5}
4

(1)
[fq/q(x p—0), 0 x—1 2(x=1)

241 —1
[t 4]

9)

x> 1
, 0<x<l1
+

x < 0.

(68)

(69)

(71)

(72)

Note that there is no extra local term like ¢ CRI /MOM above due to vector current conservation. The renormalized light-cone

quark PDF has the following expression:

-5+

10x — 6x2

2 2 2
m (. K aCr[x* +1 —p*(1 —x)x
,——= = 1
[f"/"<x —p2>L { 2n [x—l e T
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Cegns”

DR

(a) (b (©) (d)

FIG. 3. One-loop diagrams for the quark quasi-PDF. The quark
self-energy diagrams are not shown.

The matching coefficient can then be extracted as
(., PP 2 m(, #
z z\
il (or e 05) = [Fihtnr = 0= 1 (52
#(1)
B (fq/q) C.T.:| . (74)

where again the In(—p?) dependence cancels out in the
combination on the rhs, and the counterterm in the RI/
MOM scheme is given by

#1) Pzlz0) (P
O = i (5= 1)

4 P
p&

fL/LZGE( —1)+1,r>. (75)

Note that the counterterm defined here differs from that
given in Ref. [49] by a finite piece. In Ref. [49] the
projector used to define the counterterm was chosen
differently from that used to define the bare quasi-PDF,
and projected out the coefficient of y* only since only this
coefficient contributes to 1/|x| in the asymptotic limit
x — oo. In the present paper, we use the same projector to
determine the counterterms in the quark matrix elements of
quark and gluon quasi-PDF operators. As can be seen in the
next subsection, for the latter we need P to project out both
the coefficients of y’ and y*. Therefore, the same projection
applies to the former. In fact, projecting out both coef-
ficients is more natural since in the infinite momentum limit
both y’ and y* approach y; therefore, both may contribute
to UV divergences. From a different point of view, we can
always rewrite y° in terms of y’ and p if the external quark
has no transverse momentum. This also implies that taking
both the coefficients of y* and y* to define the counterterm
is more natural.

C. Gluon in quark

Now we turn to the mixing contributions. Let us first
consider the quark matrix element of the gluon quasi-PDF
operator, whose one-loop diagram is given in Fig. 4.

To illustrate the kinematic dependence of the mixing
terms, it is useful to begin with the one-loop quark matrix
element of the local operator F**(0)F“/(0),

FIG. 4. One-loop diagram for the quark matrix element of the
gluon quasi-PDF operator.

(p[F**(0)F*(0)|p)

_a C

~on Z w(p)(—=r"pg™ +y*pP g + v po g
— 7P pr g™ + v (p" g™ — pg) + 1 pr g
-7 p* " + p(g™ " — 9P ¢*))u(p). (76)

From the above result we obtain

() + Py u(p) + O(e0).

3) _ %
(PlO,£(0.0)|p) = e
(77)

As the 7z component of the gluon energy momentum
tensor, O( )(O 0), in general, mixes with the same com-
ponent of the quark contribution,

T = %il/"/iD“yZ)l// + % ipriD "y, (78)
where (- - -) denotes an antisymmetrization of the enclosed
indices. The above operator has the same momentum
dependence as Eq. (77) when sandwiched in a quark state.
This indicates that the mixing matrix element in Fig. 4 has
the same momentum dependence as the tree-level quark
contribution, which is indeed needed to define an appro-
priate RI/MOM counterterm.

The renormalized mixing contribution from the light-
cone gluon PDF has the following form:

2
(1) H
S (+27)

asCF H
e [(1 +(1—x)?) In—s

(79)
For the quasi-PDF, we follow the decomposition as in the

quark case:

1

3.1 3.1 p
| (o s B

+afh (x p)%)?}, (80)
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and we choose the projector P such that it projects out the coefficients of both y’ and y*. We therefore have

~3.0) (3.0 (3.1)
xfg/q _xfg/qst+xfg/q,1’ (81)
leading to
_5p°—10p+(8p+4)x*—4(p+2)x+8 In 2x—1-y/T=p
4(p—1)? \/_ 2x—1++/T—p
(p=4)p+8(2p+1)x>—4(p*+2p+6)x*>4+2(3 )-—2)+8)
— =k : 2(1—/))/(/J+4{x 2—4x) — x>1
__ 5p°—10p+(8p+4)x*—4(p+2)x+8 Int= —/T=p
~(3.1) o oaCr a(p-1y? J_ T
Xfgjg (61 P) = 2 (2x=1)(p+2(p+2)x—4) (82)
' T AT 5(1—;))2 —, 0<x<l1
5p2—10p+(8p+4)x>—4(p+2)x+8 | In 2x—1—/T=p
4(p-1)* VI=p " 2x=1+y/1=p
(p=4)p+8(2p+1)x3—4(p*+2p+6)x>+2(3p*=2p+8)x
+ 2(1-p) (p+-4x7—4x) . x<0
In the limit p — 0, we have, for the bare quasi-PDF,
—(1+ (1 =x)?)In=t—x+2, x> 1
O Py = BCE ] (1 (1= Il =42 4 6x-2, O<x<I (83)
glg M T oon 4 ) )
(1+(1=x)?)In=t+x -2, x < 0.

In the limit x — oo, the above expression behaves asymp-
totically as

If one integrates over the momentum fraction with DR, it is
straightforward to see that the above behavior is consistent
with the local result in Eq. (77).

As before, the matching coefficient can be extracted as

1

22

2 3

(XCF

7(3.1
x gy (e PE) = =2 (84)

ERD P: pz> _ [ <(3.1)
xCor o\ xr,—,—% | = |x x,p—0
9/q < u pk 9/q ( )
2
1 H (3.1
a xff//)q <x, —p2> - (xf,(,/q))c.r} )

where the counterterm in the RI/MOM scheme is deter-
mined as

P

(5

7(3.1)
9/q

(x Jer. xfé/q

R
z

‘pz

(x—l)—l—l,r). (86)

D. Quark in gluon

Now let us consider the gluon matrix element of the
quark quasi-PDF operator, and the one-loop diagram is
shown in Fig. 5. We again start with the local matrix
element

074509-

(=201 + ¢+ ¢ p°
(g(p)ler"wlg(p)) =€s€?5a( 2y 12€zyep L),

(87)

If u = t and physical polarizations are used for the external
gluons, one has the result

ag\/p* + p?

6re

(9(p)lwr'wlg(p)) = : (88)

which also has the same momentum dependence as the

gluon matrix element of 0( )(0 0).

For the light-cone PDF, the result of the mixing diagram
in Fig. 5 reads

FIG. 5. One-loop diagram for the gluon matrix element of the
quark quasi-PDF operator.
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2 2
H a,T H
fgzl/)g(x_—pz> = 2ﬂf {(X + (1 =x)?)In———— 1, (89)

while for the quasi-PDF, one has

—-p*x(1=x)

_ PP2p+4(p+2) X2 —4(p42)x+4 In 2x—1-/T=p _ (2x=1)(=(p—=4)p+4(p+2)x*—4(p+2)x) x> 1
4(1-p)*? \/1_ 2 1/1=p 2(1=p)* (p+4x>—4x) ’
~(1) oIy P=2pHA(pr2) R —4(p+ x4 1 1 1=V —p+122—12x+4
fq/g(X,p) ~ o - 4(1-p)2 Vi 11— = 2(1=p)  ° 0<x<1 (90)
PP=2p+4(p+2)x>=4(p+2)x+4 | In 2x—1-T=p _ (2x=1)((p—4)p—4(p+2)x*+4(p+2)x) ¥ <0
4(1-p)32 VI—p 7 2x=1+/T1—p 2(1—p)*/? (p+4x>—4x) ’ :
Taking p — 0 gives the bare quasi-PDF result
—(x* 4+ (1=x)?)In>=t—2x + 1, x>1
- T,
7 (xp = 0) = 0’2—f —(2+(1=x)) I —6x2+6x-2, 0<x<1 (91)
7
(+(1=-x)})In=t42x -1, x <0.
The matching coefficient is then given by
2
1 Pz P 1 H Z(1
&) (322 2 ) = [y = 0) = 5, (025 ) = e 92)
T p
|
with €1ij = €ﬂuijnlf”y7 (98)

7 _| Pz
e
q/9’C.T Pz

fﬁ})g(ﬁ—z( 1)+ 1,r>. (93)

IV. ONE-LOOP MATCHING FOR POLARIZED
QUASI-PDFS IN RI/MOM SCHEME

A. Gluon in gluon

Now we turn to the polarized case. The calculation can
be done in complete analogy with that presented in the
previous section. As demonstrated in Ref. [53], to study the
polarized gluon PDF

; g~ —iE xPt i(g—
Afgu(x,p) = leﬂ//zﬂxﬁre SP(PIFY(Eny)

X W(Eny, 0, L, )F/*(0)|P), (94)

we may use the following three operators to define the
corresponding quasi-PDF:

A0y(z,0) = ie| ;;F"(20)W(20.21)F(z1),  (95)
A0 (z.0) = iey ;i F (22)W (22, 21)F(21).  (96)
AOS(Z’ 0) = ieL.ithi(ZZ)W(ZZvZ])Fz’i(zl)’ (97)

where €, ;; is the two-dimensional antisymmetric tensor:

with the convention €°'?* = 1, and »n} = (1,0,0,0). The
projection operator for the polarized gluon quasi-PDF is
chosen as

PJ_J'J' I’ltl’l . (99)

) Cuvij

As before, we decompose the polarized quasi-PDF as

fog/g( x) = [xAf]. + AgWs(x = 1).  (100)
Integrating over the momentum fraction
/ dxfog/g( x) = A", (101)

one obtains the matrix element of the corresponding local
operators:

I T .
A = s AN g(p)|A0[R0.0)lo(p)). (102
with
)2 z
AN — E” ,;Z BN I TN VC
p p
(103)
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The local matrix elements have the following UV divergence structure:

AZ’<1) _ _O‘SCA(p2 + 6(pz)2)

, 104
2are(p* + (p)) 1o

o) _ _aCa(5p% +6(p*)?)
acl - QPP L)), (105)
AEG) — _L:;A , (106)

where only the UV divergence of AZ®) does not depend on the external momentum. For the same reason as the unpolarized

case, we choose A0<g3> to define the polarized gluon quasi-PDF and present the corresponding one-loop matching
kernel below.

The light-cone PDF yields the following real contribution:

A f) (x, )_%{xq [(4x —6x+4)In W+8 ERTPTIN Gl 7 25)]}+ (x)o(1-x).  (107)

whereas the quasi-PDF gives

_ p(p*=3p+8)+8(p—4)x>+8(p*—p+6)x>=2(9p>—10p+16)x X 2=l VIi=p
8(1-p)>/* (x=1) 2=14+y/1-p
453 —8x3—8x?+14x—3
+ T T e oe)
8(x*—x?) 3(2x—1) _ 4x+1
~ e 3o T AT x>1
c _p(p2—3p+8)+8(p—4)x +8(p>—p+6)x2—2(9p>—10p+16)x “In 1—y/1—
3.1 a 8(1=p)*(x=1) 14+/1-
foé/g)(x, )= S27rA +3(4x —4x+1)Jr —16x°+8x%+6x— 34 6xtl 0<x<1 (108)
2(p-1)° 4(p=1)(x-1) 4(x—1)°
p(0*=3p+8)+8(p—4)x>+8(p*—p+6)x>=2(9p*—10p+16)x X 2=l VI=p
8(1—p)>/?(x—1) 2x—1+y/T—p
— 4o 4+ 84 8x—1dx+3
(2x=1)(p+4x*—4x) " 4(p—1)(x—1)(2x-1)
8(x*—x?) 3(2x-1) 4x+1
T Grar—ar " 2p-17 0Ty x <0.
In the p — 0 limit, the above result gets simplified,
82 +4(2x% —3x+2)x In*=L—8x+1
2G=1) ; x>1
(3.1 ACp ) 422304 2)x I+ 20:3-2822 11501
XAFS (x.p) = 5 (2" 3x+2)x PRl g<x <] (109)
82 4+4(2x%—3x+2)x In*=!—8x+1
— =) , x < 0.

The virtual contribution is the same as the unpolarized case, whereas the real contribution differs in the asymptotic limit
X — o0 as

~(3, ~(3, g c 2 1
xAT gy (ep) = xFyy () = =4 <3 2x) (110)

Integrating over x in DR, this gives the UV divergence in Eq. (106) as expected.
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The matching kernel can be written using the matching kernel for the unpolarized gluon quasi-PDF as

xACE,?]’l) <x, r’%’p_;> = ng’l) <x, r,%,%) {(fog/g (x,p = 0)— xff/’;)(x,p - 0))

Z Z

2 2
- (fog/g ( _"—p2) ~xfy, (x, _”—pz)) (xAT g, )C.r.] (111)

where again the In(—p?) dependence in each individual term cancels out in the combination on the rhs, and the counterterm
in the RI/MOM scheme is determined as

('XAfg/q Jer. =

p: [ (
Af
’ K oty \ pF

(x—1)+1, r>—qu/q <§—§(x—1)+1,r>} (112)

B. Quark in quark

For completeness, we also give the result for the polarized quark quasi-PDF and PDF defined as follows:

- P [dz

Af g m(xopn, P) = 4 / 1< (Plai(2)rrsW(z,0)4;(0)|P), (113)
dé&= .- .

Afynlen) = [ et (plg () rsW(E 0)4,(0)|P). (114)

The result for the polarized quark PDF is the same as that for the unpolarized one:
2 2
() A\ _ () K
i (w25) = 10n (+25) )
For the quasi-PDF, the one-loop result can be decomposed as
| (870, Dot 70, e+ 1870, 2 P, (16
a/ql Y p* a/q.)s7 alariy p2 75

where we define P to project out both the coefficients of y’y5 and y°ys. For the Dirac matrix in Eq. (113), Af;l/)q. , vanishes,

and Af;l/)q’z is given as

_ 3p-2a2-2 In 2=1=vi=p
2(1=p)3 /2 (x=1) " 2x=1+y/1—p
41 1-242 8(x*—x?) 3
T @ T o@D~ pradant TG X > 1
(1) _a,Cp 3p—2x2-2 1-/T—p 3
Afyrqz6p) = o — S v + pllzi 0t 36-1; 0<x<l (117)

_ —3p+2x% +2 1 2x—1—/1—
2(1=p)3/? (x— 2x—1+/1-

442 2x2—1
T 21 (p+4xT—4x) + (r—D)(x—1)(2x=1) + (

B(x'=x?) 3

pHaxi—4x)> T 2(x-1)" x <0.

In the limit p — 0, it reduces to
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(1) It =L 4-x—1

i , x> 1
+(1 a,C 2(x241) Ing4-4x2+1
AFgye®p)lpmo =5 T4 G 0 <x <1 (118)
S g
The matching coefficient can then be extracted as
2
1 pP: P 1 14 -1
ACH) (3 22 25) = [T = 0= Al (v 2} = (07 e (119)
where the counterterm in the RI/MOM scheme is determined as
“(1 14 ~(1 p
(Af;/)q)cf_ —’p_lg Af,g/L_Z<p—§(x— 1)+ 1,r>. (120)
Z Z

C. Gluon in quark

The matrix element of the local gluon operator between the polarized quark states reads

_ia —
()P (O)FPO)g(p)) = = o (pichsd 4 pPems 4 prets 1 preta(p)yau(p),  (121)
where we have used the following identity:
y;tyvya — yugaz/ _ yvg(w + y(lgpw + l.GFWI(s}’(;)/S. (122)

Projecting onto AO;?,)Q(O, 0) gives

CF ppe 4 O(e), (123)

(a(p)|A0L#(0.0)lg(p)) ==~

which has the same momentum dependence as the quark matrix element of the quark quasi-PDF operator in Eq. (113).
The light-cone result for the polarized PDF is given as

A fY) (x, )z%?(x(x—Z)lanrxz—Sx). (124)

The corresponding quasi-PDF reads

(2x=1)(p(p+2)+4(p+2)x> +4(p*=2p=2)x)
4(p—1)*(p+4x>—4x)

(~(p=4)p+4(p+2)2~4(~2p+4)0) In (jjj j‘;)
+ 8(1_p)5/2 ’ X > l

,)+12x2+4(,)_4>x+z+1"(1“/:)< () +4(p+2) 242 4)2)

(125)

2r 4(p—1)? 8(1—/))5/2 0<x<l
_ (2x=1)(p(p+2)+4(p+2)x% +4(p* =2p=2)x)
4(p—1)?(p+4x>—dx)
((p=4)p=4(p+2)x> +4(p*=2p+4)x) In (ZX:I_‘/?>
+ 8(1-p)*2 R , x <0.

In the limit p — 0, we have
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Yx+2-2umst-1), x> 1

(XSCF

XAf 9la (x p—0)= %(2(x—2)x1n§+6x2—8x+1), 0<x<1 (126)

2w

%(—2x—2(x—2)xlnxx;1—|—l), x < 0.

The matching coefficient can be extracted as

2
P: P: u
XAC;/q)( ,r,j,p—é) = [XAfg/q (x,p=0) _XAfg/q( ?) - (XAfg/q )CT:|’ (127)

Z

where the counterterm in the RI/MOM scheme is determined as

pz| A +61)(P
A5 e ’p—;fog;)<p—;(x—1)+1,r>. (128)
Z Z

D. Quark in gluon

In this case, the light-cone result is
2
(1) a,Ty —p*(1 —x)x
qu/g(x,y) = <(1—2x)1 — S —4x+1), (129)

whereas the quasi-PDF result reads

_pt82(p—4)x _ p+Ax—2 In 2x—1—/T=p x> 1
I—p(p+4x?—4x)  2(1-p)32 7 2x=1+/1 /)

&GTr ) 1ay _ prax—2 1=V
qu/g ' I—p zp )@/21 Isp’ 0<x<1 (130)

P82 4+2(p—4)x p+ax=2 2x—1—/1-
1—p(p+4x>—dx) + 2(1— )*/21 2x—1++/1 /) x <0.

In the limit p — 0, we have

(1-2x)In=t -2, x>1
a;Ty

AFyjy(xp = 0) = (1-2x)In§—4x+1, 0<x<]I (131)
(2x—1)In=t 41, x < 0.
The matching coefficient is then given by
2
1 P: P (1 1 H 2(1
ach) (vr 22 2) = a7 g = 0= ar (52 ) - T )er | (132
with
2(1 P 7(1 P
(A.f{(]/)g)c.T. —’ p_;’ Af,g/?,, <p15 (x=1)+1, r). (133)

V. CONCLUSION

In this paper, we have studied how to extract the flavor-singlet quark PDF and the gluon PDF from LaMET, both in the
unpolarized and in the polarized case. After briefly reviewing the auxiliary heavy quark formalism used in our earlier work
to prove the multiplicative renormalizability of quark and gluon quasi-PDF operators, we explained how a nonperturbative
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RI/MOM renormalization can be carried out for the quark
and gluon quasi-PDFs on the lattice in the presence of
mixing. Using OPE, we also derived the factorization
formulas that connect them to the usual quark and gluon
PDFs in the MS scheme. We then performed a one-loop
calculation of the hard matching kernel appearing in the
factorization. We found that certain gluon quasi-PDF
operators are more favorable than others in the sense that
the mixing with gauge-variant operators can be avoided.
We then focused on these operators and presented the
corresponding one-loop matching kernel. Our results can
be used to extract the flavor-singlet quark PDFs as well as
the gluon PDFs from lattice simulations of the correspond-
ing quasi-PDFs. We therefore completed the procedure of
extracting quark and gluon PDFs from LaMET at leading
power accuracy in the hadron momentum.

It is interesting to note that the matrix elements of those
nonfavorable gluon quasi-PDF operators have nontrivial
momentum dependence in their asymptotic behavior at
large x, which is also exhibited in the UV divergences
of their local limit. This is a sign of the potential mixing
with gauge-variant operators. For these operators, it is also
possible to work out an appropriate RI/MOM renormaliza-
tion and matching, but one needs to take into account the
gauge-variant operators that are allowed to mix with the
original operators. This makes the situation much more
complicated and is beyond the scope of the present paper.
We leave it to future work.

|
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APPENDIX: ONE-LOOP RESULTS
IN GENERAL R; GAUGE

In this appendix, we present the results for the one-
loop matrix elements of all gluon quasi-PDF operators in
general R; gauge. The matrix elements of the quark
quasi-PDF operators do not depend on the choice of the
gluon quasi-PDF operators and therefore will remain the
same as those given in the main text. For the gluon
matrix elements of the gluon quasi-PDF operators, the
distribution part reads

4(x—1)x? 2(2x*—8x3 +6x%—x) 12x4+1 (2x—1)? 1
T 2x=1)2Z(p+ax’=4ax) " (p=1)(x=1)(2x=1)2 + 6(,:1)2 Tpm)f a1 X7 1
(1.1 a;Cy 2(2:2— 312 —br—1 | 81262
gy (rop) = 58— iy RS et  SS e g 0O<x<l1
4(x—1)x? 2024 =8x34+6x2—x) | —12x—1 , (2x—1)? 1
(2x—1)2(p+4x2—4x) ~ (p—1)(x—1)(2x—1)? + 6(p—1)% " 2(p—1)3 +5 x<0

(=693 +19p2=20p+8x4 —4(p2+4)x3 +6(3p> ~4p+4) x>+ (203 —17p> +24p—16)x+8) 1n%
X— —p
=) x>
n a,Cy | 1 ("\/]_— V_/';’I) (=6p3+19p2=20p+8x*—4(p?+4)x3 +6(3p> —Ap-+4)x>+(2p3 = 17> +24p—16)x+8)
2 A7) o Ol
(=603+19p2=20p+8x* —4(p?+4)x3 +6(3p> —4p-+4) x> +(2p3 = 1Tp>+24p—16)x+8) 1nz:’:;v ‘l’”
- —/
=P , ¥<0
(5_1) zlnz,r—l—\/l—p
—1)p2(p*+8x*=20x° +-2(2p+7)x>—(6p+1)x P 2x-1+4/1-p
x>1
2(p=1)* (x—1) (p+4x* —4x) =y
aSCA —1)p2 1 ]__\/]_”>
+ _ (E=1)(p*=2px+x) + (E=1)p* In 1—p+1 0<x<l1 (Al)
2 20171 W)
221/
(1P (PP 482 =203 +2(2p+7) P~ (6p+1)x) (=D I = x<0
2(p—1)?(x—1)(p+dx>—4x)? 4(1-p)52 ’ ’
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4a=1x? | —12x2—xt 10 (2x—1)2 1 (E=Dp’x(2x=1)
ez T D) T 217 T T s et X >
Z(2.1) Gy ) 4 aiit | 89-108h6xml | —8xt—dr—6x2425x-10 _ (6=1)
oy (op) = =5 5N B g T e 2 O<x<l

4(x=1)a? 4 1224x-10 _(2x—1)2+ 1
praxi—dx T 6(p—1)(x=1) 2(p—1)> " 2(x—=1)  2(x—1)(p+dx>—4x)?’

2x—1—4/1—p

((p=2)3=8x*+4(p>+4) x> =2(5p*=8p+12)x2+(3p*—12p+16)x) In—— —
a 4(1=p)(x=1)

’
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