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Searches for neutrinoless-double beta decay rates are crucial in addressing questions within fun-
damental symmetries and neutrino physics. The rates of these decays depend not only on unknown
parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract
information about the neutrino, one needs an accurate treatment of the complex many-body dy-
namics of the nucleus. Neutrinoless-double beta decays take place at momentum transfers on the
order of 100 MeV/c and require both nuclear electroweak vector and axial current matrix elements.
Muon capture, a process in the same momentum transfer regime, has readily available experimental
data to validate these currents. In this work, we present results of ab initio calculations of partial
muon capture rates for 3He and 6Li nuclei using variational and Green’s Function Monte Carlo
computational methods. We estimate the impact of the three-nucleon interactions, the cutoffs used
to regularize two-nucleon (2N) interactions, and the energy range of 2N scattering data used to fit
these interactions.

PACS numbers: 21.10.Ky, 23.20.-g, 23.20.Js, 27.20.+n

Introduction, conclusions and outlook. Nuclei play a
crucial role in high-precision tests of the Standard Model
and searches for physics beyond the Standard Model.
These investigations, including neutrinoless double beta
decay (0νββ) searches [1] and high-precision beta decay
experiments [2–4], require a thorough understanding of
standard nuclear effects in order to separate them from
new physics signals. In particular, 0νββ decay experi-
ments aim to establish the origin and nature of neutrino
masses and test leptogenesis scenarios leading to the ob-
served matter-antimatter asymmetry in the universe [1].
Rates of these decays depend not only on unknown neu-
trino parameters but also on nuclear matrix elements.
The latter can be provided only from theoretical calcula-
tions. Thus, a prerequisite to this experimental program
is an accurate treatment of the complex many-body dy-
namics of the nucleus and its interactions with neutri-
nos. If one assumes that 0νββ decay results come from
the exchange of a light Majorana neutrino between two
nucleons, then the momentum carried by the neutrino
is on the order of 100 MeV/c [1, 5]. Muon captures on
nuclei—processes where a muon captures on a proton in
the nucleus releasing a neutron and a neutrino—involve
momentum transfers on the order of the muon mass. The
scope of this work is to validate our nuclear model in
this kinematic regime by calculating muon capture rates
in A= 3 and A= 6 nuclei for comparison with available
experimental data.

Muon capture reactions have been treated extensively
from both the theoretical and experimental points of
view [6–9] and rates have been obtained in light systems
with several methods [10–21]. Here, we present calcula-
tions of partial muon capture rates using quantum Monte
Carlo methods (QMC) [22]—both variational (VMC)
and Green’s function Monte Carlo (GFMC) methods—

to solve the nuclear many-body problem. QMC methods
allow one to fully retain the complexity of many-body
physics and have been successfully applied to study many
nuclear electroweak properties over a wide range of en-
ergy and momentum transfer, including total muon cap-
ture rates in 3H and 4He [23], low-energy electroweak
transitions [24–28], nuclear responses induced by elec-
trons and neutrinos [29–31], neutrinoless double beta de-
cay matrix elements [5, 32–34], and matrix elements for
dark matter scattering [35].

The Norfolk two-nucleon (2N) and three-nucleon (3N)
(NV2+3) local chiral interactions [36–39] have been
used in combination with QMC methods to study static
properties of light nuclei [37, 40–43], and in auxiliary-
field diffusion Monte Carlo [44], Brueckner-Bethe-
Goldstone [45, 46] and Fermi hypernetted chain/single-
operator chain [47, 48] approaches to investigate the
equation of state of neutron matter [49, 50]. Refer-
ence [51], a study which included the current authors,
reports on Gamow-Teller (GT) matrix elements calcu-
lated for A ≤ 10 nuclei using the NV2+3 models and
their consistent axial-vector currents at tree-level from
Refs. [38, 39, 52]. The study validated the many-body
interactions and currents in the limit of vanishing mo-
mentum transfer. In the present work, we use the same
nuclear Hamiltonians and axial currents, along with chi-
ral vector currents retaining loop corrections developed
in Refs. [24, 25, 53, 54], to test the model at moderate
momentum transfers on the order of 100 MeV/c and to
assess the sensitivity of partial muon capture rates to the
dynamical input.

In the A= 3 system, we obtain an average rate for all
Norfolk models of Γ(A = 3; VMC) = 1512 ± 32 s−1 at
the VMC level that agrees with the experimental result of
1496.0±4.0 s−1 [55] within error bar. In theA= 6 system,
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the VMC partial capture rate of Γ(A = 6; VMC) = 1243±
59 s−1 is significantly slower than the available experi-
mental data point of 1600+330

−129 s−1 [56], but falls into the
range of previous theoretical estimates [57–63]. We an-
alyzed uncertainties due to (i) the choice of cutoffs used
to regularize the NV2 interactions, (ii) the energy range
of 2N scattering data used to fit the model low-energy
constants (LECs), (iii) two different versions of NV3 in-
teractions, i.e., the non-starred model fit to the nd scat-
tering length and the trinucleon binding energies, and
the starred model fit to the triton GT matrix element
and the trinucleon binding energies, and (iv) a 10% vari-
ation in the nucleonic axial radius. In the A= 3 system,
the largest source of uncertainty comes from the choice
of 3N interaction model, while for A= 6 we find that
the uncertainty due to the 3N interaction is slightly less
than, but on the order of, the cutoff and energy range
uncertainties. On average, there is a change in the rate
by ±0.6% when the axial radius is varied in the interval
rA = [0.5859, 0.7161] fm.

We improved upon our VMC estimate by perform-
ing GFMC propagations using models NV2+3-Ia and
NV2+3-Ia*, or Ia and Ia* for short, in both the A= 3
and A= 6 systems. These models share the same
2N interaction, but differ in how the 3N interaction
is fit with (cD, cE) = (3.666,−1.638) for Ia [40] and
(cD, cE) = (−0.635,−0.090) for Ia* [39]. Model Ia, con-
strained by strong interaction data only, achieves 1.5%
agreement with the experimental datum for A= 3 with
a calculated rate of 1519± 3 s−1. Its counterpart, model
Ia*, constrained to both strong and electroweak data, un-
derpredicts the experimental rate by a few percent. For
A= 6, we find that the model Ia* propagation signifi-
cantly decreases the rate due to the monotonic growth of
the 6He ground state rms radius at early imaginary times.
By contrast, model Ia has a stable radius throughout the
GFMC propagation and the rate decreases by less than
1%; nevertheless, it still underpredicts the experimental
datum.

Given the large error bars on the 6Li datum and the
wide range of values from past theoretical calculations,
we advocate for renewed experimental and theoretical at-
tention to this partial capture rate. While in this letter
we focus on 3He and 6Li to demonstrate the impact of
this sort of study, there are other muon capture rates
with available experimental data which the combination
of QMC methods and NV2+3 chiral Hamiltonians could
be made to address with future development; examples
are 10B, 11B, 12C, 16O, and 40Ca [7]. Calculations of
these rates, particularly for the heavier nuclei, would be
valuable in further validating the present ab initio ap-

proach in the kinematic regime relevant to neutrinoless
double beta decay.
Partial muon capture rate. The muon capture pro-

cesses 3He(µ−, νµ)3H and 6Li(µ−, νµ)6He are induced by
the weak-interaction Hamiltonian HW [64, 65]

〈kν , hν |HW |kµ, sµ〉 =
GV√

2

∫
d3xe−ikν ·x l̃σ(x)jσ(x) ,

(1)
where GV =GF cos θC = 1.1363 × 10−5 GeV−2 is the
Fermi coupling constant extracted from analyses of su-
perallowed β-decays [66], jσ and l̃σ are the hadronic and
leptonic four-current density operators [10], sµ is the
muon spin, hν is the neutrino helicity, and kµ and kν
are the muon and neutrino momenta, respectively. The
value of GV adopted here is from a more recent analysis
and is ∼ 1.1% smaller than that used in previous cal-
culations based on the hyperspherical harmonics method
with chiral currents from Ref. [12].

For a transition from an initial nuclear state
|i, JiMi〉—where Ji/f and Mi/f denote the nuclear
spin and its projection—to a final nuclear state
|f, Jf Mf ,−kν〉 recoiling with momentum −kν , the gen-
eral expression for the capture rate (Γ), summed over the
final states and averaged over the initial states, is given
(in the limit of vanishing kµ) by [10, 64, 65]

dΓ =
1

2(2Ji + 1)

∑
sµ,Mi

∑
hν ,Mf

2π δ(ω) (2)

× |〈kν , hν ; f, JfMf ,−kν |HW|sµ; i, JiMi〉|2
d3kν
(2π)3

,

where the argument of the δ-function is

ω = Eν +
√
E2
ν + (mf + Ef )2 − (mµ +mi + Ei) , (3)

and Ei and Ef are the initial and final state energies
of the nucleus [67–69]—we have neglected internal elec-
tronic energies, since they are of the order of tens of eV’s
for the light atoms under consideration. We also used
the following definitions

mi = Z mp +N mn + (Z − 1)me , (4)

mf = (Z − 1)(mp +me) + (N + 1)mn ,

for an initial nucleus with charge number Z and neutron
number N , and we denoted with mp, mn, and me the
proton, neutron, and electron masses, respectively.

The final integrated rate can be conveniently written
in terms of matrix elements of the nuclear electroweak
current components [11],
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Γ =
G2
V

2π

|ψav
1s |2

(2Ji + 1)

E∗2
ν

recoil

∑
Mf ,Mi

[
|〈Jf ,Mf |ρ(E∗

ν ẑ)|Ji,Mi〉|2 + |〈Jf ,Mf |jz(E∗
ν ẑ)|Ji,Mi〉|2

+ 2Re [〈Jf ,Mf |ρ(E∗
ν ẑ)|Ji,Mi〉〈Jf ,Mf |jz(E∗

ν ẑ)|Ji,Mi〉∗] + |〈Jf ,Mf |jx(E∗
ν ẑ)|Ji,Mi〉|2

+|〈Jf ,Mf |jy(E∗
ν ẑ)|Ji,Mi〉|2 − 2 Im [〈Jf ,Mf |jx(E∗

ν ẑ)|Ji,Mi〉〈Jf ,Mf |jy(E∗
ν ẑ)|Ji,Mi〉∗]

]
, (5)

where we have chosen k̂ν =−ẑ, and have introduced the
outgoing neutrino energy [11]

E∗
ν =

(mi + Ei +mµ)
2 − (mf + Ef )

2

2 (mi + Ei +mµ)
, (6)

and recoil factor

1

recoil
=

(
1− E∗

ν

mi + Ei +mµ

)
. (7)

The factor |ψav
1s |2 is written as R|ψ1s(0)|2, where ψ1s(0)

is the 1s wave function, evaluated at the origin, of a
hydrogen-like atom, and R approximately accounts for
the finite size of the nuclear charge distribution [11], here
calculated with the NV2+3 Hamiltonians.

Nuclear Hamiltonians and electroweak currents. To
calculate the nuclear matrix elements required by Eq. (5)
we employ VMC [70] and GFMC [71] methods. For a
comprehensive review of these methods, see Refs. [22, 41]
and references therein. Details about the calculation of
matrix elements using GFMC wave functions are found
in Eqs. (19)–(24) of Ref. [72].

The many-body Hamiltonian is composed of a (one-
body) kinetic energy term, and the Norfolk 2N and 3N
local interactions that include N3LO and N2LO terms
in the chiral expansion, respectively. Details about the
derivation of the interaction in chiral effective field theory
can be found in Ref. [36–39]. Here, we briefly summa-
rize the differences between the model classes employed
in this work. Models in class I (II) fit the 2N interaction
to about 2700 (3700) data points up to lab energy of 125
(200) MeV in the nucleon-nucleon scattering database
with a χ2/datum of about . 1.1 (. 1.4). Within each
class, models a and b differ in the set of cutoffs adopted
to regularize the short- and long-range components of
the interaction, either (RS , RL) = (0.8, 1.2) fm for model
a or (RS , RL) = (0.7, 1.0) fm for model b [36, 37]. The
different fitting procedures result in different values for
the 26 unknown LECs governing the strength of short-
range terms in the interactions. Accompanying these 2N
interactions is the leading chiral 3N interaction which in-
troduces two unknown LECs cD and cE (in standard no-
tation) constrained to reproduce the trinucleon binding
energies and, concurrently, either the GT matrix element
contributing to tritium β-decay [39] in the starred model
or the nd-doublet scattering length in the non-starred
one [40].

Lastly, the vector- and axial-current operators enter-
ing the calculation were derived with time-ordered per-
turbation theory by the JLab-Pisa group using the same
χEFT formulation as the NV2+3 interactions. Details
about the electroweak currents used in this work can be
found in Refs. [24, 25, 38, 39, 52–54].
Results. The results of the VMC calculation of the

partial muon capture rate in A= 3 and A= 6 using
the NV2+3 nuclear Hamiltonian are presented in Ta-
ble I. Capture rates were determined using nuclear axial
and vector current operators consistent with the NV2+3
model. The nuclear axial currents [38] contain only tree-
level diagrams while the vector current operators account
for loop corrections derived in Ref. [24, 25, 53, 54].

Calculations of the rate with the leading order one-
body only [Γ(1b)] and one- plus two-body electroweak
currents [Γ(2b)] were performed for ground-state to
ground-state transitions. The partial capture rate on
3He has been precisely measured [55] and the one-body
contribution alone cannot reproduce this measurement.
With the two-body electroweak currents included, the
VMC rates increase by about 9% to 16%. At this level,
the agreement with the datum ranges from about 0.1%
to 4.6%. How the 3N interaction was fit has the most
significant impact on the rate, leading to differences on
average of 54 s−1 whenever the 3N interaction is changed.
Note that the LEC cD entering the 3N interaction gov-
erns the strength of the axial contact current at next-to-
next-to-next-to-leading order in the chiral expansion [51].
Therefore, variations in the 3N interaction lead to vari-
ations in the current, as also observed in the study of
Ref. [51] on beta decay matrix elements. The cutoff and
energy range of the fit lead to changes of 16 s−1 and 22
s−1 on average, respectively, which is consistent with the
findings of Refs. [12, 15].

In the 6Li capture, the inclusion of two-body elec-
troweak currents also increases the rate with a greater
enhancement in the non-starred models relative to their
starred counterparts. Even with this increase, ranging
approximately from 3% to 7%, the rates predicted at
the VMC level for the NV2+3 models are about 11–21%
slower than the available experimental datum [56]. Here,
the difference due to the 3N interaction is no longer
the dominant contribution to the uncertainty. We find
that, on average, the cutoff and energy range of the fit
both change the rate by 72 s−1, while the 3N interaction
changes the rate by 60 s−1.

We compute a VMC average for both rates under study
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and use the average changes due to the chiral 2N interac-
tion cutoffs, the energy range used to fit the interaction,
and the 3N interaction to assign a total error bar. An ad-
ditional source of uncertainty was considered by varying
the nucleonic axial radius parameter by ±10%. We found
that, on average, the difference in the rate was ±0.6% due
to this variation. We combine the four uncertainties in
quadrature to determine the overall uncertainty on the
VMC averages, obtaining Γ(A=3; VMC) = 1512±32 s−1

and Γ(A=6; VMC) = 1243± 59 s−1.

In addition to the VMC calculation, a GFMC propa-
gation was performed for models Ia and Ia*, and corre-
sponding results are reported in Table II. These two mod-
els provided the fastest and slowest VMC partial capture
rates for A = 3 and should give an upper and lower limit
on GFMC rates. The GFMC method removes spurious
contamination from the VMC wave functions by propa-
gating them in imaginary time τ and should thus provide
more reliable results for these two nuclear Hamiltonians.
Figure 1 displays our average VMC results, as well as
both VMC and GFMC results for models Ia and Ia*,
compared with experimental data and past theoretical
calculations. The GFMC error is taken to be half the
difference between the two available calculations.

At the VMC level, model Ia overpredicted the A= 3
muon capture rate by 4.6%. After propagation, the rate
is decreased and reaches a 1.5% agreement with the da-
tum. By contrast, model Ia*, which had 1.4% agreement
with the experimental datum at the VMC level, now un-
derpredicts the rate by 4.2%.

In Fig. 1 panel (a), one sees that the results of past
chiral calculations in Refs. [12] and [15] fall within the
bounds for the NV2+3 GFMC rate provided by models
Ia and Ia*. Even when using the more recent value of
GV , the rate of [12] falls within our GFMC band. While
there is this agreement, because these past calculations
use a different set of chiral currents and underlying nu-
clear interactions than the present work, it is difficult
to directly compare them to our GFMC results. In the
future, benchmark calculations with other ab initio meth-
ods based on the same dynamical inputs would be useful
to further validate the present microscopic approach.

While the A= 3 GFMC rates exhibit few-percent de-
creases from the VMC ones, the A= 6 rates display a
dramatically different behavior for models Ia and Ia*.
The matrix elements for the model Ia calculation were
fairly stable when propagated from VMC to GFMC, re-
sulting in a modest sub-percent change of the overall rate.
However, for model Ia*, the dominant matrix elements
changed at the few percent level, but since the rate is
proportional to the square of the matrix element, this
leads to a change of roughly 20% in the rate.

To further understand this behavior, one can look at
the system size as a function of τ during the GFMC prop-
agation of the A= 6 nuclei. The system size for 6Li(1+; 0)
grows at the same rate in τ for both models; however,
the 6He(0+; 1) ground state size is stable for model Ia
while increasing monotonically in τ before beginning to
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FIG. 1. The partial muon capture rate in (a) 3He and (b)
6Li from the the NV2+3-Ia and NV2+3-Ia* models in VMC
(light blue circle) and GFMC (dark blue star) calculations
compared with other work (orange squares) [12–15, 57–63].
The experimental values (dashed gray line) and their error
(shaded region) [55, 56] are included for comparison with the
theory predictions.

converge for model Ia* (see Supplemental Material [73]).
Because of the e−iq·ri dependence in the dominant one-
body terms of the current operator, the matrix elements
at a finite value of q experience a more significant drop
for model Ia* due to the diffuseness of 6He(0+; 1) with
that interaction. Performing the same analysis for the
A= 3 system, we find that the system size is consistent
between both models as a function of τ , explaining the
similarity in their decreasing trend for this partial muon
capture rate.

The difference with experiment in A= 6 is significant
for both models Ia and Ia*, especially when compared
with the few percent agreement obtained in GFMC calcu-
lations of the GT matrix element for the 6He→ 6Li beta
decay [51]. As detailed in Ref. [63], calculations of this
rate [57–63] have ranged from 1160 s−1 to 1790 s−1. The
calculation of Ref. [63] matched the experimental datum
by modelling 6Li as a 3He + t cluster and using the Fujii-
Primakoff [57] effective Hamiltonian for muon capture.
Sub-percent agreement was also obtained by Ref. [59],
which treated the 6Li and 6He nuclei as elementary parti-
cles with magnetic and axial form factors extracted from
experiment. The two calculations presented by the au-
thors of that work adopted different formulations of the
partially conserved axial current (PCAC) relation to ob-
tain the pseudoscalar form factor, with the faster rate
using the Gell-Mann-Lévy version [74] and the slower
rate using the Nambu one [75]. The Nambu definition
is consistent with the induced pseudoscalar term in the
weak axial current from χEFT.

It is difficult to compare our result with those of other
theoretical treatments of the 6Li partial capture rate,
particularly since most of these treatments are decades
old. For example, in the work of Ref. [61] the weak-
interaction Hamiltonian is that of Eq. (1); however, the
6Li and 6He bound states are described by shell-model
wave functions with valence configurations restricted to
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Capture Model R Γ(1b) (s−1) Γ(2b) (s−1) Expt. (s−1)

3He( 1
2

+
; 1
2
) → 3H( 1

2

+
; 1
2
) Ia (Ib) 0.995 (0.995) 1350.3 ± 0.8 (1363.4 ± 0.2) 1564.4 ± 0.9 (1545.7 ± 0.3) 1496.0 ± 4.0 [55]

Ia* (Ib*) 0.995 (0.995) 1357.4 ± 0.2 (1358.5 ± 0.2) 1473.9 ± 0.3 (1483.6 ± 0.3)

IIa (IIb) 0.995 (0.995) 1369.7 ± 0.2 (1372.8 ± 0.2) 1533.8 ± 0.3 (1512.4 ± 0.3)

IIa* (IIb*) 0.995 (0.995) 1364.5 ± 0.2 (1372.5 ± 0.2) 1484.4 ± 0.3 (1497.0 ± 0.3)
6Li(1+;0) → 6He(0+;1) Ia (Ib) 0.990 (0.990) 1196 ± 2 (1243 ± 2) 1282 ± 2 (1331 ± 2) 1600+330

−129 [56]

Ia* (Ib*) 0.990 (0.990) 1154 ± 3 (1188 ± 2) 1177 ± 3 (1233 ± 2)

IIa (IIb) 0.990 (0.990) 1227 ± 2 (1142 ± 2) 1294 ± 2 (1185 ± 2)

IIa* (IIb*) 0.990 (0.990) 1215 ± 2 (1151 ± 2) 1257 ± 2 (1185 ± 2)

TABLE I. VMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one-body only [Γ(1b)], and
one- and two-body [Γ(2b)] axial and vector currents corresponding to the eight NV2+3 models. The third column gives the
factor R used to account for the finite nuclear charge distribution. The experimental result is given in the last column. All
uncertainties on the theoretical predictions are Monte Carlo errors.

Capture Model Γ(VMC) (s−1) Γ(GFMC) (s−1) Expt.
3He( 1

2

+
; 1
2
) → 3H( 1

2

+
; 1
2
) Ia 1564.4 ± 0.9 1519 ± 3 1496.0 ± 4.0 [55]

Ia* 1473.9 ± 0.3 1433 ± 2
6Li(1+;0) → 6He(0+;1) Ia 1282 ± 2 1277 ± 10 1600 +330

−129 [56]
Ia* 1177 ± 2 926 ± 8

TABLE II. VMC and GFMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one- and two-body
axial and vector currents with the NV2+3 models. The experimental result is given in the last column. All uncertainties on
the theoretical predictions are Monte Carlo errors.

the 1p-shell; moreover, the nuclear electroweak current
neglects meson-exchange contributions [61]. We find that
our result at leading order (obtained with one-body cur-
rents) is quenched relative to the shell model one, as we
would have expected (see Ref. [51]). More modern cal-
culations with other ab initio methods and a novel mea-
surement of the rate would be valuable in establishing the
validity of our nuclear inputs and many-body approach.
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(1996).

[15] D. Gazit, Phys. Lett. B 666, 472 (2008), arXiv:0803.0036
[nucl-th].
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Supplemental Material

This supplemental material is provided to show how the system sizes of the A= 3 and A= 6 nuclei evolve during
GFMC propagation in imaginary time τ . As noted in the text, the system size of 6He(0+; 1) has a different imaginary
time behavior for models Ia and Ia*. While it remains stable for model Ia, the system size grows monotonically in τ
for model Ia*. Because of this difference and the eiq·ri dependence of the dominant one-body current operators, the
transition matrix elements for this system experience a larger decrease in model Ia* compared to model Ia. This, in
turn, leads to the larger drop in the rate going from VMC to GFMC for model Ia* relative to its counterpart. For
6Li(1+; 0) and the A= 3 ground states, the system size in τ is consistent between models Ia and Ia*. Figures 2 and 3
display the rms point proton radii of the A= 3 and A= 6 systems, respectively.
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FIG. 2. The point proton rms radii for the 3He and 3H ground states as a function of imaginary time τ during GFMC
propagation. Model Ia (blue circles) and model Ia* (orange stars) display similar behaviors for both systems.

In addition to the point proton rms radii, we include the GFMC energy propagations for the A= 6 systems in Fig. 4.
Note that the energies for both 6Li(1+; 0) and 6He(0+; 1) plateau near τ ' 0.1 MeV−1. The difference between the
two models is not in the convergence behavior of the energy, but rather in its extrapolated value. While the energy
values are well converged, the radius of the system is sensitive to small changes in the energy. Model Ia* predicts
energies that are ∼1 MeV higher than experimental values (see Table IV of Ref. [51]). In the case of 6He, due to its
close proximity to the α+ 2n breakup threshold, this leads to clustering and an increased system size.

We also include an example of an electroweak matrix element propagation in Figure 5. We averaged starting from
τ = 0.18 MeV−1, after spurious contamination had been removed from the wave functions and the matrix element was
sufficiently converged. While terms like eiq·ri impact the overall size of the matrix element, the convergence behavior
exhibited by the electroweak matrix element is not the same as that of the radius. Thus, we can safely extract the
matrix elements after sufficient propagation in imaginary time τ .
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FIG. 3. The point proton rms radii for the 6Li and 6He ground states as a function of imaginary time τ during GFMC
propagation. Model Ia (blue circles) and model Ia* (orange stars) display similar behaviors for 6Li, but differ for 6He. The
model Ia* ground state of 6He becomes much more diffuse than its counterpart.
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FIG. 4. The energy of the 6Li and 6He ground states as a function of imaginary time τ during GFMC propagation. The
energies for both model Ia (blue ciricles) and model Ia* (orange stars) plateau near τ ' 0.1 MeV−1.
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FIG. 5. The GFMC propagation of the real component of the electroweak current operator jz as a function of imaginary time
τ using model Ia (blue circles) and model Ia* (orange stars). The dashed lines indicated the extrapolated value of the matrix
element.


	Partial muon capture rates in A=3 and A=6 nuclei with chiral effective field theory
	Abstract
	 Acknowledgments
	 References


