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We propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit
the SLAC data and make predictions for the energy and momentum-transfer dependence of the spin-density
matrix elements in photoproduction of @, p° and ¢ mesons at E, ~8.5 GeV, which are soon to be

measured at Jefferson Lab.
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I. INTRODUCTION

With the recent development of the 12 GeV electron
beam at Jefferson Lab (JLab) [1,2], new precision mea-
surements of light meson photoproduction and electro-
production are expected in the near future. These will
provide constraints on resonance production dynamics,
including production of gluonic excitations. For example,
the GlueX measurement of the photon beam asymmetry in
the production of z° and 5 mesons [3] established the
dominance of natural-parity ¢-channel exchanges for pro-
duction in the forward direction [4]. This measurement
seems to contradict earlier SLAC data [5] that suggests
significant contribution from unnatural-parity exchanges. It
was shown in [6] that the weak energy dependence of the
axial-vector contributions suggested by the SLAC data is
difficult to reconcile with predictions from Regge theory,
while the GlueX data seem to be more in line with theory
predictions. The GlueX measurement, however, was per-
formed at fixed photon energy. Nevertheless, more data
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from both GlueX and CLAS12 will be needed to refine our
understanding of the production mechanisms.

We consider the reaction y(k, A, )N(p, 1) = V(q,Ay) x
N'(p’, 7). At high energies, the amplitude in the forward
direction is dominated by exchange of Regge poles
(Reggeons). As illustrated in Fig. 1, the Reggeon amplitude
factorizes into a product of two vertices. The upper vertex
describes the beam (photon) interactions, and the lower
vertex describes the target (proton) interactions. The
Mandelstam variables are s = (k + p)? and t = (k — q)°.
Factorization of Regge vertices follows from unitarity in the
t channel, where Regge pole is a common pole in all partial
waves related by unitarity and its vertices determine
residues of the poles [7,8]. Factorization of residues enables

V(k’ )"y)

V(q’ )‘V)

FIG. 1. Schematic representation of the factorized amplitude of
a Regge exchange E in Eq. (3). The photon and nucleon vertices
are denoted by T and BF, respectively. The Regge propagator of
the exchange E is RE.
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one to determine the helicity structure at the photon vertex
independently from the target, and conservation of parity
reduces the number of helicity components at each vertex.
In the center-of-mass frame, the net helicity transfer
between the vector meson and photon |4, — Ay| can be
0, 1 or 2, which we refer to as helicity conserving, single
and double helicity flip respectively. Measurement of the
photon spin-density matrix elements (SDMEs) can be used
to determine the relative strength of these components.

Spin-density matrix elements can be reconstructed from
the angular distributions of the vector meson decay
products [9]. The first measurements of neutral vector
meson SDMEs were performed at SLAC [10], resulting in
the following qualitative conclusions: the natural
exchanges contributing to p°, @ and ¢ production are
predominantly helicity conserving, and the unnatural-parity
contributions are negligible for p° production and consis-
tent with a one-pion exchange for w production. In this
paper, we discuss the SLAC data in the context of a Regge-
pole exchange model, which allows us to assess contribu-
tions of individual exchanges to the SDMEs. Various
models have been proposed in the past [11-20], with
different descriptions of the momentum-transfer depend-
ence of the helicity amplitudes. In general these models
reproduce the differential cross sections, but lack a detailed
discussion of the implication of the Regge-pole model for
the SDMEs.

The paper is organized as follows. In Sec. II, we define
the Regge amplitudes and discuss model parameters. In
Sec. III, we discuss the fitting procedure. Specifically, we
first isolate the unnatural exchanges in p° and @ production.
We find that, within uncertainties, these components are
consistent with 7 and 5 exchanges so we neglect subleading
trajectories. We determine the residues of the dominant,
natural exchanges by the yp and yd total cross sections.
Using the SLAC data, the single and double helicity flip
couplings are fitted to the three natural components of the
SDME:s at the laboratory frame (target rest frame) photon
beam energy of E, = 9.3 GeV. The model is extrapolated
to E, = 2.8 and 4.7 GeV and compared to the three natural
components of the SLAC SDMEs at these energies. In
Sec. IV, we compare the model to the nine @ and p® SDMEs
obtained with a polarized beam at SLAC with
E, =9.3 GeV, to the nine ¢ SDMEs from LEPS [21]
and Omega-Photon [22], and to the three @ SDMEs
obtained with a unpolarized beam from CLAS [23,24],
LAMP2 [25] and Cornell [26]. Furthermore, we test the
Pomeron normalization for the @ and p° differential cross
sections at E, > 50 GeV, and the Regge exchange nor-
malization for the , p° and ¢ differential cross sections at
E, =93 GeV from Ref. [10]. Lastly, we provide the
predictions for the upcoming w, p° and ¢ SDMEs mea-
surements in JLab experiments. In Sec. V, we summarize
our findings and give conclusions. Details regarding the
relations between the frames (helicity, Gottfried-Jackson,

s- and t-channel frames) are summarized in Appendix A,
the definition of the SDMEs are detailed in Appendix B,
and further details on the amplitude parametrization are
given in Appendix C.

II. REGGE MODEL FOR VECTOR
MESON PHOTOPRODUCTION

At high energies, vector meson photoproduction is
dominated by Pomeron and Regge exchanges. Regge
exchanges can be characterized by the quantum numbers
of the lowest spin meson on the trajectory, namely isospin
I, naturality n = P(—1)7 (with the parity P), signature
7= (=1)’, charge conjugation C and G-parity G =
C(=1)!. The leading trajectories contributing to vector
meson photoproduction are

IGm'JPC IGmJPC IGmJPC

17+t g 10

n: 0T=T0~F fi:

ap 1=+

0r—1++ (1)
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In addition to the exchanges in Eq. (1), we also consider the
natural-parity Pomeron exchange, which dominates at high
energies. In the @ photoproduction model from [20], a
scalar exchange representing a ¢ meson trajectory was also
considered. Since the ¢ meson trajectory is below the
(leading) f, trajectory, we do not include it here. Among all
unnatural exchanges, the 7 and # trajectories are expected
to dominate, since they are the closest to the scattering
region. One can verify this by examining the SDMEs pﬁ{ 10
which in the Gottfried-Jackson (GJ) frame are determined
by the unnatural exchanges (see Appendix A). The GJ
frame is equivalent to the f-channel helicity frame
where parity conservation implies a relation between
helicity amplitudes and the naturality of the exchanges.
Inspecting the SLAC data [10] displayed in Fig. 2, one
finds that the matrix elements p%| s/, Replylg, and pY_ |6,
for both @ and p production are all consistent with zero.
Moreover, the unnatural component of the differential cross
section is compatible with a z-exchange model [10].
Hence, we assume that the unnatural components of the
SDMEs are dominated by either = or # exchange. The
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FIG. 2. Unnatural components of @ and p° SDMEs at
E, = 9.3 GeV. The dashed lines are the theoretical expectation
for a pseudoscalar exchange, pl, = p%, = p¥, = 0. Data are
taken from Ref. [10].
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exchange is introduced to describe the SDMEs in produc-
tion of the ¢» meson, while its contribution is negligible in @
and p° production. As we will see in Sec. II, the normali-
zation of these exchanges can be determined by vector
meson radiative decays. Regarding axial vector exchanges,
since the decay widths of f, a; — yV are not known,' their
contribution is difficult to evaluate. Within a specific quark
model [20], the contribution of the f to @ photoproduction
is found to be negligible. As we will show, it is possible to
saturate the unnatural components of the SDMEs by
pseudoscalar exchanges. We therefore neglect the axial
vector trajectories. In summary, we consider the s-channel
amplitudes in the form

MAV;, S, t ZMW’W S, l‘ (2)

where the sum extends over the following #-channel
reggeons: E = z,n,P, f5, a,. From the s-channel helicity
amplitudes in Eq. (2), one can compute the SDMEs in the
helicity or GJ frame using Eqgs. (Al), and (B1), respec-
tively. Assuming a factorized form for each exchange,

ME, (5.1) = TE, (ORF(s.0BE(®). (3

where the top and bottom vertices 7% and BE describe the
helicity transfer from the photon to the vector meson and
between the nucleon target and recoil, respectively.
According to Regge theory [27], the energy dependence
factorizes into a power-law dependence s%(*). The phase of
the amplitude is determined by the signature factor
1 + e~ which is contained in RE,

14+ e—iﬂaU(t)

RY(s.t) = sl U=, 4
(s.1) sinzay (1) g i (4a)

ay (1) 1+ e~iman()

san(1)
ay(0) sinzay(t)

RN(S,t) = N = P,fz,(lz. (4b)

We defined § = s/, with the scale chosen as s, = 1 GeV?2.
We use a linear trajectory ag(t) = ag(0) + ozt for all
exchanges. The signature factor eliminates contributions
from spin-odd poles induced by the denominator
sinzag(t). The factor ap(t)/ag(0) simply removes the
unphysical pole at az(z) = 0 that arises in the scattering
region for the f, and a, exchanges. For consistency, we
also include this factor for the Pomeron exchange, although
the point ap(f) =0 is far from the region of interest
—t <1 GeV?. For the pseudoscalar exchanges, the pole
at a,,(t) = 0 is physical.

"The only exception is for I'(f; — y¢) ~ 18 keV.

A. Unnatural exchanges
For unnatural exchanges U =z, 5, the helicity
structure of the photon vertex TV and the nucleon vertex

BY can be obtained by comparison with the high-energy
limit of a single-particle exchange model. We obtain (see

Appendix C)
/1 vOhy -1 )

(5a)

Ui
T/lli//ly (1) =By <ﬂy5av, \/_— 87,0 +

B0 = P (s (5b)

p

with my and m, being the vector meson and nucleon
masses, respectively. The residues ﬂfv and ﬁll,],, are deter-
mined from the radiative decay widths T'(V — yx),
I'(V — yn) and the nucleon couplings g,,,, g,,,» respec-
tively. The overall nonﬂip couplings of the reaction are
written ﬂo v = ﬂ ﬂ ? The details of the calculation are
given in Appendix C. The unnatural trajectory is ay (1) =
o (t — m2) with @}, = 0.7 GeV~2. The parameters for the
unnatural exchanges are summarized in Table I. The photon
vertex Tfljv 5 involves all possible helicity structures, with

each unit of helicity flip contributing a factor of /—t.
Because of charge conjugation, there is only one helicity
structure at the nucleon vertex, the helicity flip, which
corresponds to the factor &, _y\/=1/2m,,.

B. Natural exchanges

The trajectories of the natural exchanges are known and
we use [27,28]

ap(t) = 1.08 + 0.2¢/GeV?, (6a)
af, 0, (1) = 0.5+ 0.9¢/GeV2. (6b)

The top vertex involves three helicity components: a
helicity nonflip, single flip and double flip. As for unnatural
exchanges, each of these comes with an appropriate power
of the factor v/—t/my,

~i 2
pY \1{1——‘;7%5% 0 +ﬂ2 5@ —/1)
(7)

To be consistent with factorization, and to reduce the
number of parameters, we assume that the couplings S
and pY are the same for all vector mesons. The steep falloff

lv/l ([) be (5/1‘/’274-

*The index 0 stands for the helicity difference at the top vertex,
|4, = Ay| = 0.
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TABLE I. Model parameters for the unnatural exchanges. The
parameters «), are expressed in GeV~2.

U b/ n
ﬂ(l)/_w 3.11 0.36
ﬂ(‘){p 1.11 0.10
ﬂ(’){ 4 0.30 0.27
ay(0) —-0.013 -0.013
ay 0.7 0.7

of the forward differential cross section is well described by
exponential factors, gamma functions [18,28] or dipole
form factors [17,19,20,29,30]. All of these models can be
approximated by an exponential function of the form e’~'
[12,14-16]. We obtain bp = 3.6 GeV~2 by approximating
the form factors from [29], and b, = 0.53 GeV~2 and
by, = 0.55 GeV~? by approximating the ¢ dependence of
the a, and f, poles with a Breit-Wigner line shape as
described in Appendix C. For the nucleon vertex we
include the two possible helicity combinations, a nonflip
and single flip,

By, (1) =

o) ®)

1]\7117 ((3/1./1/ + 2/1KN
p

The SDMEs probe the helicity structure of the photon
vertex. They are weakly dependent on the helicities at the
nucleon vertex. On the contrary, the helicity flip couplings
ky thus play a minor role in our analysis. Moreover
isoscalar exchanges, e.g., the f, and Pomeron, are empiri-
cally helicity nonflip at the nucleon vertex [28]. Therefore,
we set kp, = kp = 0. The isovector exchanges are empiri-
cally helicity flip dominant. We model this feature by using
Kkq, = 8.0 [28].

The special nature of the Pomeron prevents us from
computing its overall normalization ﬁo v = ﬁ v »p DY
using radiative decays We thus determine the normahza—
tion ﬂ{)\{ v = ﬁyV »p Dy fitting the yp and yd total cross
sections and invoking vector meson dominance (VMD).
We first relate the overall normalizations ﬂ{)\f v to the yp and
yd total cross section. Using the optical theorem, our Regge
parametrization in (3) leads to

o(yp) = P (ﬁﬁ’!@ap(O) +ﬂ§};§a/2 +ﬂ77 2, (0 )
14

G(yd) — ( ﬂ?)’ ap (0 _|_ 2 }’}’ Aa,cz 0)) (9)

2m E

e

The factors Y represent couplings of the natural
exchange N in the forward scattering direction yp — yp.
‘We need to relate these factors, via VMD, to the factors ,Bf)‘f v
appearing in vector meson photoproduction. In order to use

TABLE II. Vector meson dominance parameters.

1% [(V—ete) An/y?,
p° 7.04(6) keV 0.506(4)
) 0.60(2) keV 0.044(1)
¢ 1.26(1) keV 0.070(1)

VMD, we use the following interaction between photon
field A, and the vector meson fields [31-33]:

mz} 2 P
L = —eAH (},_/pﬂ ’;/Lm /¢”> (10)
p w

From this interaction,” and neglecting the electron mass,
one finds for the electronic decay width T'(V — eTe™) =
my(a?/3)(4x/y%), which determines the couplings yy that
we tabulate in Table II. The SU(3) quark model predictions
Yol¥, =3andy, /vy = —+/2 compare well with the VMD
predictions,  y,,/y, =3.4(6) and y,/r, =—13(1).
However, it is well known that the ¢ meson differential
cross section produces a value of y that is twice as large as
the one obtained from the leptonic decay width [10]. For
consistency, we will use the y, value obtained from the
leptonic decay width, but we keep an eye on this discrep-
ancy when comparing to the data.

Assuming that the Pomeron has a gluonic nature and
therefore has couplings which are independent of the quark
flavor [34], we derive the relation between the total cross
section couplings in Eq. (9) and the overall normalization
of the Pomeron f§, in our model for vector meson
photoproduction,

2 2 2\ -1
e e e e

B :ﬂ”—x<—+—+—> .
R A I

(I1a)

We note that by increasing y, by a factor of 2, the w and p°
couplings of the Pomeron would change by only 10%. For
the Regge exchanges, we assume ideal mixing for vector
and tensors mesons and extract the remaining couplings
using vector meson dominance:

e 82 e2 -1
By’ wolp = ﬂyz Yol (7_5 + g) , (11b)
rr Yoolp
ﬂ()w//) ﬂfzz—e’ (110)
s = 55 = (114

We choose to determine the helicity couplings 4 and Y
through a fit to the SLAC data. Since our formalism is

The yy couplings can be cast in terms of the vector meson
decay constants (0[>_,_, 4,¢,37,9(0)|V(e, P)) = fven (P) =
(m%//Yv)GX(P)-
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based on a high-energy expansion, we determine the para-
meters only with the highest energy bin. Specifically,
we inspect the natural components of the SDMEs at
E, =9.3 GeV. Assuming only one natural exchange N,
our form in Eq. (7) for the top vertex leads to

(o) =G (120

Repliy (s, 1) = 2ﬁl([)\’:l—?t (1 + By n;—é), (12b)
NY2

(s =G (129

with A(f) = 1 — (BY)?*t/m3, + (BY)*#*/m?,. The factoriza-
tion hypothesis in Eq. (3) and the conservation of angular
momentum implies the vanishing of these SDMEs in the
forward direction. This is indeed observed in all of the p°
SDMEs, but is inconsistent with the p) | elements for @
photoproduction as seen in Fig. 3. The expressions in
Eq. (12) also tell us that we should expect |pl),| < [Repl|
for small ¢. Again, this relation is satisfied for p° photo-
production but seems to be violated for @ photoproduction.
The element pl, is significantly larger for @ photoproduc-
tion compared to p° photoproduction, suggesting a larger
single-helicity flip for the isovector exchange. The
deviation from zero observed in the elements Rep)
and p¥_, for p° photoproduction suggests a nonzero single
and double helicity flip for the isoscalar exchanges.

N N N
02 Poola 1 Re pioln . Pl
-------- A

0.1 it : !

: 20 S = T & .
0.0 pHET o P o —

B T S 7
-0.1F1 e Ny, i

T ypowp -

-02} E, =28GeV  YP=pp
0.2

[T 5~ ik T e
01t Y Ll

Lo - ) —— $----1 o

pobo-2 s Ll T T )

}

N T PR L

E

02} E, =4.7GevV

0.2

| = P il
-0.1 T : 1 T ;

02} E, =9.3GeV

00 02 04 06 080 02 04 06 080 02 04 06 08
—t(GeV?) —t(GeV?) —t(GeV?)

FIG. 3. Natural components of @ and p° photoproduction
SDMEs at E, = 2.8, 4.7 and 9.3 GeV. The lines are our model,
determined by the 9.3 GeV data only and extrapolated to lower
energies. The dashed points are not included in the fitting
procedure. The data are taken from Ref. [10].

We associate these couplings with the f, exchange and
keep the Pomeron helicity conserving as is often assumed.
This hypothesis could be checked with ¢ photoproduction
as we will discuss later. According to our discussion we
impose A7 = 5 = 5> = 0 and thus need to fit the helicity

5]

couplings ﬂf‘,ﬂfz, e

III. FITTING PROCEDURE

We determine the six couplings S, ﬂy?; , P, VAN A 1
using a combined fit of the yp and yd total cross sections
from the Review of Particle Physics [35] for E, > 2 GeV,
the three p” natural exchange SDMEs (plY,, Repl, and pl )
and the element pl, for @ photoproduction at E, =
9.3 GeV obtained at SLAC [10]. We do not include the
two other natural components of the SDMEs in @ photo-
production as they are inconsistent with our working
hypothesis. The fit of the total cross sections and the fit
of the SLAC SDMEs are combined in a single fit. There are
308 (total cross sections) plus 24 (SDMESs) data points and
six fit parameters. The other model parameters (by, Ky, ¥y
and the 7- and 5-exchange couplings) are kept fixed at
values discussed in the previous section. The expressions
for the natural components of the SDMEs used in the fit is
given in Egs. (B1) and (B4). The fit results in the reduced
y*/d.of. of 1.96 (1.84 for the total cross sections and
0.12 for the SDMESs), and the fitted parameters are

B =0187(1)  pI> =0.95(19) (13a)
Pl =0164(2) B =-056(17)  (13b)
P =0.045(3)  p =083(34).  (13¢)

The photon couplings are extracted from Eq. (11). The
parameters of the exchanges calculated from Eq. (13) for
vector meson photoproduction are summarized in Table III.

TABLE III. Model parameters for the natural exchanges. The
parameters by and a) are expressed in GeV~2. The ﬂI{VO.I,Z},V

parameters are calculated using the fit discussed in Sec. III; the
other parameters are estimated or discussed in Sec. II.

N P f2 ay
ﬂoN’w 0.739(1) 0.730(10) 1.256(85)
ﬂé\{p 2.506(5) 2.476(34) 0.370(25)
ﬂ0N~¢ 0.932(2) 0 0

ﬂllv 0 0.95(19) 0.83(34)
i 0 ~0.56(17) 0

Ky 0 0 8.0
by 3.60 0.55 0.53
ay(0) 1.08 0.5 0.5

ay 0.2 0.9 0.9
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IV. COMPARISON WITH DATA

As we discussed above, the SDMEs for p° photo-
production are more consistent with our model for dif-
fractive production than for @ photoproduction. This can be
observed in Fig. 3. The bands on the figures represent one
standard deviation from our model. The wider band in the @
model originates from the stronger dominance of the Regge
exchanges, whose normalizations are less constrained by
the total cross sections. The Pomeron normalization is
indeed more constrained and yields a smaller uncertainty in
the p° model. We have also included the data at E, =47
and 2.8 GeV from SLAC in Fig. 3. They compare well to
our model evaluated at these lower energies.

The comparison with total cross section is presented
on Fig. 4.

In Fig. 5, we present the comparison between the @ and
p" models and the SLAC data at 9.3 GeV for all nine
SDME:s. There is a general agreement between the model
and the data, but we wish to discuss some inconsistencies.
The elements in the bottom panels p!_,, Imp?, and Imp?_,
were not included in the fitting but are nevertheless well
described by the model. In particular, we note the domi-
nance of the natural exchanges in p}_, and Imp?_; in the
case of p” photoproduction with small deviation for the @
case, as expected from the stronger 7 exchange. The main
noticeable discrepancy arises in p!, for @ photoproduction.
Since the pseudoscalar exchanges are smaller than the
natural exchanges, we would expect pl; ~ p!_,. The data
does not display this feature and thus our model does not
describe p!; well. Furthermore, since the contribution from
the 7 exchange to pl, is negative (see Appendix C), we
would expect p}l < p?_l, which is featured in our @ model

0.4

0.0

Log,o pav/GeV

FIG. 4. Total cross section o(yp) (blue) and o(yd) (red). The
black lines are the results of our fit (the thickness of the lines
represent the error band). The data are taken from Ref. [35].
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FIG. 5. Comparison between our model and @ and p° SDMEs

at £, = 9.3 GeV. The data are taken from Ref. [10].

but not in the SLAC data. The sign of the element p},
would be an important check for our model when GlueX
data becomes available.

Although our model has been constrained at £, =9 GeV,
we present in Fig. 6 the comparison between our model and
the unpolarized SDMEs at lower energies. The extrapola-
tion to lower energies is in principle not in the range of
applicability of the Regge-pole approximation. Despite the
significant uncertainties in all the presented data sets, we
conclude that our extrapolated model describes the lower
energies data sets fairly well. It is also worth noting that the
data from Ref. [26] at E, = 8.9 GeV are consistent with
our factorization hypothesis, i.e., p(l)_l ~ —t in the forward
direction. We conclude that the SLAC data may suffer
from large errors. The forthcoming measurement by the
GlueX Collaboration could confirm the factorization of the
vector meson production, i.e., p(f_ () ~ —t in the forward
direction at high energies.

Our model simplifies for ¢ photoproduction. In this case
we simply neglect the f, and a, Regge exchanges, as they
are not expected to couple to y¢ if one assumes perfect
mixing. The relevant exchange would then be the f7, the
hidden strangeness partner of the f,. However, its intercept,
and therefore its overall strength, is smaller due its higher
mass. We neglect this contribution and assume that the only
relevant natural contribution is provided by the Pomeron.
Since our Pomeron is purely helicity conserving, the
SDMEs are very simple at high energies. The only nonzero
components are p|_; = —Imp%_1 = 1/2. This picture is
consistent with the SLAC measurement at 9.3 GeV [10]. In
Fig. 7, we compare our model to the data from the Omega-
Photon Collaboration [22]. Their data are taken in the
energy range £, =20-40 GeV. They are consistent with
the SLAC data but have somewhat smaller uncertainties.
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FIG. 6. Unpolarized SDMEs for w photoproduction. The lines are our model. E,, is the beam energy in the laboratory frame in GeV.
The data are taken from SLAC [10], CLAS [23,24], LAMP2 [25] and Cornell [26].

We also extrapolated our model to E, =2.27 GeV to
compare with the data from the LEPS Collaboration
[21]. At lower energies, we observe deviations from
pure helicity conservation, i.e., deviation from p}_, =
—Imp?_, = 1/2. This is triggered by unnatural exchanges.
Since the 7 couples weakly to y¢, we included 7 exchange
in our model. The very small coupling g,,,, inferred from
radiative decays, cannot solely explain the deviation from
helicity conservation in the elements p}_; and Imp?_; at
E, = 2.27 GeV. The inclusion of 7 exchange increases the
relative importance of unnatural exchange. We should also
note that we considered the n degenerate with the z. With
the 5 pole being further from the scattering region, the
factor o/ 7/ sin za, () ~ 1/(mj — t) is not strong enough to
trigger the depletion close to the forward direction in pi_,
and Imp%_l. Nevertheless, the SDMEs from the LEPS
Collaboration indicate an even larger relative strength of
unnatural vs natural exchanges than in our model. As we
pointed out, the Pomeron coupling g{{/' from the ¢ meson
leptonic width and VMD is overestimated. The relative
strength of the unnatural exchanges in the SDME:s are thus

underestimated. We illustrate the effect of reducing the
Pomeron coupling by a factor of 2 in Fig. 7. The dashed red
line, obtained with /i, = 1/2 % 0.932, leads to a better
agreement with the data. Alternatively, we could have
increased the coupling g,yy. As we discussed in Ref. [4],
the # coupling to the nucleon is not known very precisely.
From the investigation of ¢ SDMEs at E}, = 2.27 GeV, we
conclude that the ratio of natural and unnatural component
is /3{)\{45/,55{45 = 0.2606.

Our prediction for w,p® and ¢ vector meson photo-
production at GlueX is displayed in Fig. 8. We used
E, = 8.5 GeV, the average beam energy with polarization.
As already commented, the bulk of the uncertainties in our
model come from Regge exchanges. It is therefore not
surprising that the uncertainties in the ¢» meson SDMEs are
very small. The bending of the curves as |¢| increases in our
¢ model originates from the pseudoscalar exchanges. We
have not included an exponential falloff in their para-
metrization. Therefore, their effects can be observed away
from the forward direction where the natural exchanges are
exponentially suppressed. If the ¢ SDMEs remain flat in a
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FIG. 7. The SDMEs of ¢ photoproduction at E, =
2.17-2.37 GeV (red squares) from Ref. [21] and at E, =
2040 GeV (gray band) from Ref. [22] (SDME:s integrated over
t represented as a band over the ¢ range). The lines are our
model at E, = 2.27 GeV (solid red with ﬂg b= 0.932 and dashed
red with ﬁg » = 1/2x0.932 for the Pomeron coupling) and
E, =30 GeV (black).

larger ¢ range, one would just need to incorporate an
exponential falloff in the 5 exchange.

Our model has been designed to describe the SDMEs,
but it is also interesting to compare it with high-energy
unpolarized differential cross-section data. We first
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FIG. 8. The SDMEs of w, p° and ¢ photoproduction at
E, = 8.5 GeV, the average polarized beam energy in the labo-
ratory frame.

compare our model to high-energy data in Fig. 9. At
energies above 50 GeV, the Regge exchanges contribute
less that 1% of the differential cross section. The data
therefore gives a very good indication of the validity of our
Pomeron model. We observe that the overall normalization
at t =0 is in fairly good agreement with the data. Our
phenomenological intercept ap(0) = 0.08 produces a small
rise of the differential cross section in the forward direction.
At very high energies, E, > 1 TeV, the data seems to
display a slower growth at ¢ = 0, in agreement with the
unitarity bound. However, these energies are far from our
region of interest. The ¢ dependence was approximated by a
simple exponential falloff, which describes the falloff of
the differential cross section in the range 0 < —t/m? < 1.
We observe deviations from this simple picture at
|| > 0.3 GeV>.

Unfortunately, our model does not compare very well
with the @ and ¢ differential cross sections at 9.3 GeV, as
shown in Fig. 10. Although the p° differential cross section
is roughly in agreement with our model, the ¢ differential

200

100 F
YpP—pp

e 4.7 TeV

n 2.8 TeV

2 1.6 TeV

v 111.5GeV

50+

dor/dt (ub/GeV?)
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<
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FIG. 9. yp = p°p (top) and yp — wp (bottom) differential
cross sections at high energies. Upper panel: Data from Ref. [36]
(green triangles), Ref. [37] (black triangles), Ref. [38] (red
circles) and Ref. [39] (blue squares). The higher energies curves
overestimate data at low ¢, as expected from the saturation of the
unitarity bound. Lower panel: Data from Ref. [40] (black circles),
Ref. [41] (blue circles) and Ref. [42] (red circles).
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==
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FIG. 10. yp — (p°, w, ¢)p differential cross section at 9.3 GeV
in solid blue, green and red lines respectively. The dashed red line
is obtained with a Pomeron coupling reduced by a factor two. The
data are taken from Ref. [10].

cross section is overestimated. We already explained that
the leptonic width of the ¢ meson led to a Pomeron
coupling to y¢ much stronger than the experimental value.
This was already observed in the original experimental
publication [10]. It has been argued in Ref. [43] that the
large ¢» mass needs to be taken into account. The authors of
Refs. [44,45] corrected the differential cross section by the
ratio of the ¢ and photon momenta, (k,/k,)* ~0.87 at
E, = 9.3 GeV. This factor is nevertheless not small enough
to reproduce the experimental normalization of the ¢
differential cross section. As we did for the SDMEs, we
reduce the Pomeron coupling ﬁg{/) by a factor of 2. The
resulting normalization at # = 0 seems more in agreement
with the data.

V. CONCLUSIONS

We presented a model describing the SDMEs of light
vector meson photoproduction. Our model includes 7 and
exchanges, whose parameters are fixed. We incorporated
the leading natural exchanges: the Pomeron, f, and a,
exchanges. Their normalizations were determined from the
total cross section using the VMD hypothesis. We paid
special attention to the ¢ dependence of the various
exchanges. We proposed a flexible and intuitive ansatz
for the t dependence of each natural exchange. The helicity
structure of these exchanges was then inferred from the data
on photoproduction of @ and p° at E, =9.3 GeV from
SLAC. The joint inspection of these two reactions allowed
us to assume that the f, isoscalar exchange must have a
small double helicity flip coupling, in addition to a single
helicity flip coupling. The a, isovector exchange was
consistent with only a single flip and no double helicity
flip coupling.

The model compares well with the nine SDMEs for
p°, @ and ¢ photoproduction in a wide energy range
Ey ~3-9 GeV, as well as with the unpolarized data in the

same energy range. Except for p!_, in @ production, the
SDME are consistent the factorization of Regge residues.
We made predictions for the future measurements of light
meson photoproduction at JLab. Our predictions and our
model are available online on the JPAC website [46,47].
With the online version of the model, users have the
possibility to vary the model parameters and generate
the SDMEs for p°, @ and ¢ photoproduction. The code
can also be downloaded.

The differential cross section at very high energies,
E, > 50 GeV, is well reproduced by our Pomeron
exchange. However, the effect of the high-energy approxi-
mation led to non-negligible deviation in normalization
from the data at E, = 9.3 GeV. These deviations appear
only in the differential cross section, since they cancel in
the ratio of the SDME:s.
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APPENDIX A: FRAMES

The properties of helicity amplitudes are best described
in two popular frames: the s-channel and the #-channel
frames. The s channel corresponds to the center of mass of
the reaction yp — Vp. The ¢ channel corresponds to the
center of mass of the reaction yV — pp. These channels are
illustrated on Fig. 11.

The angular distribution of a vector meson is analyzed in
its rest frame. In the rest frame, the beam, target and recoil
form the reaction plane xz. The y axis is defined as the cross
product between the target and the recoil momenta. For the
Z axis, the two common choices are the opposite direction
of the recoil in the helicity frame, and the beam direction in
the GJ frame [48].

The helicity amplitudes in these four frames are differ-
ent. For instance, a boost along the recoil momentum
between the s channel and the helicity frames rotates the
helicities of the beam, target and recoil. It also transforms
the helicity of the vector meson in the s channel into its spin
projection along the direction opposite to the recoil in the
helicity frame. The summation over beam, target and recoil
helicities in the SDME:s is not affected by these rotations.
Hence, the SDMEs in the s channel and helicity frames are
equivalent.
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Tlustration of the frame defined in Appendix A.

FIG. 11.

Similarly, a boost along the beam direction between
the ¢ channel and the GJ frames brings the helicity of the
vector in the ¢ channel to its spin projection along the beam
direction in the GJ frame. The helicities of the other
particles undergo a rotation which does not affect the
SDMEs, as demonstrated in Ref. [48].

Finally, from the SDMEs in the GJ frame, the SDMEs in
the helicity frame are obtained by a rotation of angle 6, the
angle between the opposite direction of the recoil and the
beam direction (see Fig. 11)

Pyumlcs = Zdllvl,,lv(eq)p/lv,/l(/|Hdl /,,yv(gq)’ (A1)
Ay A,
with  cos@, = (B —cosb,)/(fcosd,—1) and p=

M2 (s m? %,)/(s — m? + m}). The leading s expression
is s1mply cos0, — (m3, +1)/(m} —1).

APPENDIX B: SPIN-DENSITY
MATRIX ELEMENTS

The relation between SDMESs and helicity amplitudes are
well known [9]. For completeness, we provide the expres-
sions for the nine SDMEs accessible with a linearly
polarized photon beam:

pg() ZM10M107

19 (Bla)
N7

Replo 2NRCZ Mll —Ml 1)./\/1:]:9, (Blb)

A

P ——ReZMHMI L (Blc)

N A

Pl = %Re%/\/lﬁ/\/li}, (Bld)
P = %Re%;/\/l;;p/\/liﬁ, (Ble)
Pl Imply = DM M (B11)
—Imp?_| = ZMHM -1 (Blg)

ii’
Rep!, + Imp?, _NRe;M My, (B1h)
Repl, — Imp?, = ;lRe;MHME; g- (B1i)

SDMEs Of course, the SDMEs and the helicity amplitudes
need to be defined in the same frame, or in equivalent
frames, as explained in the previous section. The frame-
independent normalization is

Z M .

,1 Ay AN

(B2)

The implication of hehclty conservation at the photon
vertex, i.e., MA,;V o<5 " can easily be checked in the
SDMEs. As car’be readﬂy verified with Eq. (B1), this
hypothesis leads to vanishing SDMEs except for Imp!_
and Imp?_,. The SDMEs also provide other useful infor-
mation concerning the helicity structure of the photon
vertex. For instance, the elements p9, and p? | give
indications about the magnitude of the single-flip contri-
bution and the interference between the nonflip and the
double-flip amplitudes. Moreover, they can be used to
separate the contributions from natural and unnatural
exchanges. Indeed, at high energies, an exchange with
positive naturality (N) or negative naturality (U), satisfies

N
U

a4

= (1AM, (B3)
A

v

We can then use six SDMEs to get information about the
helicity structure of natural and unnatural components:

N 1
Poo = 5 (P F Pio)s (B4a)
vy 1 0 1
Repfy = E(Replo T Repy). (B4b)
i L 1
Pi_i =5 (pio £ 1) (B4c)

2
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APPENDIX C: HIGH-ENERGY LIMIT

At high energies, models for reaction amplitudes sim-
plify. In this section, we perform the high-energy limit of
single-meson exchange interaction and keep the leading-
order dependence in s, the total energy squared. Our goal is
to derive the t dependence arising from the factorization of
Regge poles. We consider the reaction y(k,4,)p(p.4) =
V(q,Ay)p(p',#) in the center-of-mass frame (s-channel
frame). Let m,, and my be the nucleon and vector meson
masses, respectively.

1. Unnatural exchanges

Let us first focus on the pseudoscalar exchanges.
According to the factorization theorem for Regge poles,
the interaction is a product of a yV P vertex, a Regge factor
and a PNN vertex. At the photon vertex we use

Tlly/lv = _igVPySa/}yvea(ly)e*ﬂ(AV)kﬂqD' (Cl)
This interaction respects gauge invariance. This can be
verified by showing that it vanishes when the photon

polarization vector is replaced by its momentum. The
polarization vectors, in the s channel, are

—A
€*(4,) = 727(0, 1,4,i,0), (C2a)
A
eP(Ay) = 7‘% (0, —cos B, Ayi,sin ;)
1= 2
+ Ay (q,.EY sin,,0,EY cos6,), (C2b)
my

where EY and g, are the energy and momentum of the
vector meson in the s-channel frame, respectively, and 6, is
the scattering angle. The expression of the kinematical
quantities can be found in the Appendix of Ref. [6]. In the
center-of-mass frame, the angular dependence of the
interaction (C1) is instructive:

05 |AV+AV‘ . es My_/lvl
T}, cos - sin—: , (C3)

with 6, the scattering angle in the s-channel frame.
This factor, known as the half-angle factor, encodes all
the ¢ dependence of the interaction. At large energies,
the ¢ dependence of the half-angle factor becomes very
intuitive,* sin@, /2 — \/—t/s and cos#, /2 — 1. Throughout
this paper, we neglect the difference between ¢ and ¢, where
' =t — tpin, since in the kinematical region of interest

“In what follows, we will denote the leading term in s by an
arrow.

Imin/ My = —(my/2pip)? is on the order of 1073 at
Plab — 9 GeV.

Keeping only the leading term in s of the interaction in
Eq. (C1), we obtain

V-t —t
_ fzm—v%_o +m_2v'175”’”y .

(C4)

my
T/Mv —>gvpy ) X (/lyfsav,zy

This example illustrates a general statement: each helicity
flip “costs” a factor of \/—1/my. The mass scale associated
to the factor \/—f can only be my. For completeness, we
derive the decay width from the interaction (C1):

2 2 _ 2\ 3
I(V = yP) :gw’y(mvm”) . (C5)

967 my

We use Eq. (C5) to extract the couplings from the decay
widths. The relevant couplings are summarized in Table IV.

The considerations at the photon vertex apply equally
well at the nucleon vertex. For an unnatural spin-zero
exchange, there is only one possible structure at the
nucleon vertex:

gpnni(p'. Aysu(p.A) = g V=16 ;. (C6)

There is one unit of helicity flip associated with the factor
\/—t. In this case the scale factor (nucleon mass) is
implicitly removed by our spinor normalization
u(p,A)u(p,4) = 2m. For the z-nucleon and n-nucleon
couplings, we take g2y /47w = 14 [49-56], and g7y /47 =
0.4 is the value we used in our fixed-¢ dispersion relation
analysis of n photoproduction [4] based on the available
literature [57-62].

The couplings we determined are normalized at the
pseudoscalar pole. We then add a factor za’ /2 to the Regge
factor in Eq. (4a) such that

/

”‘;P RP(s,1) = 1.

lim (t — mp)
t—mp

(C7)

The Regge trajectory is ap(t) = ap(t —m2) with ap =

0.7 GeV~2. We choose the same trajectory for both 7 and 7
exchange. As explained in Sec. IV, this enhances the 7 pole
to compensate for the Pomeron normalization in the ¢

TABLE IV. Vector meson radiative decay widths and pseudo-
scalar exchange couplings.

V. T(V -y Gvay LV —yn) Gvny

® 703 keV 0.696 GeV~! 448 KeV  0.479 GeV~!
P’ 89.6keV  0.252 GeV! 391 KeV  0.136 GeV~!
P 541 keV  0.040 GeV~! 56.8 KeV  0.210 GeV~!
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photoproduction SDMEs. Finally, collecting all the
pieces, we arrive to the amplitude in Eq. (5) for a 7z or
exchange in the high-energy limit with the normaliza-
tion /3y, = (1/4)ma'm3,gvp,gpyy-

It is instructive to derive the SDMEs for only a #
exchange in both the GJ and helicity frames. The
SDMEs induced by a z exchange take a simple form in
the GJ frame, i.e., all SDMEs are zero except for
pi_; = —Impi_; = —1 This is of course expected since
the 7 in its rest frame only has the spin projection zero. We
can easily get the SDMEs for a 7 exchange in the helicity
frame from the rotation in Eq. (Al):

oo = P = (l‘fﬁﬁ,’:) (Csa)
i = b = o (Csb)
Resy = Reply = 2V (e
A==y, (84
Imp?_| = —%%, (C8e)
L — (c8)

V2 my (1=t/m3)?

In the case of a single exchange, the SDMEs depend only
on the details of the photon vertex. The only scale that
arises is the mass of the vector meson.

2. Natural exchanges

The two guiding rules, the factorization of Regge poles
and the factor of v/~ for each unit of helicity flip, equally
apply to natural exchanges. We can then postulate the
general form in Eq. (3). Since the use of effective
Lagrangians is very popular, it is instructive to compare
our model in Egs. (7) and (8) to these types of interactions.

Let us start with the standard interaction for a Pomeron
exchange [30,63]

MG, (s, 1) = €1(q. dv) [Re” (k. 2,) — ket (k. 2,)]
i

xa(p', A)y,u(p.A). (C9)

This interaction also respects gauge invariance. At leading

orderin s, we have k&* — ', \/s/2, with n', = (1,0,0,+1),
and the helicity structure at the nucleon vertex is simply

u(p', A )y*u(p,2) = \/s8, ynt. (C10)
Only the first term in the bracket in Eq. (C9) survives. From
the result

A, /=t
€*(q,dy) - e(k, 4,) — =05, + 01,0 7%,”—
v

we conclude that this model for the Pomeron implicitly
includes a single helicity flip structure and is not therefore
purely helicity conserving. A more flexible model can be
obtained with more general interactions. In order to
determine all of the possible structures at both the photon
and the nucleon vertices, let us first observe that in a
factorizable model, the top and bottom vertices are linked
by a propagator transverse to the momentum transferred.
The propagator removes the x component since (g — k) —
(0,4/-1,0,0) at leading order in s. Second, the general
structures at the nucleon vertex are easily obtained. In
addition to Eq. (C10), we can have an nucleon helicity-flip
interaction

(C11)

w(p', ) 2p* =y u(p,A) = 23/ =ty . (C12)
Note that any p’ momentum can be substituted by p since
the difference is orthogonal to the propagator. We sum-
marized the two possible structures at the nucleon vertex in
Egs. (C10) and (C12) in Eq. (8).

At the photon vertex, the only tensorial structures that
connect to the nucleon vertex and survive at leading order
in s are k¥ > n \/s/2 and €*(q, Ay) = (1 = 2%)(q/my)n’...
We can then form a single helicity-flip coupling at the
photon vertex with the interaction

12 vt
2 \/i my
Finally, since the maximum helicity difference between a
photon and a vector meson in their center of mass is two, a
tensor exchange should involve all possible relevant struc-
tures at the photon vertex. Indeed, we find that a double-flip

structure can arise with the interaction between a photon,
vector and tensor [64]:

e (q.dv)q - e(k. 1) = 3,0 (C13)

e*(q.0y) - ke(k.2) - q Mv%- (C14)
We then conclude that, in addition to the nonflip interaction
in Eq. (C11), the general structure with a photon, vector and
natural exchange also includes the single-flip interaction in
Eq. (C13) and the double-flip interaction in Eq. (C14). To
leading order in s, we summarize these interactions with the
intuitive vertex in Eq. (7).

In our model we added a helicity-independent exponen-
tial factor b to reproduce the energy-independent shrinkage
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of the differential cross section. This feature is generally
described by exponential factors [12,14-16], gamma func-
tions [18,28] or dipole form factors [17,19,20,29,30]. This ¢
dependence originates from the energy dependence of the
nearest cross-channel singularity. For the given Regge
exchanges, these are the f,(1270) and a,(1320) tensor
mesons. The energy dependence of these singularities in the
cross channel can be described by Breit-Wigner line shape in
t, the relevant energy variable in the cross channel:

mel'g

BW(t) = (C15)

2 i
mg—t—imglg

where my and I'y are the mass and the width of the
f> and a, tensor mesons. Its effect in the physical region of
the direct channel can be modeled by a simple exponential
falloff, i.e., [BWg(1)|>  |BWg(0)|?e*" for t € [-m2,0).
We determine by at t = —m2/2, the middle point of
the interval r€[-m2,0]. We find b; =0.55GeV~2 and
b,,=0.53 GeV~2.

The ¢ dependence of the Pomeron is often described by
the following dipole form factors [17,19,20,29,30]

4m2 — 2.8t
Fo(f) = L , Cl6
(1) (@m2 = 01— t/1)? (C162)
1 2 2 2
Fy(r) = HEMy (1)

1= t/m} 2u3 + m} —t

with 43 = 1.1 GeV? and #, = 0.7 GeV2. The form factor
Fi(t) is the dipole approximation of the nucleon Dirac
form factor [29], and Fy(¢) is an empirical form factor at
the photon vertex.” As for the Regge exchanges, we
approximate this form factor by an exponential falloff at
to = —m2 /2, F\(ty)Fy(ty) = e’®%. Under this approxima-
tion, we obtain bp = 3.60 GeV 2.

We have chosen the normalization such that Fy(0) = 1.
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