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We carry out an ab initio calculation of the neutrino flux-folded inclusive cross sections measured on 12C
by the MiniBooNE and T2K Collaborations in the charged-current quasielastic regime. The calculation is
based on realistic two- and three-nucleon interactions, and on a realistic nuclear electroweak current with
one- and two-nucleon terms that are constructed consistently with these interactions and reproduce low-
energy electroweak transitions. Numerically exact quantum Monte Carlo methods are utilized to compute
the nuclear weak response functions, by fully retaining many-body correlations in the initial and final states
and interference effects between one- and two-body current contributions. We employ a nucleon axial form
factor of the dipole form with ΛA ¼ 1.0 or 1.15 GeV, the latter more in line with a very recent lattice QCD
determination. The calculated cross sections are found to be in good agreement with the neutrino data of
MiniBooNE and T2K, and antineutrino MiniBooNE data, yielding a consistent picture of nuclei and their
electroweak properties across a wide regime of energy and momenta.
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I. INTRODUCTION

There is a large program of accelerator neutrino experi-
ments in operation or in the planning phase in the US and
elsewhere to measure the parameters that characterize the
probabilities for flavor oscillations of these particles—mass
differences, mixing angles, and the charge-conjugation and
parity-violating phase. These experiments do not directly
measure oscillation probabilities, of course, but rather
event-rate distributions as a function of the observed energy
E in the detector, schematically

Nα
βðEÞ ∝

Z
dEνϕαðEνÞPðνα → νβ;EνÞσβðEν; EÞ; ð1Þ

where ϕαðEνÞ is the flux of neutrinos of flavor α (να’s) at
the source as a function of the energy Eν, Pðνα → νβ;EνÞ is
the probability for oscillation of a να into a flavor νβ, and
σβðEν; EÞ is the νβ-nucleus cross section. The neutrino

energy is reconstructed from the tracks in the detector of
the outgoing lepton in an inclusive scattering setting, and
the tracks of final hadrons in a semi-inclusive one. As a
consequence, the determination of oscillation parameters
depends strongly on neutrino interaction physics, since the
interactions observed in the detector result from the folding
of the energy-dependent neutrino flux, energy-dependent
cross section, and energy-dependent nuclear (strong- and
electroweak-interaction) effects.
The appreciation of these difficulties has led, in the last

decade or so, to a flurry of activity by nuclear theorists, who
have attempted to provide accurate estimates for neutrino-
nucleus (ν-A) inclusive (and semi-inclusive) cross sections
(for a summary of efforts in this area, see Ref. [1]). This is a
very challenging task, primarily because neutrino fluxes in
current (such as MiniBooNE, T2K, MicroBooNE, and
MINERνa) and future (DUNE) experiments extend over a
rather wide energy range, from threshold to, in several
cases, multi-GeV energies. Thus, observed ν-A cross
sections resulting from the folding in Eq. (1) may include
contributions from energy- and momentum-transfer regions
of the nuclear weak response where drastically different
dynamical regimes are at play, from the structure and
collective behavior of low-lying nuclear excitations in the
threshold region, to the quark substructure of individual
nucleons in the deep inelastic region. Moreover, for some
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of the nuclear targets employed in the detectors of these
experiments, such as 40Ar (MicroBooNE), and 56Fe and
208Pb (MINERνa), the full structure of the ground states is
difficult to calculate exactly.
Theoretical studies have attempted to provide a descrip-

tion of the nuclear weak response in this wide range of
energy and momentum transfers. They typically rely on a
relativistic Fermi gas (RFG) [2–4] or relativistic mean-field
(RMF) [5–8] picture of the nucleus. Some theoretical
models, notably those of Refs. [9–14], include correlation
effects in the random-phase approximation induced by
effective particle-hole interactions in the N-N, N-Δ, Δ-N,
and Δ-Δ sectors, use various inputs from pion-nucleus
phenomenology, and lead to predictions for electromag-
netic and strong spin-isospin response functions of nuclei,
as measured, respectively, in inclusive electron scattering
and in pion and charge-exchange reactions, in reasonable
agreement with data. Some utilize the phenomenological
superscaling (SUSA) approach—scaling with nuclear mass
number [15]—in which a universal scaling function derived
from analyses of ðe; e0Þ data on a number of nuclei is used
to obtain estimates for the corresponding ν-A cross sections
[16,17]. Recently, SUSA, which has proven to be quite
successful, has been extended (SUSAv2) by incorporating
elements from the RMF approach to account for differences
between the vector and axial components of the weak
current, and between their isoscalar and isovector content
[18–20]. Yet others rely on factorization of the hadronic
final state and realistic spectral functions Sðpm; EmÞ to
combine an accurate description of the nuclear ground state
with relativistic currents and kinematics. Spectral functions
of atomic nuclei are calculated either with microscopic
methods—for example, the self-consistent Green’s func-
tion technique [21–24]—or by combining inputs from
ðe; e0pÞ data to characterize the low missing-momentum
and missing-energy region with accurate many-body cal-
culations of the nuclear matter spectral function [25–29]
folded with the single-nucleon density to describe the
“correlation region” corresponding to high missing ener-
gies and momenta [30,31].
Many of the above models have achieved remarkable

success and much improved agreement with experimental
data, compared to simple RFG calculations. A number of
them are applicable to energies higher than those corre-
sponding to the quasielastic peak, and account for pion
production and resonance excitations [32–36]. Others are
suitable to model the low-energy region of the response
functions characterized by peaks corresponding to collec-
tive modes and transitions to discrete excited states [37,38].
However, it is fair to note that they rely on a somewhat
approximate description of nuclear dynamics that does not
fully capture correlation effects in both the initial and final
states and does not generally use as inputs realistic nuclear
interactions and consistent electroweak currents. Hence, it
is important to carefully assess their validity—especially in

the axial sector—by testing them against more microscopic
calculations.
In the present study, we report on an ab initio calculation

of the nuclear weak response induced by charged-current
(CC) ðνl;l−Þ and ðν̄l;lþÞ processes. The strong inter-
actions among nucleons are represented by two- and three-
body terms, while their coupling to the electroweak field is
accounted for by one- and two-body currents (see the
reviews [39,40] and references therein). The two-body
interaction [41] is constrained by fits to the nucleon-
nucleon (NN) database up to lab energies of 350 MeV
(albeit it provides a good description of the NN cross
section well beyond the pion-production threshold, up to
500 MeV or so). The three-body interaction [42] is
calibrated by a fit to the energies of a number of low-
lying nuclear states in the mass range A ¼ 3–10.
The one-body currents follow from a nonrelativistic

expansion of the covariant single-nucleon CC, including
nucleon electroweak form factors consistent with available
experimental data. In particular, results reported in Sec. III
are obtained by using a dipole axial form factor with cutoff
ΛA equal to either 1.0 or 1.15 GeV. The former is extracted
from proton and deuteron experiments [43–46], while the
latter is obtained by recent lattice QCD calculations [47,48]
that also reproduce the vector form factors measured in
electron scattering.
Two-body currents are derived from meson-exchange

phenomenology including pion and ρ-meson exchanges as
well asN-to-Δ transition currents (withΔ’s taken, however,
in the static limit) [49]. The short-range behavior of these
currents is prescribed to be consistent with that of the two-
nucleon interaction [50,51]. In the vector sector, they
contain no free parameters, while in the axial sector, the
single unknown parameter present—the N-to-Δ axial
coupling constant—is fixed by reproducing the experimen-
tal value of the tritium Gamow-Teller matrix element.
The theoretical framework outlined above (and discussed

more expansively in Sec. II below) has been shown to
provide, in numerically accurate quantum Monte Carlo
(QMC) calculations, a quantitatively successful description
of a large body of experimental data on light nuclei
(A ≤ 12), including, among others, energy spectra of
low-lying states, static properties (magnetic and quadrupole
moments), low-energy radiative and weak transition rates,
electromagnetic ground and transition form factors, and
electroweak dynamic response (for a review, see Ref. [40]
and references therein). Especially relevant in the present
context are the QMC studies of the 12C electromagnetic
ground-state structure [52], and longitudinal and transverse
response functions at intermediate momentum transfers q
in the (300–700) MeV range, and for energy transfers ω in
the quasielastic region [53].
However, it is also important to recognize the limitations

inherent to the approach we adopt here: First, it addresses
only inclusive scattering; second, it does not account
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for explicit pion-production mechanisms and therefore
cannot describe the nuclear electroweak response in the
Δ-resonance region and beyond; third, it relies on what is in
essence a nonrelativistic formulation of the dynamics and
electroweak currents [54].
These limitations notwithstanding, it should be empha-

sized that in the quasielastic regime specified earlier, this
approach includes all of the relevant physics for inclusive
scattering and is expected to be quite accurate. It is for this
reason that we compare our predictions (in Sec. III) for the
12C flux-averaged inclusive cross sections—differential in
the outgoing lepton energy and scattering angle—to the
MiniBooNE and T2K CC “quasielastic” (CCQE) datasets
[55–57]. These datasets are characterized by the absence of
pions in the final state. Clearly, their interpretation as purely
quasielastic is complicated by pions that are created at the
interaction vertex and are subsequently reabsorbed in the
nuclear medium [58]. The unambiguous identification of
these contributions is problematic, and model dependent at
best, requiring an accurate modeling of both the pion-
production cross section and subsequent reabsorption (and
their interference). Currently, they are estimated using
Monte Carlo event generators. As a consequence, exper-
imentally extracted CCQE cross sections are accompanied
by significant uncertainties.

II. CALCULATION

The inclusive double-differential cross section for a
charged-current scattering process initiated by a neutrino
off a nuclear target can be expressed as

�
dσ

dTld cos θl

�
CC

ν=ν̄
¼ G2

Fcos
2θc

4π

jklj
Eν

½v00R00 − v0zR0z

þ vzzRzz þ vxxRxx ∓ vxyRxy�; ð2Þ

where the − or þ sign corresponds to a neutrino- (ν) or
antineutrino- (ν̄) induced reaction. We adopt the values
GF ¼ 1.1803 × 10−5 GeV−2 corrected for the bulk of the
inner radiative corrections [59], and cos θc ¼ 0.97425 [60].
The initial ν (or ν̄) and final lepton four-momenta are,
respectively, kν ¼ ðEν;kνÞ and kl ¼ ðEl;klÞ, Tl is the
kinetic energy of the lepton (rest mass ml), and θl is its
scattering angle relative to the incoming neutrino direction.
The kinematical factors vαβ associated with the contraction
of the leptonic tensor, in the general case in which the
dependence on ml is kept, are reported in Appendix A
of Ref. [49].
The nuclear response functions encode all information on

nuclear structure and dynamics, and are defined, in a
schematic notation, as (see Ref. [49] for explicit expressions)

Rαβðq;ωÞ ¼
X
f

hfjjαCCðq;ωÞjiihfjjβCCðq;ωÞjii�

× δðω − Ef þ EiÞ; ð3Þ

where jii represents the ZA ground state of energy Ei, jfi
represents the bound or scattering state of energy Ef of the
final Zþ1A or Z−1A nuclear system, depending on whether the
ðνl;l−Þ or ðν̄l;lþÞ process is being considered, of energy
Ef, jαCCðq;ωÞ are the relevant components of the weak CC,
and an average over the initial spin projections of ZA is
understood (note, however, that the 12Cground state has spin-
parity assignments Jπ ¼ 0þ). The dynamical framework
adopted in the calculations below has been described else-
where in considerable detail,most recently in the review [40].
Next, we provide a brief description for completeness.

A. Interactions and currents

Strong interactions are described by two- and three-
nucleon terms, respectively, the Argonne v18 [41] (AV18)
and Illinois-7 [42] (IL7) models. The AV18 reproduced the
nucleon-nucleon database available at the time (1995) with
a χ2/datum close to 1 [41] for lab kinetic energy up to
350 MeV, slightly above the pion-production threshold.
Even today, that the database has increased in size con-
siderably (to over 5200 data points over the energy range
0–300 MeV), the AV18 still gives (without a refit) a very
respectable χ2/datum of about 1.5 [61]. The IL7 three-
nucleon interaction model contains a small number (four)
of parameters, which characterize the overall strengths of
two- and multipion exchange terms involving Δ-isobar
excitations, and of a purely phenomenological (isospin-
dependent) central term. These parameters are constrained
by a fit to the energies of about 23 low-lying nuclear
states with mass number A in the range 3–10 [62]. The
resulting AV18+IL7 Hamiltonian then leads, in accurate
QMC calculations, to predictions for about 100 ground-
and excited-state energies up to A ¼ 12, including the 12C
ground- and Hoyle-state energies, in good agreement with
the corresponding empirical values [40].
Electroweak probes couple to single nucleons (impulse

approximation) as well as to clusters of nucleons via one-
and many-body currents. The CC model adopted in the
present study, identical to that of Ref. [49] and most
recently employed to compute the muon-capture inclusive
rates on 3H and 4He [63], contains one- and two-body
terms. The former current operators are derived from the
covariant single-nucleon CC in a nonrelativistic expansion
that retains corrections proportional up to the inverse square
of the nucleon mass. Two-body (vector and axial) terms
arise from effective π- and ρ-meson exchanges, and N-to-Δ
excitations, treated in the static limit. A ρπ transition
mechanism is also included in the axial component. In
Green’s function Monte Carlo (GFMC) calculations, we
utilize configuration-space representations of these currents
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regularized by a prescription which, by construction, makes
their short-range behavior consistent with the AV18 inter-
action [39]. The value for the transition (axial) coupling
constant g�A in the N-to-Δ axial current is determined by
reproducing, within the present dynamical framework, the
measured Gamow-Teller matrix element contributing to
tritium β decay, and is listed in Table I (Set I) of Ref. [49],
where explicit expressions for these currents can also
be found.
The (isovector) nucleon form factors in the CC vector

component are taken as functions of the squared four-
momentum transfer (Q2 ¼ q2 − ω2) from a modern fit to
the available electron scattering data [64] (in contrast to
Ref. [49], in which we adopted a simple dipole para-
metrization of these form factors). The axial form factor
GAðQ2Þ of the nucleon is of a dipole form with a cutoff
mass of either 1 or 1.15 GeV, while its induced pseudo-
scalar form factor derived from the partially conserved axial
current constraint and pion-pole dominance, is in accord
with values extracted from precise measurements of the
muon-capture rate on hydrogen and 3He [65] as well as with
predictions based on chiral perturbation theory [66,67].
Lastly, the N-to-Δ transition form factor in the vector sector
is as obtained in an analysis of γN data in the Δ-resonance
region [68], while that in the axial sector, because of the
lack of available experimental data, is simply taken to
have the same functional form of GAðQ2Þ, namely,
G�

AðQ2Þ=g�A ¼ GAðQ2Þ=gA, where g�A is the (fitted) N-to-
Δ axial coupling constant mentioned earlier. Values for the
parameters entering these axial form factors are specified
in Ref. [49].

B. Electroweak response functions

The calculation of the response functions in Eq. (3)
proceeds in two steps. The first consists of Laplace trans-
forming Rαβðq;ωÞ with respect to ω, which reduces to the
following current-current correlator (Euclidean response
function)

Eαβðq; τÞ ¼ hijjβ†CCðq;ωQEÞe−τðH−EiÞjαCCðq;ωQEÞjii; ð4Þ

where H is the Hamiltonian (here the AV18-IL7 model).
The energy dependence of jαCCðq;ωÞ comes in via the
nucleon and N-to-Δ transition form factors, which are
taken as functions of Q2, as noted above. We freeze the ω
dependence by fixingQ2 at the valueQ2

QE ¼ q2 − ω2
QE with

the quasielastic energy transfer ωQE given by ωQE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
−m (m is the nucleon mass). Fixing ω at its

QE value is needed in order to exploit the completeness
over the nuclear final states in evaluating the Laplace
transforms of Rαβðq;ωÞ. The correlator is then computed
with GFMC methods [52,53,69–72]. It should be stressed
that no additional approximations are made beyond those
inherent to the modeling of the interactions and currents.

The response is thus calculated ab initio by treating
completely correlations in the initial state, by accounting
consistently through the imaginary-time propagation for
interaction effects in the final states, and, in particular, by
retaining in full the important interference between one- and
two-nucleon currents.
Because of the computational cost of the present study

(of the order of 130 × 106 core hours on the massively
parallel computer MIRA at ANL), however, we propagate
only the Z−1A system; i.e., jαCC in Eq. (4) is the charge-
lowering current corresponding to the process ðν̄l;lþÞ. If
electromagnetic interactions and isospin-symmetry-break-
ing terms in the strong interactions were to be ignored, the
final states jf; Zþ1Ai and jf; Z−1Ai of the Zþ1A and Z−1A
nuclear systems would simply be related to each other via
jf; Zþ1Ai ¼ ðQi τi;xÞjf; Z−1Ai, where τi;x is the isospin flip
operator converting proton i into a neutron or vice versa.
Matrix elements of the charge-raising and charge-lowering
current between the ZA state and, respectively, the Zþ1A and
Z−1A states would then be identical. We assume here this is
the case for 12C and obtain the response functions corre-
sponding to the ðνl;l−Þ process from those corresponding
to the ðν̄l;lþÞ process by correcting the final-state energies
of the 12B system by the difference in ground-state energies
between 12N and 12B—in practice, by shifting the response
functions by about 5.5 MeV. We expect this approximation
to be inaccurate in the threshold region; however, in
quasielastic kinematics and beyond, it should be of little
importance.
The second step employs maximum-entropy techniques

developed specifically for this type of problem in Ref. [71]
(a fairly complete account of them is given in that work) to
perform the analytic continuation of the Euclidean response
functions corresponding to the “inversion” of the Laplace
transforms. The resultingRαβðq;ωQEÞ are rescaled as follows
to account for the correct ω dependence of the various form
factors. The 00, 0z, zz, and xx response functions are given
by the incoherent sum of the (squared) matrix elements
associated with the CC vector (V) and axial (A) components,
while the xy response function involves interference between
these components. The 00, 0z, and zz V contributions are
multiplied by the factor ½GV

EðQ2Þ=GV
EðQ2

QEÞ�2 and the xx V
contribution by ½GV

MðQ2Þ=GV
MðQ2

QEÞ�2, where GV
E and GV

M

are the isoscalar and isovector combinations of the proton (p)
and neutron (n) electric (E) and magnetic (M) form factors
(in the parametrization of Ref. [64]). These multiplicative
factors naturally emerge by considering the dominant one-
body terms in the CC V current.
The 0, 0z, zz, and xx A contributions are multiplied by

the factor ½GAðQ2Þ=GAðQ2
QEÞ�2. For these contributions,

such a rescaling turns out to fully restore the correct ω
dependence, since the one- and two-body axial currents,
including those associated with Δ-isobar intermediate
states, are proportional to GAðQ2Þ in the present modeling
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[49]. Lastly, the interference response is rescaled by the
factor ½GAðQ2Þ=GAðQ2

QEÞ� × ½GV
MðQ2Þ=GV

MðQ2
QEÞ�. Below,

we show that the procedure above essentially accounts for the
correct ω dependence implicit in the complete CC response.
The five response functions entering the CC cross

section are calculated with GFMC methods for momentum
transfers in the range (100–700) MeV in steps of 100 MeV.
To reduce clutter, we present in Fig. 1 only those obtained
at q ¼ 300, 500, and 700 MeV (note that the scales for Rαβ

are different in each panel) [73]. The transverse (xx) and
interference (xy) response functions are largest but of
opposite sign (the xy response as defined here is negative).
Consequently, the contributions vxxRxx and vxyRxy in the
CC cross section add up for neutrino scattering and tend to
cancel each other out for antineutrino scattering (the
kinematical factors vxx and vxy are positive [49]).
Two-body terms in the CC significantly increase the

magnitude of the response functions obtained in impulse
approximation (i.e., with one-body currents), over the
whole quasielastic region, except for R00 at low ω. This
increase in strength mostly comes about because of con-
structive interference between the one- and two-body
current matrix elements, and is consistent with that
expected on the basis of sum rule analyses [74]. Two-body
contributions are found to be especially large—accounting
for more than 50% of the total calculated strength—in Rzz,
which involves the longitudinal components (along the
direction of the three-momentum transfer) of the CC.
As shown by our calculations carried out for the 4He

nucleus [75], and consistent with the findings of
Refs. [76,77], the enhancement of the response functions
at quasielastic kinematics brought about by two-body
currents is mostly due to the interference between one-
and two-body terms in the charge-changing current oper-
ators. On the other hand, this interference plays a minor role
at large energy transfer, where the pure two-body current
contributions become dominant.

C. Scaling analysis

The analysis of scaling properties of nuclear response
functions has proven to be a useful tool to elucidate
important aspects of the many-body dynamics in the
quasielastic region. Scaling occurs when the electroweak
response functions divided by appropriate prefactors
describing single-nucleon physics no longer depend upon
the momentum q and energy transfer ω, but only on a
specific function of them ψðq;ωÞ, yielding

Rαβ

Gαβ
≃

1

kF
fαβðψÞ; ð5Þ

where kF is the Fermi momentum of the system. In the
nonrelativistic limit, the scaling variable is given by [78]

FIG. 1. GFMC response functions at q ¼ 300 (red), 500 (blue),
and 700 (green) MeV. Predictions obtained with one-body
(one- and two-body) currents are shown by dash (solid) lines.
Shaded areas result from a combination of GFMC statistical
errors and uncertainties associated with the maximum-entropy
inversion.
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ψ ¼ m
qkF

�
ω −

q2

2m
− ϵ

�
; ð6Þ

where ϵ is introduced to account for nuclear binding effects.
The prefactors associated with the electromagnetic

longitudinal and transverse responses can be found in
Ref. [78]. Here we extend the scaling analysis to the five
response functions relevant for neutrino-nucleus scattering
induced by CC transitions. The (longitudinal and trans-
verse) prefactors associated with vector currents are related
to those of (isovector) electromagnetic currents by the
conserved vector current constraint; the prefactors associ-
ated with axial currents bring about additional terms, whose
relativistic expressions can be found in Ref. [79].
Within the Fermi gas model [3], the following scaling

function can be analytically derived,

fFGαβ ðψÞ ¼
3

4
ð1 − ψ2Þθð1 − ψ2Þ; ð7Þ

by assuming one-body currents only. However, unlike the
latter expression, which is symmetric and centered on
ψ ¼ 0, the scaling functions extracted from experimental
data and those inferred from more realistic models of
nuclear dynamics exhibit a clearly asymmetric shape, with
a tail extending in the ψ > 0 region [80]. Moreover, while
the Fermi gas scaling function is universal and does not
depend upon the specific transition operator, such is not the
case when the spin and charge dependence of nuclear
interactions in the final states are taken into account [70].
The xx (xy) scaling functions displayed in the upper two

(lower two) panels of Fig. 2 are obtained as in Eq. (5), i.e.,
by dividing the GFMC electroweak response functions in
the transverse (interference) channel by the appropriate
prefactors for the CC vector and axial components. The
upper and lower panels for each set (xx and xy) correspond
to including one-body only, and one-and two-body, current
operators. The dotted (red), dashed (blue), and solid (green)
lines show the xx and xy scaling functions for q ¼ 500,
600, and 700 MeV, respectively. The shaded area indicates
the uncertainty in the maximum-entropy inversion pro-
cedure and also reflects the statistical errors of the GFMC
calculations. The xy scaling functions shown in the lower
two panels of Fig. 2 are almost identical to the xx ones in
both cases (one-body only, and one- and two-body cur-
rents). In contrast to the Fermi gas model, nuclear corre-
lations in the initial and final states, which are exactly
treated in the GFMC method, yield asymmetric scaling
functions, with tails that extend well beyond ψ > 1. Note
that the scaling functions can be significantly different in
the other channels, for example, the longitudinal and
transverse response in electron scattering [28].
The different curves clearly exhibit a scaling behavior, as

they are almost independent of momentum transfer. This is
expected to be even more accurate at larger q values. More
interesting is the observation that scaling persists even

when two-body current contributions are included in the
response functions, as shown in the second and fourth
panels of Fig. 2. While these contributions generate
significant excess strength in fxx and fxy, they do not
spoil their scaling properties. An explanation of these
features can be found in Ref. [77] for the case of the
electromagnetic response, and similar considerations
remain valid here. In essence, in the xx and xy responses,
the excess strength seen in the quasielastic region comes
about because two-body currents lead to final states which
are very similar to those produced by an electroweak
interaction vertex on a single nucleon followed by the

FIG. 2. Transverse scaling functions obtained from Rxx and Rxy
including only one-body, and one- and two-body terms in the CC
denoted, respectively, as f1bxx and f1bxy , and f12bxx and f12bxy . The
different curves are obtained for three different values of the
moment transfer.
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subsequent high-momentum strong interaction of this
nucleon with another nucleon. The resulting (constructive)
interference between the corresponding matrix elements
generates excess strength which is spread out over the
quasielastic peak region in a way very similar to the
response arising from the high-momentum part of the
single-nucleon currents associated with pion exchange
interactions. We defer to Ref. [77] for a more comprehen-
sive discussion of scaling in the present context of micro-
scopic Hamiltonians and currents. This reference also
discusses superscaling [15]—scaling with respect to the
mass number—and the absence of scaling observed in the
Δ-resonance region.
An analogous scaling behavior is also seen in the 00, 0z,

and zz channels. We capitalize on this feature in order to
extrapolate the response functions at large momentum
transfers q > q̄ ¼ 700 MeV, that is, beyond the range of
those calculated with GFMC methods. It turns out they are
needed when computing flux-folded cross sections (see
Sec. III below). We parametrize them as

Rαβðq > q̄;ωÞ ¼ Gαβðq;ωÞfαβðψÞ; ð8Þ

where fαβðψÞ are the scaling functions determined from
the GFMC-calculated responses at q̄. The underlying
assumption is that the fαβðψÞ for q > q̄ coincide with
those at q̄. To account for the small scaling violations, we
conservatively associate an uncertainty to this extrapolation
procedure corresponding to twice the difference between
the scaling functions at q ¼ 600 and 700 MeV.

III. RESULTS

Muon neutrino and antineutrino flux-averaged cross
sections are obtained from

�
dσ

dTμd cos θμ

�
¼

Z
dEνϕðEνÞ

dσðEνÞ
dTμd cos θμ

; ð9Þ

where ϕðEνÞ is the normalized νμ or ν̄μ flux—those for
MiniBooNE and T2K are shown in Fig. 3—and
dσðEνÞ=ðdTμd cos θμÞ are the corresponding inclusive cross
sections of Eq. (2). The experimental data are binned in
cos θμ bins of constant width (0.1) for MiniBooNE, and
varying widths for T2K; when comparing to these data, the
calculated cross sections are averaged over the relevant
cos θμ bin.
Predictions for the flux-averaged cross sections on 12C

corresponding to the two experiments and obtained by
including one-body only and one- and two-body currents
are shown by, respectively, dashed (green) and solid (blue)
lines in Figs. 4–6. The shaded areas result from combining
statistical errors associated with the GFMC evaluation of
the Euclidean response functions, uncertainties in the
maximum-entropy inversion of them, and uncertainties
due to extrapolation of the response functions outside
the calculated ðq;ωÞ range, which is 100 MeV ≤ q ≤
700 MeV and ω from threshold to ω≲ q. This extrapola-
tion is carried out by exploiting the scaling property of the
various response functions, as outlined at the end of
the previous section. The large cancellation between the
dominant terms proportional to vxxRxx and vxyRxy in
antineutrino cross sections leads to somewhat broader error
bands than for the neutrino cross sections, for which those
terms add up. Furthermore, we note that the cross-section
scales in Figs. 4 and 5 are different, those for the ν̄μ-CCQE
data being a factor of about 2 to 10 smaller than for the
ν-CCQE data as the muon scattering angle increases from
0° to 90°.
Overall, the MiniBooNE νμ and ν̄μ and T2K νμ data are

in good agreement with theory, when including the con-
tributions of two-body currents. This is especially notice-
able in the case of the MiniBooNE νμ data at forward
scattering angles. However, the calculated cross sections
underestimate somewhat the MiniBooNE νμ data at pro-
gressively larger muon kinetic energy Tμ and backward
scattering angles θμ, and the ν̄μ data at forward θμ over the
whole Tμ range. By contrast, the full theory (with one- and
two-body currents) appears to provide a good description
of the T2K νμ data over the whole measured region.
For a given initial neutrino energy Eν, the calculated

cross section is largest at the muon energy Tμ correspond-
ing to that of the quasielastic peak,

TQE
μ þmμ ≈

Eν

1þ 2ðEν=mÞ sin2 θμ=2
; ð10Þ

where m is nucleon mass, and on the rhs of the equation
above we neglect the muon mass. The position of the
quasielastic peak then moves to the left, toward lower and
lower TQE

μ , as θμ changes from the forward to the backward
hemisphere. The general trend expected on the basis of this
simple picture is reflected in the calculation and data, even

FIG. 3. Normalized νμ fluxes of MiniBooNE and T2K, and
normalized ν̄μ flux of MiniBooNE.
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though the cross sections in Figs. 4–6 result from a folding
with the neutrino flux, which is far from being mono-
chromatic. Nevertheless, the correlation between peak
location in the flux-averaged cross sections and θμ remains.
For example, the T2K flux is largest at Eν ≈ 560 MeV and
fairly narrow; hence, one would expect the T2K flux-
averaged cross section be peaked at the muon momentum
pQE
μ ≈ 550 MeV for cos θμ ¼ 1, and pQE

μ ≈ 450 MeV for
cos θμ ¼ 0.65, in reasonable accord with the data of Fig. 6.
In Figs. 4 and 5, we also present the flux-folded νμ and ν̄μ

cross sections obtained in plane-wave-impulse approxima-
tion (PWIA) for three different bins in cos θμ (correspond-
ing to the forward, intermediate, and backward region) of
the MiniBooNE data. We adopt here the most naive

(nonrelativistic) formulation of PWIA based on the single-
nucleon momentum distribution rather than the spectral
function [81]. Hence, the PWIA response functions follow
from

RPWIA
αβ ðq;ωÞ ¼

Z
dpNðpÞxαβðp;q;ωÞ

× δ

�
ω − Ē −

jpþ qj2
2m

−
p2

2mA−1

�
; ð11Þ

where the factors xαβðp;q;ωÞ denote appropriate combi-
nations of the CC components (the same single-nucleon CC
utilized in the GFMC calculations), and NðpÞ is the
nucleon momentum distribution in 12C (as calculated in

FIG. 4. MiniBooNE flux-folded double-differential cross sections per target neutron for νμ-CCQE scattering on 12C displayed
as a function of the muon kinetic energy (Tμ) for different ranges of cos θμ. The experimental data and their shape uncertainties are
from Ref. [55]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA ¼ 1.0 GeV.
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Ref. [82]). The effects of nuclear interactions are subsumed
in the single-parameter Ē, which can be interpreted as an
average separation energy (we take the value Ē ≈ 20 MeV).
The remaining terms in the δ function are the final energies
of the struck nucleon and recoiling (A − 1) system of mass
mA−1. From these RPWIA

αβ , we obtain the corresponding flux-
folded cross sections shown in Figs. 4 and 5 by the short-
dashed (black) line labeled PWIA. Also shown in this
figure by the dot-dashed (purple) line (labeled PWIA-R)
are PWIA cross sections obtained by first fixing the
nucleon electroweak form factor entering xαβðp;q;ωÞ at
Q2

QE, and then rescaling the various response functions by
ratios of these form factors, as indicated in Sec. II B.
A couple of comments are in order. First, the cross

sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body
currents (curves labeled GFMC 1b): They are found to

be systematically larger than the GFMC predictions,
particularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the
increase produced by two-body currents in the GFMC
calculations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.
Second, the PWIA and PWIA-R cross sections are very

close to each other, except in the ν̄ case at backward angles.
In this kinematical regime, there are large cancellations
between the dominant terms proportional to the transverse
and interference response functions; indeed, as θμ changes
from 0° to about 90°, the ν̄ cross section drops by an order
of magnitude. As already noted, these cancellations are also
observed in the complete (GFMC 12b) calculation and lead
to the rather broad uncertainty bands in Fig. 5. Aside from
this qualification, however, the closeness between the

FIG. 5. Same as Fig. 4 but for ν̄μ-CCQE scattering. The experimental data and their shape uncertainties are from Ref. [56].
The additional 17.4% normalization uncertainty is not shown here.
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PWIA and PWIA-R results provides corroboration for the
validity of the rescaling procedure of the electroweak form
factors needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We report on an ab initio study based on realistic nuclear
interactions and electroweak currents of neutrino (and
antineutrino) inclusive scattering on 12C in the CCQE
regime of the MiniBooNE and T2K data. Nuclear response
functions are calculated with QMC methods and, therefore,
within the description of nuclear dynamics that we adopt
here, fully include the effects of many-body correlations
induced by the interactions in the initial and final states
and correctly account for the important (constructive)

interference between one- and two-body current contribu-
tions. This interference leads to a significant increase in the
cross-section results obtained in impulse approximation
and is important for bringing theory into much better
agreement with experiment.
The nucleon and nucleon-to-Δ electroweak form factors

entering the currents are taken from modern parametriza-
tions of elastic electron scattering data on the nucleon and
deuteron, and neutrino scattering data on the proton and
deuteron. In particular, the Q2 dependence of the nucleon
axial form factor GAðQ2Þ is of a dipole form with a cutoff
ΛA ¼ 1 GeV. The nucleon-to-Δ axial coupling constant g�A
is fixed by reproducing the Gamow-Teller matrix element
measured in tritium β decay, while theQ2 dependence of its
(transition) form factorG�

AðQ2Þ is simply assumed to be the

FIG. 6. T2K flux-folded double-differential cross sections per target neutron for νμ-CCQE scattering on 12C displayed as a function of
the muon momentum pμ for different ranges of cos θμ. The experimental data and their shape uncertainties are from Ref. [57].
Calculated cross sections are obtained with ΛA ¼ 1.0 GeV.
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same as that of GAðQ2Þ, since no experimental information
is currently available on G�

AðQ2Þ.
First-principles lattice QCD (LQCD) calculations of

nucleon (and, possibly, nucleon-to-Δ) electroweak form
factors could potentially have a significant impact on
calculations of neutrino-nucleus cross sections, since these
form factors constitute essential inputs to the nuclear CC.
LQCD data for GAðQ2Þ and the induced pseudoscalar form
factor GPðQ2Þ, whose Q2 dependence is experimentally
poorly known, would be of particular interest. In this
context, it is interesting to note that recent LQCD studies
[47,48,83] find theQ2 falloff ofGAðQ2Þwith increasingQ2

significantly less drastic than implied by the dipole behav-
ior with ΛA ¼ 1 GeV. They also find the nucleon isovector
vector form factors in agreement with experimental data,

which are of course quite accurate. These calculations
suggest a larger value of ΛA may be appropriate. We
investigate the implications of this finding by presenting in
Fig. 7 the flux-folded cross sections (for MiniBooNE and
selected bins in cos θμ) obtained by replacing in the dipole
parametrization the cutoff ΛA ¼ 1 GeV with the value
Λ̃A ¼ 1.15 GeV. As expected, this replacement leads gen-
erally to an increase of the GFMC predictions over the
whole kinematical range. Since the dominant terms in the
cross section proportional to the transverse and interference
response functions tend to cancel for ν̄μ, the magnitude of
the increase turns out to be more pronounced for νμ than for
ν̄μ; as a matter of fact, the ν̄μ cross sections are reduced at
backward angles (0.1 ≤ cos θμ ≤ 0.2). Overall, it appears
that the harder cutoff implied by the LQCD calculation of

FIG. 7. The flux-folded GFMC cross sections for selected bins in cos θμ obtained by replacing in the dipole parametrization the cutoff
ΛA ¼ 1 GeV with the value Λ̃A ¼ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows correspond to the
MiniBooNE flux-folded νμ and ν̄μ CCQE cross sections, respectively; the last row corresponds to the T2K νμ CCQE data. In the
theoretical curves, the total one- plus two-body current contribution to the cross section is displayed.
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GAðQ2Þ improves the accord of theory with experiment,
marginally for ν̄μ and more substantially for νμ. In view of
the large errors and large normalization uncertainties of the
MiniBooNE and T2K data, however, we caution the reader
from drawing too definite conclusions from the present
analysis. Indeed, more precise nucleon form factors can be
obtained through further lattice QCD calculations or
experiments on the nucleon and deuteron, respectively.
Of course, many challenges remain ahead, to mention

just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (notably
40Ar). While some of these issues, for example, the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [84], could conceivably
be incorporated in the present GFMC approach, it is out of
the question that such an approach could be utilized to
describe the Δ-resonance region of the cross section or,
even more remotely, extended to nuclei with mass number
much larger than 12, at least for the foreseeable future. In
fact, it may be unnecessary, as more approximate methods
exist to deal effectively with some of these challenges,
including factorization approaches based on one- and two-
nucleon spectral functions [29,85] or on the short-time
approximation of the nuclear many-body propagator [77]
for relativity and pion production, and auxiliary-field-
diffusion Monte Carlo methods [86] to describe the ground
states of medium-weight nuclei. We are optimistic that the
next few years will witness substantive progress in the
further development and implementation of these approxi-
mate methods to address the high-energy region of the
nuclear electroweak response. Nevertheless, the present
ab initio study should provide useful benchmarks against
which these as well as more phenomenological approaches
to electron-nucleus scattering can be calibrated and vali-
dated, at least in the quasielastic regime.
Finally, factorization approaches can also be helpful in

obtaining some information on exclusive final states. For
more complete treatment of exclusive hadronic final states
or of low-energy peaks in the threshold region of the
response, quantum computers could play a role, given
sufficient size and sufficiently low error rates [87,88].
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