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We investigate unpolarized and polarized gluon distributions and their applications to the Ioffe-time
distributions, which are related to lattice QCD calculations of parton distribution functions. Guided by the
counting rules based on the perturbative QCD at large momentum fraction x and the color coherence of
gluon couplings at small x, we parametrize gluon distributions in the helicity basis. By fitting the
unpolarized gluon distribution, the inferred polarized gluon distribution from our parametrization agrees
with the one from global analysis. A simultaneous fit to both unpolarized and polarized gluon distributions
is also performed to explore the model uncertainty. The agreement with the global analysis supports the
(1 − x) power suppression of the helicity-antialigned distribution relative to the helicity-aligned
distribution. The corresponding Ioffe-time distributions and their asymptotic expansions are calculated
from the gluon distributions. Our results of the Ioffe-time distributions can provide guidance to the
extrapolation of lattice QCD data to the region lacking precise gluonic matrix elements. Therefore, they can
help regulate the ill-posed inverse problem associated with extracting the gluon distributions from discrete
data from first-principle calculations, which are available in a limited range of the nucleon momentum and
the spatial separation between the gluonic currents. Given various limitations in obtaining lattice QCD data
at large Ioffe time, phenomenological approaches can provide important complementary information to
extract the gluon distributions in the entire momentum fraction region, especially at small x. The possibility
of investigating higher-twist effects and other systematic uncertainties in the contemporary first-principle
calculations of parton distributions from phenomenologically well-determined Ioffe-time distributions in
the large Ioffe-time region is also discussed.
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I. INTRODUCTION

One of the outstanding problems in nuclear and particle
physics is to understand the structure of hadrons in terms of
quarks and gluons, the fundamental degrees of freedom in
QCD. Gluons, which serve as mediator bosons of the
strong interaction while also carrying the color charge, play
a key role in the nucleon’s mass and spin. With great
progress in the extraction of nucleon parton distribution
functions (PDFs) in the past decades, especially the quark
distributions, the understanding of the gluon distribution

and its role in hadron structures remains one of the most
challenging but fundamental issues in nuclear and particle
physics.
Given the fact that no free quarks or gluons have been

observed due to the confinement, most analyses of hadron
involved high energy scatterings rely on the QCD factori-
zation, where PDFs play an important role. Compared to
quark distributions, the gluon distribution is less accurately
extracted, which may affect the calculation of the cross
section of a process dominated by the gluon-fusion
channel, e.g., the Higgs boson production at the LHC
[1]. While the precision of the extracted gðxÞ has been
improved a lot during the last decade, there are still some
issues like the suppression in the momentum fraction
region 0.1 < x < 0.4 when ATLAS and CMS jet data
are included [2]. Obtaining a more precise determination of
gðxÞ is subject to ongoing efforts in global analyses of
PDFs. In contrast to the unpolarized PDFs, the polarized
PDFs, especially the polarized gluon distribution ΔgðxÞ as
well as sea quark distributions, are poorly determined, even
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the sign is not fully determined. One of the main physics
goals of the upcoming Electron-Ion-Collider (EIC) [3] is to
have precise measurements of the nucleon spin structure,
particularly the gluon and sea quark distributions.
It has been 30 years since the EMC experiment [4],

which found that only a small fraction of the nucleon spin is
carried by the quark spin and triggered the so-called proton
spin puzzle. The remaining part of the proton spin is usually
assigned to the orbital angular momenta and the gluon spin.
After significant efforts in the last decades, the quark spin
part was found to contribute only about 30% to the proton
spin. Recent experimental data from RHIC and lattice
QCD calculation suggest that gluon may contribute a large
amount to the proton spin. For a recent review, see [5].
There have been several global analyses using different
experimental data sets and different types of parametriza-
tions [6–9] to impose constraints on ΔG. A recent extrac-
tion with updated data sets and PHENIX measurement [10]
of double helicity asymmetry in inclusive π0 production
in polarized p − p collision obtained ΔG ¼ 0.2 with a
constraint of −0.7 < ΔG < 0.5 for the sampled gluon
momentum fraction x∈ ½0.02;0.3�. Excluding the x<0.05
region, the value of ΔG ¼ R

0.2
0.05 dxΔgðxÞ ¼ 0.23ð6Þ [11]

and ΔG ¼ R
1
0.05 dxΔgðxÞ ¼ 0.19ð6Þ [12] were obtained.

Future experimental measurement of ΔgðxÞ in the x < 0.02
is required to reduce the uncertainty in ΔG. We note that
ΔgðxÞ extracted mostly from the double longitudinal spin
asymmetry is always limited to some xmin no matter how
high the energy of the experimental setup is, and some
theoretical calculations are required to constrain ΔgðxÞ at
low x [13]. Fortunately, one of the major goals of the
upcoming EIC [3] is to precisely explore ΔgðxÞ at low x
and provide stringent constraints on the gluon helicity
distribution.
Since ΔG is not related to the local matrix element of a

gauge invariant operator, it could not be directly calculated
in the lattice QCD (LQCD) calculations. However, follow-
ing the formalism proposed in [14], it has become possible
to calculate ΔG in terms of a local and gauge invariant
operator in LQCD. Since then, there has only been one
direct LQCD calculation [15,16] of the gluon spin content
in the nucleon. With leading-order matching using Ji’s
large-momentum effective theory (LaMET) [17,18], it was
determined that ΔGðμ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ,
i.e., about 50% of the proton spin comes from the gluons.
However, a refined study with the investigation of the
convergence of matching beyond 1-loop, the estimate of
power corrections, and other sources of systematic uncer-
tainties are warranted to obtain an unambiguous determi-
nation of ΔG in the future LQCD calculations.
Now, the PDFs of the quarks and gluons contain the

nonperturbative structure of hadrons, especially at the low-
resolution scale Q2. However, the possibility that even at
low Q2 one can obtain a reasonable shape and distribution
of the hadron structure functions by transcribing our

knowledge of the perturbative QCD (pQCD) based count-
ing rules [19] as x → 1 and color coherence of gluon
couplings as x → 0 has been shown to provide promising
outcomes in many theoretical calculations. For example,
calculations of the unpolarized and polarized quark and
gluon PDFs in [20,21] showed practical application of
these limiting behaviors of PDFs by obtaining PDFs in
agreement with the analysis in [22]. The momentum
fraction carried by the gluon in the nucleon hxig ≈ 0.42
determined in [21] is in remarkable agreement with recent
global analyses [23–25]. To emphasize further, most of
the earlier and present-day global analyses [23,24,26,27]
use some functional forms similar to xαð1 − xÞβF ðxÞ
where the asymptotic behavior of the PDFs at small x
(xα behavior) is adopted from the observed Regge behav-
ior [28] in particle colliders and the large-x behavior
[ð1 − xÞβ falloff] based on the power counting rules for
hard scattering [19] with some interpolating function
F ðai; bi;…; xÞ with unknown parameters ai; bi; � � �
between these two limits that varies in different para-
metrizations of PDFs. Once these PDFs are determined
at some initial scale, their Q2-evolution is well predicted
in pQCD through the DGLAP equation [29–31]. These
PDFs determined at the low initial scale have been shown
to be universal between different reactions with their
scale-dependent modifications governed by pQCD evo-
lution and therefore indicated that these nonperturbative
universal PDFs can indeed be well approximated even at
low Q2 by incorporating pQCD constraints at large x
and Regge behavior at small x. Very good agreement
and consistent behavior of the nucleon unpolarized
PDFs and precise prediction of nucleon polarized distri-
butions from the unpolarized PDFs have also been
possible in recent calculations [32,33] where the PDFs
are governed by these limiting behaviors. Similarly,
recent synergies between LQCD and phenomenological
calculations have provided useful constraints in the
study sea-quark asymmetry in the nucleon with higher
precision than either theory or experiment alone could
attain [34,35].
In light of the above discussions, we revisit the calcu-

lations in [20,21] which incorporated pQCD constraints
at large x and coherent correlations of partons at low x
to determine unpolarized and polarized gluon distributions.
These calculations [20,21] demonstrated that many proper-
ties of the exclusive reactions can be calculated by
incorporating the knowledge of asymptotic freedom,
power-law scaling, and helicity conservation rules of
pQCD without explicit knowledge of the nonperturbative
light-front wave function.
The main goal of this article is to transcribe these insights

from the small and large x physics and compare how
adequate and compatible they are with the recent determi-
nations of gluon distributions. We emphasize this calcu-
lation does not aim to provide the precise determination of
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the gluon PDFs, rather our main focus is to determine the
shapes of the gluon PDFs based on these simple constraints
in the small and large x-regions. Here we point out that, we
do not focus here on the important aspects of gluon
distributions at extremely small x-values which has been
discussed in the literature [36–42]. Another important goal
of the upcoming EIC is to explore the very low-x region
where saturation of gluon densities sets in [43,44] and has
not yet been conclusively observed. Parton distributions at
extremely small-x is an active field of research and we
avoid the discussion of the related complication here. We
first determine the unknown coefficients in the parametri-
zation of helicity aligned gþðxÞ and antialigned g−ðxÞ
gluon distributions using the global fits of unpolarized
gluon distribution and use those to calculate the polarized
gluon distribution and gluon asymmetry distribution
ΔgðxÞ=gðxÞ. We calculate the corresponding Ioffe-time
distributions (ITDs) [45–47] of the unpolarized and polar-
ized gluon distributions and demonstrate how these can
provide valuable information and important constraints in
the determination of full x-dependence of PDFs and also
their higher moments in the future LQCD calculations. In
particular, we determine the asymptotic behavior of the
unpolarized and polarized gluon ITDs which are not
accessible within the current reach of LQCD calculations
and can provide complementary information to reconstruct
the full x-dependence of the unpolarized and polarized
gluon distributions.

II. GLUON DISTRIBUTIONS FROM
HELICITY-BASIS PARAMETRIZATION

To construct the parametrization of the helicity-basis
gluon distributions, gþðxÞ for helicity-aligned distributions
and g−ðxÞ for helicity-antialigned distribution, we consider
the counting rules based on perturbative QCD analysis
[21]. Compared to valence quark distributions, which fall
off as ð1 − xÞ3 as x → 1, gþðxÞ is suggested to fall-off faster
as ð1 − xÞ4 and g−ðxÞ is expected to be further sup-
pressed by ð1 − xÞ2. Although the (1 − x) power behavior
qualitatively provides the falloff feature of the distribu-
tions at large x, the exact power values depend on the
scale, which is not specified in the perturbative QCD
analysis [21]. Instead of strictly imposing the power
counting as x → 1 and the Pomeron intercept as x → 0,
we only take them as guidance and phenomenologically
introduce two parameters α and β to allow the variation
of the power behavior at small and large x regions as
usually adopted in global analyses. For a good descrip-
tion of the gluon distribution in the full-x region, we also
include a polynomial ð1þ γ

ffiffiffi
x

p þ δxÞ with parameters γ
and δ to be fitted. As a modification of the functional
form utilized in [21] by including the polynomial,
we parametrize the helicity-aligned and the helicity-
antialigned gluon distributions as

xgþðxÞ ¼ xα½Að1 − xÞ4þβ þ Bð1 − xÞ5þβ�
× ð1þ γ

ffiffiffi
x

p þ δxÞ;
xg−ðxÞ ¼ xα½Að1 − xÞ6þβ þ Bð1 − xÞ7þβ�

× ð1þ γ
ffiffiffi
x

p þ δxÞ; ð1Þ

where A and B are normalization parameters to be
determined. The inclusion of the subleading term in the
power of (1 − x) is to account for the contribution from
higher Fock state. For each term, the power of (1 − x)
differs by 2 as suggested by the pQCD analysis [21].
We refer to the parametrization form Eq. (1) as the
ansatz-1.
As a phenomenological exploration, we consider another

option of g−ðxÞ being suppressed by one power of (1 − x)
in comparison with the gþðxÞ. This results in the para-
metrization,

xgþðxÞ¼ xα½Að1−xÞ4þβþBð1−xÞ5þβ�ð1þ γ
ffiffiffi
x

p þδxÞ;
xg−ðxÞ¼ xα½Að1−xÞ5þβþBð1−xÞ6þβ�ð1þ γ

ffiffiffi
x

p þδxÞ;
ð2Þ

which we refer to as the ansatz-2. As we will discuss
later, fixing the (1 − x) power difference between gþðxÞ
and g−ðxÞ introduces a model bias, which leads to an
underestimation of the uncertainties. To investigate the
model uncertainty, we consider a more flexible para-
metrization,

xgþðxÞ¼ xα½Að1−xÞ4þβþBð1−xÞ5þβ�ð1þ γ
ffiffiffi
x

p þδxÞ;
xg−ðxÞ¼ xα½Að1−xÞ6þβ0 þBð1−xÞ7þβ0 �ð1þ γ0

ffiffiffi
x

p þδ0xÞ;
ð3Þ

where the (1 − x) exponents and the polynomial coef-
ficients in gþðxÞ and g−ðxÞ are independent parameters.
We refer to this parametrization as ansatz-3. We note that
all these ansatzes have the ΔgðxÞ approaching to 0 as
x → 0. This indicates that the helicity correlation between
the gluon and its parent nucleon disappears when x → 0,
where the relative rapidity becomes infinity. The satu-
ration effect may suppress the evolution of helicity
distributions at small-x and consequently leave a small
amount of spin contribution in the small-x region [13,48].
Since the goal of this paper is not the small-x distribu-
tion, we limit to the assumption above in this study and
restrict the subsequent analyses in the x ≥ 10−3 region.
With the parametrization of the helicity-aligned and the

helicity-antialigned gluon distributions, one can directly
obtain the unpolarized and polarized gluon distributions
from the sum and the difference of them,

xgðxÞ≡ xgþðxÞ þ xg−ðxÞ; ð4Þ
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xΔgðxÞ≡ xgþðxÞ − xg−ðxÞ: ð5Þ

To determine the parameters in ansatz-1 and ansatz-2, we
fit the unpolarized gluon distribution from the NNPDF
global analysis [25] at the factorization scale μ ¼ 2 GeV.
Our procedure described here can be applied to any other
gluon distribution given by global analyses [23,24,26,27]
or model calculation. To fit the distribution in the full-x
range, we select 200 points in x values. 100 of them are
equally separated from 10−4 to 10−1 in the logarithmic scale
and the other 100 x-values are equally separated from 10−1

to 1 in the linear scale. Each point is weighted by the
inverse square of its uncertainty given by the global
analysis. We take the 100 replicas of the gluon distribution
from NNPDF3.1 NLO PDF set [25]. For each replica, we
perform a fit to determine the parameters. In the end, we
have 100 sets of parameters, which determine the gluon
distributions following the ansatz-1 or the ansatz-2. For the
ansatz-3 in which the parameters β, γ and δ are chosen
independently for gþðxÞ and g−ðxÞ, we perform a simulta-
neous fit to the unpolarized [25] and polarized [11] gluon
distributions. In this case, the result of the polarized
gluon distribution is driven by the global fit. As a result,
the polarized gluon distribution associated with ansatz-3
has a better match with the NNPDF global analysis. The
results of the unpolarized gluon distribution are compared
with the global analysis in Fig. 1, where the central value is
evaluated from the average value of the 100 replicas for
each ansatz and the uncertainty band is the standard
deviation among them. One can observe that the three
ansatzes have almost indifferentiable results and match the

global analysis well. For completeness, we list the fitted
values of the parameters in Table I.
From the definition of the polarized gluon distribution in

Eq. (5), we now obtain the polarized gluon distribution
based on the above fit results of xgþðxÞ and xg−ðxÞ. Unlike
the unpolarized distribution, the results of ΔgðxÞ deter-
mined from ansatz-1, 2, and 3 have observable difference,
especially in the region 10−2 ≲ x≲ 0.5, as shown in Fig. 2.
However, all these determinations of xΔgðxÞ are in good
agreement within the uncertainty range of the NNPDF
global analysis with a noticeable difference between the
NNPDF and ansatz-1 distributions in the 0.09≲ x≲ 0.2
region. We note that the small uncertainties of ΔgðxÞ from
ansatz-1 and ansatz-2 are biased by the parametrization
form, Eqs. (1) and (2), where the (1 − x) power difference
are fixed between gþðxÞ and g−ðxÞ. For the ansatz-3, we
introduce independent parameters for the (1 − x) powers
and the polynomial parts of the two helicity basis

FIG. 1. Unpolarized gluon distributions obtained by fitting
ansatz-1 [Eq. (1)], ansatz-2 [Eq. (2)], and ansatz-3 [Eq. (3)] to the
NNPDF distribution at the factorization scale μ ¼ 2 GeV. The
gray band shows the unpolarized gluon distribution xgðxÞ as
given by the NNPDF global analysis. The blue, red, and cyan
bands labeled by ansatz-1, ansatz-2, and ansatz-3 show distri-
butions determined according to ansätze-1, 2, and 3 for the
xgþðxÞ and xg−ðxÞ distributions, respectively.

TABLE I. The fitted values of parameters in the three para-
metrization ansatzes. The second row of ansatz-3 gives the values
of parameters β0, γ0, and δ0.

Ansatz α β γ δ

1 0.036�0.058 0.95�1.28 −2.80�0.63 2.62�0.95
2 0.034�0.060 1.11�1.32 −2.87�0.56 2.67�0.86
3 0.034�0.064 0.54�1.30 −2.63�0.60 2.54�1.01

� � � 0.91�2.63 −2.55�0.95 3.24�2.83

FIG. 2. Polarized gluon distributions from the fit parameters
determined from fitting ansatz-1 and ansatz-2 to the NNPDF
unpolarized gluon distribution. Ansatz-3 refers to the polarized
gluon distribution obtained from a simultaneous fit to the
NNPDF3.1 NLO PDF set [25] and NNPDFpol1.1 PDF set
[11] using fit paramterization in Eq. (3). The gray band shows
the polarized gluon distribution xΔgðxÞ as given by the
NNPDFpol1.1 global analysis [11]. The blue, red, and cyan
bands labeled by ansatz-1, ansatz-2, and ansatz-3 show distri-
butions obtained using parameters obtained in the fits of xgþðxÞ
and xg−ðxÞ to the NNPDF gluon distribution.
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distributions. Thus, the ansatz-3 is a more flexible para-
metrization than ansatz-1 and ansatz-2, but it requires a
simultaneous fit to both unpolarized and polarized dis-
tributions to determine the parameters. Therefore, the
result from ansatz-3 is driven by global analysis and less
biased. The difference between the result from ansatz-3
and the one from ansatz-1 or ansatz-2 indicates the
model uncertainty of imposing the (1 − x) power differ-
ence of gþðxÞ and g−ðxÞ, or, in other words, how much
the uncertainties of the results from ansatz-1 and ansatz-2
are biased.
Due to the current precision of experimental data, the

phenomenological determination of ΔG is sensitive to
the parametrization form in the global analysis. If allowing
a possible sign-change of ΔgðxÞ at some x value, one will
find large uncertainties of ΔgðxÞ and thus very poor
constraint on ΔG. In our approach, the helicity retention
is incorporated in our parametrization of ansatz-1 and
ansatz-2, where the polarized gluon distribution is fixed
once the unpolarized distribution is determined. As we will
show in the next section, the result from the ansatz-3 is also
consistent with the helicity retention, although it is not
imposed in the parametrization form.
One can observe that the uncertainties of the xΔgðxÞ

determined from ansatz-1 and ansatz-2 are highly con-
strained. This is due to the bias of the parametrization
form, which assumes a relation between the two helicity-
basis distributions and thus leads to an underestimation
of the uncertainties of the polarized distribution. On the
other hand, ansatz-3 is more flexible and the uncertainty
of xΔgðxÞ is governed by the global analysis of xΔgðxÞ.
An outstanding question is how to distinguish between
these three different determinations of xΔgðxÞ distribu-
tions, especially in the large x-region which is of primary
interest for the nonperturbative LQCD calculations of
PDFs. One answer is, as we will see in Sec. IV, the gluon
helicity ΔG obtained from the Ioffe-time distribution
obtained from ansatz-1 parametrization has a magnitude
almost twice as large compared to the one resulting from
ansatz-2. Similarly, the Ioffe-time distribution of the
polarized gluon distribution obtained from ansatz-1 is
almost double in magnitude compared to that obtained
from ansatz-2. The difference of these two Ioffe-time
distributions in the small Ioffe-time region ω ≈ 0–6 can
be investigated in LQCD calculations to discriminate
between these two ansätze. On the other hand, the
polarized gluon distribution determined by fitting the
NNPDFpol1.1 global analysis [11] is data-driven and has
much larger uncertainty compared to that obtained from
ansatz-1 and ansatz-2. Therefore, the resulting polarized
ITD also has larger uncertainty. It will be a good
opportunity to explore the polarized gluon ITD in
LQCD calculations and have a possible impact on
constraining the uncertainty. We will present detailed
discussion of this prospect in Secs. IV and IV.

III. GLUON ASYMMETRY DISTRIBUTION

The COMPASS experiment at CERN has measured
gluon asymmetry distribution ΔgðxÞ=gðxÞ from the cross
section helicity asymmetry of photon-gluon fusion ðγ�g →
qq̄Þ in the semi-inclusive deep-inelastic scattering (DIS) of
proton-proton collision [49–51]. Although the open charm
events provide the cleanest signal to the γ�g → qq̄ðq ¼ cÞ
events [52,53], the rate of these events is very small. The
high statistics two-jets events with large transverse momen-
tum pT with respect to the virtual photon direction can give
access to the photon-gluon fusion subprocess but with a
price of significant background which has to be subtracted
in a model-dependent way to determine ΔgðxÞ=gðxÞ.
In Fig. 3, we compare the ΔgðxÞ=gðxÞ ratio obtained

from our calculation with data at different x-values
extracted from high pT hadrons in the leading-order
analyses [49,50] and from the open charm production in
the next-to-leading order analysis [51] at COMPASS, from
high pT hadrons in the leading-order analyses by the Spin
Muon Collaboration (SMC) at CERN [54] and at the
HERMES experiment [55]. We note that the end point
values of ΔgðxÞ=gðxÞ are fixed in ansatz-1 and ansatz-2.
In the limit x → 0 the ratio goes to 0 and as x → 1 the ratio
goes to 1, no matter what values are assigned to the
parameters in Eqs. (1) and (2). The difference between the
results from ansatz-1 and ansatz-2 may be regarded as
the model uncertainty, while the uncertainty for either of
them is model biased. It is not a surprise to find that the
result from ansatz-3 has much larger uncertainty, because

FIG. 3. Comparison between the two determinations of
ΔgðxÞ=gðxÞ from this calculation with the experimental measure-
ments. The direct measurements of COMPASS [49,50], HERMES
[55], and SMC [54] are obtained in leading order from high pT
hadrons and from open charmmuon production at COMPASS[51]
in next-to-leading order at different x-values are shown. The blue,
red, and cyan bands labeled by ansatz-1, ansatz-2, and ansatz-3
show the gluon asymmetry distributions determined using the
parameters obtained using ansatz-1, ansatz-2, and ansatz-3 for
the xgþðxÞ and xg−ðxÞ distributions, respectively as discussed in
the main text.
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the parametrization of ansatz-3 is more flexible and thus
less biased. One can also notice that the ratio does not
necessarily go to 1 in the limit x → 1 for the ansatz-3, since
we introduce independent parameters for the (1 − x)
powers of gþðxÞ and g− without the requirement of any
(1 − x) power suppression of g−ðxÞ in comparison with
gþðxÞ. However, the result from the simultaneous fit is still
consistent with 1 at the x → 1 end point.
The two different solutions of ΔgðxÞ obtained in the

COMPASS next-to-leading order analyses [56,57] allow
ΔgðxÞ=gðxÞ to be positive or negative in the entire x-region,
whereas our analyses with ansatz-1 and ansatz-2 give a
positive ΔgðxÞ=gðxÞ in the entire x-region and a very small
ΔgðxÞ=gðxÞ in the x < 10−1 region. The x → 1 value of this
asymmetry distribution is consistent with the pQCD
prediction of the helicity retention [21,58]. Even for the
ansatz-3, where we do not require the helicity retention in
the parametrization, the simultaneous fit result driven by
the global analysis is still consistent with this prediction.

IV. GLUON IOFFE-TIME DISTRIBUTIONS

As first discussed by Gribov, Ioffe, and Pomeranchuck
[45], the large coherent length distances defined in the
target rest frame become important at high energies for the
virtual photon-nucleon scattering. Ioffe further demon-
strated a connection between the DIS scattering amplitude
and the spacetime representation of the correlator of the
electromagnetic current [46], establishing a relation
between longitudinal coherent distances and Bjorken scal-
ing. Application of the Ioffe-time distribution (ITD) to
study parton distributions in coordinate space using non-
perturbative method was proposed in [47]. It was argued in
[47] that calculations of PDFs in momentum space receive
contributions from both small and large longitudinal dis-
tances for each value of x and can result in a problem of
treating different physics associated with different distances
simultaneously. The Ioffe-time τI measures the interval
between the absorption and emission of virtual-photon by a
hadron in DIS and gives the coherence length of the pair
production in the target rest frame,

τI ¼
ω

M
; ð6Þ

where M is the target mass. Braun et. al. entitled the
Lorentz invariant variable ω as the Ioffe-time, and we will
use this naming convention for the remainder of this article,
where the same language is seen in contemporary coor-
dinate space LQCD formalisms used to isolate parton
distributions [59–61]. We note ω ¼ MτI is defined in
the hadron’s rest frame, hence the designation “time”
despite “ω” itself being neither time nor space in LQCD
calculations. It is indeed the ω-dependence of the ITD that
converts into the x-dependence of the parton distributions.
Recently, a method for obtaining frame-independent,

three-dimensional light-front coordinate-space wave func-
tions and its relevance to LQCD calculations of PDFs has
also been discussed in terms of frame-independent longi-
tudinal distance (the Ioffe-time) in [62].
One can now write the unpolarized gluon distribution in

terms of its Ioffe-time distribution as [47,63]

Mðω; μ2Þ ¼
Z

1

0

dxxgðx; μ2Þ cosðxωÞ; ð7Þ

at a scale μ2. Similarly using the definition of the polarized
gluon distribution from [64], xΔgðx; μ2Þ is related to its
Ioffe-time distribution [47,63] via

ΔMðω; μ2Þ ¼
Z

1

0

dxxΔgðx; μ2Þ sinðxωÞ: ð8Þ

In comparison with Eq. (7), the sinðxωÞ in the integrand of
Eq. (8) leads to one additional power of x suppression when
x is small and therefore reduces the small-x region con-
tribution, as well as its uncertainty, to theΔMðω; μ2Þ. With
knowledge of the polarized gluon ITD, from Eq. (8), one
can immediately obtain the gluon helicity contribution to
the nucleon spin,

ΔGðμ2Þ ¼
Z

∞

0

dωΔMðω; μ2Þ

¼
Z

1

0

dx
Z

∞

0

dωxΔgðx; μ2ÞImðeixωÞ

¼
Z

1

0

dxΔgðx; μ2Þ; ð9Þ

where we have used the principal value prescription to
calculate the integral

R
∞
0 dω sinðxωÞ. As seen from Eq. (9),

and as will be explored further in Sec. VI, we shall see that
access to the asymptotic region of the ITD ΔMðω; μ2Þ,
namely up to ω ≈ 15 can provide a stringent constraint on
the gluon helicity in the nucleon. Given the gauge-invariant
and frame-independent definition of the ITD, one can take
advantages of calculating the ΔGðμ2Þ from the ITD to
avoid the issues in the spin-decomposition [65]. Using
Eqs. (7) and (8), we calculate the ITDs of the unpolarized
and polarized gluon distributions from the parametrizations
of gþðxÞ and g−ðxÞ and present them in Figs. 4 and 5,
respectively.
Similar to the unpolarized gluon PDF, we see from Fig. 4

that ansätze 1, 2, and 3 produce almost identical ITDs for
the xgðxÞ distributions. However, we see that the magnitude
of the xΔgðxÞ ITD (FIG. 5) in the ω ∼ 5–10 range is almost
double when using the ansatz-1 parametrization relative to
the ansatz-2 parametrization. Consequently, using Eq. (9),
we obtain ΔG ¼ 0.451ð7Þ from ansatz-1 and ΔG ¼
0.258ð4Þ from ansatz-2. As mentioned above, the differ-
ence between the ΔG values from ansatz-1 and ansatz-2
may be viewed as model uncertainty, while the uncertainty
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band of either one is biased by the parametrization form.
The result from the simultaneous fit with ansatz-3 is
ΔG ¼ 0.23ð41Þ. Such a large uncertainty from ansatz-3
indicates the fact that theΔG is still very poorly known. We
note that the lower value of ΔG ¼ 0.258ð4Þ obtained from
ansatz-2 is consistent with the previous LQCD determi-
nation [16] of ΔG. The most recent calculation of the
nucleon spin decomposition at the physical pion mass [66]
found the total gluon angular momentum contribution in
the proton to be 0.187(47). According to this calculation,
unless the gluons contribute a large and negative orbital

angular momentum to the nucleon total angular momentum
budget, the ΔG contribution to the proton spin is expected
to be less than ∼50%. On the other hand, if one excludes
the low x contribution of the polarized gluon PDF one
obtains ΔG ∼ 40% for x > 0.02 in [11] and for x > 0.05 in
[12]. Of course, these values can change in global fits, if
gluons are shown to have large positive contributions to the
nucleon spin—a prospect to be explored at the EIC [3].
Another possibility is the xΔgðxÞ distribution can change
sign in the low-x region, thereby reducing the contribution
of ΔG to the nucleon spin budget.
One important question we encountered in Sec. II was

how one can discriminate between ansatz-1 and ansatz-2
and the resultingΔgðxÞ distributions. An interesting feature
we observe from Figs. 4 and 5 is the significant difference
in the magnitude between these two ITDs in the ω ∼ 0–5
range. This will provide a great opportunity for LQCD
calculations to discriminate between these two different
determinations for the xΔgðxÞ distribution. On the other
hand, the polarized gluon ITD obtained from ansatz-3 has a
much larger uncertainty. It remains to see that if LQCD
calculation in the lower Ioffe-time region can be precise
enough to provide complementary information about the
uncertainty of the polarized gluon ITD. We highlight recent
LQCD calculations [67–71] have obtained precise ITD data
in the ω≲ 5 region. Resolution to this problem in future
LQCD calculations of the polarized gluon ITD hinges on
precise LQCD data for ω ∼ 0–5, as well as mitigation of
higher-twist effects which in turn ensures the validity of the
short-distance pQCD factorization of lattice matrix ele-
ments into PDFs.

V. CALCULATION OF HIGHERMOMENTS FROM
GLUON IOFFE-TIME DISTRIBUTIONS

From the ITDs in Eqs. (7) and (8), one can immediately
calculate the associated higher moments of the distribu-
tions. Performing a power series expansion of cosðxωÞ in
Eq. (7) (with scale μ2 omitted),

MðωÞ ¼
Z

1

0

dxxgðxÞ
X∞
n¼0

ð−1Þn ðxωÞ
2n

ð2nÞ!

¼ hxið0Þg −
ω2

2!
hxið2Þg þ ω4

4!
hxið4Þg − � � � ; ð10Þ

we can get access to any number of moments depending on
the available ω-range of ITDs. It is clearly seen from Fig. 6
that one can reproduce the ITDs with increasingly better
accuracy and in the larger ω-region in terms of higher
moments. Another way to state this observation is that,
access to ITD in increasingly larger ω range would result in
access to increasingly higher number of moments.
However, even without access to ITD in the region
ω → ∞, it is still possible to obtain PDFs with very good
accuracy (again assuming the Regge phenomenology is

FIG. 4. Determination of the Ioffe-time distribution of the
unpolarized gluon distribution. The blue, red, and cyan bands,
labeled by ansatz-1, ansatz-2 and ansatz-3, show the Ioffe-time
distributions determined using the fit parameters according to
ansatz-1, ansatz-2, and ansatz-3 for the xgþðxÞ and xg−ðxÞ
distributions, respectively. μ2 indicates the factorization scale
associated with the NNPDF unpolarized gluon distribution used
in this work.

FIG. 5. Ioffe-time distribution of the polarized gluon distribu-
tion labeled by ansatz-1, ansatz-2, and ansatz-3. The factorization
scale μ2 associated with the NNPDF gluon distribution used to
determine the fit parameters of the xgþðxÞ and xg−ðxÞ distribu-
tions is also indicated.
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valid in approximately x > 10−2 region). As we will see in
the next section that access to ITD in the region ω ≈ 0–15
for the gluon distributions can be sufficient to extract their
x-dependence in the 10−2 > x > 1 region.
Similarly, from Eq. (8), one can express the polarized

gluon ITD in terms of odd moments as

ΔMðωÞ¼ωhΔxið3Þg −
ω3

3!
hΔxið5Þg þω5

5!
hΔxið7Þg − � � � ð11Þ

From Eqs. (9) and (11) it is seen that a calculation of ITD of
polarized gluon distributions in ω ∼ 15 region will not only
give a reliable estimate for gluon helicityΔG in the nucleon
but also several other higher moments which are currently
unknown in theoretical calculations and not constrained by
the experimental data.
We see from Figs. 6 and 7 that with increasing number of

moments according to the Taylor expansion in Eqs. (10)
and (11), the unpolarized and polarized gluon distribution
can be approximated in the increasing range of Ioffe-time
ω. The accurate reproduction of the ITDs in terms of higher
and higher moments can be understood from the fact that
the Taylor expansion of MðωÞ about ω ¼ 0 has infinite
radius of convergence, and therefore even the asymptotic
region can be continuously reached from the origin of
MðωÞ as was also demonstrated in [72]. Therefore along
with the advantage that one can perform a reliable extrac-
tion of PDFs from the ITDs given the precision, accuracy
and availability of ITD over a moderate range of ω≲ 15,
this also serves as a powerful formalism to calculate higher

moments which are not feasible in the LQCD calculations
due to power divergent mixing of lower mass dimension
operators in the local moments calculations.
Figures. 6 and 7 illustrate that access to large-ω region is

necessary to obtain precise higher moments from LQCD
calculations. Although the asymptotic limits of ITDs are
dominated by the small-x physics, access to large-ω region
is also important for a precise determination of large-x
physics, as we will see from the derivation of the asymp-
totic limits of gluon ITDs in the next section.

VI. ASYMPTOTIC LIMIT OF GLUON
IOFFE-TIME DISTRIBUTION

In this section, we calculate analytic expressions for the
asymptotic limits of the unpolarized and polarized gluon
ITDs associated with the functional forms of xgðxÞ and
xΔgðxÞ used in Sec. II. We examine the ω region around
which one can approach the asymptotic region of the ITDs.
We again emphasize that the purpose of this calculation is
not to calculate the gluon PDFs at extremely small x and we
therefore consider only the low-x region where the Regge
phenomenology is valid and avoid the complication with
unresolved issues in the extremely small x < 10−3 region
[36–44]. To calculate the asymptotic limits of MðωÞ and
ΔMðωÞ, we start with the simplest functional form of
PDFs xað1 − xÞb since xgðxÞ and xΔgðxÞ determined using
functional forms in Eqs. (1) and (2) can be viewed as linear
combination of this form with different values of exponents
and appropriate normalizations. We first consider the
asymptotic expansions (in the limit ω → ∞) of the follow-
ing integral:

FIG. 6. Approximation of the unpolarized gluon Ioffe-time
distribution Mðω; μ2Þ using moments of the distribution. The
cyan band denotes the Ioffe-time distribution determined using
the fit parameters of xgþðxÞ and xg−ðxÞ for ansatz-2 from one
replica of the unpolarized gluon distribution from NNPDF3.1

NLO PDF. The lines labeled by hxiðnÞg denote an approximation
which require the knowledge of the first n nonvanishing moments
of the unpolarized gluon distribution to reproduce the ITD in
increasingly larger range of ω.

FIG. 7. The polarized gluon Ioffe-time distribution ΔMðω; μ2Þ
approximated by its nth order Taylor expansion around ω ¼ 0,
determined from the fit paraemters for ansatz-2 from one replica
of the unpolarized gluon distribution from NNPDF3.1 NLO PDF.

The lines labeled by hΔxiðnÞg denote an approximation which
require the knowledge of the first n nonvanishing moments of the
polarized gluon distribution to reproduce the ITD in increasingly
larger range of ω.
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Z
1

0

xað1−xÞb expðiωxÞdx¼ERða;b;ωÞþOð1=ωaþRþ1Þ;

ð12Þ

where ERða; b;ωÞ is the standard aysmptotic expansion of
the confluent hypergeometric function, Mðaþ1;aþbþ2;

iωÞ, and up to order ω−a−R,

ERða;b;ωÞ≡
XR−1
n¼0

Γðaþnþ1Þð−bÞn
n!

�
i
ω

�
aþnþ1

þ
XRþa−b−1

n¼0

Γðbþnþ1Þð−aÞn
n!

�
i
ω

�
bþnþ1

:

ð13Þ

We also have

Z
1

0

xað1 − xÞb cos ðωxÞdx

¼ ReðERða; b;ωÞÞ þOð1=ωaþRþ1Þ; ð14Þ

and

Z
1

0

xað1 − xÞb sin ðωxÞdx

¼ ImðERða; b;ωÞÞ þOð1=ωaþRþ1Þ: ð15Þ

We define

CRða; b;ωÞ≡ ReðERða; b;ωÞÞ; ð16Þ

SRða; b;ωÞ≡ ImðERða; b;ωÞÞ: ð17Þ

Using the above expressions, we can summarize the
asymptotic expansions of the unpolarized and polarized
gluon ITDs for ansatz-1,

Mðω; μ2Þ ¼ A½ðCRðα; 4þ β;ωÞ þ γCRðαþ 1=2; 4þ β;ωÞ
þ δCRðαþ 1; 4þ β;ωÞÞ þ ðβ → β þ 2Þ�
þ B½β → β þ 1� þOð1=ωaþRþ1Þ ð18Þ

and

Mðω; μ2Þ ¼ A½ðSRðα; 4þ β;ωÞ þ γSRðαþ 1=2; 4þ β;ωÞ
þ δSRðαþ 1; 4þ β;ωÞÞ − ðβ → β þ 2Þ�
þ B½β → β þ 1� þOð1=ωaþRþ1Þ: ð19Þ

Similar expressions can bewritten for ansatz-2 and ansatz-3.
We show the asymptotic limits of the unpolarized and
polarized gluon ITDs for ansatz-2 in Figs. 8 and 9,
respectively. For the demonstration purpose, we select

one arbitrary set of parameters from to the fit to one replica
of the NNPDF unpolarized gluon distribution described
in Sec. II.
The MðωÞ and ΔMðωÞ approach the asymptotic limits

around ω ∼ 15 as can be seen in Figs. 8 and 9. It is
important to note that if future LQCD calculations of gluon
ITD can reach the region ω ∼ 15, they will be able to
provide nonperturbative information to the Lipatov’s pom-
eron [36,37].
Using the fact that gluon PDF diverges much faster than

the valence quark PDF in the limit x → 0, one can show that
the asymptotic limit of the ITD corresponding to nucleon
valence quark distributionwill set in at earlierω compared to
the gluon ITDs, also noted in [47]. This implies that the

FIG. 8. Asymptotic expansion of the unpolarized gluon ITD
corresponding to a given set of parameters obtained by fitting one
replica of NNPDF unpolarized gluon distribution using ansatz-2
for the xgþðxÞ and xg−ðxÞ distributions. The cyan line indicates
the ITD and the dashed line indicates the asymptotic limit of the
ITD governed by the corresponding fit parameters.

FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD
corresponding to fit parameters.
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asymptotic region of the nucleon valence quark ITD can be
approached easily in the nonperturbative calculations com-
pared to the gluon ITDs.

VII. APPLICATIONS TO LATTICE QCD
CALCULATIONS OF PDFS

In recent years, several LQCD methods have been
proposed and developed to probe the light cone structure
of hadrons, including the path-integral formulation of
the deep-inelastic scattering hadronic tensor [73], coordi-
nate-space method for the calculating light cone distribu-
tion amplitudes [59], inversion method [74], quasi-PDFs/
LaMET [17,18], pseudo-PDFs [60], and good lattice cross
sections [61,75]. For the most recent review of LQCD
calculations of PDFs, see [76].
The extraction of PDFs from LQCD calculations

has received great interest since Ji’s proposal in [17,18].
Instead of directly calculating the light cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of
how best to extract a continuous distribution from discrete
data, compounded by a limited number of data points
due to a finite range of spatial separations and hadron
momenta. As the ITDs in question herein are Fourier
transforms of the underlying PDFs, the available data in a
discrete and limited domain lead to an ill-posed inverse
problem well-known to the LQCD community [70,77–
79]. Similar to functional forms used in global fits,
different PDF parametrizations obviate the ill-posed
inverse Fourier transform at the cost of additional
systematic errors in the determination of PDFs. The
analyses of the global fitting community have matured
over the past several decades to where these systematics
can be reliably estimated. In the ideal scenario, precise
LQCD data will allow this systematic error to likewise be
estimated and corrected by fitting several models and
examining relevant figures of merit. Significant inves-
tigations are being performed at present to handle this
problem better; even the neural network approach for
determining PDFs from LQCD data has become feasible
now, as we will discuss below.
With the current resources available in LQCD calcu-

lations of PDFs, it remains a challenge to obtain precise and
accurate data at large ω ¼ z · p, where p is the hadron
momentum and z is the spatial separation between parton
fields [17,60] or gauge-invariant currents [59,61]. This
problem was actually anticipated 25 years ago in [47]. As a
remedy to this problem, it was proposed to consider the low
ω region, where LQCD data can be precise and accurate,
and the large ω domain of the ITD separately. The LQCD
accessible small ω-region and the large ω region could then
be matched with the knowledge of Regge phenomenology

as described in [47,63,72]. This approach therefore enables
one to obtain reliable estimates of PDFs in the entire
x-region. Recently, a similar proposal was suggested in [80]
to circumvent such a problem in the lattice QCD calcu-
lation of quasi-PDFs using the LaMET formalism.
First-principles LQCD determinations of the gluon

unpolarized and polarized distributions, with controlled
statistical and systematic uncertainties, have been of
particular interest recently with significant theoretical
developments [81–85] soliciting a synergy of increasing
importance between experimental and theoretical efforts.
However, convincing LQCD calculation of gluon PDFs has
remained very challenging. It is a big challenge to obtain
precise ITD at large ω [71] and to reach the asymptotic
region of the ITD, especially for the gluonic observables.
In this light, the phenomenological knowledge of the
asymptotic limits of the gluon ITDs can be considered
as an interesting opportunity to match the low-ω ITD from
LQCD calculations and large-ω asymptotic limits utilizing
the method discussed in Sec. VI.
LQCD data with larger separations between the quark/

gluon fields are seen to be consistent with zero, even
change sign, getting affected by various systematic errors
due to issues in the renormalization and perturbative
matching, and are also expected to be contaminated by
higher-twist effects [80]. This can be directly seen from the
nucleon ITD calculated in the pseudo-PDF formalism and
also in the renormalized matrix elements of the quasi-PDF/
LaMET formalism both of which start with the same matrix
elements [17]. This leads to the potential issue with the
LQCD calculations of PDFs; the ITD falls off much faster
compared to the ITD constructed from the phenomeno-
logically determined PDFs, e.g., nucleon valence quark
distribution which is very well constrained from different
global fits. From the phenomenological point of view, this
faster-fall of the LQCD data immediately results in a faster-
converging PDF at low x and softer falloff at large x. This
has been demonstrated using neural network framework
applied to the extraction of the nucleon valence quark
distribution (which is assumed to be a simpler LQCD
calculation compared to the gluon PDF, sea-quark distri-
butions, etc.) from LQCD calculated matrix elements using
the quasi-PDF [86] and pseudo-PDF [87] approaches. A
similar observation can be found in a recent Monte Carlo
based analysis of LQCD data for nucleon valence quark
PDF [88]. To investigate these issues, for example, one can
construct ITDs from the well-determined nucleon valence
PDFs of global fits and compare them with the LQCD
calculated matrix elements and examine at which ω the
LQCD determined ITD starts to deviate from the phenom-
enological ITD. With the help of the asymptotic limit of the
ITD, one can also investigate the possible sources of
discrepancy between the LQCD calculation and the ITD
derived from global fits, such as higher-twist contributions.
Investigation based on these observations is an ongoing
subject of a future research project.
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Along with the calculation of PDFs as discussed above,
an ITD can also be used to determine moments of PDFs in a
reliable manner. One can immediately fit the LQCD
calculated ITD using Eqs. (10) and (11) to extract moments
of PDFs. The accuracy and the number of accessible
moments will depend on the available ω-range and on
the precision of the ITD. This can provide an alternative
approach for extracting local moments of the distribution
[89,90] by directly fitting the ITD. In particular, this can be
useful for the gluon [71] and sea-quark [91] distributions
for which the LQCD data are seen to be much noisier
compared to the non-singlet quark distributions and the ill-
posed inverse problem of extracting PDFs is much severe.

VIII. CONCLUSION AND OUTLOOK

In this paper, we investigate the unpolarized and
polarized gluon distributions and their applications to
the Ioffe-time distributions, which are closely related to
the extraction of PDFs from lattice QCD calculations. We
parametrize the gluon distributions in the helicity basis
and construct the functional form motivated by the
counting rules based on perturbative QCD analyses at
large x and the phenomenological behavior at low x. Once
the helicity-basis gluon distributions are determined, one
can easily obtain the unpolarized and polarized gluon
distributions. By fixing the (1 − x) difference and apply
the same polynomial factor, we determine the helicity-
basis distributions with the unpolarized gluon distribution
and infer the polarized gluon distribution using two
different ansätze. Although the results are both in rela-
tively good agreement with the global analysis, the two
results show a sizable difference from each other. To see
the model uncertainty, we also perform a simultaneous fit
to unpolarized and polarized gluon distributions from
global analyses using a more flexible parametriza-
tion form.
As an application, we calculate the Ioffe-time distribu-

tions and discuss the possibility that the asymptotic

expansion of the Ioffe-time distributions in the large-ω
region which can be combined with the future lattice QCD
calculations that are limited in a relatively smaller ω-range
and can guide to extrapolate the lattice data in the larger
ω-region. Using our calculation, we have demonstrated that
the magnitude of the polarized gluon Ioffe-time distribution
within a moderate Ioffe-time window in a future non-
perturbative QCD calculation can provide important con-
straints on the gluon spin content in the nucleon. We have
discussed, as a general application of this method, the
discrepancy between the falloff rate of the phenomeno-
logically well-determined Ioffe-time distributions and those
calculated in lattice QCD calculations can serve as an
interesting platform to investigate higher twist effects in
lattice QCD calculations. Following recent observations,
we have discussed that with the present and possibly near
future resources and numerical techniques, lattice QCD
calculations alone might not be sufficient enough to extract
the full x-dependence of PDFs with desired precision and
accuracy. In such cases, phenomenologically well-deter-
mined Ioffe-time distributions in the large ω-region can
provide complementary information to the ongoing efforts
of the calculation of x-dependent hadron structures within
first-principles nonperturbative QCD calculations.
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