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Abstract We perform a systematic analysis of the J/ψ →
γπ0π0 and → γ K 0

SK
0
S partial waves measured by BESIII.

We use a large set of amplitude parametrizations to reduce the
model bias. We determine the physical properties of seven
scalar and tensor resonances in the 1–2.5 GeV mass range.
These include the well known f0(1500) and f0(1710), that
are considered to be the primary glueball candidates. The
hierarchy of resonance couplings determined from this anal-
ysis favors the latter as the one with the largest glueball com-
ponent.

1 Introduction

The vast majority of observed mesons can be understood as
simple qq̄ bound states, although in principle strong interac-
tions permit a more complex spectrum. In a pure Yang–Mills
theory, massive gluon bound states (named “glueballs”) pop-
ulate the spectrum, as shown for example in lattice calcula-
tions. The lightest glueball is expected to have J PC = 0++,
and a mass between 1.5 and 2 GeV [1–9]. An enhanced glue-
ball production is expected in OZI–suppressed processes, i.e.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1140/epjc/
s10052-022-10014-8.

a e-mail: arodas@wm.edu (corresponding author)
b e-mail: alessandro.pilloni@unime.it

when the quarks of the initial state annihilate into gluons. For
example, this is the case for central exclusive production in
pp collisions (where mesons are produced by Pomeron –
i.e. gluon ladder – fusion), or for J/ψ radiative decays, the
cc̄ must annihilate to gluons before hadronizing into the final
state. In QCD, the mixing between glueballs and qq̄ isoscalar
mesons makes the identification of a glueball candidate chal-
lenging, both theoretically and experimentally. The simplest
argument for the existence of a glueball component is the
presence of a supernumerary state with respect to how many
are predicted by the quark model [10–12]. It is thus of key
importance to have a precise determination of the number
and properties of the resonances seen in data.

The most recent edition of Particle Data Group (PDG)
identifies nine isoscalar-scalar resonances. The two lightest
ones, the σ/ f0(500) and f0(980) have been extensively stud-
ied in recent years, and are by now very well established [13–
19]. Quark model predicts other two scalars below 2 GeV,
but the three f0(1370), f0(1500) and f0(1710) are observed.
This stimulated an intense work to identify one of them as the
long-sought glueball [20–27]. The existence of the f0(1370)

is still debated. It seems to couple strongly to 4π [28,29],
while the analyses of two-body final states led to contradic-
tory results. While some analyses claim to find this reso-
nance in either ππ → K K̄ or ηη scattering [30–37] other
analyses coming from meson-meson reactions do not find it
[38–42]. The f0(1500) and f0(1710) are instead well estab-
lished. They have been determined from ππ production from
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fixed-target experiments [38–40,43], and from heavy meson
decays [44–49], with the f0(1710) coupling mainly to kaon
pairs [46,50,51]. Discerning which of the three is (or has the
largest component of) the glueball, is an even harder task.
Since photons do not couple directly to gluons, the scarce
production of f0(1500) in γ γ collisions suggests it may be
dominantly a glueball. On the other hand, arguments based
on the chiral suppression of the perturbative matrix element
of a scalar glueball to a qq̄ pair point to the f0(1710) as a
better candidate. Although the argument does not necessarily
hold nonperturbatively [52–54],1 it seems to be supported by
a quenched Lattice QCD calculation [5]. Moreover, a larger
gluon content is suggested also by the enhanced associated
production of η′ f0(1710) in ηc decays [55].

The spectrum of scalars above 2 GeV is even more con-
fusing. The PDG currently lists the f0(2020), f0(2100),
f0(2200), and the f0(2330), but none of them is marked as
well established. The first one has been recently confirmed
by a reanalysis of the B0

s → J/ψ ππ and → J/ψK K̄
decays [49]. The f0(2100) and f0(2200) appear to decay
to only pions or kaons, respectively. Since their resonance
parameters are not dramatically different, they might origi-
nate from a single physical resonance (cf. Ref. [56]). Finally,
the f0(2330) was seen in p p̄ annihilations fifteen years ago
[57,58], and was recently confirmed by a global reanaly-
sis of reactions where isoscalar-scalar mesons appear [59].
The idea of characterizing the glueball properties through the
couplings of all the scalar mesons to radiative J/ψ decays
was considered in [59,60], and in [61] its singlet and octect
mixing angles were studied.

The isoscalar-tensor sector appears to be better under-
stood. The f2(1270) and f ′

2(1525) are identified as ordi-
nary uū + dd̄ and ss̄ mesons, respectively. Indeed, the for-
mer couples largely to ππ , and the latter to K K̄ [15,62,63].
Both resonances are relatively narrow and have also been
extracted from lattice QCD with a high degree of accuracy
[64].2 The status of the other four resonances in the mass
range up to 2 GeV, the f2(1810), f2(1910), f2(1950), and
f2(2010), is not as clear. The f2(2010) was seen in final states
with strangeness only, K K̄ and φφ, suggesting the ss̄ assign-
ment. The other decay predominantly to multibody channels,
making their identification more complicated. Above 2 GeV,
the PDG reports the f2(2150) and two more tensors, the
f2(2300) and the f2(2340). It is worth noting that a 2++
glueball is also expected at about 2.5 GeV [6]. We summa-
rize the status of the isoscalar-scalar and -tensor resonances
in Table 1.

1 Even perturbative arguments lead to multiple results: in Refs. [52,53]
the ratios of branching ratios of the scalar glueball to ππ and K K̄ is
found to be proportional to ( fπ/ fK )4 � 0.48.
2 Alternative interpretations for the f2(1270) were discussed in [65–
69].

With more high precision data coming from present and
future experiments, including multi-body final states, it is
necessary to develop adequate amplitude analysis methods,
in order to make further progress in the identification of
resonances. For example, dispersive techniques that rely on
fundamental S-matrix principles have played a key role in
determining properties of the lightest scalar resonances [16–
18,63,70–73]. Their application, however, has so far been
limited to roughly the region below 1 GeV. At higher ener-
gies, other approaches, such as Padé approximants [74–77],
Laurent-Pietarinen expansion [78], or the Schlessinger point
method [79–81] have been used. However, these methods
often require as input an analytic parametrization of the data.
But – unlike men – not all parameterizations are created
equal, and the ones that fulfill as many S-matrix principles
as possible should be considered more trustworthy.

In this paper we extract the scalar and tensor resonances
from the partial waves of J/ψ → γπ0π0 and → γ K 0

SK
0
S

determined by BESIII [46,85]. We use a number of differ-
ent parametrizations that satisfy unitarity and analyticity, in
order to put under control large model dependencies. At the
energies of interest, the number of available open channels
makes the complete rigorous analysis unfeasible. We start by
considering the ππ and K K̄ final states only. Implementing
unitarity on a subset of available channels does not affect
seriously the resonant parameters, provided that resonances
are sufficiently separated from each other [86]. For exam-
ple, the most recent extractions of the lightest hybrid meson
candidate include a different number of coupled channels
[56,87], but their pole parameters are perfectly compatible.
This is definitely not the case here. We find that 2-channel
fits fail to reproduce some of the details of the resonant peaks
and the interference patterns in the regions between nearest
resonances. This can bias the pole determination. In addition
to ππ and K K̄ , the PDG lists at least three other decay chan-
nels for these resonances, i.e. ηη, ηη′, 4π , with larger cou-
pling to 4π . The channels J/ψ → γ (2π+2π−, π+π−2π0)

were seen in the experiments done in the 80s [88,89] and
later by BES [90]. BESIII also measured J/ψ → γ ηη [44].
However, these analyses do not provide mass-independent
partial wave extractions and are not comparable in statistics
and quality with the most recent ones that we use. For this
reason, we decided to add an effective third channel, which
without loss of generality we may interpret as ρρ, but not
constrained by any other data. Finally, the statistical uncer-
tainties are determined via bootstrap [91–93].

The rest of the paper is organized as follows. A brief
description of the data and our selection of the fit region
is discussed in Sect. 2. We describe our set of parametriza-
tions in Sect. 3. The 2-channel fits are described in Sects. 4,
and in 5 we study the role of the third channel and perform
the statistical analysis. The summary of results we obtain for
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Table 1 Summary of scalar and tensor resonances in the 1–2.5 GeV
region listed in the PDG [84]. Resonances in square brackets are not
well established. (a)Combination of entries on π+π−2π0, 2π+2π−,

and 4π0, errors added linearly due to being asymmetric. (b)Mass and
width from the ωω decay mode

Mass (MeV) Width (MeV) B( f → ππ) (%) B( f → K K̄ ) (%) B( f → 4π) (%)

f0(1370) 1200–1500 300–500 < 10 [11] 35±13 [82] > 72 [33]

f0(1500) 1506±6 112±9 34.5±2.2 8.5±1.0 48.9±3.3

f0(1710) 1704±12 123±18 3.9+3.0
−2.4 [83] 36±12 [26] –

[ f0(2020)] 1992±16 442±60 – – –

[ f0(2100)] 208620−24 28460−32 – – –

[ f0(2200)] 2187±14 207±40 – – –

[ f0(2330)] 2324±35 195±71 – – –

f2(1270) 1275.5±0.8 186.7+2.2
−2.5 84.2+2.9

−0.9 4.6+0.5
−0.4 10.4+1.6

−3.7
(a)

[ f2(1430)] ≈ 1430 – – – –

f ′
2(1525) 1517.4±2.5 86±5 0.83±0.16 87.6±2.2 –

[ f2(1565)] 1542±19 122±13 – – –

[ f2(1640)] 1639±6 99+60
−40 – – –

[ f2(1810)] 1815±12 197±22 21+2
−3 [83] 2 × 0.3+1.9

−0.2 [83] –

[ f2(1910)] 1900±9 (b) 167±21 (b) – – –

f2(1950) 1936±12 464±24 – – –

f2(2010) 2011+62
−76 202+67

−62 – – –

[ f2(2150)] 2157±12 152±30 – – –

[ f2(2300)] 2297±28 149±41 – – –

γ

J/ψ

π, K̄

π, K

π, K̄

π, K

γ

J/ψ

π, K̄

π, K

ω, K∗, . . .

Fig. 1 Processes contributing to J/ψ → γ hh̄, with h = π, K . Top
panel: J/ψ decays through short-range cc̄ → γ gg (blue disk), then
resonances are seen emerging from final state interaction (red square).
Bottom panel: J/ψ decays to V h through the short-range cc̄ → ggg
(red square), then the resonance V decays radiatively to γ h̄ (blue disk)

the resonant poles is detailed in Sect. 6 and our conclusions
are given in Sect. 7.

2 The dataset

We consider the data from the mass-independent analysis of
J/ψ radiative decays, J/ψ → γπ0π0 [85] and → γ K 0

SK
0
S

[46] by BESIII. Bose symmetry requires the two pseu-

doscalars to have J PC = (even)++; moreover the isospin
zero amplitude is dominant.3 The mass independent J = 0
and J = 2 partial waves are given in the multipole basis
[94]. The latter is visible in three different multipoles, E1,
M2, and E3.4 The three intensities look very similar up to
the overall normalization with, E1 > M2 > E3. Consider-
ing that the quark model predicts each multipole to scale as
(Eγ ) jγ , Eγ being the photon energy, the observed hierarchy
is consistent with theoretical expectation, at least close to
threshold. Intensities and phase differences determined with
respect to the 2++ E1 are given in 15 MeV invariant mass
bins, from threshold up to 3 GeV. In order to make use of the
information on the relative phase, we should analyze simul-
taneously the S- and all the D-waves, however, because of
the dominance of the lowest multipoles, we focus on 0++
and 2++ E1.

3 In fact, for the π0π0 system, isospin one is forbidden, and the decay
into isospin two would be higher order in the isospin breaking. Since
I = 2 has no resonances, there would be no dynamical mechanism
that could enhance it. For the K 0

S K
0
S system, isospin one is allowed

and exhibits a rich resonant structure, that includes, for example, the
a0(980) and the a2(1320). However, the production of isovector is OZI-
suppressed, since the topology cc̄ → γ gg couples to isoscalars only.
4 We use the standard notation, X jγ , in which jγ ≥ 1 is the angular
momentum carried by the electromagnetic field, and X = E (X = M)
if the parities of initial and final state satisfy (or not) PinPfin = (−) jγ .
The values allowed for jγ are |Jψ − J | ≤ jγ ≤ Jψ + J .
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Table 2 Branching ratios of
resonances appearing in the γ h̄
channel, compared to the total
branching ratio. The largest
contribution is given by the ω.
However, it is removed in [85]
by vetoing the events within 50
MeV from the nominal ω mass

B(
J/ψ → γπ0π0

)
(11.5±0.5) × 10−4 [85]

B(
J/ψ → ωπ0 → γπ0π0

)
(3.8±0.4) × 10−5 [84]

B(
J/ψ → ρπ0 → γπ0π0

)
(2.6±0.5) × 10−6

B(
J/ψ → b1(1232)π0 → γπ0π0

)
(3.6±1.3) × 10−6

B(
J/ψ → γ K 0

S K
0
S

)
(8.1±0.4) × 10−4 [46]

B(
J/ψ → K ∗(892)0K 0

S → γ K 0
S K

0
S

)
(6.3±0.6) × 10−6 [46]

B(
J/ψ → K1(1270)0K 0

S → γ K 0
S K

0
S

)
(8.5±2.5) × 10−7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 (GeV)s

0

50

100

150

200

)° (δ

Fig. 2 S-wave ππ phase shifts in the elastic region. Black empty
circles show the 0++ − 2++ E1 phase difference of the radiative
J/ψ → γππ decays by BESIII [85]. The well-known ππ scattering
data is shown in green empty squares [36,38–40,95,96]. The dispersive
fits of [15,97] are shown in green for the S-wave, and blue for (minus)
the D-wave phase shift, which is basically zero at these energies. Radia-
tive data are incompatible with the dispersive result by more than 9σ ,
which reduce to ∼ 7σ if one allows for a constant shift

The dynamics underlying these radiative decays can be
represented by the diagrams in Fig. 1. In the left diagram, the
J/ψ decay is mediated by the short-range process, for exam-
ple cc̄ → γ gg, and resonances originate from rescattering
of the two mesons. On the right diagram, the J/ψ decays
through another short-range process, e.g. cc̄ → ggg to a
state containing an intermediate resonance V and a bachelor
meson, h = π, K . The resonance V then decays radiatively
to γ h̄.5 The latter class of reactions introduces a nontrivial
background to the processes we are interested in. These inter-
mediate resonances appear as peaks in the γ h̄ invariant mass,
but their contribution is mostly flat when projected onto the
hh̄ direction. Moreover, the region within 50 MeV from the
dominant exchange of the ω, that appears as a narrow peak in
the γ h̄ Dalitz plot has been removed from the π0π0 dataset
[85]. The effect of K ∗(892) and K1(1270) on the K 0

SK
0
S

spectrum was estimated to be negligible [46]. Indeed, look-
ing at the branching ratios given in Table 2, one can appre-
ciate how small the contribution of these resonances is, even
more so when spread over the two-meson invariant mass.

5 Charge conjugation is understood.

While in principle these resonances can still affect the partial
waves through 3-body rescattering [98–100], it is expected
that these corrections are small for large phase spaces like the
ones considered here. We thus restrict the dynamics of the
right diagram of Fig. 1 to possible heavier resonances that lie
outside of the Dalitz plot region. The first consequence is that
it is expected that Watson’s theorem holds from ππ to K K̄
threshold [101]. Specifically, the phase of the 0++ E1 multi-
pole of J/ψ → γππ should match that of the S-wave elastic
ππ scattering. The latter is well established [13–16,36,38–
40,95–97] and Fig. 2 compares the two. Even if one reconsid-
ered the effect of 3-body rescattering, it would be impossible
for crossed channel resonances to produce such a fast phase
motion, in particular close to the ππ threshold. Since the
focus of this work is on the higher resonances, we shall not
consider further the data below the K K̄ threshold. Moreover,
no significant structure appears in data above 2.5 GeV. Since
the high energy region would require a different approach
[102], we also drop it from this analysis.

The extraction of partial waves from data suffers from
Barrelet ambiguities [103]. For J/ψ → γ hh̄ truncated to
J = 2, there are two possible solutions in each channel,
as shown in Appendix A. While the nominal ones have a
roughly vanishing 2++ E1 − 2++ M2 phase difference, the
alternative solutions display rapid motion, in particular at
∼ 1.5 GeV. It is well known that the f2(1270) and f ′

2(1525)

are mostly elastic and dominate the ππ and K K̄ channels,
respectively. Inelasticities contribute to � 15% to the width
of each resonance. In this case, Watson’s theorem requires
that the phase difference between two 2++ multipoles van-
ishes in this region. Hence, the phase motions observed in the
alternative solutions are not justified. These solutions also
exhibit phase motion at both low and high masses, where
no resonances are expected to contribute. Incidentally, the
mass-dependent fit of K K̄ in [46] clearly favors the nominal
solution. For these reasons, in our analysis, we consider the
nominal solutions only.

To summarize, we will perform a coupled-channel analy-
sis of the 0++ E1 and 2++ E1 intensities and relative phase
in the invariant mass region between 1 and 2.5 GeV using as
data input the nominal solutions. In the following, we will
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refer to these two multipoles as S- and D-waves. In total, we
fit 606 data points.

3 Amplitude models

We describe here the sets of models used to fit the data. We
consider several possible variations, in order to perform a
thorough study of the systematic uncertainties of our results.
In the analysis of η(′)π COMPASS data [56], we chose one
model as the nominal one and the differences with other mod-
els were quoted as systematic uncertainties. However, here
the spread of the results is too large to permit this strategy,
and we will simply list the results of each model without
selecting a preferred one.

We parametrize the partial wave amplitudes following the
coupled-channel N/D formalism [104–107],

aJ
i (s) = Eγ pJ

i

∑

k

n J
k (s)

[
DJ (s)

−1
]

ki
, (1)

with the index i = hh̄ = ππ , K K̄ , and later ρρ; as custom-

ary, s is the hh̄ invariant mass squared, pi =
√
s − 4m2

i /2 is

the breakup momentum in the hh̄ rest frame. One power of
photon energy Eγ = (m2

J/ψ − s)/(2
√
s) for E1 transitions is

required by gauge invariance. The intensities are calculated

as I Ji (s) = N pi
∣∣aJ

i (s)
∣∣2

, with N a normalization factor.
The nJ

k (s) incorporate exchange forces (cf. the right diagram
in Fig. 1) in the production process and are smooth functions
of s in the physical region. The matrix DJ (s) represents the
hh̄ → hh̄ final state interactions, and contains cuts only on
the real axis above thresholds (right hand cuts), which are
constrained by unitarity. For the numerator nJ

k (s), we use an
effective polynomial expansion,

nJ
k (s) =

nmax∑

n=0

aJ
k, nTn [ω(s)], (2)

where Tn are the Chebyshev polynomials of order n. For
systematic studies, we consider three different choices of
ω(s),

ω(s)pole = s

s + s0
, (3a)

ω(s)scaled = 2
s − smin

smax − smin
− 1, (3b)

ω(s)pole+scaled = 2
ω(s)pole − ω(smin)pole

ω(smin)pole − ω(smax)pole
− 1, (3c)

where s0 = 1 GeV2 is an effective scale parameter that con-
trols the position of the left-hand singularities in Eqs. (3a)
and (3c), and reflects the short-range nature of production.
Instead, Eq. (3b) has no singularity, which corresponds to

neglecting completely the right diagram in Fig. 1. Equa-
tions (3b) and (3c) exploit the orthogonality of Chebyshev
polynomials in the [−1, 1] interval in order to reduce cor-
relations, being [smin, smax] = [

(1 GeV)2 , (2.5 GeV)2] the
fitting region.

A customary parametrization of the denominator is given
by [106]

DJ
ki (s) =

[
K J (s)

−1
]

ki
− s

π

∫ ∞

4m2
k

ds′ ρN J
ki (s

′)
s′(s′ − s − iε)

, (4)

where

ρN J
ki (s

′)nominal = δki
(2pi )2J+1

(s′ + sL)J+1+α
, (5a)

that is an effective description of the left-hand singularities
in scattering controlled by the sL parameter, which we vary
between 0 and 1 GeV2. The parameter α controls the asymp-
totic behavior of the integrand, and we will use α = 0, 1 as
our preferred choices. As an alternative model, we consider
the projection of a cross-channel exchange of mass squared
sL ,

ρN J
ki (s

′)Q-model = δki
Q J (zs′)

2p2
i

, (5b)

where QJ (zs′) is the second kind Legendre function, and
zs′ = 1 + sL/2p2

i . This function behaves asymptotically as
log(s′)/s′, and has a left-hand cut starting at s′ = 4m2

i − sL .
For the K -matrix, we consider

K J
ki (s)nominal =

∑

R

gJ,R
k gJ,R

i

m2
R − s

+ cJki + d J
ki s, (6a)

with cJki = cJik and d J
ki = d J

ik . Alternatively, we parametrize
the inverse of the S-wave K -matrix as a sum of CDD poles
[86,108],

[
K J (s)−1

]CDD

ki
= cJki − d J

ki s −
∑

R

gJ,R
k gJ,R

i

m2
R − s

, (6b)

where cJki = cJik and d J
ki = d J

ik are constrained to be posi-
tive. For a single channel, this choice ensures that no poles
can appear on the first Riemann sheet. Even in the case of
coupled channels, their occurrence is scarce, and when they
do occur they are deep in the complex plane, far from the
physical region. Ideally, the natural extension of the single-
channel CDD parametrization would be the inclusion of pos-
itive defined matrices for each term in Eq. (6b). However, this
is expensive to compute from a numerical point of view, and
not so simple to implement in our fits [109]. No CDD-like
denominator will be used for the D-wave, as its structure is
much simpler. Finally, the inverse of the K -matrix could also

123



80 Page 6 of 17 Eur. Phys. J. C (2022) 82 :80

be parametrized as a polynomial. However, these parameter-
izations produce unphysical poles close to the real axis, and
will not be discussed any further.

4 2-channel results

We first explore the 2-channel fits. In total, considering the
various possibilities discussed in Sect. 3, we could fit 27 dif-
ferent amplitude choices, without considering further varia-
tions of the fixed parameters (e.g. the position of the left-hand
cut, the number of K -matrix

/
CDD poles, the order of the

polynomial in the numeratornJ (s), …), which would amount
to thousands of different possibilities. For phase space func-
tions, we consider both Eqs. (5b) and (5a) for α ≤ 1. The
choice of α is motivated by the asymptotic behavior of the
phase space: if α ≥ 1, the integral is oversubtracted, mak-
ing other subtractions redundant. Even if those fits produce
similar results and fit quality, they tend to produce narrow
unphysical 1st sheet poles. Thus we restrict α = 0 for the final
best fits. For the denominator, we vary the order of the back-
ground terms. We also tried to increase the K -matrix

/
CDD

poles from the nominal 3 to 5 to see if extra resonances are
produced. These fits do not produce noticeable differences
and the additional poles are unstable and far from the fitted
region, effectively merging with the background. Finally, we
consider the different numerator variables listed in Eq. (2).
We also vary the order of the production polynomial between
2nd and 3rd order. Lower orders are not able to reproduce
the data, in particular the relative phases would be heavily
affected.

We select 14 models that do not produce noticeable
unphysical behaviors, as 1st-sheet poles narrower than
1 GeV. Summarizing, we have 3–4 parameters per wave per
channel for the numerator polynomial, 2 couplings and a
mass for the six bare resonances, 3–6 per wave for the back-
ground polynomial in the denominator. Depending on the
specific choices, they amount to 40–44 parameters fitted to
data, by performing a χ2 minimization withMINUIT [110].6

For each model, the fits are initialized by randomly choos-
ing O(105) different sets of values for the parameters. The
best fits that do not produce any unphysical behavior have
χ2/dof ∼ 1.7–2. We show in Fig. 3 the various 2-channel
fits selected as best choices. Notice that none of them can
reproduce the bump at ∼ 2.4 GeV in the S-wave. Moreover,
some of the dips between the peaks in the intensities are
poorly described, with some local χ2/bins � 4. As we antic-
ipated in the Introduction, some of the resonances in the fitted
region have sizeable coupling to a 4π channel, which is not

6 This requires systematic uncertainties and correlations between par-
tial waves to be negligible, as found in [111]. Correlations can actually
be relevant, in particular in the high energy region, as shown in [102].

included in the two-channel fits. The absence of a channel
may be responsible for producing tension between the model
and the data. In particular, most of the 2-channel fits fail to
describe the f ′

2(1525) lineshape properly, and our assump-
tion that this state is saturated by ππ and K K̄ only seems
far too rigid, in particular considering that its coupling to
ππ is negligible. This is the main reason why we expect the
opening of a third channel to improve the description of data.

In these exploratory 2-channel studies no detailed statisti-
cal analysis is performed. Nevertheless, we discuss the results
on the pole positions. We show in Fig. 4 the poles that appear
on the Riemann sheets closest to the physical axis. Firstly,
it is worth noting that not all fits produce the same num-
ber of resonant poles. Secondly, some of the fits produce
additional “spurious” poles nearby, unstable upon variations
of the model. As mentioned in the Introduction, the PDG
lists five S- and seven D-wave resonances in this energy
region, respectively (cf. Table 1). Grouping in clusters the
poles obtained from the fits of the various models that can
be identified with physical resonances is not a simple task,
especially for the heavier broad resonances that have large
uncertainties. Out of the 12 PDG resonances, we can identify
only 6. As said, increasing the number of K -matrix

/
CDD

poles does not help. The four lower mass clusters do not
spread much and can be easily recognized. We note that
the f0(1500) is lighter than what is listed in the PDG aver-
age, whereas the f0(1710) is systematically heavier. Both
f2(1270) and f ′

2(1525) seem to have masses close to those
of the PDG, although the latter’s width is not very well deter-
mined in the fits. Two heavier mass clusters seem to exist,
each spreading over at least two states listed in the PDG. We
identify them as the f0(2020) and the f2(1950). Some mod-
els produce a fourth narrow S-wave pole at around ∼ 2 GeV.
One might wonder whether this cluster should be identified
as the f0(2020), or as an additional state with almost the same
mass. Most of the models produce the broader pole only. For
those parametrizations that produce both, the narrower state
has a much smaller total coupling and decays preferably to
the K K̄ state. As we will see later when including a third
channel this narrow pole disappears. Finally, we note that
there is no pole that could be identified with the f0(1370),
even when an ad hoc K -matrix

/
CDD pole is added. How-

ever, this is not unexpected, as the f0(1370) couples mostly
to 4π . Phenomenologically, little mixing is expected between
this resonance and the scalar glueball [24–27], which would
additionally suppress its production in J/ψ radiative decays.
Its broad width would make its identification even more com-
plicated. We conclude that, although we do not find evidence
for this resonance in our analysis, its existence is not chal-
lenged. As a final remark, we note that the mass-dependent
analysis of J/ψ → γ K 0

S K
0
S by BESIII did find a f0(1370)

with high significance [46]. We conclude that, in particu-
lar when dealing with broad resonances, the use of flexible
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Fig. 3 Best 2-channel fits to ππ (top) and K K̄ (second row) final
states. The intensities for the S- (left), D-wave (center), and their rel-
ative phase (right) are shown. The green and red lines denote the fit

results. We remark that the model variations in the 2-channel fits are
much larger than the statistical uncertainties, in particular for the phases.
All these fits produce χ2/dof ∼ 1.7–2

parametrizations complaint with theory constraints helps in
disentangling the resonances actually required by data from
background physics.

The intervals of mass and width where the six resonances
appear in the best models are shown in Fig. 4 and summa-
rized in Table 3. It is worth noting, as shown in Fig. 4, that
the spreads for the heavier poles are compatible with sev-
eral different resonances listed in the PDG. We remark again
that we have intentionally conducted no statistical analysis
here. To summarize, even though 2-channel fits describe data
reasonably overall, they miss local features that affect the
determination of some resonances.

5 3-Channel results

We extend our model to include a third channel correspond-
ing to an effective 4π final state. Since we are not sensi-
tive to the details of the dynamics populating it, we approx-
imate it as a stable ρρ channel, with mρ = 762 MeV [18].
Indeed, including the ρ width does not improve the fit sizably,
but makes the analytic continuation extremely complicated
[112].7 Restarting the fits from scratch with an additional
unconstrained channel is unfeasible. Instead, we use the best
2-channel fits of the models of Sect. 4, and use their param-
eters as starting point for the new 3-channel fits, to obtain
more stable results. Since the 2-channel fits have reasonable

7 Alternatively, one could use approximate methods for analytic con-
tinuation, for example Padé approximants as in [49].

quality already, we expect the contribution of the third chan-
nel to be small. To reduce the number of parameters, the
numerator coefficients aJ,ρρ

n are set to zero. Moreover, in the
coefficients of the background in K J (s)(−1), we set the cross
terms between the first two and the third channel to zero. The
total number of parameters increases to 53–56, depending on
the specific model.

The full list of plots and fit parameters for the 14 models
is available in the Supplemental Material. In Fig. 5 we show
the results for the 14 best 3-channel models. These can be
compared to the 2-channel fits in Fig. 3. It is evident that
the fits improve: the average χ2/dof drops from ∼ 1.7–2
to ∼ 1.1–1.2. More importantly, the local description of the
relative phases and of the regions around the peaks are much
more accurate. The effect can be seen in Fig. 4, where it is
evident that poles are determined more precisely when the
new channel is added.

Most of the models lead to similar results, except for some
deviation of the K K̄ phase close to threshold. By construc-
tion our models respect Watson’s theorem, which means that
at the K K̄ threshold the ππ and the K K̄ phases are identical.
However, in some of our fits the K K̄ phase moves rapidly just
above threshold, because of peculiar cancellations between
large numerators. Another interesting feature is the “quasi-
zero” behavior on the ππ D-wave around 1.5 GeV, which is
evident in the intensity and seems to produce a sharp motion
in the relative phase. A simple interpretation is that, if the
D-waves are almost elastic, one expects a zero to appear
between two resonances. If one assumes the coupling of the
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Table 3 Poles positions of the 2- and 3-channel fits. The intervals summarize the spread of results among the 14 best models. Statistical uncertainties
are not taken into account

f0(1500) f0(1710) f0(2020) f0(2330) f2(1270) f ′
2(1525) f2(1950)

2-ch. Mass (MeV) [1420, 1456] [1739, 1803] [1874, 2098] – [1262, 1282] [1471, 1497] [1861, 2139]
Width (MeV) [70, 118] [109, 215] [118, 410] – [179, 231] [51, 103] [72, 320]

3-ch. Mass (MeV) [1437, 1471] [1756, 1785] [1955, 2098] [2313, 2525] [1256, 1279] [1488, 1517] [1862, 2084]
Width (MeV) [93, 126] [139, 171] [206, 427] [180, 411] [182, 214] [68, 101] [217, 539]
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Fig. 4 Pole position of the various candidates for the 2- and 3-channel
ππ, K K̄ fits, for the 14 systematics considered. We show in the left
panels the S-wave with the f0(1500), f0(1710), f0(2020) and a possi-
ble f0(2330) resonance. In the right panels the D-wave is shown, with
the f2(1270), f ′

2(1525) and a possible f2(1950). Identified poles are
represented by colored markers, unidentified ones by gray ones. The
colored rectangles represent the maximum spread in mass and width

among the 14 models. For comparison, we show as gray rectangles the
mass and widths (with uncertainties) of the 12 resonances listed in the
PDG. We remark that the PDG lists mostly Breit-Wigner parameters,
rather than pole positions in the complex plane. The 3-channel fits show
a general improvement of the pole spreads. A new f0(2330) is found,
while the f2(1950) is pushed deeper into the complex plane

f ′
2(1525) to ππ to be almost zero, then this behavior could

be explained by the interference between the f2(1270) and a
heavier resonance coupling strongly to ππ . This matches the
behavior shown in the D-wave intensity, where the f2(1950)

candidate produces a small peak. Moreover, the K K̄ D-wave
does not show any rapid motion, suggesting that, were a
heavy resonance to exist, it would couple mostly to the other
channels.

The structure of the S-waves is much richer. There are
four clearly visible peaks in ππ , and three in K K̄ . It is
worth noticing how different the values at the peak intensities
look when comparing the same resonance in both final states.
In particular, in K K̄ the peak associated to the f0(1710) is
roughly six times stronger than the f0(1500) one. We will
show later that this is reflected in a much larger coupling of
the f0(1710) to this channel. As can be seen in Fig. 5, our best
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Fig. 5 Best 3-channel fits to ππ (top) and K K̄ (second row) final states. The intensities for the S- (left), D-wave (center), and their relative phase
(right) are shown. The red lines denote the fit results. All these produce χ2/dof ∼ 1.1–1.2
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Fig. 6 One of the final 3-channel fits, with statistical uncertainties included. The solid line and green band show the central value and the 1σ

confidence level provided by the bootstrap analysis, calculated for O(104) samples

fit reproduces all intensity peaks with high accuracy. There
is a slightly larger local χ2 value around the 1.5 GeV region
in the K K̄ S-wave. This region is below the ρρ open chan-
nel, which seems to prevent our fit from fully reproducing
the peak and interference. We are aware that the f0(1500)

resonance couples to 4π , but the local description is nev-
ertheless reasonable. We thus conclude that a third channel
is not strictly needed to describe such behavior. Ideally, the
ρρ channel should include both � = 0 and � = 2 contri-
butions. However, the latter is suppressed at threshold, and

having no data to fit makes it impossible to distinguish the
two. Nonetheless, we performed some alternative fits includ-
ing just an � = 2 channel to assess our systematics. We get
χ2/dof ∼ 1.4, not as good as in the � = 0 case, being the
channel suppressed as mentioned. The pole positions calcu-
lated this way are compatible with the � = 0 models (see
below), and we do not see much variation in the S-wave, as
expected. We do not consider these fits any further. Even for
these 3-channel fits, there is no evidence for more resonances
than the seven ones discussed above. Fits with additional K -
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matrix
/

CDD poles do not improve the data description, and
the additional poles are far and unstable.

The statistical uncertainties are determined via bootstrap
[91–93]. We generate O(104) pseudodatasets: each data
point is resampled from a gaussian distribution having by
mean and standard deviation its value and uncertainty; to
avoid unphysical negative intensities, data points compatible
with zero within 2σ are instead resampled from a Gamma
distribution (see Appendix B). Each pseudodataset is refitted
to the original model, and the (co)variance of the population
of the fit parameters provides an estimate of their statisti-
cal uncertainties and correlations. In Fig. 6 we show as an
example the uncertainties for one of the models.

6 Resonant poles

As already discussed, it is not possible to fix a priori the num-
ber of poles that appear on the proximal Riemann sheets. In
general, there is no one-to-one correspondence between the

poles of the amplitude and the number of K -matrix
/

CDD
poles in coupled channel problems. This relation becomes
even more complicated because of the additional background
polynomial. Moreover, the simple left-hand cut parametriza-
tions in ρN J

ki (s
′) also tend to generate additional broad poles

close to threshold [86]. Some of the poles capture the real
features of the amplitude and are associated with the physi-
cal resonances. Other poles are mere artifacts of the model
implemented and are unstable upon bootstrap and model vari-
ations. Therefore, a sound statistical analysis and a large set
of systematic variations are required to filter out the spurious
singularities and identify the remaining ones with the phys-
ical resonances. The pole positions for the systematic varia-
tions of amplitudes studied here are plotted in Fig. 7, while
the separate plots for each systematic are left in the Supple-
mental Material. For each model, the statistical uncertainties
are determined via bootstrap, as explained in Sect. 5. While in
[56] we were able to identify a nominal model and explored
how model variation affected the central values, here the clus-
ters of poles, in particular the heavier ones, move too much
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Fig. 7 Results for the pole positions of the 3-channel fits, superim-
posed for the 14 models. A point is drawn for each pole found in each of
the O(104) pseudodatasets generated by the bootstrap analysis. Colored
points represent poles identified as a physical resonance, gray points are

spurious. For the physical resonance, gray ellipses show the 68% con-
fidence region of each systematic. Colored ellipses show the average of
all 14 systematics, as explained in the text
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to make this strategy feasible. In order to quote an average of
masses and widths obtained by the 14 models, we calculate
the mean and (co)variance of the pole positions among the
14 × O(104) pseudodatasets from the bootstrap analysis for
all the models at once.

In addition to the pole positions, one can extract the
residues of the amplitude. The residues of aJ

i (s) can be asso-
ciated with the couplings of the resonance f to the initial
J/ψ γ and final hh̄ states. We remark that we do not include
all the possible open channels involved at these energies.
However, since the unconstrained third ρρ channel can effec-
tively reabsorb the presence of other channels, we believe
that the relative size of the ππ and K K̄ coupling provides
reliable information. One can also study the residues of the
DJ (s)−1 matrix, that are connected to the scattering cou-
plings hh̄ → f → h′h̄′, albeit not rigorously.8 Since we
are not fitting scattering data, the residues of DJ (s)−1 are
mostly unconstrained and have large uncertainties [113].

The lightest two D-wave poles are very well determined.
They correspond to the f2(1270) and f ′

2(1525) resonances,
and decay almost elastically to ππ and K K̄ respectively. The
f2 peak in ππ and the f ′

2 peak in K K̄ is very well described
by all models. The f ′

2 lies close to the ρρ threshold, so we
have to ensure that the poles that form the cluster appear
always on the proximal Riemann sheet. For all the models,
the f ′

2 is always centered below this threshold. Even though
we do not fit scattering data directly, these resonances are so
well behaved that the scattering couplings have reasonable
ratios:

f2(1270) : rππ

/√
r2
ππ + r2

K K̄
= 82+6

−8%,

f ′
2(1525) : rK K̄

/√
r2
ππ + r2

K K̄
= 95+3

−5%, (7)

where rhh̄ are the absolute values of the residues of the
DJ (s)−1 matrix in the elastic hh̄ → hh̄ channel. These are
reasonably close to the PDG estimates [84]. Some of the
fits produce a second broader cluster in D-wave behind the
f ′
2(1525). As can be seen in the Supplemental Material, this

second pole appears in most of the K -matrix parametriza-
tions, often with very large spread, but not in the CDD ones.
Furthermore, when the pole appears the local χ2 in that
region does not improve. For these reasons, the existence
of an additional resonance is not compelling in data.

Moving to the S-wave, our result for the f0(1500) is per-
fectly compatible with [49], even though we have a f0(1710)

close by, which could easily affect its pole position. The

8 To get the full scattering amplitude, the DJ (s)−1 matrix should be
multiplied by the appropriate N J (s) that satisfies an integral equation
that depends on the left-hand cuts of the scattering process. However,
since N J (s) is smooth, we believe it should not affect much the relative
size of the couplings, that we discuss here.

f0(1500) turns out to be rather narrow and produces a sim-
ple phase motion for the S-wave phases. The f0(1710) is
noticeably broader, but nevertheless very well determined.
The mass we find for the f0(1710) is considerably larger than
the PDG average, however, it is still compatible with many
of the determinations listed in the PDG. All the four scalar
resonances we found are roughly compatible with those iden-
tified in [59], although what we call f0(1710) and f0(2020)

seem to correspond to their f0(1770) and f0(2100).
When comparing the f0(1500) and f0(1710) couplings

of the full J/ψ → γ f0 → γ hh̄ process, we find that the
heavier one couples more strongly to both final states. In par-
ticular the coupling of the f0(1710) to K K̄ is roughly eight
times larger than that of the f0(1500) and roughly three times
larger in ππ , as can be seen in Fig. 8. It is worth noting that
the values of the residues change substantially under ampli-
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Fig. 8 Top panel: ratio of absolute values of the scattering residues of
ππ and K K̄ final states, for the f2(1270) against the f ′

2(1525). Bot-
tom panel: ratio of absolute values of decay residues of f0(1500) and
f0(1710), for ππ against K K̄ final state.A point is drawn for each pole
found in each of the O(104) pseudodatasets generated by the bootstrap
analysis. Gray ellipses show the 68% confidence region of each system-
atic. The colored ellipses represent the 68% confidence region of all the
systematics at once. Ratios are nongaussian positive-defined quantities,
and the results of each systematics scarcely overlap, so this ellipse can-
not be taken literally, but nevertheless provides a crude idea of average
values, errors, and correlations
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Table 4 List of final pole position and uncertainties resulting from the
combination of the 14 different final fits to the data. The errors have
been obtained as the variance of the full samples, by assuming that the

spread of results for each pole, shown in Fig. 7, resembles a Gaussian
distribution

S-wave
√
sp (MeV) D-wave

√
sp (MeV)

f0(1500) (1450±10) − i(106±16)/2 f2(1270) (1268±8) − i(201±11)/2

f0(1710) (1769±8) − i(156±12)/2 f2(1525) (1503±11) − i(84±15)/2

f0(2020) (2038±48) − i(312±82)/2 f2(1950) (1955±75) − i(350±113)/2

f0(2330) (2419±64) − i(274±94)/2

tude variations, which makes us cautious about strong claims
regarding a precise determination of these ratios. However,
all determinations agree qualitatively: the heavier resonance
is stronger in J/ψ radiative decays, and in particular in the
K K̄ channel. As we mentioned in the Introduction, these
arguments favor the interpretation for the f0(1710) to have
a sizeable glueball component.

The final set of poles that can be identified as physical ones
is shown in Fig. 7, and the mean values and uncertainties
are listed in Table 4. It is worth noting that our poles are
compatible with the ones on the BESIII J/ψ → γ ηη decay
[44], even if we do not include this channel. This supports
our choice of including the most relevant high-statistics ππ

and K K̄ channels only.

7 Summary

We presented a detailed analysis of the isoscalar-scalar and
-tensor resonances in the 1–2.5 GeV mass region. We study
the BESIII mass-independent partial waves from J/ψ →
γπ0π0 and → γ K 0

SK
0
S radiative decays [46,85]. Data were

published in two equivalent solutions in the full kinematic
range. However, the region below the K K̄ threshold is not
compatible with Watson’s theorem expectation, which made
us select one of the two solutions and restrict the fit to the 1–
2.5 GeV mass region. To assess the model dependence realis-
tically, we explored a large number of amplitude parametriza-
tions that respect the S-matrix principles as much as possible
and discuss the results for 14 of them. We first enforce uni-
tarity strictly on the two channels considered, which turns
out to be too rigid to describe data, in particular between
the resonant peaks. We then extend our models to include a
third unconstrained ρρ channel, which is known to contribute
substantially to the resonances in this region. Fit quality is
excellent for all the parametrizations studied. Despite the
large systematic uncertainties, we can identify four scalar
and three tensor states.

The four lightest resonances are determined with great
accuracy, which allows us to study their couplings. We find
that the f2(1270) and f ′

2(1525) couple largely to ππ and
K K̄ , respectively, as expected by their quark model assign-

ments. The couplings ratios are compatible with the branch-
ing fractions reported in the PDG. In the scalar sector, it seems
that the f0(1710) appears in J/ψ → γ f0 more strongly than
the f0(1500). This affinity of the f0(1710) to the gluon-rich
initial state, together with a coupling to K K̄ larger by one
order of magnitude, are hints for a sizeable glueball compo-
nent.
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Fig. 9 Comparison between the nominal (black) and ambiguous (red) solutions for the intensities extracted in [85]. The prediction for the latter
is shown in green using the relations derived in the experimental paper and extended below the K K̄ threshold

Appendix A: J/ψ → γππ Ambiguities

As mentioned in Sect. 2, partial wave extractions suffer from
ambiguities. Specifically, the J/ψ → γ hh̄ radiative decays
truncated to the 2++ multipoles, can have two different solu-
tions, related mathematically [46,85]: in a given energy bin,
one can calculate the intensities and relative phases of the
four multipoles of one solution from the intensities and rela-
tive phases of the four multipoles of the other solution. Below
the K K̄ threshold, the experimental papers do not show the
ambiguous solution: Watson’s theorem is invoked in order
to discard one of them. However, as we showed in Sect. 2,
Watson’s theorem also implies the 0++ E1 phase to match
the S-wave elastic ππ scattering shift, which is not the case.
Based on this, and on the fact that the ambiguous solutions
in ππ and K K̄ shows some unexpected behaviour in the
phases, we decided to focus on the nominal solution, and
discard the region below 1 GeV.

Nevertheless, we tried to see whether there is a way to
make use of these data in the region where the much-studied
σ/ f0(500) and the f0(980) appear. Since the existence of
ambiguities is a mathematical fact that does not depend on

unitarity arguments like Watson’s theorem, we can calcu-
late the ambiguous solution of J/ψ → γπ0π0 below K K̄
threshold and check whether it agrees better with ππ scat-
tering. The exercise is shown in Figs. 9 and 10. Since the
relative phase of the three 2++ multipoles is set to zero below
the K K̄ threshold, this turns into an underestimation of the
errors of the ambiguous solution, which looks very scattered
(in particular for the phases) and unusable.

We even tried to proceed in the opposite direction: replac-
ing the measured 0++ E1 phase with the known S-wave
elastic ππ scattering one, we can calculate what would its
ambiguous counterpart be. The result is shown in Fig. 11.
This looks closer to the BESIII phase, although with some
differences, most notably the sharp rise at ∼ 900 MeV.

Appendix B: Bootstrap and the Γ distribution

Bootstrapping has become in the recent past a promis-
ing method to assess uncertainties in spectroscopy analyses
[56,86,93,100,102,114–116]. In particular, it allows one to
map the likelihood for a given minimum, which is not accessi-

123



80 Page 14 of 17 Eur. Phys. J. C (2022) 82 :80

0.5 1.0 1.5 2.0 2.5 3.0
 (GeV)s

200−

150−

100−

50−

0

50

100

150

200
)° (φ

 ph. E1++-2++0ππ

0.5 1.0 1.5 2.0 2.5 3.0
 (GeV)s

200−

150−

100−

50−

0

50

100

150

200

)° (φ

 ph. M2-E1++2ππ

0.5 1.0 1.5 2.0 2.5 3.0
 (GeV)s

200−

150−

100−

50−

0

50

100

150

200

)° (φ

 ph. E3-E1++2ππ

Fig. 10 Comparison between the nominal (black) and ambiguous (red)
solutions for the relative phases extracted in [85]. The prediction for the
latter is shown in green using the relations derived in the experimental
paper, and extended below the K K̄ threshold

ble through simple error propagation in non-linear problems,
or when the number of parameters is very large. Furthermore,
this technique can also help us distinguish between stable
“physical” poles and spurious ones [56,117], whereas sim-
ple error propagation would fail to describe robustly those
uncertainties.

One usually assumes data points to be normally dis-
tributed. However, the intensities extracted in [46,85] are
positive defined, and since they are not simple event counts,
they are not even Poisson distributed. There are several data

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 (GeV)s

0

50

100

150

200

)° (δ

Fig. 11 Comparison between the nominal BESIII data, the elastic ππ

phase shift from [97] (solid green band) and the predicted ambiguous
partner of the latter

points compatible with zero, or even negative values, within
1σ , which is not physical, and no sensible parametrization
can reproduce. In this sense using a simple normal distribu-
tion to resample the data would produce artifacts in our uncer-
tainties, which would then propagate into the pole errors.

For all intensity data points which are compatible with
zero within 2σ , we assume they follow a Γ distribution,
having by mean and variance the central value and the error
squared. This was used in previous spectroscopy analyses
[118]. The distribution is given by

H (x‖μ, σ) = θ(x)
( xμ

σ 2

)μ2

σ2 exp
(−xμ/σ 2

)

x Γ
(
μ2/σ 2

) . (B.1)

This distribution is positive defined and has light tails as the
gaussian, which makes it a good candidate for our purposes.
Its mean and variance are μ and σ 2, and it smoothly conver-
gences to the gaussian distribution as the ratio μ/σ increases.
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