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We investigate the predictive power of transverse-momentum-dependent (TMD) distributions as a
function of the light-cone momentum fraction x and the hard scale Q defined by the process. We apply the
saddle-point approximation to the unpolarized quark and gluon transverse momentum distributions and
evaluate the position of the saddle point as a function of the kinematics. We determine quantitatively that
the predictive power for an unpolarized transverse momentum distribution is maximal in the large-Q and
small-x region. For cross sections the predictive power of the TMD factorization formalism is generally
enhanced by considering the convolution of two distributions, and we explicitly consider the case of Z and
H0 boson production. In the kinematic regions where the predictive power is not maximal, the distributions
are sensitive to the nonperturbative hadron structure. Thus, these regions are critical for investigating
hadron tomography in a three-dimensional momentum space.
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I. INTRODUCTION

The theoretical study and experimental exploration
of the internal structure of nucleons are of fundamental
importance to science [1–3]. In the past decades, we have
obtained detailed knowledge of the so-called collinear
parton distribution functions (PDFs). These collinear
PDFs describe the distribution of partons inside a fast
moving nucleon as a function of the nucleon’s longitudinal
momentum fraction x, and thus provide us with a “one-
dimensional” (1D) picture of how partons are distributed
inside the nucleons. They are indispensable in the pre-
dictions involving high-energy hadrons, such as those at the
Large Hadron Collider (LHC), in particular for the inclu-
sive observables with one large momentum transfer, e.g.,

the total cross section of W=Z and H0 bosons computed in
the collinear factorization formalism [4].
On the other hand, for the observables with more

than one observed momentum scale, such as the transverse
momentum distribution of W=Z and H0 bosons when the
transverse momentum is so much smaller than the mass
of the observed particle (qT ≪ Q ∼MW=Z;H0), a more
sophisticated factorization framework, namely the trans-
verse-momentum-dependent (TMD) factorization [5–9], is
needed. In such a TMD factorization framework, the
observables are written in terms of transverse-momen-
tum-dependent PDFs (TMD PDFs), which are usually just
called TMDs for simplicity. The TMDs contain not only the
aforementioned longitudinal momentum fraction x, but also
the partonic transverse momentum kT with respect to the
direction of the parent nucleon. Because of this, the TMDs
provide us the rich information on “three-dimensional”
(3D) motion of the probed active parton inside the nucleon,
often referred to as 3D imaging of the nucleon [1,2,10].
Owing to one of the key defining properties of quantum

chromodynamics (QCD), the color confinement, we do not
see any quarks and gluons in isolation. It is therefore
critically important to have a reliable and controllable
matching between the properties and dynamics of quarks
and gluons participating in high energy collisions and the
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hadrons observed in the detector, which could be achieved
by the QCD factorization. Thus, the investigation of the
TMDs and the associated TMD factorization becomes
extremely important. On one side, they have a strong
interplay with high-energy physics, since the uncertainties
of hadronic nature as encoded in the TMDs are among the
largest ones that dominate the systematic theoretical
uncertainties for the QCD calculations of key observables,
which could impact our ability to explore the possible
scenarios of beyond the Standard Model physics. On the
other hand, a good knowledge of TMDs is essential to map
out the nucleon’s 3D partonic structure, namely to under-
stand the confined motion of quarks and gluons inside a
bound hadron. This is particularly true in light of the rapid
progress towards realizing a U.S.-based electron-ion col-
lider (EIC), a machine aiming at investigating the multi-
dimensional structure of hadrons and nuclei.
In both frontiers, one of the most important questions to

address would be to understand in which kinematic regions
the perturbative QCD-based formalism of TMD factoriza-
tion is most predictive, from the point of view of a
controllable perturbative computation. To address this
question, it is important to recognize that the probed
transverse momentum (kT) of the active parton in the hard
collisions is not the same as the transverse momentum of
the same parton inside a bound hadron, sometimes referred
to as the intrinsic kT0

and as shown in Fig. 1 for a generic
Drell-Yan type hard collision. With the hard collision and
the large momentum transfer, a large amount of parton
shower is developed during the collision, making the kT of
the probed active parton different from the intrinsic trans-
verse momentum kT0

associated with the confined motion
inside the bound hadron. The difference between the kT and
kT0

depends on the hard scale of the collision, Q, as well as
the phase space available for the shower or the total
collision energy

ffiffiffi
s

p
. The observed Q and

ffiffiffi
s

p
determine

the momentum fraction x of the active parton participating
in the hard collision. The smaller x is, the larger the phase
space available for the shower is. The difference between
the kT and kT0

is encoded in the QCD evolution of the
TMDs in terms of the TMD factorization. As demonstrated
quantitatively in this paper, the QCD evolution of the
kT-dependence could be dominated by the logarithmic and
perturbatively calculable part of the parton shower, leading
to a better predictive power. Moreover, the intrinsically

nonperturbative TMDs could be further factorized into the
nonperturbative 1D collinear PDFs convoluted with cal-
culable contributions from the parton shower. On the other
hand, if the evolution of the kT-dependence is dominated by
the nonperturbative dynamics of the parton shower, the
TMDs and the corresponding observables will be more
sensitive to the nonperturbative physics. The detailed and
quantitative study presented in this paper will help us figure
out in which regions these nonperturbative contributions
play a significant role and where the experimental data are
most ideal in order to constrain the nonperturbative
component of the TMDs.
TMD factorization and evolution have been extensively

studied in the literature [5–9,11–14], together with the
matching to collinear factorization [5,15–20], the general-
ized universality properties [21–28], and the impact on
high-energy physics [29–31]. Much of the efforts in TMD
phenomenology are devoted to the understanding of the
role and the size of the nonperturbative corrections in
different kinematic domains [13,32–36]. The study of the
kinematic dependence originates from the work of Parisi
and Petronzio [37] and Collins, Soper, and Sterman [5],
which focused on the value of the hard scale of the process
compared to the infrared scale of QCD (ΛQCD). More
recently, it has been shown at the level of the cross
section [17,29,38,39] that also the light-cone momentum
fraction x, which is effectively a measure of available phase
space for the parton shower, could play an important role in
determining the relevance of the nonperturbative correc-
tions. In this article we extend those arguments to the
context of the modern TMD factorization formalism [9],
linking the predictive power of the TMDs to their double
scale evolution, i.e., the ultraviolet and rapidity renormal-
ization scales to be defined below. Our detailed study
shows that for TMDs with the large hard scale Q and the
small momentum fraction x, the nonperturbative contribu-
tion plays a less important role and thus they have the most
predictive power. On the contrary, TMDs with the small
hard scale Q and the large momentum fraction x receive
significant nonperturbative contributions, and are better
suited for constraining nonperturbative parameters in the
TMDs.
The paper is organized as follows. In Sec. II we present

the structure of a TMD PDF in the coordinate bT space,
which is conjugate to the transverse momentum kT . We
separate the small and large bT regions, and derive a
functional form that extrapolates the physics from the small
to the large bT region. In Sec. III we apply the saddle-point
method to the TMD PDF, and we determine the position of
the saddle point as a function of the kinematics studying the
structure of the double-scale evolution of the distribution.
In Sec. IV we analyze the predictive power of the quark and
gluon TMDs and comment on the relevance of the large bT
region and its components. In Sec. V we study the trans-
verse momentum distributions for Z boson production and
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FIG. 1. Sketch for the Drell-Yan type of heavy boson produc-
tion with the parton shower.
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H0 boson production in pp collisions. They are sensitive to
quark and gluon TMDs, respectively. We close the paper in
Sec. VI and comment on the advantages presented by the
complementary kinematic regions accessed by different
experiments and possibilities to learn and control the
nonperturbative evolution of TMDs.

II. TMDs FROM SMALL TO LARGE bT REGION

Our main focus in this paper is on the unpolarized TMD
PDF for a parton with specific flavor a,

Faðx; k2T ; μ; ζÞ; ð1Þ

which carries the collinear momentum fraction x of the
parent hadron and has a transverse momentum kT with
respect to the hadron’s momentum. On the other hand, μ
and ζ are the ultraviolet (UV) renormalization and rapidity
regularization scales, respectively. As we will discuss in
Sec. V, these TMDs are indispensable in describing e.g., the
transverse momentum distribution of a vector boson Z and
H0 boson production in the low transverse momentum
region qT ≪ MZ;H0 , and carry rich information on the
parton’s confined motion in a bound hadron, which is a
fundamental emergent property of the QCD dynamics. As
shown in Fig. 1, the kT-dependence of the TMD PDF
probed at the hard collision is a combination of parton’s
intrinsic kT0

and the amount of kT generated by the parton
shower. Since each radiation from the parton shower could
be soft and nonperturbative, and convoluted with additional
radiation before and after, it could be advantageous to study
the TMDs in their Fourier transformed form in the position
or bT-space, defined as [5]

Faðx; b2T ; μ; ζÞ ¼
Z

d2kTeikT ·bTFaðx; k2T ; μ; ζÞ: ð2Þ

When bT is small, much less than 1=ΛQCD, the
QCD evolution (or scale dependence) of the TMDs’ bT-
dependence is perturbatively calculable. Otherwise, the
QCD evolution is nonperturbative. Once we understand
the TMD PDF in the bT-space, we then Fourier transform it
back into the momentum space:

Faðx;k2T ;μ;ζÞ¼
Z

d2bT
ð2πÞ2e

−ikT ·bTFaðx;b2T ;μ;ζÞ

¼ 1

2π

Z
∞

0

dbTbTJ0ðkTbTÞFaðx;b2T ;μ;ζÞ: ð3Þ

The zeroth order Bessel function J0 emerges from the
angular part of the integral and the absence of any depend-
ence on the azimuthal angle of the transverse momentum kT
in the unpolarized case. The above Fourier transform would
require the information of the Faðx; b2T ; μ; ζÞ for the entire
bT ∈ ½0;∞Þ region. If the Fourier transform is dominated by

the information of TMDs at small bT , we will have a
good predictive power for Faðx; k2T ; μ; ζÞ in all relevant kT
regions, modulo the knowledge of the standard collinear
PDFs, as we demonstrate below. On the other hand, if the
Fourier transform is sensitive to the large bT region,
Faðx; b2T ; μ; ζÞ will be sensitive to nonperturbative physics
since the evolution kernels for the scale dependence of the
TMDs at large bT are nonperturbative.
Below we first review the behavior and evolution of

TMDs in the small-bT region, and we then study how one
can extrapolate the TMD to the large-bT region by
extending the work of Ref. [38]. By further studying the
behavior of the TMDs in the bT-space through a saddle-
point approximation, we explore quantitatively in which
region the TMDs have the most predictive power.

A. TMDs in the small-bT region

The QCD evolution equations of the TMDs take the
following form:

d lnFaðx; b2T ; μ; ζÞ
d ln ζ

¼ −DðbTμ; αsðμÞÞ; ð4Þ

d lnFaðx; b2T ; μ; ζÞ
d ln μ

¼ γF

�
αsðμÞ;

ζ

μ2

�
; ð5Þ

dDðbTμ; αsðμÞÞ
d ln μ2

¼ 1

2
γKðαsðμÞÞ; ð6Þ

dγFðαsðμÞ; ζ
μ2
Þ

d ln ζ
¼ −γKðαsðμÞÞ: ð7Þ

Here the first three equations are well known and can be
found in the literature, see e.g., in Ref. [9], where
DðbTμ; αsðμÞÞ is called the Collins-Soper evolution ker-
nel,1 and γFðαsðμÞ; ζ

μ2
Þ is the anomalous dimension of the

operator defining the TMD PDF. The last equation is
obtained from the fact that the differential order in ζ and in
μ for Faðx; b2T ; μ; ζÞ is interchangeable, i.e.,

d
d ln ζ

d
d ln μ

lnFaðx; b2T ; μ; ζÞ

¼ d
d ln μ

d
d ln ζ

lnFaðx; b2T ; μ; ζÞ; ð8Þ

so long as Faðx; b2T ; μ; ζÞ are differentiable in both μ and ζ
in the kinematic regime that we are interested in.
In the perturbative region where 1=bT ≫ ΛQCD, one can

compute all the evolution kernels in the above evolution
equations. For example, for a quark TMD PDF with a ¼ q,
we have

1Note that we use a slightly different notation and normali-
zation with respect to Ref. [9].
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DðbTμ; αsðμÞÞ ¼ CF

X
n¼1

�
αs
4π

�
nXn
k¼0

dðn;kÞ lnk
�
μ2

μ2b

�
; ð9Þ

γKðαsðμÞÞ ¼ ΓcuspðαsðμÞÞ; ð10Þ

γF

�
αsðμÞ;

ζ

μ2

�
¼ ΓcuspðαsðμÞÞ ln

�
μ2

ζ

�
þ γðαsðμÞÞ; ð11Þ

where we define μb ¼ c=bT with c ¼ 2e−γE and γE ¼ 0.577
the Euler constant. ΓcuspðαsðμÞÞ and γðαsðμÞÞ are the
cusp and noncusp anomalous dimensions, respectively.
They generally have the expansion ΓcuspðαsðμÞÞ ¼P

n¼1 Γn−1ðαs4πÞn, likewise for the noncusp. For a quark
TMD PDF, one has Γ0 ¼ 4CF; γ0 ¼ 6CF, etc. At the same

time, we have dð1;1Þ ¼ 2Γ0; dð1;0Þ ¼ 0, etc. Thus at the first
nontrivial order, we have

DðbTμ; αsðμÞÞ ¼
αs
2π

CF ln

�
μ2

μ2b

�
; ð12Þ

γKðαsðμÞÞ ¼
αs
π
CF; ð13Þ

γF

�
αsðμÞ;

ζ

μ2

�
¼ αs

π
CF

�
ln

�
μ2

ζ

�
þ 3

2

�
: ð14Þ

The higher-order expressions, and the expressions for
gluon TMD PDF can be found in e.g., Ref. [40]. See also
Refs. [41–43].
Solving the evolution equation, one can obtain the

evolved TMD PDF as

Faðx; b2T ; μ; ζÞ ¼ Faðx; b2T ; μ0; ζ0Þ exp
�Z

μ

μ0

dμ0

μ0
γF

�
αsðμ0Þ;

ζ

μ02

���
ζ

ζ0

�
−DðbTμ0;αsðμ0ÞÞ

; ð15Þ

where μ0 and ζ0 are the initial values for the renormalization scales. Integrating Eq. (7) from μ2 to ζ, one obtains

γF

�
αsðμÞ;

ζ

μ2

�
¼ − ln

�
ζ

μ2

�
γKðαsðμÞÞ þ γFðαsðμÞ; 1Þ; ð16Þ

and thus we have

Faðx;b2T ;μ;ζÞ¼Faðx;b2T ;μ0;ζ0Þ×exp
�
−
�Z

μ

μ0

dμ0

μ0

�
ln
�

ζ

μ02

�
γKðαsðμ0ÞÞ− γFðαsðμ0Þ;1Þ

�
þDðbTμ0;αsðμ0ÞÞ ln

�
ζ

ζ0

���
:

ð17Þ

Finally when both μ0 and ζ0 are in the perturbative region, the TMD PDF Fa at the input scales μ0 and ζ0 can be refactorized
onto collinear PDFs fbðx; μ0Þ via an operator product expansion (OPE) at low bT :

Faðx; b2T ; μ0; ζ0Þ ¼
X
b

Ca=bðx; b2T; μ0; ζ0Þ ⊗ fbðx; μ0Þ ¼
X
b

Z
1

x

dx̂
x̂
Ca=bðx̂; b2T; μ0; ζ0Þfb

�
x
x̂
; μ0

�
: ð18Þ

In practice, one typically chooses the following input values for μ0 and ζ0:

ζ0 ¼ μ20 ¼ μ2b; ð19Þ

to eliminate the logarithms in the coefficient functions Ca=bðx̂; b2T; μ0; ζ0Þ. At the same time, one usually chooses μ and ζ to
be associated with the hard scale Q, such as the invariant mass of the lepton pair in the Drell-Yan process,
pp → ½γ� →�lþl− þ X,

ζ ¼ μ2 ¼ Q2: ð20Þ
Thus in the usual phenomenology we write the perturbative TMD PDF in Eq. (15) in the following form:

Faðx;b2T ;Q;Q2Þ¼Faðx;b2T ;μb;μ2bÞexp
�
−
�Z

Q

μb

dμ0

μ0

�
ln

�
Q2

μ02

�
γKðαsðμ0ÞÞ− γFðαsðμ0Þ;1Þ

�
þDðc;αsðμbÞÞ ln

�
Q2

μ2b

���
;

ð21Þ

where Faðx; b2T ; μb; μ2bÞ will be obtained through Eq. (18).
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B. Extrapolation to the large-bT region

From the discussion of the previous section, we gain
the following information. In the kinematic region whereQ
is large (Q ≫ ΛQCD) and for the small-bT region, one can
rely on the perturbative result in Eq. (21) to obtain the
information for the TMD PDF Faðx; b2T ;Q;Q2Þ. However,
for the large-bT region, nonperturbative physics kicks in
and the perturbative result is no longer reliable. Several
proposals have been introduced to extrapolate the TMD
PDF at small-bT into the large-bT region [5]. In this paper,
we follow the spirit of Ref. [38] to keep the TMD PDF at
small-bT unchanged while we derive a functional form to
extrapolate the perturbative result in the small-bT region to
the large-bT region. Such an extrapolation would preserve
the predictive power of the perturbative calculations in the
small-bT region, which is not affected by the extrapolation
at large bT , and at the same time, it would provide a
physically motivated functional form for the large-bT
region. In other words, we write the TMD PDF in the
bT-space as

Faðx;b2T ;Q;Q2Þ

¼
(
FOPE
a ðx;b2T ;Q;Q2Þ bT ≤ bmax;

FOPE
a ðx;b2max;Q;Q2ÞRNP

a ðx;bT;Q;bmaxÞ bT >bmax;

ð22Þ

where the parameter bmax is the largest value of bT at
which the perturbative expression for the TMD PDF is
trusted [like the input scale at which the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution starts
for the 1D PDFs]. We choose a rather conservative value for
bmax ¼ 0.5 GeV−1 throughout this paper. Accordingly, for
bT ≤ bmax, FOPE

a ðx; b2T ;Q;Q2Þ is just the perturbative
expression given in Eq. (21).2 Here we use the superscript
“OPE” to remind that Eq. (21) is connected with the
collinear PDFs through an OPE, see Eq. (18). For
bT > bmax, instead, the nonperturbative correction factor
RNP
a tames the behavior of Fa when the perturbative

calculation is not to be trusted. To maintain the continuity
of the TMD PDF at bT ¼ bmax, the extrapolation function
RNP
a should satisfy

RNP
a ðx; bT ¼ bmax; Q; bmaxÞ ¼ 1: ð23Þ

To derive a functional form for RNP
a , we take into

account the power correction in the evolution kernel

[38]. The Collins-Soper kernel DðbTμ; αsðμÞÞ has an
explicit bT-dependence. When bT > bmax, we add a power
correction into its evolution equation as follows:3

dDðbTμ; αsðμÞÞ
d ln μ2

¼ 1

2

�
γKðαsðμÞÞ þ

1

μ2
γ̄K

�
; ð24Þ

where γ̄K is an unknown parameter that characterizes the
typical size of the higher-twist operator. Such a power
correction to the evolution equation is also referred to as
“dynamical power correction” in [38] and we will continue
to use this terminology. For consistency within the TMD
evolution equations [Eqs. (6) and (7)], one would also have

dγFðαsðμÞ; ζ
μ2
Þ

d ln ζ
¼ −γKðαsðμÞÞ −

1

μ2
γ̄K: ð25Þ

With the modified evolution equations, choosing initial
scales for the evolution ζ0 ¼ μ20 ¼ μ2bmax

and final scales
ζ ¼ μ2 ¼ Q2, one would obtain

Faðx; b2T ;Q;Q2Þ ¼ Faðx; b2T ; μbmax
; μ2bmax

Þ

× exp

�Z
Q

μbmax

dμ0

μ0

�
γFðαsðμ0Þ; 1Þ

− ln

�
Q2

μ02

��
γKðαsðμ0ÞÞ þ

1

μ02
γ̄K

��

−DðbTμbmax
; αsðμbmax

ÞÞ ln
�

Q2

μ2bmax

��
;

ð26Þ

where the input scale μbmax
¼ c=bmax. Setting bT ¼ bmax in

the above equation, we would obtain

Faðx;b2max;Q;Q2Þ¼Faðx;b2max;μbmax
;μ2bmax

Þ

×exp

�Z
Q

μbmax

dμ0

μ0

�
γFðαsðμ0Þ;1Þ

− ln

�
Q2

μ02

��
γKðαsðμ0ÞÞþ

1

μ02
γ̄K

��

−Dðc;αsðμbmax
ÞÞ ln

�
Q2

μ2bmax

��
; ð27Þ

where we have used bmaxμbmax
¼ c. By comparing Eqs. (26)

and (27), we find

Faðx;b2T ;Q;Q2Þ¼Faðx;b2max;Q;Q2ÞRNP
a ðx;bT;Q;bmaxÞ;

ð28Þ
2In this paper we do not consider the corrections needed for the

proper treatment of the region at an extremely small bT
[19,32,37,44,45], which is phenomenologically relevant typically
at energies lower than the ones considered in our analyses.

3The type of power correction in the form of 1=Q2 is studied in
Ref. [46].
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with the extrapolation function RNP
a given by

RNP
a ðx; bT;Q; bmaxÞ ¼

Faðx; b2T ; μbmax
; μ2bmax

Þ
Faðx; b2max; μbmax

; μ2bmax
Þ exp

�
− ln

�
Q2

μ2bmax

�
½DðbTμbmax

; αsðμbmax
ÞÞ −Dðc; αsðμbmax

ÞÞ�
�
: ð29Þ

In order to find a reasonable functional form for RNP
a , we now need to figure out the following two factors:

Faðx; b2T ; μbmax
; μ2bmax

Þ
Faðx; b2max; μbmax

; μ2bmax
Þ ; ½DðbTμbmax

; αsðμbmax
ÞÞ −Dðc; αsðμbmax

ÞÞ�: ð30Þ

For the second factor, we turn to the modified evolution equation for DðbTμb; αsðμbÞÞ in Eq. (24). To proceed, we integrate
μ2 from μ2b to μ2bmax

and obtain

DðbTμbmax
; αsðμbmax

ÞÞ −DðbTμb;αsðμbÞÞ ¼
Z

μ2bmax

μ2b

dμ2

μ2
1

2

�
γKðαsðμÞÞ þ

1

μ2
γ̄K

�

¼ γ

2αðc2Þα ððb
2
TÞα − ðb2maxÞαÞ þ

γ̄K
2c2

ðb2T − b2maxÞ

≡ g1ððb2TÞα − ðb2maxÞαÞ þ g2ðb2T − b2maxÞ: ð31Þ

To obtain the second line on the right-hand side, we approximate the μ-dependence of γKðαsðμÞÞ ≈ γðμ2Þ−α with
parameters γ and α [38]. We further define the prefactors on the second line to be parameters g1 and g2. Realizing bTμb ¼ c,
we thus obtain

DðbTμbmax
; αsðμbmax

ÞÞ −Dðc; αsðμbmax
ÞÞ ¼ Dðc; αsðμbÞÞ −Dðc; αsðμbmax

ÞÞ þ g1ððb2TÞα − ðb2maxÞαÞ þ g2ðb2T − b2maxÞ: ð32Þ

Note that the term Dðc; αsðμbÞÞ −Dðc; αsðμbmax
ÞÞ on the

right-hand side depends only on bT and bmax through the
coupling constant αs and thus such a term can be combined
with the one proportional tog1 (given its connection to the
coupling constant), treating g1 and α as fitting parameters.
For the first factor in Eq. (30), we realize that at the input

scale μbmax
, one usually mimics the bT-dependence of the

TMD PDF Faðx; b2T ; μbmax
; μ2bmax

Þ to have a Gaussian form,
see e.g., Refs. [47–51],

Faðx; b2T ; μbmax
; μ2bmax

Þ ≈ faðx; μbmax
Þ exp ½−ḡ2b2T �; ð33Þ

which describes the intrinsic transverse momentum
of the partons. With such an approximation, we thus
obtain the ratio of TMD PDF at the input scale μbmax

in
Eq. (29) as

Faðx; b2T ; μbmax
; μ2bmax

Þ
Faðx; b2max; μbmax

; μ2bmax
Þ ≈ exp ½−ḡ2ðb2T − b2maxÞ�: ð34Þ

Combining all the above factors, we obtain the following
form for the extrapolation function:

RNP
a ðx; bT;Q; bmaxÞ ¼ exp

�
− ln

�
Q2

μ2bmax

�
½g1ððb2TÞα − ðb2maxÞαÞ þ g2ðb2T − b2maxÞ� − ḡ2ðb2T − b2maxÞ

�
: ð35Þ

Such a derivation is motivated by the work presented in
Ref. [38]. Our derivation is for an individual TMD PDF,
while Ref. [38] is for the Drell-Yan differential cross
section. This new derivation is based on modern TMD
evolution for the TMD PDF, which makes the derivation
more transparent and more straightforward.
Our derived extrapolation function RNP

a automatically
satisfies the normalization condition in Eq. (23), i.e.,
RNP
a ¼ 1 at bT ¼ bmax. Besides bmax ¼ 0.5 GeV−1 we

have chosen beforehand, it consists of four parameters
α; g1; g2, and ḡ2. While g2 controls the size of the dynamical
power correction, ḡ2 mimics the intrinsic transverse
momentum, which is also referred to as “intrinsic power
correction” in [38]. These two parameters are nonpertur-
bative in nature and generally have to be determined from
fits to the experimental data. As we will emphasize below,
we require Faðx; b2T ;Q;Q2Þ to be smooth at bT ¼ bmax, in
order to determine the other two parameters g1 and α in the
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extrapolation function RNP
a . Specifically, we require the first

and second order derivatives of Faðx; b2T ;Q;Q2Þ to be
continuous at bT ¼ bmax. With these two conditions, g1 and
α can be fixed. Accordingly, the RNP

a function acquires an
implicit x-dependence (equivalent to a

ffiffiffi
s

p
-dependence)

through these two parameters.

III. SADDLE-POINT APPROXIMATION
OF A TMD PDF

Once we have the full bT-dependence of a TMD PDF
from the extrapolation method discussed in the previous
section, we will be able to compute the TMD PDF in the
momentum space through the Fourier transformation:

Faðx;k2T ;Q;Q2Þ¼ 1

2π

Z
∞

0

dbTbTJ0ðkTbTÞFaðx;b2T ;Q;Q2Þ;

ð36Þ

where we have set ζ ¼ μ2 ¼ Q2 in Eq. (3). Obviously
if Faðx; b2T ;Q;Q2Þ in the bT-space is dominated by the
small-bT behavior, the integration on the right-hand side,
and thus Faðx; k2T ;Q;Q2Þ in the kT-space, will be mainly
controlled by the perturbative physics. On the contrary,
if Faðx; b2T ;Q;Q2Þ is very sensitive to the large-bT
behavior, the nonperturbative physics will play an impor-
tant role in the behavior of the TMD PDF Faðx; k2T ;Q;Q2Þ
in the momentum space. Understanding the TMD PDF
Faðx; k2T ;Q;Q2Þ in the momentum kT-space, i.e., whether
it is more dominated by perturbative (small-bT) or non-
perturbative (large-bT) physics, is very important in order
to investigate the predictive power of the TMD PDF and of
the TMD differential cross sections, which are based on
these TMD PDFs. This is the main goal of this and the next
sections.
Following Refs. [5,38], we use the saddle-point method

to pinpoint if and how the integration on the right-hand side
of Eq. (36) is dominated by the small-bT region. The
saddle-point approximation, or the method of steepest
descent, is often used to approximate the integral when
the integrand has the form of e−cSðbTÞ, where c is a constant
and S a smooth function of bT . As the negative exponential
function is rapidly decreasing, one only needs to look
at the contribution from where the exponent is at its
minimum. Since the TMD PDF in bT-space follows such
a form, see Eqs. (21) and (35), it is natural to apply the

saddle-point approximation to analyze the TMD PDF. We
mainly concentrate on the case where kT ¼ 0. In such a
case, J0ðkTbTÞ ¼ 1 and no oscillations are present. When
kT > 0, the Bessel function J0ðkTbTÞ further suppresses
the large-bT region of the bT integration, and our analysis
will be further improved. At kT ¼ 0, we have

Faðx; k2T ¼ 0;Q;Q2Þ

¼ 1

2π

Z
∞

0

dbTbTFaðx; b2T ;Q;Q2Þ

¼ 1

4π

Z
∞

−∞
dðln b2TÞ exp ½ln ðb2TFaðx; b2T ;Q;Q2ÞÞ�; ð37Þ

and thus the integral is dominated by a saddle point at bspT ,
which is determined by [5]

d
dbT

fln½b2TFaðx; b2T ;Q;Q2Þ�gbT¼bspT
¼ 0: ð38Þ

In the following, we will study in detail the kinematic
dependence of the saddle-point bspT , in particular the most
relevant x and Q dependence:

bspT ≡ bspT ðx;QÞ: ð39Þ

The approximation relates the integral over bT in Eq. (37)
to the evaluation of the integrand at the saddle-point bspT .
When the saddle point is small, bspT ≪ 1=ΛQCD, i.e., well
in the perturbative region, then one would expect the TMD
PDF Faðx; k2T ;Q;Q2Þ to be mainly controlled by the
perturbative physics (always modulo the collinear
PDFs). On the contrary, if bspT is large, i.e.,
bspT ≳ 1=ΛQCD, the large-bT nonperturbative contribution
is very important and one has to understand/constrain it
well, in order to have a full understanding of the TMD
PDF. In other words, we use the information on the
saddle-point bspT as an indication of the predictive power
of the TMD formalism.

A. Saddle point: General behavior

To start, we first use the perturbative contribution to
Faðx; b2T ;Q;Q2Þ to compute the saddle-point bspT . Plugg-
ing the perturbative expression in Eqs. (21) into (38), we
obtain

d
dbT

��Z
Q

μb

dμ0

μ0

�
ln

�
Q2

μ02

�
γKðαsðμ0ÞÞ − γFðαsðμ0Þ; 1Þ

�
þDðc; αsðμbÞÞ ln

�
Q2

μ2b

�

− lnðb2TÞ − ln

�X
b

Ca=bðx; b2T; μb; μ2bÞ ⊗ fbðx; μbÞ
��				

bT¼bspT

¼ 0: ð40Þ
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In general, one can evaluate the saddle-point bspT of the
TMD PDF by solving numerically the above equation. This
is indeed what we do below when we present the results at
next-to-next-to-leading logarithmic (NNLL) accuracy and
next-to-next-to-leading order (NNLO) in the strong cou-
pling αs. However, at the leading logarithmic (LL) accuracy
where one keeps the leading order (LO) result in Γcusp and
in the coefficient functions Ca=b, one can solve the above
equation and obtain the following simple results:

1

2
ln

�
Q2

μ⋆2b

�
Γ0

αsðμ⋆bÞ
4π

¼ 1 − Xðx; μ⋆bÞ;

Xðx; μÞ ¼ d
d ln μ2

ln faðx; μÞ; ð41Þ

where we have introduced μ⋆b ¼ c=bspT . The function
Xðx; μÞ quantifies the impact of the DGLAP evolution on
the position of the saddle point. Its sign changes according
to the value of the light-cone fraction x and determines
the x-dependence of the saddle point.
The saddle point for the resummed contribution to the

Drell-Yan cross section differential with respect to the
transverse momentum of the lepton pair has been discussed
in Refs. [5,37]. In that treatment the effect of the
x-dependence was neglected. In our treatment, neglect-
ing the x-dependence corresponds to setting X ¼ 0.
Accordingly, the solution of Eq. (41) reads

bspð0ÞT ¼ c
ΛQCD

�
Q

ΛQCD

�
−Γ0=ðΓ0þ8πb0Þ

; b0¼
11CA−4Tfnf

12π
;

ð42Þ

where b0 is the one-loop coefficient of the QCD beta
function [52], and nf is the number of active flavors. The

expression for bspð0ÞT is analogous to the one presented in
Refs. [5,37]. It follows the usual wisdom that the larger the

value ofQ is, the smaller bspð0ÞT is, and thus the perturbative
contributions to the observable play a more important role.
By including the contribution ofX , the solution to Eq. (41)
acquires an x-dependence:

bspT ¼ c
ΛQCD

�
Q

ΛQCD

�
−Γ0=½Γ0þ8πb0ð1−Xðx;μ⋆bÞÞ�

: ð43Þ

Note that the right-hand side of Eq. (43) depends on bspT
through μ⋆b, and thus Eq. (41) needs to be solved by
iterations. A legitimate choice for the first iteration is to

evaluate X at bspð0ÞT . Comparing Eq. (43) with (42), one

observes that if X > 0 (< 0), one would have bspT < bspð0ÞT

(bspT > bspð0ÞT ). To understand the behavior of X , as well as
for the general numerical investigation, below we rely on
the LHAPDF6 library [53] and in particular on the central
PDF set from NNPDF30 [54] at NNLO accuracy with
αsðMZÞ ¼ 0.118. We also use the APFEL library [55] to
calculate the X function. The result is in agreement with
applying the finite differences method to the NNPDF30 grid.
In Fig. 2, we plot X as a function of x for an up quark (left)
and a gluon (right), at different scales μ ¼ 1, 5, 10,
100 GeV, respectively. Apart from the gluon case at
μ≲ 1 GeV, the function X is positive for x≲ 0.1 and
negative for x≳ 0.1. Thus its effect is to reduce the value of

the saddle-point bspT with respect to the solution bspð0ÞT for
x≲ 0.1 and to increase it for x≳ 0.1. Because of this, for the
same Q value but smaller x region, the perturbative
contribution (from small-bT region) plays amore important
role for the TMD PDF. This means that in general, away
from the limiting cases, the TMD PDF is more perturba-
tively dominated at largeQ and small x. On the other hand,
the TMD PDF is more dominated by the nonperturbative
contribution at smallQ and large x. This suggests that even
for a moderately large Q, the TMD PDF at large x could

(a) (b)

FIG. 2. The x-dependence of theXðx; μÞ function defined in Eq. (41) for (a) an up quark, and (b) a gluon. Different values for μ ¼ 1, 5,
10, 100 GeV have been chosen.
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become quite sensitive to the nonperturbative contribution,
due to the x-dependence of the X function.

B. Saddle point: Detailed analysis

After the above qualitative understanding of the kin-
ematic dependence of the saddle point, we now turn to a
detailed numerical analysis and concentrate on the x and Q
dependence. We first choose representative values of x, and
study the Q-dependence of the saddle-point bspT . For the
small x region, we choose x ¼ 10−3 which could be
relevant to the LHC and the EIC kinematics. While for
the large x region, we choose x ¼ 0.3 for our illustration
below.
Let us first plot the behavior of the x-independent

solution bspð0ÞT and the x-dependent one, bspT , both at LL
accuracy as given in Eqs. (42) and (43). In Fig. 3 the orange

curves represent bspð0ÞT , whereas the purple curves refer to

bspT as a function of the hard scale Q: (a) up quark at small
x ¼ 10−3, (b) up quark at large x ¼ 0.3, (c) gluon at small
x ¼ 10−3, and (d) gluon at large x ¼ 0.3. Note that when

bspð0ÞT > c ¼ 2e−γE , the first iteration in the solution of

Eq. (43) is evaluated at the scale μ⋆bðbspð0ÞT Þ < 1 GeV. Thus,
the collinear PDF faðx; μÞ is evaluated, by extrapolation, at
a scale below 1 GeV, where the used phenomenological
parametrization is not to be trusted. The same applies to any
other iteration to calculate bspT . For this reason, the orange

and purple curves are displayed only when bspð0ÞT < 2e−γE .
Several comments are in order. First of all, both orange

and purple curves are decreasing as Q increases, as
expected. Just as we have emphasized in the previous

section, asQ increases, the saddle point, both for bspð0ÞT and
bspT , becomes smaller indicating that the perturbative
contribution becomes more important. Second of all, one
can see clearly for the small-x region that the purple curves

(a)

(c) (d)

(b)

FIG. 3. Position of the saddle point for the TMD PDF as a function of the scaleQ for: (a) up quark at x ¼ 10−3, (b) up quark at x ¼ 0.3,
(c) gluon at x ¼ 10−3, and (d) gluon at x ¼ 0.3. The orange and the purple curves represent the analytic leading log solutions, without
and with x-dependence respectively. The dots correspond to the numerical studies of the saddle point including higher orders and the
large bT corrections. The behavior of the b

sp
T solution for the gluon at low x presents a nonsmooth behavior towards the lowQ region due

to the nonsmooth behavior of the corresponding X function.
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are below the orange curves, i.e., bspT < bspð0ÞT . This is
driven by the contribution of a positive X as discussed
in the previous section. Similarly, for the large-x region,
the purple curves are above the orange curves, i.e.,

bspT > bspð0ÞT , again consistent with our analysis above.
The parameter bmax ¼ 0.5 GeV−1 in principle identifies

the perturbative region bT < bmax, but, considering that this
is an arbitrary choice, we can allow for some degree of
tolerance and identify the “extended” perturbative region as
bT < 1 GeV−1. In terms of detailed numerical values, we
find from Fig. 3 that for the small-x region, the purple curve
for up quark is below 1 GeV−1, i.e., bspT < 1 GeV−1 when
Q≳ 60 GeV, indicating that the perturbative or small-bT
contribution plays a more important role for the up quark
TMD PDF in the small-x region. On the other hand, for the
large-x region, even when Q≳ 120 GeV, the saddle point
is still larger than 1 GeV−1, suggesting that the non-
perturbative or large-bT contribution would still play a
significant role for the up quark TMD PDF in the large-x
region, even though the Q value is already very large.
Similar observations apply to the gluon TMD PDF, in an
even better way. Due to the larger color factor (CA vs CF) in
Γcusp, the Sudakov factor makes the gluon TMD PDF more
narrowly concentrate in the small-bT region. For example,
for a gluon TMD PDF in both the small- and large-x
regions, the saddle-point bspT would become smaller than
1 GeV−1 for moderate Q≳ 20 GeV already, suggesting
that the nonperturbative contribution plays a less important
role in determining the gluon TMD PDF. We also note that
the x-dependent LL solution for the gluon at low x becomes
nonsmooth in the low Q region [see Figs. 3(c) and 4(c)]:
this is essentially due to the nonsmooth behavior of the X
function.
Let us analyze the saddle point by including the

extrapolation term RNP
a ðx; bT;Q; bmaxÞ in Eqs. (22) and

(35). For that, we evaluate the saddle point of the
TMD PDF by directly solving numerically Eq. (38) at
NNLL and NNLO. In such a setup, we include Γ0;1;2

and γ0;1 in the anomalous dimension, and use two-loop
results for the coefficient functions Ca=b, as given in
Ref. [40]. As previously discussed, there are four param-
eters in the extrapolation function RNP

a ðx; bT;Q; bmaxÞ,
namely α; g1; g2, and ḡ2. In Ref. [38], the following
quantity is defined:

g02ðQÞ≡ ḡ2 þ g2 ln

�
Q2

μ2bmax

�
; ð44Þ

and its value at the scale of the W boson mass is
determined to be g2;W ¼ 0.4 GeV2 through a fit to the
experimental data [38]. From a given value of g2;W and ḡ2,
the value of g2 can be determined by inverting the above
equation. In the analysis below, we either fix the value of
g2 or g2;W, or vary around their value. As we have

mentioned before, we require Faðx; b2T ;Q;Q2Þ to be
smooth at bT ¼ bmax so to determine the other parameters
in the extrapolation function RNP

a . Specifically, we require
the first and second order derivatives of Faðx; b2T ;Q;Q2Þ
to be continuous at bT ¼ bmax. With two conditions, two
of the parameters can be fixed and we choose to be α and
g1. There is a subtlety here that requires some caution. In
the context of this analysis, which is focused on the high
energy regime, we determine α and g1 through the
continuity of the first and second derivative only if the
first derivative in bT¼bmax is negative (∂Faðx; b2T ¼ b2max;

Q;Q2Þ=∂bT < 0) and thus Faðx; b2T ;Q;Q2Þ decreases as
bT increases to be consistent with the expected physical
behavior. On the contrary, which is usually the case at
very large x, when such a first derivative is positive, we set
α and g1 to zero. This is one of the possible methods to
avoid an unphysical extrapolation in the large bT region.
Other more flexible strategies that can guarantee nonzero
values for α and g1 can be introduced in order to describe
events at low Q, for example in the context of semi-
inclusive deep-inelastic scattering at fixed-target energies.
We leave such a detailed analysis for future studies.
In Fig. 3, we plot the saddle-point bspT for three different

scenarios: (1) ðg2;W; ḡ2Þ ¼ ð0.4; 0.0Þ GeV2, denoted as
blue dots, (2) ðg2;W; ḡ2Þ ¼ ð0.4; 0.2Þ GeV2, denoted as
green dots, (3) ðg2;W; ḡ2Þ ¼ ð0.6; 0.2Þ GeV2, denoted
as red dots. It is evident for the small-x and large-Q region
that the numerical values of the saddle points are quite
stable for both quarks and gluons, such as at Q ¼ MZ ¼
91.18 GeV (Z boson) and Q ¼ MH0 ¼ 125.1 GeV (Higgs
boson). This suggests that the nonperturbative contribu-
tions are mild in these cases. On the other hand, for the
quark TMD PDF in the large-x region, the red dots can be
different from the blue/green dots even for very large-Q
values, suggesting that the nonperturbative contribution
could be quite significant. On the other hand, the situation
is quite improved for the gluon TMD PDF at large-x, thanks
to the strong Sudakov resummation effect. A certain degree
of model dependence is left for the gluon at large x and
small Q, which anyway vanishes for the gluon at small x,
where the saddle point is almost exclusively in the strict
perturbative region bT < bmax.
In Fig. 4, we plot the position of the saddle point for a

TMD PDF as a function of the light cone momentum
fraction x for: (a) gluon at Q ¼ MH0 , (b) up quark at
Q ¼ MZ, (c) gluon at Q ¼ Mϒ ¼ 9.46 GeV, (d) up quark
at Q ¼ Mϒ, (e) gluon at Q ¼ MJ=Ψ ¼ 3.096 GeV, (f) up
quark at Q ¼ MJ=Ψ. The behavior of the saddle point from
high energies (top) to low energies (bottom) is summarized,
for the gluon case (left) and the up quark case (right). At
this point it is important to remark that the x-dependence of
the numerical solutions (the dots) for bspT in Fig. 4 is driven
both by the x-dependence of the perturbative part and of the
nonperturbative part (RNP

a ) of the TMD PDF via g1 and α.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Position of the saddle point for a TMD PDF as a function of the light cone momentum fraction x for: (a) gluon at
Q ¼ MH0 ¼ 125 GeV, (b) up quark at Q ¼ MZ ¼ 91 GeV, (c) gluon at Q ¼ Mϒ ¼ 9.46 GeV, (d) up quark at Q ¼ Mϒ, (e) gluon at
Q ¼ MJ=Ψ ¼ 3.096 GeV, and (f) up quark at Q ¼ MJ=Ψ. The behavior of the saddle point from high energies (top) to low energies
(bottom) is summarized, for the gluon case (left) and the up quark case (right). The characteristics are discussed in detail in Sec. III. The
overall trend is that the saddle point for a gluon lies at lower bT values with respect to the quark case at equal or comparable energy
scales. The x dependence induced by the perturbative structure of the TMD PDF is monotonically increasing, and deviations from this
trend are generated by the treatment of the large bT region.
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Indeed, when bT > bmax, if one sets manually g1 and α to
zero, the x dependence is lost. As previously discussed, this
is also what happens at (very) large x in all cases apart for
the gluon at Q ¼ MH0 , when the first derivative of the
TMD PDF at bT ¼ bmax becomes positive. The x depend-
ence generated by the perturbative contribution is generally
monotonically increasing. A confirmation of this trend can
be found in the shape of the X function. Thus, the changes
in concavity in the large x regions are essentially induced
by the treatment of the large bT region and thus model
dependent.
The overall trend that we can infer from Fig. 4 is that the

saddle point for a gluon lies at lower bT values with respect
to the quark case at equal or comparable energy scales,
again due to the different color factor in the cusp anomalous
dimension. It is instructive to point out that, for physical
observables which depend on the convolution in momen-
tum space of two TMD PDFs, such as the transverse
momentum differential cross section ofW=Z andH0 boson
production, the integrand in the bT-space is more peaked in
the low bT region than for the single TMD PDF. Thus at
large Q and small x region, the predictive power is then
guaranteed (see Fig. 8 in Sec. V and Refs. [17,29,38,39]).
In practice, the plots in Fig. 4 suggest that the transverse

momentum distribution of H0 and Z bosons at small-x (or
large center-of-mass energy

ffiffiffi
s

p
) would be very well

controlled by the perturbative contribution. If we are in
the small-x region while at the moderate scale of ϒ mass,
Mϒ, the nonperturbative contribution to the gluon TMD
PDF could be mild. This suggests that the transverse
momentum distribution of the ϒ particle could be very
well described by the perturbative physics at the collider
energy such as the LHC [17,56], where the gluon-gluon
fusion channel dominates the production cross section, but
not at lower energies. Finally, for the J=ψ production,
which is at a very low mass scale MJ=ψ GeV, the non-
perturbative contribution would be more important and
could be even entangled with the formation of the quarko-
nium [57,58]. For the quark case, the predictive power is
well under control at Q ¼ MZ, as we shall see in Sec. V,
whereas the physical observables receive significant non-
perturbative corrections for Q≲ 10 GeV.
Overall we can conclude that the kinematic domain in

which the predictive power is strongest is the large-Q and
small-x region, where the saddle-point bspT for the trans-
verse momentum distribution is comparable to or smaller
than 0.5 GeV−1. We emphasize again that in addition to the
value of the hard scale Q, this analysis shows that also the
value of the light-cone fraction x contributes to determining
how relevant the nonperturbative part of the TMD PDF is.
This is essential also to understand which experiments and
kinematic configurations can be more useful to investigate
the properties of the nonperturbative structure of hadrons
and which other experimental configurations are more
suited for testing the predictive power of the theory. It is

certainly important to keep in mind that the predictive
power of any theory always depends also on the precision
of the specific observable studied in order to test and falsify
the theory itself (see Sec. VA).

IV. RELEVANCE OF NONPERTURBATIVE
CORRECTIONS

Apart from the saddle point of the TMD PDF, it is also
useful to directly look at the integrand in bT-space of the
TMD PDF at kT ¼ 0, which is simply

bTFaðx; b2T ;Q;Q2Þ=2π: ð45Þ

The shape of this function is also useful to quantify the
relevance of the large-bT part of the TMD PDF. In this
section, we will assess the relevance of nonperturbative
contributions more quantitatively.
In Fig. 5 the behavior of the bT-space integrand is

displayed for an up quark at Q ¼ fMZ;Mϒg and
x ¼ f10−3; 0.3g. On the other hand, in Fig. 6 the same
quantity is presented for a gluon at Q ¼ fMH0 ;Mϒg and
x ¼ f10−3; 0.3g. In these figures, it is possible to identify
three distinct regions: (I) bT ≲ bmax ¼ 0.5 GeV−1, (II)
bmax ≲ bT ≲ 1 GeV−1, and (III) bT ≳ 1 GeV−1. In region I,
the integrands are completely determined by the perturba-
tive calculation, see also Eq. (22). Note that by construction
this region is not affected at all by the details of the model at
large bT . The value of bmax ¼ 0.5 GeV−1 is marked with a
vertical dashed line in Figs. 5 and 6. Region II is a transition
region from the perturbative to nonperturbative region.
Since we require the TMD PDF to be smooth at bT ¼ bmax,
the parameters ðα; g1Þ in the extrapolation function RNP

a
shape the integrand in this region. Finally region III is
dominated by the physics beyond the leading power/
twist QCD perturbative calculations and nonperturbative,
and the values of the parameters ðg2; ḡ2Þ which quantify
the strength of the power corrections would mainly
determine the behavior of the integrand. Naturally, if
the area under region III is very small, the TMD PDF
Faðx; k2T ;Q;Q2Þ in the momentum space will be domi-
nated by the perturbative contribution, up to the knowl-
edge of 1D PDFs as indicated in Eq. (18). On the contrary,
if such an area is very large, the TMD PDF in the
momentum space will be very sensitive to the nonpertur-
bative contributions.
In Figs. 5 and 6, we fix ḡ2 ¼ 0.2 GeV2, and vary g2;W by

a factor of 2 up and down from its best fit value 0.4 GeV2.
As one can see clearly from Fig. 5, for the small-x and
large-Q region (x ¼ 10−3 and Q ¼ MZ), the nonperturba-
tive contribution from the large bT region bT ≳ 1 GeV−1 is
moderate. But, at the same time, we find that in this region
changing g2;W by a factor of 2 leads to minor changes in the
integrand, as can be seen from the difference in red and blue
curves. This suggests that our derived extrapolation
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function RNP
a is mainly determined by g1 and α and thus

will be very good in characterizing the nonperturbative
contributions in the large-bT region.
For the case of gluons (Fig. 6), the regions I and II

dominantly determine the large-bT behavior of the inte-
grand at small x¼ 10−3, for both values ofQ¼fMH0 ;Mϒg,
while the nonperturbative contribution from the large
bT ≳ 1 GeV−1 to the integrand becomes very small. At
large x ¼ 0.3, instead, the power corrections have a mild
impact at the H0 mass scale and a large impact at the ϒ
mass scale. Once again, this shows that the value of both the
hard scaleQ and of the collinear momentum fraction x play
an important role in determining the relevance of the large-
bT input in a TMD PDF.

A. Impact of power corrections

Let us now study the impact of the power corrections:
the dynamical power correction as controlled by g2 and the
intrinsic power correction described by ḡ2, combined in
the parameter g02ðQÞ [see Eq. (44)]. To quantify the impact

of these power corrections on the normalization of
Faðx; kT ¼ 0;Q;Q2Þ, we study the following ratio:

Rpcðx;Q; g02Þ ¼
Faðx; kT ¼ 0;Q;Q2Þjg0

2
ðMWÞ

Faðx; kT ¼ 0;Q;Q2Þjg2;W
; ð46Þ

where the intrinsic power correction is fixed to ḡ2 ¼
0.2GeV2, and g2;W¼0.4GeV2. This ratio Rpc allows one
to focus on the impact of the power corrections only. In
Sec. IV B, instead, we will focus on the role of the overall
extrapolation term.
We consider g02ðMWÞ ¼ 2g2;W, g02ðMWÞ ¼ g2;W , and

g02ðMWÞ ¼ g2;W=2, which correspond, respectively, to the
blue, the black, and the red curves in Figs. 5 and 6. In
Tables I and II we present the values of the Rpc ratio for
x ¼ 10−3 and x ¼ 0.3, respectively, choosing three differ-
ent values of Q. Fixing x, the impact of the power
corrections is generally larger at lower Q, which means
that the TMD PDF is increasingly affected by the non-
perturbative corrections at low energies. Vice versa, at fixed

(a)

(c) (d)

(b)

FIG. 5. The integrand bTFaðx; b2T ;Q;Q2Þ=2π at NNLL/NNLO for an up quark at (a) Q ¼ MZ and x ¼ 10−3, (b) Q ¼ MZ and
x ¼ 0.3, (c) Q ¼ Mϒ and x ¼ 10−3, and (d) Q ¼ Mϒ and x ¼ 0.3. The nonperturbative corrections (specified by the values of the
parameters g2;W and ḡ2) have a larger impact on the normalization of the TMD PDF at lower Q and larger x.
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Q the impact of the power corrections is more relevant at
larger x, which means that in the large-x region TMD
distributions are affected by potentially large nonperturba-
tive effects. At small x (Table I), by changingQ fromMZ to
Mϒ, the impact of the power corrections on the quark TMD
PDF increases by 4%–5%, whereas at large x (Table II) the
increase in the quark case ranges from 12% to 65% for the
same change in Q. Keeping the value of x and Q fixed,
the power corrections are less relevant for the gluon, since
its TMD PDF is peaked at a lower value of bT with respect

to the quark case (e.g., compare the Q ¼ Mϒ cases in
Figs. 5 and 6), due to the Casimir rescaling in the evolution
kernel. At small x (Table I), the impact of power corrections
on the gluon TMD PDF is very low and is not affected at
all by changing Q from MH0 to Mϒ, whereas at large x
(Table II) the impact is comparable to the quark case.
Overall, this is a complementary way to prove that TMDs at
large Q and small x regions are perturbatively dominated.
The choice kT ¼ 0 is the simplest case since it implies
J0ð0Þ ¼ 1 in Eq. (3). This eliminates any oscillation from

(a)

(c) (d)

(b)

FIG. 6. The integrand bTFaðx; b2T ;Q;Q2Þ=2π at NNLL/NNLO for a gluon at (a) Q ¼ MH0 and x ¼ 10−3, (b) Q ¼ MH0 and x ¼ 0.3,
(c)Q ¼ Mϒ and x ¼ 10−3, and (d)Q ¼ Mϒ and x ¼ 0.3. As for the quark case, the nonperturbative corrections have a sizable impact on
the normalization of the TMD PDF at lowerQ and larger x, even if the impact is less significant with respect to the quark case presented
in Fig. 5.

TABLE I. Variations of Faðx; kT ¼ 0;Q;Q2Þ as a function of the strength of the power corrections at x ¼ 0.001 for differentQ values.
The reference value (the black curve in Figs. 5 and 6) corresponds to g2;W ¼ 0.4 GeV2 and ḡ2 ¼ 0.2 GeV2 (see Eq. (44)). The second
number in each pair corresponds to g02ðMWÞ ¼ 2g2;W (the blue curves in Figs. 5 and 6) and the first number corresponds to g02ðMWÞ ¼
g2;W=2 (the red curves in Figs. 5 and 6).

x ¼ 0.001

Rpcðx;Q; g02Þ Q ¼ MH0 Q ¼ MZ Q ¼ Mϒ

Up quark fþ4.4%;−6.4%g fþ8.4%;−11.8%g
Gluon fþ0.02%;−0.01%g fþ0.02%;−0.01%g
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the Bessel function, and allows a better insight into
the physics of the small-bT and large-bT regions. When
kT > 0, the Bessel function J0ðkTbTÞ further suppresses the
large-bT region of the bT integration.

B. Impact of the complete extrapolation term

Let us introduce a cutoff bc for the upper bound of the
bT-space integration in Eq. (3):

ωðbc;kTÞ¼
1

2π

Z
bc

0

dbTbTJ0ðkTbTÞFaðx;b2T ;Q;Q2Þ; ð47Þ

where Faðx; b2T ;Q;Q2Þ is defined in Eq. (22). To test the
influence of the large bT-region on the entire TMD PDF, let
us introduce the ratio [38]:

Rðbc; kTÞ≡ ωðbc; kTÞ
ωðbc → þ∞; kTÞ

: ð48Þ

The ratio Rc represents the fraction of the total integral
(bc → þ∞Þ generated by the 0 < bT < bc region. Figure 7
shows the Rcðbc; kT ¼ 0Þ ratio for an up quark at Q ¼ MZ

(a)

(c) (d)

(b)

FIG. 7. The ratio Rcðbc; kT ¼ 0Þ defined in Eq. (48) is plotted as a function of bc for (a) up quark at Q ¼ MZ, (b) gluon at Q ¼ MH0 ,
(c) up quark at Q ¼ 9 GeV, and (d) gluon at Q ¼ 9 GeV, respectively. The red and blue curves are generated with different choices for
the parameters that govern the power corrections (see the legends).

TABLE II. Variations of Faðx; kT ¼ 0;Q;Q2Þ as a function of the strength of the power corrections at x ¼ 0.3 for different Q values.
The reference value (the black curve in Figs. 5 and 6) corresponds to g2;W ¼ 0.4 GeV2 and ḡ2 ¼ 0.2 GeV2 [see Eq. (44)]. The second
number in each pair corresponds to g02ðMWÞ ¼ 2g2;W (the blue curves in Figs. 5 and 6) and the first number corresponds to g02ðMWÞ ¼
g2;W=2 (the red curves in Figs. 5 and 6).

x ¼ 0.3

Rpcðx;Q; g02Þ Q ¼ MH0 Q ¼ MZ Q ¼ Mϒ

Up quark fþ13.1%;−18.6%g fþ78.0%;−30.1%g
Gluon fþ2.69%;−5.13%g fþ68.4%;−23.4%g
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andQ ¼ Mϒ, and for a gluon atQ ¼ MH0 andQ ¼ Mϒ. In
each panel the ratios computed with x ¼ 10−3 and x ¼ 0.3
are compared.
Let us consider the value b̄c such that Rcðb̄c; kT ¼ 0Þ ¼

0.75. The latter is highlighted by a horizontal dashed gray
line in Fig. 7. For an up quark at Q ¼ MZ, b̄c ∼ 1 GeV−1

at low x, whereas at high x one has b̄c ∼ 1.5 GeV−1.
Namely, in order to reproduce 75% of the normalization,
a wider portion of the large bT region is needed at large
x, where it is thus affected by potentially large non-
perturbative corrections. The same trend can be observed
in the other three cases too. Comparing with Fig. 5(a),
this also confirms that for an up quark at Q ¼ MZ and
x ¼ 10−3 the dominant part of the large-bT correction is
the term proportional to g1 (which is completely deter-
mined by imposing the continuity of the first and second
derivatives at bmax), whereas at Q ¼ MZ and x ¼ 0.3 also
the dynamical and the intrinsic power corrections play a
significant role.
Comparing the panels (a) vs (b) and (c) vs (d) in Fig. 7

one sees that, in general, the ratio saturates faster for
gluons than for quarks. This is because the gluon TMD
PDF is peaked at lower bT values with respect to the
quark distributions (see Figs. 5 and 6) due to the stronger
suppression in bT space generated by the Collins-Soper
kernel K and by the UV anomalous dimension γF
[9,59,60], as already discussed. Looking at Fig. 7(a) vs
7(c) and 7(b) vs 7(d), one can see that the effect of
lowering the value of the hard scale Q is to increase the
sensitivity to the power corrections, both for quarks and
gluons and both at low x and large x. Comparing Fig. 7(b)
with Figs. 6(a) and 6(b), we can see that for a gluon at
Q ¼ MH0 only the term proportional to g1 is relevant to
build the 75% of the total integral. A similar argument
holds for Fig. 7(d), but comparing with Figs. 6(c) and
6(d) we can see that lowering Q the distribution becomes
increasingly more sensitive also to the power corrections
at large x, on top of the g1 term. In all cases apart from the
gluon at Q ¼ MH0 and x ¼ 10−3, comparing with Figs. 5
and 6 one can see that both the g1 term and the power
corrections (namely the overall nonperturbative functions
that extrapolates the low bT behavior into the large bT
region) become relevant to determine the 95% of the
TMD PDF at kT ¼ 0. Eventually, from Fig. 7(b) we
determine that for a gluon with Q ¼ MH0 and x ¼ 10−3

the fully perturbative region determined by bT < bmax ¼
0.5 GeV−1 generates the 90% of the TMD PDF at kT ¼ 0,
whereas at x ¼ 0.3 it accounts only for 50% of the
distribution. This shows that, in principle, the transverse
momentum distribution of a Higgs boson produced in
gluon-gluon fusion in hadronic collisions can receive
non-negligible nonperturbative corrections when one of
the two collinear momentum fractions is very large
[59], e.g., for the kinematic region far away from the
central-rapidity region at the LHC.

V. CROSS SECTIONS

In order to compute the transverse momentum distribu-
tion of a Z boson or a Higgs boson produced in hadronic
collisions we need to calculate the convolution of two TMD
PDFs in momentum space. This corresponds to multiplying
the two TMD distribution in the bT-space.

A. Z-boson

For Z production in pp collisions the cross section
differential in the transverse momentum qT and in the
rapidity of the produced Z in the low qT ≪ MZ region
reads [32,51,61]

dσZð→lþl−Þ

dyd2qT

¼ HZ
0

2π

X
q

ðV2
q þ A2

qÞ
Z þ∞

0

dbTbTJ0ðbTqTÞ

× ðFq=AÞðxA; b2T ;MZ;M2
ZÞFq̄=BðxB; b2T ;MZ;M2

ZÞ;
ð49Þ

where we have neglected the large qT corrections
OðqT=MZÞ to TMD factorization and the corrections
OðΛQCD=MZÞ to collinear factorization. The factors Vq

and Aq are the vector and axial couplings respectively of the
Z boson to the quark. The HZ

0 function is the hard function
for Z-production:

HZ
0 ¼ σZð→lþl−Þ

0 H;

σZð→lþl−Þ
0 ¼

ffiffiffi
2

p
πGFM2

Z

sNc
BRðZ → lþl−Þ; ð50Þ

where σZ0 is the leading order term [51] and H is the hard
function for Drell-Yan with the lowest order normalization
Hð0Þ ¼ 1, which we consider at NNLO [62]. We also
adopted the narrow-width approximation, i.e., we neglect
contributions for Q ≠ MZ. The value of the branching ratio
into leptons is BRðZ → lþl−Þ ¼ 0.033658 [63].
As already mentioned, the net effect of multiplying two

TMD PDFs in bT space is that the predictive power for the
cross section calculation at a specific value of x and Q is
increased with respect to the computation of a single TMD
distribution, since the product of two TMDs is peaked at a
lower bT with respect to a single TMD PDF.
For example, from Fig. 7(a) we determined that the term

∝ g1 in the extrapolation function RNP
a , as well as the power

corrections play a role in determining the value of the quark
TMD PDF at Q ¼ MZ, both at low and high x. Instead, in
Fig. 8(a) we show that we can reproduce the data collected
by the CMS experiment at the LHC with

ffiffiffi
s

p ¼ 7 TeV and
central rapidity −2.1 < y < 2.1 [64] without including any
dynamical or intrinsic power correction in the TMD PDF.
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The g1-term in RNP
a is sufficient (and necessary) to

capture the behavior of the TMD PDF at large bT
needed to describe the experimental data. No fit to the
data has been performed to reproduce the experimental
data in Fig. 8(a). In Fig. 8(b), instead, the normalized
integrand of the differential cross section in bT space is
displayed for qT ¼ 0. For the rapidity values y ¼ �2.1
and y ¼ 0 the peak of the integrand lies well in the
perturbative region. It is also straightforward to check that
the peak of lnðbT × the cross section integrandÞ, which
corresponds to the analog of the saddle point for the
TMD PDF discussed in Eq. (40), lies at bT < 0.5 GeV−1.
This result is obtained implementing the OPE on the
collinear PDFs at small bT at Oðα2sÞ and working at NNLL
accuracy with the Collins-Soper kernel K and the UV-
anomalous dimension γF.
The x range spanned by the data in Fig. 8 is

∼½10−3; 10−1� (calculated as ðQ=
ffiffiffi
s

p Þe�y). We checked
that for the data collected at more forward rapidity,
where one of the momentum fraction x lies in a large x
region (e.g., the one by the LHCb experiment [65–67]),
the perturbative contribution plus the g1-term alone is not
sufficient to correctly describe the data, given also their
very high precision. This is consistent with our expect-
ation as the relevance of the nonperturbative contribution
increases as x gets larger. Indeed it has been recently
shown that the large bT part of the TMD PDF is relevant
if one wants to describe the very precise LHC data at
forward rapidity, and it is also important to take into
consideration its kinematic dependence [33–35].
Along these lines, we remind that the predictive

power is not an absolute concept, but is always related
to the precision of the observable under consideration.

For example, there might be extremely precise observ-
ables for which the perturbative contributions plus the
g1-term alone are not sufficient to capture the correct
behavior at relatively large bT needed to give an accurate
description of the quantity considered, even at largeQ and
small x. This is the case, for example, of the W boson
mass, whose determination is sensitive also to the intrinsic
transverse momentum dependence and its flavor decom-
position [30,31].
Another interesting information available from Fig. 8 is

that the TMD cross section given in Eq. (49), valid in
principle at qT ≪ MZ, can accurately describe the data in
a range of transverse momenta up to ∼MZ=3, which is
comparable to the values quoted in, e.g., Refs. [35,36].
The determination of the range of applicability of the
TMD formalism depends both on the perturbative accu-
racy of the calculation and also on the separation of the
bT regions and on the parametrization of the large bT
behavior. The determination of the qT range in which
the TMD factorization/approximation describes well the
data should be, in principle, combined with the error
associated to the TMD factorization [20] and can be a
useful piece of information in the context of the matching
studies [19,20].

B. Higgs boson

In this section we present the calculation for the trans-
verse momentum differential cross section for Higgs boson
production from gluon-gluon fusion in pp collisions atffiffiffi
s

p ¼ 13 TeV based on the discussed structure for the
TMD PDFs. We calculate the cross section in TMD
factorization as [60]

(a) (b)

FIG. 8. (a) Normalized differential cross section for Z boson production at CMS [64] as a function of transverse momentum qT and
(b) its normalized integrand in bT space at qT ¼ 0. Both for y ¼ 0 and jyj ¼ 2.1 the peak of the integrand and the saddle point of the
cross section lie well in the perturbative region (bT < 0.5 GeV−1). Thus the formalism is predictive and we can describe the data at low
qT just with the perturbative contributions plus the g1-term in the extrapolation function, but without intrinsic or dynamical power
corrections. We stress that the theory-data comparison in (a) is not the result of a fit. We evaluated numerically the inclusive cross section
σ and we find σ ¼ 12.46 nb.
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dσH
0

dyd2qT

¼ σ0
2π

C2
t H̄

Z þ∞

0

dbTbTJ0ðbTqTÞ

× ðFg=AÞðxA; b2T ;MH0 ;M2
H0ÞFg=BðxB; b2T ;MH0 ;M2

H0Þ;
ð51Þ

where we have convoluted two gluon TMD PDFs in
momentum space. The coefficient σ0 is the Born-level cross
section,Ct is the coefficient that integrates out the top quark
[60], and H̄ is the hard function for Higgs boson production,
with the normalization H̄ð0Þ ¼ 1 in the lowest order. For the
analytic expression of these coefficients we refer to
Ref. [60]. The resummation of large logarithms in the cross
section is done by evaluating each perturbative coefficient at
its natural scale, and evolving them up to a common scale by
using the respective anomalous dimensions [60].
The experimental data available so far to study the Higgs

qT spectrum in the TMD region are affected by very large
uncertainties and bin size [see Fig. 9(a)]. For this reason, in
addition to comparing with the CMS data, we also compare
our formalism to another evaluation of the same observable
performed in the framework of collinear factorization with
transverse momentum resummation. Specifically, we com-
pare to the resummed result available from the public
code4 HQT [44,68].
Since in this paper we focus only on the unpolarized

TMD PDF, we have decided to omit the contribution

of the linearly polarized gluons [70] from Eq. (51).
Their role in Higgs boson production has been addressed
in Refs. [45,60,71–73] and, more recently, in Ref. [74].
Their contribution to the Higgs transverse momentum
distribution is known to be of the order of a few percent,
depending on the perturbative order and on the implemen-
tation of the nonperturbative corrections [45,60,71]. At the
phenomenological level the role of the linearly polarized
gluons in hadronic collisions is more relevant in the semi-
inclusive production of lighter states, such as (pseudo)
scalar quarkonium production at low transverse momentum
[57,75–78]. In Fig. 9(a) we compare Eq. (51) at NNLL and
NNLO accuracy in TMD factorization with the calculation
from HQT at the same perturbative accuracy. The red curve
is the calculation based on the formalism presented in this
paper assuming an extrapolation to the large bT region
without power corrections (g2 ¼ ḡ2 ¼ 0). HQT implements
the so-called complex-bT [79] prescription to separate the
small and the large bT regions. A Gaussian smearing factor
in bT space governed by a single parameter gNP is included
to account for the potential nonperturbative effects at large
bT . The blue band in Fig. 9(a) has been obtained by setting
gNP ¼ 0 GeV2 and varying the resummation, renormaliza-
tion, factorization scales by a factor of 2 around the central
value MH0 [44,68]. Changing the parameters controlling
the nonperturbative corrections in both approaches has a
small impact. In particular, the predictions obtained within
our formalism using g2;W ¼ 0.4, 0.6 and ḡ2 ¼ 0.2 are
identical to the red curve in Fig. 9(a). This is because
the support of the bT-space integrand in Fig. 9(b) is almost
entirely in the perturbative region (bT < 0.5 GeV−1). The
two calculations are in good agreement and compatible
within the uncertainty band, and the differences (especially

(a) (b)

FIG. 9. (a) Cross section for Higgs boson production differential with respect to the transverse momentum qT of the Higgs boson and
(b) normalized integrand in bT space of Eq. (51) at qT ¼ 0. The data in (a) are from the CMS collaboration [69]. The blue band in (a) is
built using HQT2.0 and by varying the perturbative scales around the central value MH0 by a factor of 2. The red curve represents the
calculation in TMD factorization with Eq. (35) assuming an extrapolation to the large bT region without power corrections
(g2 ¼ ḡ2 ¼ 0). The predictions with g2;W ¼ 0.4, 0.6 and ḡ2 ¼ 0.2 are identical to the red curve. This is because the support of the
integrand in (b) is almost entirely in the perturbative region (bT < 0.5 GeV−1).

4The code is available at http://theory.fi.infn.it/grazzini/codes
.html.
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for qT ≳ 20 GeV) could be due to the different methods
employed to separate the small and the large bT regions.

VI. SUMMARY AND OUTLOOK

In this paper we have discussed the predictive power of
unpolarized transverse momentum dependent parton dis-
tribution functions (TMD PDFs, or simply, TMDs), as a
function of the light-cone momentum fraction x and of the
energy scaleQ. Such TMDPDFs are essential ingredients in
the modern TMD factorization formalism, which generally
describes the observables with more than one momentum
transfer, such as hadron production in semi-inclusive deep
inelastic scattering (SIDIS), and the transverse momentum
distribution of vector boson W=Z and H0 production in
hadronic collisions. We have determined that the predictive
power is maximal in the large Q and small x kinematic
region, for example for vector boson production at hadron
colliders with

ffiffiffi
s

p
of the order of the TeV and at central

rapidity. In other words, the transverse momentum depend-
ence of the TMDs, probed in this region, is dominated by the
leading power and perturbatively calculable contributions
from the parton shower in the hard collision, and, therefore,
the TMDs in this kinematic region, so as the transverse
momentumdistributions of the bosons, arewell predicted by
the TMD factorization formalism. Outside of this region, the
nonperturbative contributions (as represented by the
dynamical and intrinsic power corrections in our study)
become increasingly relevant, according to the kinematics
explored (noncentral rapidity, lowQ, large x). Of course this
should not be seen as a problem, rather an advantage for
probing the nature of hadron structure.
We emphasized that the transverse momentum

kT-dependence of parton (quark or gluon) TMDs probedwith
two-scale observables, Q ≫ qT ≳ ΛQCD, in high energy
scattering is different from the intrinsic kT-dependence of
quarks or gluons inside a bound hadron. The difference
between the measured kT-dependence of an active parton
participating in the hard collision and the parton’s intrinsic
motion is a result of the QCD evolution of the TMDs. If the
evolution is dominated by the perturbatively calculable
kernels at smallbT , the observed kT-dependence is effectively
generated perturbatively, as pointed out in this paper in the
region where Q is large and x is small. Such measured
kT-dependence of the TMDs is not sensitive to the details of
nonperturbative hadron structure other than that included in
the 1D PDFs, while its predictiveness is critically important
for understanding the production of Higgs particles and other
relevant observables. On the other hand, if the measured
kT-dependence and its evolution is dominated by the non-
perturbative large bT region, which corresponds to the large x
and/or not too large Q regime as pointed out in this paper,
experimental data of such observables could provide the
much needed information for extracting the nonperturbative
kT-dependenceof theTMDsso longas theTMDfactorization
formalism is valid. In particular, together with the recent

development in extracting the nonperturbative evolution
kernels at large-bT from lattice QCD calculations [80,81],
we could perform QCD global analysis of such experimental
data to extract the intrinsic parton transverse momentum
distributions inside a fast moving hadron to shed some lights
on the confinedmotionof quarks and gluons, the fundamental
property of hadron structure.
Hadron production at low transverse momentum from

SIDIS in the fixed-target mode is probably the configuration
where the predictive power from the perturbative contribution
alone is the least, and the most sensitive one to the non-
perturbative effects [32,49,50,82,83]. It is also the most
challenging one from the point of view of factorization
theorems [84–87], given the fairly low value of Q being a
couple of GeVs. Vector boson production at RHIC probes a
very interesting kinematic region, namely large Q, which
guarantees that the factorization approximations are well
under control, and relatively large x ∼ 0.1, where the sensi-
tivity to the nonperturbative effects is larger (see Figs. 5 and 7,
where we can see a moderate sensitivity to nonperturbative
physics for a quark atQ ¼ MW=Z and large x). This could be
an optimal kinematic window to study TMD effects, such as
the sign change of the Sivers function [25,88,89]. This also
naturally applies to the Drell-Yan measurements at
COMPASS [90]. Another potentially interesting experimen-
tal configuration in the same large-Q=large-x kinematic
region is a fixed-target configuration at the LHC [91,92],
where several (un)polarized hadron structure measurements
could be performed with very high experimental precision,
theoretical control on the factorization approximations, and
sizable sensitivity to hadron structure effects. Last but not
least, also the future U.S.-based electron-ion collider [2] will
provide new insights in the quest for hadron structure and
hadronization and, in particular, on the TMD PDFs and
fragmentation functions [93–98]. According to this analysis,
a good configuration to probe the quark structure of hadrons
in SIDIS at the future EIC could be

ffiffiffi
s

p
∼ 100 GeV for Q ∼

10 GeV at central rapidity. At the sameQ and rapidity and at
higher energies, instead,wewould be increasingly sensitive to
the perturbative structure of the transverse momentum
distributions.
This investigation can be expanded in several different

directions, for example including small-x resummation
effects, polarization effects, studying fragmentation func-
tions, and confronting the given parametrization of RNP

a
with experimental data from low to high energies. We leave
these for future studies.
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