Accepted Manuscript

Density changes in low pressure gas targets for electron scattering experiments
S.N. Santiesteban, S. Alsalmi, D. Meekins, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Campbell, J. Castellanos, R. Cruz-Torres, H. Dai,
T. Hague, F. Hauenstein, D.W. Higinbotham, R.J. Holt, T. Kutz, S. Li,

H. Liu, R.E. McClellan, M. Nycz, D. Nguyen, B. Pandey, V. Pandey,
A. Schmidt, T. Su, Z. Ye

PII: \quad S0168-9002(19)30865-4
DOI: https://doi.org/10.1016/j.nima.2019.06.025
Reference: NIMA 62284

To appear in: Nuclear Inst. and Methods in Physics Research, A
Received date: 7 March 2019
Revised date: 12 June 2019
Accepted date: 12 June 2019

Please cite this article as:, Density changes in low pressure gas targets for electron scattering experiments, Nuclear Inst. and Methods in Physics Research, A (2019), https://doi.org/10.1016/j.nima.2019.06.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Density Changes in Low Pressure Gas Targets for Electron Scattering Experiments

S. N. Santiesteban ${ }^{\text {a }}$, S. Alsalmi ${ }^{\text {b }}$, D. Meekins ${ }^{\text {c }}$, C. Ayerbe Gayoso ${ }^{\text {e }}$, J. Bane ${ }^{\text {d }, ~ S . ~ B a r c u s ~}{ }^{\text {e }}$, J. C hell ${ }^{\text {f }}$, J. Castellanos ${ }^{\text {g }}$, R. E. McClellan ${ }^{\text {c }}$, M. Nycz ${ }^{\text {b }}$, D. Nguyen ${ }^{\text {o }}$, B. Pandey ${ }^{\text {p }}$, V. Pandey ${ }^{\mathrm{i}}$, A. Schmid , , Su ${ }^{\text {b }}$, Z. Ye ${ }^{\mathrm{l}}$
${ }^{a}$ University of New Hampshire, Durham, New Hampshire 03824, USA
${ }^{b}$ Kent State University, Kent, Ohio 44240, USA
${ }^{c}$ Jefferson Lab, Newport News, Virginia 23601 USA
${ }^{d}$ The University of Tennessee, Knoxville, Tennessee 37996, $U^{r}+$
${ }^{e}$ The College of William and Mary, Williamsburg, Virginia 2318 . US/
${ }^{f}$ Saint Mary's University, Halifax, Nova Scotia, Canada
${ }^{g}$ Florida International University, Miami, Florida 3310r - SA
${ }^{h}$ Massachusetts Institute of Technology, Cambridge, Massachu etts 0215. USA
${ }^{i}$ Center for Neutrino Physics, Virginia Tech, Blacksburg, Virgi ia 24061, JSA
${ }^{j}$ Old Dominion University, Norfolk, Virginia 23529, し. 1
${ }^{k}$ Kellogg Radiation Laboratory, California Institute of Technology, asaden California 91125 USA
${ }^{l}$ Physics Division, Argonne National Laboratory, Argon e, Ill' .ois , 2439, USA
${ }^{m}$ Columbia University, New York, New York Iucul, US/
${ }^{n}$ Stony Brook University, Stony Brook, New 1c. '117, ., JSA
${ }^{o}$ Department of Physics, University of Virginia, Charlottesville, 'irginia 22904, USA
${ }^{p}$ Hampton University, Hampton, Vir ${ }_{\delta}$ • ia 23669, JSA

Abstract

A system of modular sealed gas target cells has been develop \curvearrowright for . ee in electron scattering experiments at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). This system was ' ${ }^{\prime}$. ${ }^{\circ}$ ' 1 lly developed to complete the MARATHON experiment which required, among other species, tritium as a target material. Thus ${ }^{c}$ ar, the cells have been loaded with the gas species ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{2} \mathrm{H}$, ${ }^{1} \mathrm{H}$ and ${ }^{40} \mathrm{Ar}$ and operated in nominal beam currents of up $\quad 1.2 . J \mu \mathrm{~A}$ in Jefferson Lab's Hall A. While the gas density of the cells at the time of loading is known, the density of each gas varies un \quad uely when heated by the electron beam. To extract experimental cross sections using these cells, density dependence - 'aam current of each target fluid must be determined. In this study, data from measurements with several beam currents wit' in the r. ge of 2.5 to $22.5 \mu \mathrm{~A}$ on each target fluid are presented. Additionally, expressions for the beam current dependent fluid deni ${ }^{\circ} \mathrm{v}$ of ach target are developed.

Keywords: target,, tritium, helium, deuterium. sydr gen argon

1. Introduction

A modular gas cell target system w is a veloped for use in Jefferson Lab's Hall A for the MAR. THS N experiment E12-10-103 [1]. The design was specं ically ${ }^{\text {a }}$-veloped to safely contain and operate with gaseous ritir n. The modular design allows gas cells filled with other ${D_{1}}^{\circ}$, es r_{i} gas to be installed in the system concurrently. Tr arget $n . s$ also adapted for experiments E12-11-112 $\left(x_{b}>1\right)$ [2], L^{1} 2-14-011 $\left(e, e^{\prime} p\right)$ [3, 4], E12-17-003 (Hypernuclear) L^{-1} and 12-14-009 (elastic) [6]. MARATHON, together r , u these experiments, became known as the tritium group of xperime its and were performed from December 2017 through ${ }^{\text {Tover }}$ jer 2018. Prior to the tritium group of experimen merations, a target cell of this same design was filled with $\mathrm{a}^{\prime}{ }^{\prime} \mathrm{o}^{\prime}$ gas and used by experiment E12-14012 (Argon) [7, 8] duris, Spring of 2017.

While the performance of the target was an important consideration, the primary objective of the target system design

[^0]and construction was to ensure safe operations with tritium gas under all conditions. These conditions included target cell preparations, loading, storage, transportation, installation, removal, and beam operations. This was accomplished with a modular design, rigorous fabrication and testing, proper quality assurance and quality control, and multiple layers of containment/confinement.

In addition to describing of the target, we present the beam current dependent density of the five gases used with the target system, ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$ and ${ }^{40} \mathrm{Ar}$. The electron beam deposits energy in the cell end caps as well as in the target fluid. This ionization energy, which is proportional to the beam current, heats the target fluid causing local changes in the density. To determine the magnitude of this effect, data were collected with the left high resolution spectrometer (LHRS) in Jefferson Lab Experimental Hall A during February 2017 for the ${ }^{40}$ Ar target and December 2017 for the other targets. The beam energy for the study was 2.2 GeV in all cases, The angle and momentum settings were 17.5° and 1.79 GeV for ${ }^{40} \mathrm{Ar}$, and 17.0° and 1.99 GeV for the other fluids. Analysis shows that a simple quadratic
polynomial function normalized to zero current provides an excellent descriptive fit function for all target fluids.

2. Target System

The modular design allows for multiple cell configurations. It also enables individual cells to be installed in special configurations of the standard Hall A cryogenic target such as the ${ }^{40} \mathrm{Ar}$ target (see Fig. 1). Another feature is that it allows cells to be filled at off-site locations. The tritium cell was filled at Savannah River Site (SRS) by Savannah River Tritium Enterprises (SRTE), with 0.1 grams of tritium gas to a room temperature absolute pressure of 1.38 MPa . It was shipped in a special purpose transport container called the bulk tritium shipping package (BTSP). Including the cell this system provided continuous triple layer confinement throughout the shipping and handling process. This design also allowed the tritium cell to be placed in a storage container in Hall A while normal Hall installation activities were completed. The tritium cell was installed after all other preparatory tasks were completed. The modular sealed gas cell represents a departure from previous designs [9]. Fig. 2 shows the design of the gas cell design. This design is similar to the design proposed in Ref. [10] with engineering details for the construction and loading of these cell in Ref. [11].

Figure 1: A photo of the cell filled with ${ }^{40} \mathrm{Ar}$ installed on the andard Hall A cryogenic target ladder. Below the gas cell the r.cbo. foil targets can be seen which are used to calibrate the reconstruction r atrix r the spectrometers.

The configuration of the target ${ }^{\prime} y^{\prime}$ ster r i for the tritium experiments is shown in Fig. 3. In this nn^{f} gura on, there are (from top to bottom) four cells loader witı ${ }^{3} \mathrm{~L},{ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$, and ${ }^{3} \mathrm{He}$ as well as a fifth empty cell whi th was sed for background measurements. The cells are ca tained in a scattering chamber which is under vacuum. $\mathrm{T}^{\boldsymbol{1}} \quad$ scat....ng chamber vacuum is isolated from the upstrean beam it e vacuum by a 0.2 mm thick beryllium window. This vindow is roughly 30 cm upstream of the target center and is moumed on a reentrant tube that also contains a 15 cm lon $_{c}$ tur sun collimator with an inner diameter of 12.7 mm . The sc. rering chamber vacuum, with a pumping system directed to an txhaust stack, provided a second layer of tritium confinement. An exhaust system, (together with strict access controls) capable of maintaining a slight negative pressure in the experimental Hall ensured that the Hall boundary was a third layer of confinement.

Figure 2: רverview of ne design of the gas target cells with the units in cm .

E`h ${ }^{\prime}$ ¹ ; machined from ASTM B209 aluminum 7075T651 pun . Each target cell has a cylindrical fluid space with a
 the $c^{1}{ }^{11}$ (including the non-active region) is $33.4 \pm 0.2 \mathrm{~cm}^{3}$. The w.. ' - ass of the nearly flat entrance window and hemispherical , t window is nominally 0.25 mm . The parameters at the time or vading for each cell are summarized in Table 1.

Due to machining tolerances, the wall thickness of each cell varies slightly over its length. Thickness measurements were performed for each cell at several locations as schematically represented in Fig. 4 and summarized in Table 2. These measurements were performed with a Magna Mike 8600 Hall effect thickness gauge which provides a relative uncertainty of 0.001 mm and an absolute uncertainty of 0.007 mm . The error shown in the Table 2 indicates the standard deviation of multiple measurements in a 2 mm radius for a given location. The ${ }^{40}$ Ar cell, installed in February 2017, was later evacuated and installed as the empty cell for the tritium group of experiments, so Table 2 shows the ${ }^{40} \mathrm{Ar}$ and the empty cell in a single column.

Once installed in the Hall A scattering chamber, the target cells were cooled to 40 K with the temperature maintained using a 15 K helium supply and a controlled heater. This cooling was required to removed the modest amount of heat generated by the electron beam passing through the target fluid, cell entrance and cell exit, which, in total, was about 15 W . To ensure cell integrity, the maximum beam current permitted on any of the cells was $22.5 \mu \mathrm{~A}$ [11]. The heat generated by the tritium decay is very small, about 50 mW .

3. Hall A Spectrometers

The data were acquired with the left high resolution spectrometer (LHRS). For a detailed description of the LHRS see Ref. [12]. The basic components of the LHRS are a normal conducting quadrupole (Q1), a superconducting quadrupole (Q2), a superconducting dipole (D), and a superconducting quadrupole

Figure 3: Ladder assembly showing the five cells that were installed for the MARATHON experiment, ${ }^{3} \mathrm{H},{ }^{2} \mathrm{H},{ }^{1} \mathrm{H},{ }^{3} \mathrm{He}$ and empty cell from top to bottom, as assembled during Fall 2017 to Spring 2018 run period.

Target	Fill Pressure (kPa)	Fill Temp (K)	Thickness $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$
${ }^{40} \mathrm{Ar}$	3447	291.0	$1455 \pm$
${ }^{3} \mathrm{H} 1^{\text {st }}$	1400	296.3	85.1 ± 0.8
${ }^{3} \mathrm{H} 2^{\text {nd }}$	1393	293.8	$84.8 \pm \mathrm{c}^{?}$
${ }^{3} \mathrm{He}$	1772	294.3	$53+ \pm .6$
${ }^{2} \mathrm{H}$	3549	296.1	$19.2-0.8$
${ }^{1} \mathrm{H}$	3549	297.4	$70.8-\mathrm{?}$.

Table 1: The target thickness in $\mathrm{gm} / \mathrm{cm}^{2}$ for each o . the gas $\stackrel{1 l}{ }$ ls based on the fill pressures and temperatures. Temperatures have - uncertainty of 0.1 K .
(Q3) in a Q-Q-D-Q configuration Tr qus srupoles focus scattered charged particles while tho dipu ? ends these particles, within a given momentum ra ge, to $t_{t} \geqslant$ detectors. After passing through the spectrometer ma nets, th scattered particles pass through two vertical drift - ' ambus, , VDCs) that provide tracking information [13]. T o layer. of scintillator hodoscopes, s0 and s 2 , are on either side f a gas Cherenkov detector filled with CO_{2} [14]. The hodocropes piuvide trigger and time of flight for the detected particles. Th unerenkov provides identification of electrons with approxit. ttely 99% efficiency and reject π^{-}below a momentum of $4.8 \mathrm{G} \mathrm{V} / \mathrm{c}$. The last element in the detector stack is the shower calorimeter. Electrons passing through the calorimeter lead glass blocks induce a cascade of pair production and bremsstrahlung radiation from which their energy can be determined [12].

4. Seam Current Monitor

.he beam current monitor (BCM) is a system of three independent devices and a current source [15]. This is a dedicated system in Hall A and while independent of the target effects, this system is the dominant source of systematic uncertainty in the current dependent density studies presented herein. The BCM system consists of a toroidal sensor (Unser) [16], located between upstream and downstream RF cavities, and a dataacquisition system. A current source, which is connected to a wire which passes through the Unser, is used to calibrate the Unser immediately prior to each use of the device and the Unser is then used to calibrate the BCMs with the electron beam.

The Unser monitor is composed of two identical toroidal coils driven in opposite directions by an external source. The DC component of the current flowing through the toroid sensor is detected by a magnetic modulator. The beam current passing through the cores produces a flux imbalance, which generates an output signal proportional to the even harmonics of the frequency of excitation. In the absence of a DC current, the sum of the signals is zero [15].

The temperature controlled Unser has a sensitivity to beam current of about $4 \mathrm{mV} / \mu \mathrm{A}$ and has a DC offset subtracted stability within 0.1% [15]. The systems DC offset does slowly drift, necessitating the current calibration to be done immediately prior to using it for an absolute current calibration of the RF cavities. Once calibrated, the RF cavities are used to continuously monitor the beam current. The calibrations are checked periodically throughout the course of an experiment. To put the signals from the Unser and RF cavities into the scalers of Hall's fast data acquisition system, a voltage to frequency (V/F) converter is used along with a discriminator. Figure 5 shows the Unser calibration with a known DC current source, the response

Location	${ }^{40} \mathrm{Ar} /$ Empty Cell	${ }^{3} \mathrm{H}$ Cell	${ }^{1} \mathrm{H}$ Cell	${ }^{2} \mathrm{H}$ Cell	${ }^{3} \mathrm{He}$ Cell
	Thickness (mm)				
Entrance	0.254 ± 0.005	0.253 ± 0.004	0.311 ± 0.001	0.215 ± 0.004	0.203 ± 0.007
Exit	0.279 ± 0.005	0.343 ± 0.047	0.330 ± 0.063	0.294 ± 0.056	0.328 ± 0.041
Exit left	0.406 ± 0.005	0.379 ± 0.007	0.240 ± 0.019	0.422 ± 0.0 r 3	$\bigcirc .438 \pm 0.010$
Exit right	0.421 ± 0.005	0.406 ± 0.004	0.519 ± 0.009	$0.361 \pm 0^{\cdots}$	0.385 ± 0.016
Mid left	0.457 ± 0.005	0.435 ± 0.001	0.374 ± 0.004	$0.447 \pm{ }^{\prime} .009$	0.487 ± 0.060
Mid right	0.432 ± 0.005	0.447 ± 0.004	0.503 ± 0.005	$0.371 \pm$ U. ${ }^{1}$,	0.478 ± 0.007
Entrance left	0.508 ± 0.005	0.473 ± 0.003	0.456 ± 0.010	$0.442 \pm$ \} 0 0 5	0.504 ± 0.003
Entrance right	0.424 ± 0.005	0.425 ± 0.003	0.457 ± 0.006	$0.3{ }^{\text {¢ }}$. 0.01 .	0.477 ± 0.011

Table 2: Cell wall thickness measurements for different cells as measured by a Haı ff it thickness gauge.
of the system is found to be $(249.7 \pm 9.6) \times 10^{-6} \mu \mathrm{~A} / \mathrm{Hz}$.

Figure 5: Wire Unser calibration. The band represents the 95% con ${ }^{\text {- }}$ - level of the linear fit.

The beam current monitors (BCM) are 1497 NHz re . ant cavities located immediately before and after $t^{t} _\mathrm{Ur}$, er and are used to continuously monitor the beam currents. Hal' A (see Fig. 6). The cavities are composed of lor , antenna, located where the magnetic field is maximum. W nen $\imath \rightarrow$ beam passes through, the output RF signal is proportir $\quad 1$ to the current [15]. As consequence, the BCM response is .nea with respect to the current. Like the Unser, the signals from. "e RF cavities are filtered by a V/F converter. Several v duec of u am current (measured by the calibrated Unser) e u ed t the determine the linear dependence of the BCM as sı, vn n Fig. 7. In general, the beam current can be then alcula ${ }^{\circ}$ d using

$$
\begin{equation*}
I=\sigma_{\mathrm{D} \mathrm{CM}} f \quad O . \tag{1}
\end{equation*}
$$

where g_{BCM} and O are 1 e fit pa meters, which correspond to $(326.4 \pm 1.4) \times 10^{-6} \mu+$. 'Hz an $0.1 \pm 0.09 \mu A$, respectively. Finally, for any giv>n heam mduced frequency f, the current I is given by Eq. 1. Tnf rtunately the BCM system becomes much less accurate for $\stackrel{a}{ }$ am currents below $\sim 5 \mu \mathrm{~A}$.

5. Method Overview

The density of the target is well known when loaded but experience and simulations have shown that the beam current will

Figure 6: Shown is the upstream beam current monitor (BCM) and the Unser cavity as installed in the Hall A beamline. The thermal insulating cover, that keeps the systems at a stable temperature, has removed for the photo.
decrease the local density of the target fluid in the beam path. The magnitude of this effect depends on the beam current and target fluid species and must be quantified to accurately determine cross sections, ratios and other comparisons of data collected with the multiple gas cells [17]. It was shown (with the exception of the argon cell) that the target density reaches equilibrium within a few seconds from when the electron beam first impinges on the cell and the density was constant with stable beam current. The purpose of these measurements and analysis is to develop a calibration of the target density as a function of beam current for each gas species.

In order to extract the current dependent density correction, the LHRS is used to measure the event rate for several beam currents. The normalized yield is determined by applications of corrections to the raw event rate. These corrections include: integrated charge during the measurement, particle identification, acceptance cuts, detector efficiencies, and live times. The normalized yield $Y_{\text {norm }}$ is then given by

$$
\begin{equation*}
Y_{\mathrm{norm}}=\frac{P S \cdot N}{Q \cdot \epsilon \cdot L T} \tag{2}
\end{equation*}
$$

where N is the number of good electrons, $P S$ is the prescale factor of the DAQ system, Q is the integrated charge, and ϵ is the combined efficiency of the detectors, triggers and events selection cuts and $L T$ is the live-time. Each one of these parameters

Figure 7：BCM calibration data shown with the 95% confidence level from a linear regression．
is explained in detail in the following sections．

5．1．Event Selection

To improve counting efficiency and maximize live time，a compound trigger was used．This trigger required both scintil－ lator planes and the Cherenkov detector to have signals abo－ threshold in order to exclude π^{-}events．To extract a good elec－ tron sample，several cuts were applied to the data．These cuts can be summarized in two groups：acceptance cuts，which ．－ sure that the events are selected within an acceptable spectrom－ eter phase space，and tracking／particle identification（ $\Gamma_{i n}$ ，${ }^{\circ}$ uts， which focus on the selection of electrons scattered f om the $t r-$ get fluid．These selection cuts are：
i．Momentum and angular acceptance cuts：Sper fica＇y ，the ranges used to determine $Y_{\text {norm }}$ are $\left|\delta p / r /<4 . \mathrm{I}^{\prime} \mathrm{m}_{\mathrm{n}}, \mathrm{\prime},-\theta_{0}\right|<$ 30 mrad and $|\phi|<25 \mathrm{mrad}$
ii．Target length cut：This cut exclude ${ }^{\text {＇}}$ vents reconstructed back to the target windows and iedu ed background by limiting the effective target length,$\quad . \quad \mid<8 \mathrm{~cm}$
iii．Only events with a single tra k in dhe ${ }^{\mathrm{V}} \mathrm{DC}$ were kept
iv．A particle ID cut was app ${ }^{1-1}$ to t ．－Cherenkov ADC sum
v．A particle ID cut was ap lied to le shower calorimeter
With these particle seler ．on cu^{\prime} s，we found that the results re－ mained stable within $1 \because$ run to un．The cut for the reaction vertex was chosen such $1 .+4$ ．+ contamination from the alu－ minum end－caps wa sm．＂－than 2% ．The systematic effects of the aluminum backg＇and events were studied for all the tar－ gets are included in the s ，stematic uncertainties．

5．2．Estimation of Efficiencies

A number of efficiencies were applied to the data to produce $Y_{\text {norm }}$ ．For simplicity，in this analysis only electron events with
one track in the VDC were selected．The ratio between the total number of electron events with one track and the total number of triggered electrons（including r ulti－track and non－track par－ ticles）defines the VDC efficienc

The trigger efficiency was calcula $\cdot d$ using another trigger type，where only both scintil＇．．＂s were required to record the events．In this sense，the \dot{r} fferf ace between the main trigger and the efficiency trigger is u ．Cherenkov detector．The ratio between the events recorac．with the main and the efficiency trigger corresponds to ．uc rigge efficiency．

The Cherenkov ef ،cier－y wus calculated by selecting a sam－ ple of electrons detecten η the calorimeter and determining the number of event that a＇so were detected in the Cherenkov de－ tector．The calo imeter e ficiency was measured by selecting a sample of electron．in ${ }^{11} \doteq$ Cherenkov detector and counting the number of ${ }^{\text {r }}$ rese ρ^{1}－ trons that also fired the calorimeter．

For the：neas rements，the trigger，Cherenkov，and calorimen－eff．Acies were $>99 \%$ ．The tracking efficiency was dependen on the absolute rate in the LHRS and varied for 97 to ン～ク。

ᄃ 2．－．．．．ıme Calculation

The ．ve－time is related with the limitation of the speed of da ${ }^{\dagger}$ a a quisition system（DAQ）to record events．It depends on L．e electronics，computers and trigger rate and is calculated us－ ing the ratio of the number of events recorded over the total number of events seen by the trigger．Typical values for the ive－time ranged $93-97 \%$ depending the trigger rate in the left LHRS as well as the DAQ prescale setting．

5．4．Total Charge

The beam is not completely stable throughout the run；it may trip off or fluctuate over time．Therefore，we obtained the cal－ ibration data when the beam was mostly stable，and only runs where the average current is within a window of $\pm 2 \mu \mathrm{~A}$ of the requested current are used．The charge is calculated by inte－ grating the current over time using the BCM calibration result （see Section 4）．

6．Solid Target Check

The aim of the analysis is to measure the density change when the beam is on the gas targets using the yield analysis． In order to test the method，the same analysis is applied to a solid target．The ${ }^{40} \mathrm{Ar}$ experiment used a carbon foil while for the Tritium experiments used an aluminum target．Unlike the fluid targets，the solid target density is not measurably affected by the beam current．

Figure 8 shows $Y_{\text {norm }}$ for the solid aluminum target which was calculated using Eq． 2 for different beam currents．It was normalized with respect to the lowest current yield value．The plot shows that $Y_{\text {norm }}$ did not change to within about 0.5% at the 95% confidence level which is well within the uncertainty of the measurement．

Figure 8: Shown is the normalized yield vs. beam current the aluminum solid target used during the tritium group experiments. Shown are the 95% confidence level bands for a constant and for a linear regression of the data. These results are consistent with an ability to determine density changes with our experimental setup to approximately 0.5% at the 95% confidence level.

7. Background Contamination

The aluminum windows of the target cell contribute a background to the measured raw yield for each of the gas targets. To measure this background (henceforth referred to as contan, ination) in the case of the ${ }^{40} \mathrm{Ar}$ experiment, a dummy target with aluminum foils with total thickness matching the radin 'on length of the argon filled cell was used. In the case of the tritium experiments, an empty cell (or dummy cell) was ıल्न. The normalized yields from these targets were then subt acted $\mathrm{t}_{1} \cdot \mathrm{~m}$ the applicable $Y_{\text {norm }}$. To check the current depencu. 'e of t is subtraction, a comparison between the backgro' ad at lo, and high current was measured for the dummy/em ty \dagger rgetr. The charge yield given by Eq. 1 was binned in $y_{i r} \mathrm{Su}_{2}$ nen, along the target length, and the ratio of the even at high current to low current was determined. The ratio $w ~ s$ fou t to be 1.006 , which indicates that the background sut ...tion is independent of current, as expected.

Figure 9: Background contamination spectrum of the dummy target compared with that of tritium at $2.5 \mu \mathrm{~A}$. Both spectra are normalized.

Figure 9 shows the spectra of the charge normalized yield for the empty (or dummy) cell and the tritium gas, for a beam current of $2.5 \mu A$. To optimize th signal to background ratio, events contributing to the $Y_{\text {norm }}$ v re selected from a symmetric region of $\pm 8 \mathrm{~cm}$ about the cer er or he target. Therefore, the contamination fraction is the $\quad \therefore$) of $Y_{\text {norm }}$ for the empty cell to $Y_{\text {norm }}$ for the gas cell of int rest Table 3 summarizes the percentage of background conta. nation found in the gas targets for each beam current usea : the sudy.

Current (μA)	${ }^{3} \mathbf{H}$ $(\%)$	$\mathbf{H e}$ $(\sim$	${ }^{1} \mathbf{H}$ $(\%)$	Current $(\%)$	Argon $(\%)$	
2.5	1.7	1.6	0.7	1.1	2.5	0.3
5	1.	1.6	0.7	1.2	4.5	0.3
10	1.7	1.7	0.8	1.2	8	0.3
15	1.8	1.8	0.8	1.3	12	0.3
22.5	1,	1.8	0.8	1.3	15	0.3
					18	0.3

Table Aluminum window contamination in a $\pm 8 \mathrm{~cm}$ range with respect to the center of ι. targe at each nominal current. Note that these currents were not the sauı. for boun experiments.

u. $\sim \sim$ Target Results

The density correction was determined for each gas species ${ }^{\prime}$ measuring $Y_{\text {norm }}$ as a function of beam current $I_{\text {beam }}$. The function is then normalized to 1 for $I_{\text {beam }}=0$. The density each gas cell for zero beam current is the same as that of the load density. Figures 10, 11a, 11b, 11c and 11d show the density correction for the different gas targets. It is easily seen that the density decreases with the current and that the behavior of the density correction factor f is modeled well by a quadratic function

$$
\begin{equation*}
f\left(I_{\text {beam }}\right)=a \cdot I_{\text {beam }}^{2}+b \cdot I_{\text {beam }}+c, \tag{3}
\end{equation*}
$$

where a, b and c are the fit parameters. Table 4 shows the fit parameters for each gas species. The density correction factor $f\left(I_{\text {beam }}\right)$ is determined for each gas by substitution of these parameters in Eq. 3. The density correction factor determined in this manner is valid for the current range $0-22.5 \mu A$. The error bar in the plots represents the statistical uncertainty only, and a fit was calculated with respect to those values with a 95% confidence band in blue. The gray hatched 95% confidence band represents a fit including both statistical and systematic uncertainties. Since many data analyses require ratios of different targets, we also provide the ratio of the density changes, shown in Fig. 12.

8.1. Systematic Uncertainties

Several corrections are applied to the data in this analysis, and since the current is different for every point, the uncertainties are evaluated at every point. Confidence bands for each fit including the systematic uncertainties are shown in Fig. 10, 11a, $11 \mathrm{~b}, 11 \mathrm{c}$ and 11d. They include the uncertainty in the charge, live-time and detector efficiencies.

Figure 10：Shown is the ${ }^{40} \mathrm{Ar}$ target＇s local density as a function of beam cur－ rent．

The BCM monitors are effective over a range from 0 to $100 \mu \mathrm{~A}$ ．However，low current measurements have a slightly higher uncertainty causing the uncertainty in the charge to be current dependent．The uncertainty in the current and charge is estimated using the BCM calibration shown in Fig．7，together with the error covariance matrix．This is the dominant source of systematic uncertainty in the determination of the density re－ duction factor $f\left(I_{\text {beam }}\right)$ ．

The background contamination coming from the entrance and exit windows is also a source of systematic uncerla \urcorner ワ． This is due to the thickness variations in the cell entrance ana exit windows which can be seen in Figure 9．Therefore in order to calculate the background uncertainty in the measv ement，he percentage of background was calculated in $y_{\text {tar }}$ for he val is of $\pm 4 \mathrm{~cm}, \pm 7 \mathrm{~cm}$ and $\pm 10 \mathrm{~cm}$ from the center of ne targe．the same normalization procedure was followed fo eac＇of t^{1} e dif－ ferent cuts in the reaction vertex region to calr ula，$f\left(I_{\mathrm{h}} \mathrm{am}\right)$ ．Fi－ nally，the uncertainty in the background co aminatioı is given by the standard deviation of the average of mulı，${ }^{10} f\left(I_{\text {beam }}\right)$ ob－ tained with the different cuts．The stand $\quad \therefore$ deviation was never more than 1% for each current．

Furthermore， 1% systematic uncertanı．＇s were estimated for the live－time，VDC one－track effir encr＇，trigyer efficiency，de－ tector and cut efficiencies of the vas－her nkov and π^{-}rejec－ tion．

9．Summary

A novel design for lo densit gas targets has been used in the Jefferson Lab electron Dcanl with a number of different gas species．These cells hav proven to be extremely robust and satisfied the safety requ ements necessary for holding 1 kCi of tritium gas．In this manu cript，we have shown how the local density of these cells changes when an electron beam passes through them．The 5% to 10% changes that were measured at 22.5 uA for the different gas species are consistent with the design expectations．Determination these density changes was

${ }^{3} \mathrm{H}$ Fit Parameters		${ }^{3} \mathrm{H}$ Correlation Factors	
a	$(1.06 \pm 0.36) \times 10^{-4}$	$\mathbf{C}(\mathbf{a}, \mathrm{b})$	－0．974
b	$(-6.8 \pm 0.89) \times 10^{-3}$	C（be）	－0．888
c	$1 . \pm 0.003$	Cr c）	0.801
${ }^{3}$ He Fit Parameters		${ }^{3}$ fe Ce ${ }^{\text {celation Factors }}$	
a	$(1.04 \pm 0.25) \times 10^{-4}$	\sim－，b）	－0．973
b	$(-5.1 \pm 0.64) \times 10^{-3}$	$\overline{C r}, \bar{c}$,	－0．879
c	1 ± 0.003	三 a, c ）	0.779
${ }^{2} \mathrm{H}$ Fit Parameters		${ }^{2} \mathbf{H}$ Correlation Factors	
a	$(1.16 \pm 0.29) \times$.	$\mathbf{C}(\mathbf{a}, \mathrm{b})$	－0．973
b	$(-6.7 \pm 0.71)-$	$c(b, c)$	－0．895
c	$1 . \pm 0.003$	$\mathbf{C}(\mathbf{a}, \mathrm{c})$	0.805
${ }^{1}$ H Fit Pars neters		${ }^{1}$ H Correlation Factors	
a	$\left(1.70 \pm 0.7{ }^{7} \times 10\right.$	$\mathbf{C}(\mathbf{a}, \mathrm{b})$	－0．978
b	$(-9 \pm n 12) \times \cdots$	$\mathbf{C}(\mathbf{b}, \mathrm{c})$	－0．881
c	．\pm 「uち	$\mathbf{C}(\mathrm{a}, \mathrm{c})$	0.788
${ }^{40} \mathrm{ArFit}^{\text {－}}$－ ram ters		${ }^{40} \mathrm{Ar}$ Correlation Factors	
a	（4．3．${ }^{+1.5) \times 10^{-4}}$	$\mathbf{C}(\mathbf{a}, \mathrm{b})$	－0．981
b	$(-2.1 \pm 1$	$\mathbf{C}(\mathbf{b}, \mathbf{c})$	－0．942
c	1．-0.02	$\mathbf{C}(\mathbf{a}, \mathrm{c})$	0.867

Tahls 1． F ．．ameters obtained for the percentage of density change calcula－ thu．with respect to the beam current．
．tical for experiments using these cells for cross section mea－ sut ments．

10．Acknowledgments

We wish to thank the staff of the Thomas Jefferson National Accelerator Facility for their help safely installing and remov－ ing the tritium cells．We also acknowledge the critical ef－ forts of Savannah River Site and Savannah River Tritium Enter－ prises．And special thank to Marcy Stutzman for proofreading this manuscript．This work was supported by the U．S．Depart－ ment of Energy（DOE）contract DE－AC05－06OR23177 under which Jefferson Science Associates operates the Thomas Jef－ ferson National Accelerator Facility，DOE contract DE－AC02－ 06CH11357，DOE contract DE－SC0013615，and by National Science Foundation（NSF）Grant No．NSF PHY 1506459.

References

［1］G．Petratos，et al．，JLab Experiment E12－10－103（2010）．
［2］P．Solvignon，et al．，JLab Experiment E12－11－112（2011）．
［3］O．Hen，L．B．Weinstein，S．Gilad，W．Boeglin，et al．，JLab Experiment E12－14－011（2013）．
［4］R．Cruz－Torres，et al．，Comparing proton momentum distributions in $A=$ 3 nuclei via ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}\left(e, e^{\prime} p\right)$ measurements（2019）．arXiv：1902．06358．
［5］L．Tang，F．Garibaldi，P．E．C．Markowitz，S．N．Nakamura，J．Reinhold， G．M．Urciuoli，JLab Experiment E12－17－003（2017）．
［6］L．S．Myers，D．W．Higinbotham，J．R．Arrington，JLab Experiment E12－ 14－009（2014）．arXiv：1408．5283．
［7］O．Benhar，et al．，JLab Experiment E12－14－012（2014）．arXiv：1406．4080．
［8］H．Dai，et al．，First Measurement of the $\operatorname{Ar}\left(e, e^{\prime}\right) X$ Cross Section at Jef－ ferson Lab，Phys．Rev．C 99 （2019） 054608.
［9］D．Beck，et al．，A Cryogenic tritium target system for nuclear physics experiments，Nucl．Instrum．Meth．A277（1989）323－337．

Figure 11: Shown is local $\mathrm{c} \cdot$ cy of ${ }^{\text {r }}{ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{2} \mathrm{H}$ and ${ }^{1} \mathrm{H}$ targets as a function of beam current.
[10] B. Brajuskovic, T. O’Connor, R. J. Holt, J. Reneker, D. .v. ekin, P. Solvignon, Thermomechanical design of a static gas rrget for electron accelerators, Nucl. Instrum. Meth. A729 (2013 469- 73.
[11] D. Meekins, et al., Cryogenic Tritium Gas at for Electron Scattering Experiments, in preperation for Nucl. istrum. a. ${ }^{1}$ Meth. A.
[12] J. Alcorn, et al., Basic Instrumentati a for rall A at Jefferson Lab, Nucl. Instrum. Meth. A522 (2004) 294-3
[13] K. G. Fissum, et al., Vertical drift chambu fo dhe Hall A high-resolution spectrometers at Jefferson Lab Nucl. Irstrum. Meth. A474 (2001) 108131.
[14] M. Iodice, et al., The CO-2 gas Therenko detectors for the Jefferson Lab Hall-A spectrometers, Nur' ' 1 struı......eth. A411 (1998) 223-237.
[15] J. Denard, A. Saha, G. L vessiere, Jigh Accuracy Beam Current Monitor System for CEBAF's Ex erimental Iall A, Conf. Proc. C0106181 (2001) 2326-2328.
[16] K. B. Unser, The P? metric current transformer: A Beam current monitor developed for LEP, . IP (ı1. . 'roc. 252 (1992) 266-275.
[17] R. Holt, W. Korsch, D. ` eekins, T. O. Connor, G. Petratos, R. Ransome, P. Solvignon, B. Wojtsek. wwski, A Tritium Gas Target for Jefferson Lab (2015).

Figure 12: For experiments that will be taking the ratios between different targets, we also determined the ratio the density changes. As some of the systematic affects cancel in the ratio, these uncertainties are slightly smaller then the absolute density change determinations.

[^0]: *Corresponding Author: doug @ jlab.org

