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We calculate the low-lying spectra for the positive-parity Δ and N at two pion masses of 358 and
278 MeV using an isotropic clover action with two degenerate light-quark and one strange-quark flavors
through the application of the generalized variational method within the distillation framework. The
spectrum exhibits the general feature observed in previous calculations using an anistropic clover lattice,
with a counting of states at least as rich as the quark model. Furthermore, we identify states that are hybrid
in nature, where gluonic degrees of freedom play a structural role, indicating that such states appear as a
feature of the excited baryon spectrum, irrespective of the lattice action, or the precise details of the
smearing of the lattice interpolating operators used to identify such states.
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I. INTRODUCTION

Lattice QCD provides a powerful numerical approach to
solve QCD from the first principles, and has been success-
fully applied to address a range of key quantities in high-
energy and nuclear physics, from the calculation of the
ground-state spectrum, to nuclear charges and key mea-
sures of hadron structure. The calculation of the excited-
state spectrum of QCD presented a particular challenge, in
that the formulation of lattice QCD in Euclidean space
precludes the direct calculation of scattering amplitudes.
The starting point for a study of the excited-state

spectrum from lattice QCD is the extraction of the discrete,
low-lying energy levels on the Euclidean lattice where
lattice QCD is formulated. The most straightforward, albeit
naïve, approach is to identify those energy levels with the
single or multiparticle states in the spectrum. Whilst
the resulting energy spectrum should be independent of
the basis of interpolating operators employed, it has the
potential to be highly sensitive to that basis. Thus the first
attempts to compute the spectrum employed baryon inter-
polating operators with a straightforward three-quark
structure, mirroring the valence structure [1–10].
A focus of several studies has been the nature of the

Roper resonance, the lowest-lying positive-parity excita-
tion of the N, and whether the spectrum computed on the
lattice exhibits the ordering of states revealed in nature
whereby the Roper is of lower mass than the lowest-lying

negative-parity excitation [11–15]. Here there are indica-
tions that the inverse ordering observed at the relatively
large quark masses where the calculations have been
performed is reversed in the approach to the physical
quark masses [13,14]. The need for a faithful representation
of chiral symmetry to obtain a low-lying Roper mass has
been argued in Ref. [15], though a calculation employing
the overlap and clover fermion actions on the same set of
gauge configurations suggests that some other mechanism
may be at play [16]. For a more complete picture, it is
necessary to include multihadron interpolators that would
couple to states such as Nπ, Nσ, Δπ, Nρ and Nππ that are
present in the spectrum. The calculation of the two-point
functions employing such operators is computationally
challenging due to the many additional Wick contractions
that enter into their construction. Despite this, considerable
progress has been made at including such operators in the
analysis [17–19], though the evidence of the emergence of
a low-lying Roper as a Nπ scattering state in these works
remains scant.
The excited states are of course resonances, and a

revolution over the last few years has arisen from the
realization that the energy shifts at finite volume could be
related to infinite-volume scattering amplitudes [20], which
has transformed our ability to study the resonance spec-
trum, and the interaction of hadrons, from lattice QCD. The
application of these methods to meson spectroscopy has
been extensive,1 and the first steps have been taken in
applying them to the more computationally demanding
baryon spectrum [18,19,22]. Given the computational
demands that such calculations entail, a finite-volume
Hamiltonian approach has been developed to relate the
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energies levels computable in currently practical compu-
tations to physical scattering parameters [23], and applied
to the baryon spectrum in Ref. [24].
The focus of our work here is on the higher states in the

spectrum. Considerable insight into the excited baryon
spectrum of QCD has been obtained, most notably, the
extracted spectrum is found to be at least as rich as the
quark model [25–27], and exhibits a counting of energy
levels commensurate with SUð6Þ ⊗ Oð3Þ spin-flavor sym-
metry [28]. Indeed, the ordering of the states was found to
be in agreement with the predictions of the constituent
quark model which can be considered as an intermediate
phenomenological model consistent with the experimental
results. However, such a model interprets the Roper
resonance predominantly as a qqq state augmented by a
meson cloud [29], and fails to find the low-mass Roper seen
in experiments.
Moreover, the positive-parity excited baryon spectrum

reveals suggestions of “hybrid” states; that is, those in
which the gluonic degrees of freedom play an essential,
structural role, beyond those of the quark model, with a
common mechanism with comparable states in the meson
section [30]. For the case of mesons, there can exist
“exotic” states that have quantum numbers JPC not
available within a regular qq̄ valence structure. Such states
may have a dominant qqq̄ q̄ component, so-called tetra-
quarks [31,32], or be predominantly “hybrid” qq̄g states
[33–37], with a manifestation of the gluonic valence
component. Thus it is straightforward to separate an
“exotic” meson state from a regular one. But for baryons,
the regular qqq states can have all the JP values. So, hybrid
or so-called pentaquark states will always have to“share”
quantum numbers with regular states, thus making them
very difficult to identify.
There has been a number of models proposed to calculate

the spectrum of hybrid baryons. There is the bag model [38]
where the quark and gluon fields are confined within a
cavity with the fields satisfying appropriate boundary
conditions at the wall of the cavity. In the flux-tube model
[39,40], the quarks sit at the ends of a stringlike structure. A
meson contains a single flux tube between the quark and
the antiquark; in a hybrid meson, this string is excited by a
transverse oscillation. For the case of a baryon, there are
three tubes which either meet at a junction or form a
triangle. There are also QCD sum-rule methods [41] and
quark potential models [42] that make predictions about
hybrid baryons.
For the case of hybrid baryons, and indeed for the

nonexotic hybrids cataloged from lattice calculations in the
meson sector [43], their identification has proceeded
through observing that the dominant interpolating operators
are“hybrid” in nature, in the sense that the operators vanish
for trivial unit gauge configurations. Such an identification
by its nature introduces a degree of model dependence, and
therefore it is important to study the robustness of such an

identification. The aim of this paper is precisely to test such
robustness by performing a calculation of the low-lying
positive-parity baryon spectrum at pion masses lower than
those of Ref. [30], using different gauge and fermion
actions at a finer spatial lattice spacing.
The remainder of the paper is organized as follows. In

Sec. II, we describe the baryon interpolating operators
used in our calculation, and briefly outline the distillation
methodology used to construct the correlation functions
and our implementation of the variational method.
Section III contains details of our calculation, beginning
with the parameters of the ensembles used in the calcu-
lation, a description of our fitting procedure, the robust-
ness of the spin identification on our lattices and the
stability of the fits under the variation of the parameters of
distillation process. Section IV contains our results for the
low-lying positive-parity Δ and N spectrum, together with
the quark-gluon assignment of the states, including those
we identify as hybrid baryons. Section V contains a
comparison between the results presented here and earlier
calculations using the anisotropic lattices [28,30]. In
Sec. VI, we summarize our work and outline future
avenues for research.

II. COMPUTATIONAL STRATEGY

Since the focus of our calculation is the low-lying
positive-parity spectrum, we employ a basis of interpolat-
ing operators that have been found to have the dominant
overlaps with those states. The construction of the inter-
polating operators, and the identification of the operators
that couple primarily to the low-lying spectrum, has been
described in detail in Refs. [28,30], so we only summarize
the salient elements here. The interpolating operators
follow a continuum construction, and are expressed as a
product of terms describing the flavor structure, Dirac spin
and orbital angular momentum implemented through
derivatives:

ðBΣF
⊗ ðSPSÞnΣS

⊗ D½d�
L;ΣD

ÞJ;

where B, S and D denote the flavor, Dirac spin and orbital
angular momentum, L, components, respectively, and ΣF,
ΣS, ΣD are the corresponding permutation symmetries. The
resulting operators are projected through suitable Clebsch-
Gordon coefficients to total spin J; the label n distinguishes
different combinations that have the same spin structure,
while the d is the order of the gauge-covariant derivative.
For this work, our basis comprises the nonrelativistic

operators constructed from the upper components, in a
suitable γ representation of the Dirac spinors, with up to
two covariant derivatives, allowing the operators with up to
two units of orbital angular momenta. We also include
additional operators containing the commutator of two
covariant derivatives acting on the same quark field,
corresponding to the chromomagnetic components of the
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gluonic field-strength tensor and denoted by D½2�
L¼1;M in the

following; it is these operators, which vanish for a unit
gauge configuration, that are referred to as “hybrid”
operators, and for which a dominant overlap with a given
state, we treat as the signature of the hybrid nature of that
state, as we discuss below. Finally, as the calculations are
done on a discretized lattice, the operators are subduced
from the continuous Hilbert space onto the different lattice
irreps. Hg;G1g and G2g, where the subscript g denotes
positive parity, such that the correlators constructed using
these operators, receive contributions in the forward direc-
tion only from the positive-parity states. As a consequence,
for total angular momentum J ¼ 5

2
and higher, the con-

tinuum operators are subduced onto multiple irreducible
representations (irreps.), as detailed in Table I.
The operators created directly from the fields of the

lattice Lagrangian couple to states at all scales, thus making
the extraction of the lightest states in the spectrum difficult.
In order to solve this problem, a linear operator is applied
on the quark fields on appropriate time slices and operators
are built from those “smeared” fields. In this work, the
smearing method used is known as distillation [44]. The
distillation operator is defined as

□xyðtÞ ¼
XND

k¼1

νðkÞx ðtÞνðkÞ†y ðtÞ ⇒ □ðtÞ≡ VDðtÞV†
DðtÞ; ð1Þ

where VDðtÞ is a M×ND matrix, M¼Nc×Nx×Ny×Nz,
Nc is the number of colors,Nx,Ny,Nz are the extents of the
lattice in the three spatial directions. The kth column of

VDðtÞ, νðkÞx ðtÞ is the kth eigenvector of the second-order
three-dimensional differential operator▽2, evaluated on the
background of the spatial gauge fields of time slice t, once
the eigenvectors have been sorted by the ascending order of
the eigenvalues; ND is the dimension of the distilla-
tion space.
The reasons for adopting distillation in our calculation

are twofold. First, the computationally demanding parallel
transporters of the theory, the perambulators, depend only
on the gauge field, and not on the interpolating operators.
So, we can calculate the perambulators on an ensemble of

gauge field once, and then reuse them for an arbitrary
basis of operators at both the source and the sink, and
indeed for a range of calculations. Second, the method
provides a more complete sampling of each gauge con-
figuration through imposing a momentum projection at
both the source and the sink correlation time slices. The
expectation is that ND should scale as the physical volume,
and the cost of computing the corresponding correlation
functions scales asN4

D for the case of baryons. Thus there is
a computational imperative to use as small a distillation
space as possible while still providing a faithful description
of the physics, and we will investigate the sensitivity of our
results to ND below. An approach that aims to overcome
this scaling with the spatial volume is to stochastically
sample the eigenvector space, a method known as LaPH
[45], which we do not pursue here.
A variety of approaches have been developed to obtain

the energies and operator overlaps for the excited baryon
spectrum [6,46]. Here we use the variational method as
implemented in Ref. [47]. Our starting point is the
generalized eigenvalue equation (GEV) for the two-point
correlator matrix CðtÞ with elements

CijðtÞ ¼ h0jOiðtÞŌjð0Þj0i; ð2Þ

where without loss of generality we take the source
interpolating operator to be at time slice t ¼ 0, and where
i, j label the operators in a given representation of the cubic
group. The GEV equation is expressed as

CðtÞuα ¼ λαðt; t0ÞCðt0Þuα; ð3Þ

where uα are the generalized eigenvectors which satisfy the
orthonormality condition u†αCðt0Þuβ ¼ δαβ, and the corre-
sponding principle correlators are λαðt; t0Þ behaving as

λαðt; t0Þ ¼ e−mαðt−t0Þ½1þOðe−δmðt−t0ÞÞ�: ð4Þ

Here mα is the energy of the state labeled by α and δm
represents the contributions from other states. Our sub-
sequent results are derived from two-state fits to the
principle correlators of this form. Furthermore, CijðtÞ
can be decomposed into the form,

CijðtÞ ¼
X

α

Zα�
i Zα

j

2mα
e−mαt; ð5Þ

where the overlap factor Zα
i ¼ h0jOijαi can be written as

Zα
i ¼ ðU−1Þiα

ffiffiffiffiffiffiffiffiffi
2mα

p
exp

�
mαt0
2

�
: ð6Þ

The matrix U is formed using the generalized eigenvectors
uα as its columns. The overlaps can thereby be obtained
from the solution of the generalized eigenvector matrix.

TABLE I. The numbers of Δ and N interpolating operators
used in the calculation, together with their subductions onto
the irreps. of the cubic group. In the final two columns, the
number in brackets denotes the number of hybrid operators
within each irrep.

J Irrep. (dimension) No. of Ops (Δ) No. of Ops (N)
1
2

G1ð2Þ 3 (1) 7 (2)
3
2

Hð4Þ 5 (1) 7 (2)
5
2

G2ð2Þ ⊕ Hð4Þ 2þ 2 4þ 4 (1þ 1)
7
2

G1ð2Þ ⊕ G2ð2Þ ⊕ Hð4Þ 1þ 1þ 1 1þ 1þ 1
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III. COMPUTATIONAL DETAILS

Earlier calculations using this basis of operators were
performed on anisotropic clover lattices, with a spatial
lattice spacing of around a ≃ 0.123 fm, and an anisotropy,
ξ≡ as=at ≃ 3.5 [48,49] with two mass-degenerate light-
quark flavors and a strange-quark. Here we use an isotropic
clover action at a smaller lattice spacing a ≃ 0.094 fm,
determined using the w0 scale [50], and likewise with 2þ
1 flavors. We use ensembles at two values of the light-
quark masses, corresponding to pion masses of mπ ¼ 358
and 278 MeV, respectively. Details of the parameters of our
ensemble are listed in Table II. All the gauge links entering
in the operator constructions are stout smeared [51].
In order to achieve the best possible sampling of the
lattice, we evaluate the two-point correlators from each
time slice on the lattice, and on each configuration, average
the correlators over the different time sources to account
for the correlations along the temporal direction of the
lattices. We compute the perambulators for ND ¼ 64
eigenvectors.

A. Fitting procedure

The fitting procedure we employ to extract the mass
spectra and the overlap factors is discussed in detail in
Ref. [34], and we only summarize the procedure here. The
GEVof Eq. (2) is solved over a range of t0, and for each t0,
the resulting principle correlators are fit to the two-
exponential form,

λαðt; t0Þ ¼ ð1 − AÞe−mαðt−t0Þ þ Ae−m
0
αðt−t0Þ: ð7Þ

We restrict the fitting range such that, for each principle
correlator, we only include time slices for which the noise-
to-signal ratio is less than 0.05; in practice, this restricts the
largest value of t included in the fits to be around 8.
Furthermore, we only include the correlators with source-
sink separation greater than two lattice units to avoid
possible contact terms. For each t0, our fit to each principle
correlator is based on an acceptable χ2=dof. We also require
that the coefficient A in Eq. (7) is less than around 0.1, and
that, for a fit to an N-dimensional matrix of correlators, the
matrix is largely saturated by the lowest-lying N states
reflected in that, for each α, m0

α is larger than the lowest-
lying masses, mα obtained for all the principle correlators.
Finally, we compute the overlap factors of Eq. (6) using the
eigenvectors at a reference time slice, tz. In Fig. 1, we show
fits to the leading the principal correlators for the Hg irrep.
of the Δ. For each panel, the curve is the reconstruction
from the fitted parameters with the purple region indicating

TABLE II. The parameters of the ensembles where the scale is
obtained using w0 [50], and Ncfg is the number of configurations.

ID a (fm) Mπ (MeV) L3 × Nt Ncfg

a094m358 0.094(1) 358(3) 323 × 64 349
a094m278 0.094(1) 278(4) 323 × 64 259

FIG. 1. Fits to the principal correlators for the low-lying positive-parity spectrum of theHg irrep. of the Δ on the ensemble a094m358,
using t0 ¼ 5. The plots show λαðt; t0Þ:emαðt−t0Þ data on the y axes and the lattice time slices on the x axes; the curves are two-exponential
fits as described in the text. In each panel, the mass corresponding to the leading exponential state is labeled by m and given in
lattice units.
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the data points included in the fit. The approach of the
plateaux close to unity at large times is indicative of the
small value of A in the fits, and the small contribution of
the second excited state to each principal correlator. As
anticipated, the uncertainties on the leading mass increase
as the mass increases.

B. Spin identification

The breaking of rotational symmetry induced by the
discretization onto the lattice renders the determination
of the spin corresponding to the different energy levels
within the irreps. less than straightforward. In the case of
the glueball spectrum in pure Yang-Mills theory [52], the
identification of the spins was accomplished by the
identification of degeneracies across different lattice irreps.
in the approach to the continuum limit. This requires the
generation of ensembles at several lattice spacings, a
formidable task once quark degrees of freedom are
included, and further requires statistical precision far
beyond that attainable with reasonable computational cost
to delineate overlapping energies within the spectrum. We
need a spin identification method which uses data obtained
from only a single lattice spacing, albeit one sufficiently

fine that it preserves the rotational symmetry to a sufficient
degree at the hadronic scale.
Here we use the method introduced in Ref. [35], and

applied for the baryon spectrum in Refs. [28,30] whereby
the operator overlap factors are used to identify the spin of a
state. It relies on the observation that each operator used in
the calculation carries an essence of the continuum spin of
the operator from which it is subduced, and therefore we
would expect an operator subduced from, say angular
momentum J, to have large overlaps only with states of
the same continuum angular momentum J. Positive-parity
states corresponding to the continuum angular momentum
J ¼ 5

2
and J ¼ 7

2
will appear in the spectrum of the Hg and

G2g irreps., and of theHg, G1g and G2g irreps., respectively,
and we would expect overlaps to be dominated by the
operators subduced from the same continuum operators
across those irreps. This is indeed what we observe, as can
be seen in Fig. 2 for the Δ spectrum, where the overlaps are
obtained from a variational analysis using all the operators
within a given lattice irrep. Further, we find the resulting
energies are degenerate, with, for states of spin 5

2
and 7

2
, the

energies obtained in the Hg irrep. within 1% of the values
obtained in the G1g and, for the case of spin 7

2
, G2g irreps.

FIG. 2. Histogram plot of the operator overlaps Z for the Δ on the a094m358 ensemble, normalized such that, for a given operator, the
largest overlap across all the states is unity. The overlaps are obtained from a variational analysis across all operators within a given
lattice irrep., irrespective of the continuum spins from which they are derived. The histogram plot of each state is accompanied by its
mass in lattice units. The asterisks denote the hybrid-type operators, and the energy levels identified with them.
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Rather than applying the variational method to a basis
comprising all the operators within a lattice irrep., we
instead apply the method to a more restricted basis of
operators comprising those operators within an irrep.
derived from a given continuum J. In Fig. 3, the Δ
spectrum obtained by analysing all the operators within
a given lattice irrep. is compared with that where we apply
the variational method in each lattice irrep. to only those
operators derived from a given continuum spin. The
comparison reveals that there are no significant differences
between these two spectra, prompting us to analyze the
operators of each angular momentum separately as this
requires calculating the two-point correlators using a
smaller basis of operators at one time; since the computa-
tional cost of computing the full correlation matrix goes as
the square of the operator basis, this reduces the computa-
tional cost significantly.

C. Stability under variation of distillation space

The previous studies of the low-lying baryon spectrum
using this implementation of distillation employed ND ¼
56 distillation eigenvectors, on a 163 spatial lattice with
a ≃ 0.123 fm. With the expected scaling of the number of
eigenvectors with physical volume discussed earlier, that
would suggest that as many as 230 eigenvectors might be
needed to capture the same physics on the ensembles
employed here, with in excess of three times the physical
spatial volume. In this paper, we have generated peram-
bulators and the baryon elementals that encode the

operators for ND ¼ 64 eigenvectors, and begin our dis-
cussion by examining the sensitivity of the extracted
spectra to the variation of ND. A study of the various
charges of the N, both for a state at rest [53], and at nonzero
spatial momentum [54], performed on the same lattices as
those employed here, suggests that the ground-state proper-
ties can indeed be resolved with this number of eigenvec-
tors. However, ascertaining the sensitivity of our results for
the spectrum and overlaps of the excited states is an
important prerequisite for our subsequent discussion.
In Fig. 4, we show the lowest energy levels in the

positive-parity Hg irreducible representation of the Δ as we
reduce the number of eigenvectors down to ND ¼ 24.
While the ground state is indeed reliably extracted with
only a minimal number of eigenvectors, it is only when we
reach ND ¼ 56 eigenvectors that the lowest five states are
obtained with acceptable uncertainties, with consistency
between the ND ¼ 56 and ND ¼ 64 determinations. Since
a major aim of this work is establishing evidence for the
properties of the extracted states, as evidence through the
operator overlaps, we likewise need to ensure that these
features are robust under the rank of the distillation space.
In Fig. 5, we show the operator overlaps corresponding to
the energies in Fig. 4; as for the case of the energies, the
overlaps, and in particular the dominant operators corre-
sponding to each state, show stability between ND ¼ 56
and ND ¼ 64, but with some qualitative differences,
notably in the ordering of the states, for ND ¼ 48. We
will therefore use ND ¼ 64 in the remainder of this paper.

FIG. 3. Comparison of low-lying Δ spectra on the a094m358 ensemble between fitting only those operators within an irrep. derived
from the continuum operators of a given angular momentum (left), and fitting all the operators within a lattice irrep., irrespective of their
continuum antecedents (right). For the states identified as spin 5

2
and 7

2
, the boxes contain the energy levels obtained after the subduction

onto the different lattice irreps. Energy levels identified as those of hybrid states are denoted by the green asterisks.
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IV. RESULTS

The low-lying positive-parity spectra of the Δ and N for
both the a094m278 and a094m358 ensembles using this
fitting procedure are shown in Figs. 6 and 7, respectively.

For the spin 5
2
and spin 7

2
energy levels, the splittings

between the values obtained in the Hg and G2g, and in the
Hg, G2g and G1g irreps., respectively, are remarkably small,
reflecting the partial Oða2Þ breaking of rotational

FIG. 4. The dependence of the Δ spectrum in the Hg irrep. on the number of distillation vectors ND for the ensemble a094m358 of
Table II. The states we identify as hybrid baryons are indicated by the green asterisks.

FIG. 5. The top, middle and bottom panels show the overlaps of the different operators within the Hg irreducible representation of the
Δ using the a094m358 ensemble for ND ¼ 48, 56 and 64, respectively. The masses of the states are given in units of GeV. The asterisks
denote hybrid-type operators, and the energy levels identified with them.
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symmetry, and the smaller spatial lattice spacing than that
used in comparable studies using an anisotropic lattice. As
expected, the quality of the spectrum is somewhat worse at
the lighter value of the quark mass, and the spin

identification procedure less convincing for the highest
states in the N spectrum. We emphasize that the qualitative
properties of the spectrum, and in particular the counting of
states, is consistent with that obtained on the anisotropic

FIG. 6. The low-lying positive-parity Δ spectrum in lattice units on the a094m278 (left) and a094m358 (right) ensembles, using the
fitting procedure described in the text. For the states identified as spin 5

2
and 7

2
, the boxes contain the energy levels obtained after the

subduction onto the different lattice irreps. Energy levels identified as those of hybrid baryons are denoted by the green asterisks.

FIG. 7. The low-lying positive-parity N spectrum in lattice units on the a094m278 (left) and a094m358 (right) ensembles, using the
fitting procedure described in the text. For the states identified as spin 5

2
and 7

2
, the boxes contain the energy levels obtained after the

subduction onto the different lattice irreps. Energy levels identified as those of hybrid baryons are denoted by the green asterisks.
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lattices at a coarser value of the spatial lattice spacing, but a
considerably finer temporal lattice spacing. Notably, our
calculation does not exhibit the low-lying Roper resonance,
in accord with calculations using the anisotropic action, and
indeed most calculations using a Wilson-type action.

A. Hybrid states

As we noted in the introduction, in contrast to the case of
the meson spectrum, “exotic” baryons cannot be distin-
guished through their quantum numbers. Therefore, the
identification of baryons as “hybrid” in nature inevitably
involves a degree of interpretation. Here we identify the
hybrid states as those whose overlap, defined through
Eq. (6), is dominated by the hybrid-type operators, that
is those that would vanish for the case of a trivial gauge
configuration [30]. For the case of the Δ, this identification
is very apparent, as can be seen in Fig. 2 for the a094m358

ensemble, where we find one hybrid state in the J ¼ 1
2

channel and one in J ¼ 3
2
channel. For the N spectrum on

the a094m358 ensemble, we likewise find clear evidence
for hybrid-baryon states through the nature of their over-
laps, where we identify two states in the J ¼ 1

2
channel, two

states in the J ¼ 3
2
channel and one state in the J ¼ 5

2

channel. On the a094m278 ensemble, the identification and
multiplicities of the hybrid baryons follow those of the
a094m358 ensemble except for the J ¼ 1

2
channel in the N

spectrum, where there is no obvious candidate for a hybrid
baryon using the criterion of the operator overlaps. In spite
of this, the multiplicity in both the Δ and N spectrum
confirm the findings in the earlier studies using the
anisotropic lattice [30], with a multiplicity of states at least
as rich as the quark model, and the presence of additional
states that appear to be hybrid in nature.

V. DISCUSSION

We now compare our results with those of previous
works, and in particular the previous calculation of the low-
lying positive-parity baryon spectrum obtained on the
heavier of the two anisotropic clover lattices employed
in Ref. [30]. To facilitate this comparison, we consider the
excitation energy with respect to the ground-state nucleon
mass, in units of the Ω mass, a quantity that is somewhat
insensitive to the light-quark masses. In Figs. 8 and 9, we
show the comparison among these lattices for the J ¼ 1

2
and

J ¼ 3
2
channels for the Δ and N, respectively. Also shown

are the lowest-lying noninteracting two-particle energy
levels.
A notable feature of most states for both the Δ and N is

that the splitting with respect to the ground-state nucleon
mass shows only a weak dependence on the quark masses,
while the energies of the noninteracting two-particle states
exhibit a far stronger dependence. This suggests that we are

FIG. 8. The left and right panels show the excitation energies for the Δwith respect to the ground-state nucleon on each of our lattices
vsm2

π , together with the corresponding result from Ref. [30], for the J ¼ 1
2
and J ¼ 3

2
channels, respectively. We use theΩmass to set the

scale. The higher excited states are displaced for clarity. The Nð0Þπð0Þπð0Þ and Nð1Þπð−1Þ energy thresholds are identified by
horizontal dashes.
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FIG. 9. The left and right panels show the excitation energies for the N with respect to the ground-state nucleon on each of our lattices
vsm2

π , together with the corresponding result from Ref. [30], for the J ¼ 1
2
and J ¼ 3

2
channels, respectively. We use theΩmass to set the

scale. The higher excited states are displaced for clarity. The Nð0Þπð0Þπð0Þ and Nð1Þπð−1Þ energy thresholds are identified by
horizontal dashes.

FIG. 10. The top, middle and bottom panels show the overlaps of the different operators within the channel J ¼ 3
2
of the Δ for the

ensembles a094m278, a094m358 and from [30], respectively. The masses of the states are given in the units of GeV. The asterisks
denote hybrid-type operators, and the energy levels identified with them.
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observing predominantly “single-hadron” states rather than
multihadron states, and leads further support to our
assertion that the three-quark operators used in this study
couple only weakly to the multihadron states. These
observations are more prominent for the hybrid baryons
whose masses, with respect to the ground-state nucleon
mass, remain more or less the same irrespective of the
quark masses. However, there is one qualification to this
observation, namely that the first excited-state energy seen
in the N

1
2 channel exhibits a stronger dependence on the

light-quark masses, and is indeed consistent with that of
Nð0Þπð0Þπð0Þ and Nð1Þπð−1Þ multihadron states.
A focus of this paper is whether the identification of

hybrid baryons is indeed robust. In Figs. 10 and 11, we
show that the dominant operators for each of the states of all
three ensembles for J ¼ 3

2
in the case of theΔ, and for J ¼ 1

2
in the case of the N. For the Δ, the hybrid baryon in each of
the ensembles has almost identical overlap distribution
across the operators, with the hybrid operator having the
predominant overlap. The ground states also have a
comparable distribution across the three ensembles, though
we note that the work here includes an additional operator

whose orbital structure is of the form D½2�
D¼0;S that can be

interpreted as an operator of additional width with respect

to the S-type orbital D½0�
D¼0;S, and therefore of the same

orbital structure.
For the case of the N, the identification and ordering

of the hybrid baryons is comparable for the heavier

a094m358 ensemble and the anisotropic ensemble, but
for out lighter a094m278 ensemble, that identification is
less obvious in spite of having significant overlap from the
hybrid operators. As in the case of the Δ, there is
consistency in the overlaps for the ground state and the
first two excited states across all three ensembles.

VI. CONCLUSIONS

In this work, we have computed the positive-parityΔ and
N spectra using an isotropic clover action. Our results
support the observations in earlier works at heavier pion
masses, and using the anisotropic clover action at a coarser
spatial lattice spacing, but finer temporal lattice spacing. In
particular, we find that rotational symmetry is largely
observed at the hadronic scale, enabling us to reliably
identify the spins of the states through their predominant
overlap of operators derived from continuum operators of
definite spin. However, the most significant outcome of this
work is that we find that the spectra exhibit a counting of
states in linewith that of the quarkmodel, butwith additional
states that we can identify as “hybrid” in nature, with the
gluonic degrees of freedom playing a structural role. The
means used to identify such hybrids through the predomi-
nant overlap of a class of “hybrid” operators, pioneered in
Ref. [30], must inevitably raise the issue of the operator
dependence of such an identification.Herewe use a different
action, with a different lattice spacing and essentially
different interpolating operators implemented through the

FIG. 11. The top, middle and bottom panels show the overlaps of the different operators within the channel J ¼ 1
2
of the N for the

ensembles a094m278, a094m358 and from [30], respectively. The masses of the states are given in the units of GeV. The asterisks
denote hybrid-type operators, and the energy levels identified with them.
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variation of the number of distillation eigenvectors.
Thus the identification of hybrid-type states in the spectrum
is indeed robust.
This work has important limitations in its use of

“single-hadron” operators which do not fully capture
the low-lying energy levels in the finite-volume spectrum.
The next step in the investigation of the nature of “hybrid”
baryons would be to include the multihadron operators,
and subsequently to compute the infinite-volume momen-
tum-dependent phase shifts. Such a study could also
reveal the decay modes of such states, and indeed the
first study of the decays modes of the exotic 1−þ hybrid
has recently been performed [55]. This is more computa-
tionally challenging for baryons than for mesons through
the increased cost of Wick contractions, the scaling of the
number of distillation eigenvectors with increasing vol-
ume, and the numerous final states to which they can
decay. Nonetheless, the advent of the exascale era of
computation makes such computations increasingly real-
izable. Ultimately, a largely model-independent determi-
nation of the quark and gluon content of such resonances
will be achieved by the probing of their structure through
external currents, and the theoretical framework for such
studies is an area of rapid development [56–58] and
application [59,60].
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