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6Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

(Received 9 April 2020; revised 27 July 2020; accepted 9 September 2020; published 1 December 2020)

We present results for the unpolarized parton distribution function of the nucleon computed in lattice
QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time
pseudodistributions. Beyond the reconstruction of the Bjorken-x dependence, we also extract the lowest
moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudodis-
tribution. We compare our findings with the pertinent phenomenological determinations.
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Introduction.—The determination and understanding of
the internal quark and gluon structure of the proton is a crucial
aspect of the precision phenomenology program of the current
and future hadron collider experiments, especially the Large
Hadron Collider (LHC) and the upcoming Electron-Ion
Collider. The framework of collinear factorization quantifies
the hadronic structure in terms of parton distribution functions
(PDFs) which encapsulate the pertinent information regarding
the momentum distributions of quarks and gluons within the
nucleon. Until very recently, the intrinsic nonperturbative
nature of the PDFs prohibited an ab initio computation, and
the conventional approach is to employ a variety of exper-
imental data together with advanced fitting methodologies in
order to extract the PDFs via global fits. The studies of PDFs
are of paramount importance precisely due to the fact that their
uncertainties play a crucial role in many LHC applications.
They affect the measurement of precision standard model
(SM) parameters, such as the W mass, the strong coupling
constant, and the determination of the couplings of the Higgs
boson, where discrepancies from the stringently fixed SM
predictions would serve as indisputable evidence of beyond
the standard model physics [1].
The possibility of determining the PDFs with first

principle lattice calculations is the object of a long endeavor
which recently led to a culmination of results. The primary

difficulty impeding a first principle implementation is
associated with the fact that the matrix elements defining
the PDFs involve light-cone separated fields. In his seminal
article that stimulated recent efforts, Ji [2] proposed to
compute matrix elements of fields separated by a purely
spacelike distance z ¼ z3 that define the so-called quasi-
PDF, the distribution in the longitudinal momentum p3. In
the large p3 limit, they can be factorized into the light-cone
PDF, fðx; μ2Þ. Subsequently, many articles studying quasi-
PDFs, as well as the pion quasidistribution amplitude (DA),
appeared in the literature [3–24].
Alternative approaches based on the analysis of equal-

time current correlators [25–28] also aim to study the PDFs
or DAs in lattice QCD. Good lattice cross sections (LCSs),
as described in Ref. [29], represent a general framework,
where one computes matrix elements that can be factorized
into PDFs at short distances. References [30–34] fall into
these categories. For comprehensive reviews on the topic,
we refer the reader to Refs. [35–38].
Ioffe time pseudodistributions.—Another position-space

formulation was proposed in Ref. [39]. In this approach, the
basic object is the Ioffe time pseudodistribution function
(pseudo-ITD) Mðν; z2Þ. The Lorentz invariant ν ¼ pz is
known as the Ioffe time [40,41]. The pseudo-ITD is the
invariant amplitude for a matrix element with spacelike
separated quark fields.
In renormalizable theories, the pseudo-ITD exhibits a

logarithmic singularity at small values of z2. These short-
distance singularities can be factorized into the PDF and a
perturbatively calculable coefficient function. The pseudo-
ITD can also be considered a LCS. A series of works
implemented this formalism and studied its efficiency
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[42–47]. For the sake of completeness, the main points of
our formalism are summarized below, but we refer the
reader to Refs. [46,48] for detailed discussions.
The nonlocal matrix element,

Mαðp; zÞ ¼ hpjψ̄ðzÞγαUðz; 0Þψð0Þjpi; ð1Þ

withU being a straightWilson line, p¼½pþ;ðm2=2pþÞ;0T �,
z ¼ ð0; z−; 0TÞ and γa ¼ γþ in light-cone coordinates,
defines the modified minimal subtraction (MS) ITD (intro-
duced in Ref. [41]), given the fact that a regularization is
made for the z2 ¼ 0 singularity. For z2 ≠ 0, this matrix
element has the following Lorentz decomposition:

Mαðz; pÞ ¼ 2pαMðν; z2Þ þ 2zαN ðν; z2Þ: ð2Þ

The pseudo-ITD Mðν; z2Þ contains the leading twist con-
tribution, while N is a higher-twist term. In the kinematics
p ¼ ðE; 0; 0; p3Þ, z ¼ ð0; 0; 0; z3Þ, the choice α ¼ 0 isolates
M. Nonetheless, it still contains higher-twist contaminations
Oðz2Λ2

QCDÞ. In the limit of small z2, where higher-twist
terms are suppressed, M is factorizable into the ITD (or,
equivalently, the PDF) and a perturbative coefficient func-
tion, provided that one removes Wilson line–related UV
divergences that appear at finite z2. These UV divergences
are eliminated if one considers the reduced pseudo-ITD
[39,42] given by the ratio

Mðν; z2Þ ¼ Mðν; z2Þ
Mð0; z2Þ : ð3Þ

It contains the same singularities in the z2 ¼ 0 limit as M
and can be related to the MS light-cone ITD, Qðν; μ2Þ, by
the next-to-leading-order (NLO) matching relation [49–51]

Mðν; z2Þ ¼ Qðν; μ2Þ − αsCF

2π

Z
1

0

duQðuν; μ2Þ

×

�
ln

�
z2μ2

e2γEþ1

4

�
BðuÞ þ LðuÞ

�
; ð4Þ

where BðuÞ ¼ ½1þ u2=1 − u�þ is the Altarelli-Parisi kernel
[52], and

LðuÞ ¼
�
4
lnð1 − uÞ
1 − u

− 2ð1 − uÞ
�
þ
: ð5Þ

Extracting the matrix element.—The numerical compu-
tation of our matrix elements relies on Gaussian smearing
[53] and momentum smearing [54] for constructing the
nucleon interpolating field, as well as the summation
method for better control of the excited-state contamina-
tion. The latter is intimately related to the Feynman-
Hellmann (FH) theorem [55] and has been widely used
in lattice calculations of PDFs [18,20,21,42,43,46,47].
The matrix element is determined from a ratio of

correlation functions

RðtÞ ¼
P

τ C3ðt; τÞ
C2ðtÞ

; ð6Þ

where C2;3 are standard two and three point correlation
functions, t is the Euclidean separation between the source
and sink interpolating fields, and the operator insertion time
τ is summed over the entire temporal range. The effective
matrix element Meff is then constructed as

MeffðtÞ ¼ Rðtþ 1Þ − RðtÞ: ð7Þ

The leading excited-state effects can be parametrized by

MeffðtÞ ¼ Mð1þ Ae−Δt þ Bte−ΔtÞ; ð8Þ

with Δ being the energy gap between the ground state and
the lowest excited state.
The summation method has a clear advantage over the

typical ratio method. The excited-state contamination
scales as expð−ΔtÞ instead of expð−Δt=2Þ, which allows
for smaller t to be used to control excited-state effects.
Since correlation functions’ errors grow exponentially, the
summation method requires significantly fewer measure-
ments to obtain a desirable statistical precision for data with
controlled excited states. This feature is important for
calculations at large momenta, where energy gaps can be
small and the error decays much faster than for low
momenta.
Lattice QCD calculation.—In this Letter, three ensem-

bles of configurations with decreasing values of the pion
mass have been employed. In Table I, we list all the
parameters of our analysis. The pion masses of this Letter
are 172, 278, and 358 MeV. These ensembles allow for a
controlled extrapolation to the precise physical pion mass,
which constitutes an important limit to be taken in order to

TABLE I. Parameters for the lattices generated by the JLab/W&M Collaboration using 2þ 1 flavors of stout-smeared clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. More details about these ensembles can be found in Ref. [56].

ID a (fm) Mπ (MeV) β cSW aml ams L3 × T Ncfg

a094m360 0.094(1) 358(3) 6.3 1.205 365 88 −0.2350 −0.2050 323 × 64 417
a094m280 0.094(1) 278(3) 6.3 1.205 365 88 −0.2390 −0.2050 323 × 64 500
a091m170 0.091(1) 172(6) 6.3 1.205 365 88 −0.2416 −0.2050 643 × 128 175
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safely compare with the PDF determinations of global fits.
Also, we can study the pion mass effects on the ITD for the
first time. As was done in Ref. [46], correlation functions
with several different smearings were simultaneously fit to
determine the matrix element from Eq. (8). The matrix
elements extracted from fitting correlation functions to
Eq. (8) are shown in Fig. 1.
Moments of the PDF.—Following our suggestion in

Ref. [44], we can use the reduced pseudo-ITD to compute
the moments of the PDF. Valuable information for the PDF
can be extracted from the data without dealing with the
pitfalls of the inverse problem. The moments of the MS
PDF, anðμ2Þ, are related multiplicatively to those of the
Fourier transform of the reduced pseudo-ITD,

bnðz2Þ ¼ Cnðμ2z2Þanðμ2Þ þOðz2Λ2
QCDÞ ð9Þ

where Cn are the Mellin moments of the matching kernel
Cðu; μ2z2Þ with respect to u. To NLO accuracy,

Cnðz2μ2Þ ¼ 1 −
αs
2π

CF

�
γn ln

�
z2μ2

e2γEþ1

4

�
þ ln

�
; ð10Þ

where

γn¼
Z

1

0

duBðuÞun¼ 1

ðnþ1Þðnþ2Þ−
1

2
−2

Xnþ1

k¼2

1

k
ð11Þ

are the moments of the Altarelli-Parisi kernel and

(a)

(b)

FIG. 1. The reduced pseudo-ITD calculated on ensembles with
358 MeV, 278 MeV, and 172 MeV pion masses. The upper and
lower plots are the real and imaginary component respectively.
There appear to be very small mass effects within this range of ν
and z2.

FIG. 2. The first two moments of the pseudo-PDF and the
MS light-cone PDF computed from the ensemble a091m170,
compared to phenomenologically determined PDF moments
from the NLO global fit CJ15nlo [57] and the next-to-next-
to-leading (NNLO) global fits MSTW2008nnlo68cl_nf4 [58]
and NNPDF31_nnlo_pch_as_0118_mc_164 [59], all evolved
to 2 GeV.
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ln ¼
Z

1

0

duLðuÞun

¼ 2

��Xn
k¼1

1

k

�
2

þ
Xn
k¼1

1

k2
þ 1

2
−

1

ðnþ 1Þðnþ 2Þ
�
: ð12Þ

The even and odd moments can be determined from the
coefficients of polynomials which are fit to the real and
imaginary components, respectively. The order of the
polynomial is chosen to minimize the χ2=DOF for each
z2 separately. As an example, the first and second moments
calculated on the ensemble a091m170 are shown in Fig. 2.
The z2 dependence of the resulting PDF moments can be
used to check for the size of higher-twist effects, which do
not seem significant.
Matching to MS.—As in Ref. [46], the reduced pseudo-

ITD from each ensemble is matched to the light-cone MS
ITD at a given scale μ by inverting Eq. (4). As a result,
we obtain a set of z2-independent curves for Qðν; μ2Þ at
μ ¼ 2 GeV [shown in Fig. 3(a)].
As seen in the moments, the matching procedure has a

small Oðαs=πÞ ∼ 0.1 effect on the distribution. The con-
tributions from the convolution of B and Lwith the reduced
pseudo-ITD appear with opposite signs. The convolution
with L is slightly larger in magnitude, but by a factor which
is approximately the same as the logarithmic coefficient of
B. This feature may just be a coincidence at NLO, but it
hints that higher-order corrections may also be small. An
NNLO or nonperturbative matching is required to check the
effects of the perturbative truncation on the matching.
Determination of the PDF.—The inversion of the Fourier

transform defining the ITD, given a finite amount of data,
constitutes an ill-posed problem which can be resolved
only by including additional information. As was shown in
Ref. [45], the direct inverse Fourier transform can lead to
numerical artifacts, such as artificial oscillations in the
resulting PDF. Many techniques have been proposed to
accurately calculate PDFs from lattice data [21,28,45,60].
This issue also occurs in the determination of the PDF from
experimental data.
As was done in Ref. [46], the approach which is used

here (and is common among phenomenological determi-
nations) is to include information in the form of a model-
dependent PDF parametrization. The parametrization used
here is

qvðxÞ ¼
1

N
xað1 − xÞbð1þ c

ffiffiffi
x

p þ dxÞ; ð13Þ

where N normalizes the PDF. The fits to this form, together
with the bands representing the statistical errors on the fit,
are shown in Fig. 3(b). In a future work, we will attempt to
study the dependence on the choice of functional forms.
The results of these fits are largely consistent with each

other. The heaviest pion mass PDF has a notably larger
statistical error than the others. This effect is due to a larger

variance in the highly correlated c and d parameters. In the
lighter two pion masses, the correlation between these
parameters appears to be stronger, leading to a smaller
statistical error in the resulting PDFs [64].
Extrapolation to the physical pion mass.—In order to

determine the valence PDF for the physical pion mass, our
results must be extrapolated to 135 MeV. To do this, the
central values of these curves are extrapolated and the
errors are propagated. We have performed the extrapolation
including and excluding the statistically noisy result from
the heaviest pion ensemble. When using all three ensem-
bles, we extrapolate the results using the form

qvðx; μ2; mπÞ ¼ qvðx; μ2; m0Þ þ aΔmπ þ bΔm2
π; ð14Þ

(a)

(b)

FIG. 3. (a) The MS ITD matched to 2 GeV from the reduced
pseudo-ITD results calculated at 358, 278, and 172. (b) The
nucleon valence distribution obtained from fitting the ITD to the
form in Eq. (13) from each of those ensembles.
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where Δmπ ¼ mπ −m0 and m0 is the physical pion mass.
When using only the two lighter pion mass ensembles, we
fix either a or b at zero. Although these extrapolations are
not guaranteed to satisfy the normalization of the PDF, we
have found them to be close within statistical precision. The
extrapolated PDFs are shown in Fig. 4(a). The linear
extrapolation with the lightest two ensembles is compared
to phenomenological determinations in Fig. 4(b). In both
figures, the error bands represent only the statistical error.
The PDF obtained from this fit for x≳ 0.2 is larger than

the phenomenological fits. This feature is consistent with

the larger value of the second moment compared to the
global fits in Fig. 2. Other remaining systematic errors
could explain this discrepancy. In this Letter, no attempt
was made to remove higher-twist effects. Though the
estimation of low moments, which relies on low ν, shows
no significant sign of higher-twist effects, they could still be
present at larger ν, where the ITD becomes more sensitive
to higher moments. Also, this calculation was performed on
ensembles with a fairly coarse lattice spacing and uses data
with ap ∼Oð1Þ. Discretization errors have been shown
[46] to be potentially significant. Future calculations at
smaller lattice spacings are required to control these effects.
There are also potentially notable finite volume corrections
which may need to be controlled.
Conclusions.—We presented the first calculation of the

nucleon PDF based on the method of Ioffe time pseudo-
distributions performed at the physical pion mass. This is
an important step that had to be taken in order to have a
more meaningful comparison with the pertinent phenom-
enological results. Also, by studying three ensembles with
different pion masses, we were able to investigate the
dependence of the ITD on the pion mass. We saw that it is
relatively mild compared to expectations stemming from
the studies of hxi [61] and calculations of quasi-PDFs [14].
Compared to similar studies, our analysis capitalizes on

three key factors: first, the ratio of matrix elements that
yields a clean way to avoid all pitfalls and systematics of
fixed gauge nonperturbative renormalization; second, the
short-distance factorization, which allows for matching to
MS without relying on large momentum data with their
large statistical noise and potential discretization errors; and
third, the summation method, which allows for better
control of the excited-state contamination. Having studied
finite volume effects and discretization errors in [46], in our
upcoming work we plan to study in a systematic way the
continuum extrapolation and finite volume, as well as
effects stemming from excited-state contamination and
higher-twist contributions.
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