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There have been recent debates about whether MS parton densities exactly obey positivity bounds
(including the Soffer bound) and whether the bounds should be applied as a constraint on global fits to
parton densities and on nonperturbative calculations. A recent paper [Candido et al., Can MS parton
distributions be negative?, J. High Energy Phys. 11 (2020) 129] appears to provide a proof of positivity in
contradiction with earlier work by other authors. We examine their derivation and find that its primary
failure is in the apparently uncontroversial statement that bare parton density (or distribution) function
(pdfs) are always positive. We show that under the conditions used in the derivation, that statement fails.
This is associated with the use of dimensional regularization for both UV divergences (space-time
dimension n < 4) and for collinear divergences, with n > 4. Collinear divergences appear in massless
partonic quantities convoluted with bare pdfs, in the approach used by these and other authors, which we
call “track B.” Divergent UV contributions are regulated and are positive when n < 4, but can and often do
become negative after analytic continuation to n > 4. We explore ramifications of this idea and provide
some elementary calculations in a model QFT that show how this situation can generically arise in reality.
We examine the connection with the origin of the track B method. Our examination pinpoints considerable
difficulties with track B that render it either wrong or highly problematic and explain that a different
approach, which appears in some literature and that we call track A, does not suffer from this set of
problems. The issue of positivity highlights that track-B methods can lead to wrong results of
phenomenological importance. From our analysis we identify the restricted situations in which positivity
tends to be violated.
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I. INTRODUCTION

Central to many phenomenological applications of QCD
is the concept of a parton density (or distribution) function
(pdf). An issue that has become particularly important
recently is whether or not pdfs are always positive.
Although they generally obey positivity, there has been
disagreement on whether it is possible for some pdfs to be
slightly negative under some conditions.

In the literature, one can find cautionary statements to the
effect that negative pdfs are possible, at least at low scales
[1], and some fitting procedures do allow for slightly
negative pdfs (e.g., Ref. [2]). The reason given is that while
themost elementary definition of a pdf doesmanifestly obey
positivity, it also has ultraviolet (UV) divergences. The
necessary UV renormalization counterterms are not guar-
anteed to preserve positivity, as we will explain in Sec. VIII
with explicit counterexamples to positivity.
However, it has also been recently argued, notably by

Candido et al. [3], that positivity is an automatic and
general property of pdfs defined in the MS scheme. Since
this result is in contradiction with explicit calculations, it
creates an apparent paradox that needs to be resolved. We
will find that the problem is that certain simple and
apparently uncontroversial assertions in Ref. [3] are in
fact false, but for nontrivial reasons. We will give more
details later, but we summarize what goes wrong here.
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Fundamental to the argument in Ref. [3] is the positivity
of bare pdfs and of partonic cross sections in a theory
dimensionally regulated in the UVand infrared (IR). These
positivity properties result from standard properties of
quantum mechanical states, notably the positivity of the
metric on state space. However, once a theory is regulated,
the state-space metric need not be positive. A classic case of
such a violation of positivity is given by the Pauli-Villars
method. In the case of Ref. [3], dimensional regularization
is used for both the UV and collinear divergences. (Bare
pdfs have UV divergences, and massless partonic cross
sections have collinear divergences.) In that case, positivity
properties fail, as we will show explicitly.
If instead one were to use regulators that preserved

positivity, we will show that another of the foundations of
Ref. [3] fails. This is the commonly made assertion that
structure functions in deep inelastic scattering (DIS) on a
target factor into unsubtracted massless partonic structure
functions and bare pdfs on the target: FðQ; xbjÞ ¼
Fpartonic ⊗ fbare;B.
We stress that the failures just identified do not in fact

affect the final factorization into renormalized pdfs and
subtracted coefficient functions. But they do break the
argument for the absolute positivity of MS pdfs, as we will
see, and this observation motivates greater scrutiny of the
properties of pdfs more generally. Moreover, failure of a
widely asserted factorization property deserves a closer
analysis, which is the main purpose of this paper, and we
use the positivity issue to motivate it.
The failure of positivity of MS pdfs in some situations

occurs despite the fact that the original concept of a pdf,
within Feynman’s parton model [4], entailed positivity; that
was simply because a parton density was intended to be the
number density of a particular flavor of parton in a fast-
moving hadron. But, as is well-known and as we will
review below, the situation in real QCD requires modifi-
cation of the parton model.
Since factorization gives predictions for cross sections,

and cross sections are intrinsically positive, the scope for
negative pdfs is severely limited. For each parton flavor,
one can construct a DIS-like process in which the lowest-
order term in the hard scattering is initiated by only the
chosen parton flavor. (This can be done by replacing the
currents in the hadronic part of deep inelastic scattering by
suitable operators containing only fields for the chosen
flavor.) At a high scale Q, the effective coupling αsðQÞ is
small. Therefore, the lowest-order term typically domi-
nates, so that positivity of a cross section (or other quantity)
entails positivity of the pdf. The only way this can be
avoided is if some other pdf is sufficiently much larger
in magnitude for flavors and/or regions that do not
contribute at lowest order, such that perturbative correc-
tions to the cross section dominate the lowest-order part.
That is, any negative pdf must be small in magnitude
relative to other pdfs, which are necessarily positive, by the

argument involving a lowest-order approximation to a hard
scattering.
This argument gradually loses its force asQ gets smaller,

since then perturbative corrections are no longer so sup-
pressed. This leads to the expectation that negative pdfs can
occur at most at low scales. (Later, we will see support for
this in our calculations.)
It is desirable to have a treatment of the positivity issue in

terms of the pdfs themselves and their definition, rather
than indirectly through factorization and the positivity of
cross sections. We will present the basics of such an
analysis in Sec. VIII.
One important implication of the possibility of negative

pdfs arises in phenomenological fits of pdfs, since often the
scaleQ0 used for the initial scale for evolution is rather low,
and may even be below scales at which it is reasonable to
use factorization. One aim of a low Q0 is to ensure that the
fitted pdfs are provided at all scales where factorization
could conceivably be usefully applied. Therefore, if a
positivity constraint were applied to fitted pdfs, especially
at a low initial scale Q0, it is likely to introduce excessive
theoretical bias.
Note that positivity constraints, if they are valid, not only

apply directly to unpolarized pdfs, but also give constraints
on polarized pdfs, with a particularly nontrivial case being
the Soffer bound [5–7].
Another important situation where the same issue arises

is when one is making calculations of pdfs from QCD by
nonperturbative methods. A commonmethod is to calculate
a quasi-pdf or a pseudo-pdf by lattice Monte Carlo meth-
ods, and to infer the pdfs themselves by a factorization
property [8–13], similarly to the way global fits of pdfs are
made to experimental scattering data. Such calculations
typically give results for a low value of Q0, and in some
lattice QCD calculations positivity is imposed as a con-
straint [11–13] on parametrizations, especially in the limit
of large momentum fractions, ξ → 1. It is critical to know
whether it is correct to apply positivity constraints in this
situation. Another similar example is in calculations based
on the Dyson-Schwinger equation, where a scale as low as
μ0 ¼ 0.78 GeV [14] is used.
As regards applications that use perturbative calcula-

tions, a circumstance where pdfs do definitely become
negative is in the treatment of heavy quarks [15,16]. In such
treatments, one uses perturbative calculations to match the
versions of pdfs with different numbers of active quark
flavors. The pdf for a heavy quark which is active is
perturbatively related to pdfs defined with a lower number
of active quarks. The lowest order calculation expresses the
heavy quark pdf in terms of the gluon pdf, with a coefficient
that is just the MS pdf of the heavy quark in a massless on
shell gluon at perturbative order αs. It contains a factor of
lnðμ=mhÞ, where mh is the heavy-quark mass and μ is the
MS renormalization scale; in this particular instance there is
no nonlogarithmic term. The calculation of a pdf for an
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active heavy quark can be applied where the MS scale μ is
somewhat less than the heavy-quark’s mass. Because of the
factor of lnðμ=mhÞ, the result is a negative heavy-quark pdf
in this region; the negative pdf is essential to preserving the
momentum sum rule.
The smallness of the effective coupling at the heavy

quark scale implies that higher-order corrections are
generally minor corrections to the leading-order result.1

In particular, they only slightly shift the scale where the
heavy quark distribution becomes negative; they do not
change the fact the pdf becomes negative for μ a bit less
than mh. These statements rely on the specific MS
definition of pdfs. Indeed, the corrections shift the zero
to a higher value of μ—e.g., Fig. 1 of [15]—so that the
heavy quark pdf is negative even at μ ¼ mh, without at the
same time making a DIS structure function negative.
Observe that when μ is comparable to mh, the size of the

heavy-quark pdf is substantially less than the gluon pdf,
since to a first approximation it is given in terms of the gluon
pdf by a one-loop calculation. Hence in the application of
factorization the OðαSÞ gluon-induced term can be compa-
rable to the lowest order heavy-quark-induced term, thereby
allowing preservation of positivity of the cross section.2

However, when using factorization it is generally only
important to treat a heavy quark as active when a process’s
physical scale is significantly larger than the quark’s mass.
In that case the heavy quark pdf is evolved from its
calculated value at the scale of the quark’s mass to a
substantially higher scale; it is then positive.
Let us now return to examining the differing approaches

to the positivity question. We will show that the differences
originate in a long-standing divergence in views about
certain conceptual foundations for QCD factorization and
the definitions of pdfs. We trace this to pioneering QCD
literature of the 1970s, written while much of the technical
framework of factorization was being developed. One
track, which we call track-A, originated in efforts to give
the earliest parton ideas a concrete realization in quantum
field theory, with inspiration for derivations coming from
those for the operator-product expansion, which was
already applied in QCD to deep inelastic scattering. The
second track (track-B) arose early out of a practical desire
to perform partonic calculations. In the absence at that time
of a full track-A treatment, conjectures were made as to
appropriate methods.
First, we will review the basics of track A in Sec. II.

Then, in Sec. III we will explain track B and present a
critique of it. We will argue that track-A is actually the
correct one. In Sec. IV we will examine what is necessary

for track B expressions in dimensional regularization to
reproduce the DIS cross section. In Sec. V we point out
pitfalls with using dimensional regularization simultane-
ously for UV and IR divergences; these pitfalls break the
positivity argument of Ref. [3]. In Sec. VI we will combine
the observations of the previous sections to summarize the
reasons why the argument in [3] fails and argue that it is
traceable to the use of track B. In Sec. VIII, we illustrate
that an MS pdf can turn negative in the concrete example of
a Yukawa field theory where everything is calculable in
fixed, low order perturbation theory.3 We end with con-
cluding remarks in Sec. X.
In our examination of DIS, we will use a fairly standard

notation: P is the momentum of the target, q is the
incoming momentum at the current in the hadronic part,
and M is the target mass. We use light front coordinates,
with the inner product of two vectors being given by
a · b ¼ aþb− þ a−bþ − aT · bT, and the components of a
vector being written as a ¼ ðaþ; a−; aTÞ. The coordinate
axes are chosen such that the components of P and q are

P ¼
�
Pþ;

M2

2Pþ ; 0T

�
; q ¼

�
−xPþ;

Q2

2xPþ ; 0T

�
; ð1Þ

where x is the Nachtmann variable, which agrees with the
Bjorken xBj up to power-suppressed corrections.

II. TRACK-A: RENORMALIZATION
AND LIGHT CONE PDFs

One of the motivating points of track-A was work to
provide a definite field-theoretical implementation of the
original pdf concept. At the beginning, this led to the
insight that light-front quantization provides a suitable
candidate definition as the expectation of a light-front
number operator [17–19], provided that no difficulties
arise. But difficulties do arise. The difficulties are particu-
larly notable when one includes a treatment of transverse-
momentum-dependent pdfs, as in Soper [20] and Collins
[21]. For the case of the transverse-momentum-integrated
pdfs and fragmentation functions in full QCD, the elemen-
tary definition of these quantities needs to be modified [22]
to allow for UV renormalization. At least for collinear pdfs,
this form of the definition has continued to be used to the
present, without modifications. It is the pdfs with this
definition that one now studies using lattice QCD and other
nonperturbative techniques.
A second motivation was the realization that the methods

that led to operator-product expansion (OPE) could be
generalized. For DIS, the OPE applies to certain integer

1In contrast, light-quark pdfs in QCD cannot be usefully
computed by low order perturbation theory.

2Note that the coefficient function for the gluon-induced
process includes a subtraction to avoid double-counting heavy
quark contributions. If the heavy quark term is negative, that
results in an increased value for the gluon term.

3The reason for presenting an example in Yukawa theory is that
the arguments in [3] are independent of the theory. Sowe choose a
theory and coupling where low-order perturbative calculations on
a massive target give a sufficiently accurate calculation to
determine the validity of the methods for proving positivity.
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moments of structure functions. The methods can be
extended to obtain the large-Q asymptotics of the structure
functions themselves. The factorization and OPE deriva-
tions have overall structures that are very similar. In fact,
when one takes the appropriate moments of DIS structure
functions, one recovers the results from the OPE. Although
the factorization work drew on the derivation of the OPE by
Wilson and Zimmermann (e.g. [23,24]), there were some
important enhancements/modifications that we will make
more explicit in Sec. IV.
For unpolarized quark pdfs, a bare quark pdf is

defined by

fbare;Aj=H ðξÞ≡
Z

dw−

2π
e−iξp

þw−

×hpjψ̄ j;0ð0;w−;0TÞ
γþ

2
W½0;w−�ψ j;0ð0;0;0TÞjpi;

ð2Þ

where ψ j;0 is the bare field for a quark of flavor j as appears
in the Lagrangian density that defines the theory. The factor
W½0; w−� is a lightlike Wilson line, also defined with bare
field operators and the bare coupling. The label H denotes
the kind of target particle that is used for the state jpi.
This definition is actually the expectation value of a quark
number density operator [18,19], [ [25], Chap. 6],
expressed in terms of bare fields in a gauge-invariant form.
The “A” superscript is to distinguish this track-A bare pdf
from a different track-B concept of the same name, as
discussed later in Sec. III.
In the bare pdf there is a logarithmic UV divergence

associated with the bilocal operator in Eq. (2). This is
distinct from the UV divergences that are canceled by
counterterms in the QCD Lagrangian, and hence the bare
pdf is UV divergent.
An MS renormalized pdf is defined in terms of the bare

pdf by including a renormalization factor ZA,

frenorm;AðξÞ≡ ZA ⊗ fbare;A; ð3Þ

with the product being in the sense of a convolution in ξ and
a matrix in flavor space. In the MS scheme, ZA is defined
by analogy with renormalization factors in other cases, and
in perturbation theory it has the form,

ZA
ijðξÞ ¼ δð1 − ξÞδij þ

X∞
n¼1

Cn;ijðξ; αsÞ
�
Sϵ
ϵ

�
n
: ð4Þ

Here the Cn;ij are the coefficients necessary to subtract only
powers of Sϵ=ϵ, where Sϵ ≡ ð4πÞϵ=Γð1 − ϵÞ ≃ ð4πe−γEÞϵ,
as in Ref. [[25], Eq. (3.18)]. The dimension of spacetime is
n ¼ 4 − 2ϵ. The significance of the second formula for Sϵ
is that many authors use the second formula to define Sϵ, or
an equivalent method. In the cases we are interested in,

the difference does not affect physical quantities [ [25]
Eq. (3.18)].
The definition of the convolution over collinear momen-

tum fraction is

½A ⊗ B�ðξÞ≡X
j

Z
1

ξ

dξ0

ξ0
Ajðξ=ξ0ÞBjðξ0Þ: ð5Þ

Notice that we carefully distinguish parton momentum
fraction (ξ) from process-specific kinematic variables like
Bjorken xbj, although we will frequently drop ξ arguments
for brevity. Associated with the use of the MS scheme and
dimensional regularization is the renormalization scale μ
that is defined to appear as a factor μϵ in the bare coupling
in the Lagrangian density of the theory.
It is the renormalized version of the pdf in Eq. (3) that

enters into the derived factorization formulas for physical
observables like cross sections. For a DIS structure function
F, for example,

FðQ; xbjÞ ¼ CA ⊗ frenorm;A þ error ð6Þ

¼
X
j

Z
1

xbj

dξCAj ðxbj=ξ;αsðQÞÞfrenorm;A
j ðQ; ξÞ

þ error: ð7Þ

Here, CA is a perturbatively calculable coefficient function,
and the error is suppressed by a power of 1=Q.
A convenient technique for perturbative calculations of

CA arises from recognizing that it is independent of which
target is used for the structure function F; all the target
dependence is in the parton density f. So we can work with
perturbative calculations of pdfs and structure functions on
partonic targets. The results all follow from definite
Feynman rules. Since the coefficients CA are independent
of light-parton masses, it is sufficient to simplify the
calculations by setting the mass parameters for all fields
to zero. Then the hard coefficient is effectively an inverse of
Eq. (7) when a partonic target is used, i.e.,

CA ¼ FpartonicðQ; xbjÞ
fpartonic; renorm;A ; ð8Þ

and this gives a perturbative calculation of CA. Here
division is in the sense of an inverted convolution integral.
Although there are collinear divergences in both the
structure function and pdfs with a massless partonic target,
they necessarily cancel in the hard scattering coefficient CA.
When the CA coefficients are used phenomenologically, the
renormalization group scale μ is generally fixed numeri-
cally to be proportional to a physical hard scale (e.g., Q),
thereby ensuring that CA is perturbatively well-behaved,
i.e., that useful calculations can be made by expanding it to
low orders in the effective coupling αsðQÞ.
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Equation (8) can be regarded as equivalent to a version of
the R� operation [26–28] that was devised to subtract both
IR and UV divergences in Feynman graphs. As to the
situation with hadronic targets, the definition of a pdf in
Eqs. (2) and (3) is complete enough to be used for
calculations from first principles QCD with nonperturba-
tive techniques like lattice QCD, at least given sufficiently
advanced methods, and to some approximation.
In view of later discussions, it is important to observe

that because all actual hadrons in QCD have mass, there are
no actual soft or collinear divergences in structure functions
and pdfs for a hadronic target. There is sensitivity to the
collinear region in these quantities, but no actual diver-
gence. When collinear divergences do appear in calcula-
tions, it is at intermediate stages of a calculation of a hard
scattering; they are artifacts of having perturbatively
calculated structure functions and pdfs with massless, on
shell partonic targets before applying Eq. (8).
It is perfectly possible to do the calculations for the right-

hand side of (8) with quark masses kept nonzero. Then
some of the collinear divergences4 in the all-massless
calculation correspond to logarithms of mass=Q in pertur-
bative calculations in the limit of zero mass(es). Given the
common situation where all the masses are small compared
withQ, one would then take the limit of zero mass to obtain
CA, an operation which would need to be inserted on the
right-hand side of (8).
However, considerable simplifications in Feynman graph

calculations occur in the massless case, especially with
dimensional regularization, so it is normal to use only
massless calculations. One of the simplifications is that
perturbative corrections to bare pdfs on partonic targets are
zero to all orders of massless perturbation theory. That is
simply because all the integrals are scale free, and therefore
vanish in dimensional regularization; there is an exact
numerical cancellation of the quantified IR and UV
divergences with no remaining finite part. Therefore, a
bare track-A pdf for a parton in a massless parton is just

fpartonic;bare;Ai=j ðξÞ ¼ δðξ− 1Þδij; ðmassless; dim regÞ ð9Þ

where i and j label parton flavors. Hence, the renormalized
pdf on a massless partonic target is exactly equal to the MS
renormalization factor,

fpartonic;renorm;A
i=j ¼ ZA

i=j: ðmassless; dim regÞ ð10Þ

It is important that the conceptual status of the divergences
in ZA as ϵ → 0 has changed dramatically, between Eq. (3)
and Eq. (10). The poles in ZA in Eq. (3) are all UV poles, to
cancel UV divergences in the bare pdf. On a hadronic

target, this results in finite renormalized pdfs, of course. But
in (10), the numerically identical poles are actually col-
linear divergences in a UV-finite pdf on a partonic target.
Although working with massless partonic pdfs is a useful

technique for calculating quantities like hard factors, what
phenomenology ultimately needs is the set of pdfs for
hadrons. It is Eq. (3) that is relevant for these pdfs. There
are situations where nonzero quark masses are needed in
perturbative calculations. An important one is where one
deals with heavy quarks whose masses are comparable to or
bigger than Q. Then the heavy-quark masses need to be
retained in the calculations, and equations like (9) and (10)
are no longer true.

III. TRACK-B: COLLINEAR ABSORPTION

Next we contrast the above with an alternative way that
factorization is often described and used to derive proper-
ties of pdfs and other parton correlation functions. We will
ultimately critique this approach, which we will call
track B.

A. Content of track B

The starting point of track B, is the assertion that a
structure function on a hadronic target is the convolution of
the corresponding massless on shell partonic structure
function with bare pdfs on the same target,

FðQ; xbjÞ ¼ Fpartonic ⊗ fbare;B: ð11Þ

In contrast with the similar-looking factorization for-
mula (7) in track A, the first factor is an unsubtracted
partonic structure function and has collinear divergences,
unlike the corresponding quantity CA in (7). Although the
pdf factor fbare;B is called a “bare” pdf, it must in general be
different from the bare pdf in track A, as we will see, and
we have therefore distinguished it by a label “B.”
To deal with the collinear divergences in Fpartonic, it is

then proved [29,30] that the partonic structure function can
be written as a convolution of a finite coefficient function
CB with a factor ZB containing the collinear divergences,

Fpartonic ¼ CB ⊗ ZB: ð12Þ

When the collinear divergences are quantified as poles in
dimensional regularization, ZB can be defined to be of the
MS form, similarly to the UV renormalization factor in (4).
Commonly this is modified by the use of a factorization
scale μF which is distinct from the renormalization scale μ.
The exact MS form is obtained when μF ¼ μ. The pole
structure can be modified by extra finite contributions, the
choice of which defines the scheme. In all cases, the
collinear-divergence factor is independent of which hard
process is considered, e.g., which DIS structure function is
treated, or whether DIS or Drell-Yan is treated.

4The masslessness of the gluon in perturbation theory in QCD
continues to provide some collinear divergences.
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Process-independence of ZB permits the final step,
which is the absorption of the collinear divergences into
a redefinition of the pdfs,

FðQ; xbjÞ ¼ ðCB ⊗ ZBÞ ⊗ fbare;b

¼ CB ⊗ ðZB ⊗ fbare;BÞ
¼ CB ⊗ frenorm;B; ð13Þ

where the renormalized pdf is defined to be

frenorm;B ¼ ZB ⊗ fbare;B: ð14Þ

The final line of (13) has the same form and nature as the
factorization formula (7) in track A.
In standard phenomenological applications to scattering

processes, the coefficients CB or CA and the corresponding
quantities for other processes are computed perturbatively,
while the pdfs at some initial scale are obtained from fits to
data. Scale-evolution of renormalized pdfs is implemented by
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equations, with their perturbatively calculable kernels.

B. Equality of coefficient functions and renormalized
pdfs between tracks A and B

Although, as we will see shortly, there are important
reasons to at least question the starting point (11) of track
B; nevertheless the structure of the final factorization
formula [last line of (13)] for the standard applications
agrees with that of track A and is correct.
In fact, when the MS prescription is used and μF ¼ μ, as

is common, the coefficient functions in the two tracks are
equal: CA ¼ CB. This is because in both cases, the partonic
structure function and the coefficient function differ by a
factor of an MS form, and the poles can be uniquely
determined by the requirement that the coefficient function
be finite. In track A, this follows from Eq. (8) and the form
for the renormalized pdf on a massless target given by
Eqs. (10) and (4).
It follows that the collinear-divergence factor ZB in track

B equals the UV-renormalization factor ZA in track A. The
renormalized pdfs also have to agree, since they can be fit
to the same cross sections with hadronic targets, and the
coefficient functions are equal.
From ZA ¼ ZB it follows that the bare pdfs in both

schemes are equal. However, this result relies on the use of
dimensional regularization, massless partonic calculations,
and the consequent vanishing of scale free integrals. It is
these properties that led to Eq. (10) for the values of the
massless partonic pdfs in track A.

C. Critique

Completely essential to track B is the statement (11) that
a structure function on a hadron is the convolution of an

unsubtracted partonic structure function and bare pdfs. Let
us call this statement “bare factorization.” However, as far
as we can see, bare factorization is merely asserted and
never actually derived. In addition, the bare pdfs are
commonly not defined. Especially in the early literature,
the assertion of bare factorization appears with a reference
to Feynman’s parton model—e.g., see Refs. [29,31]—
perhaps as the natural generalization of the parton model
to QCD.
But when the statement of bare factorization is examined

in more detail, it becomes highly implausible. The parton
model itself [4] can be motivated by examining relevant
space-time scales for DIS in the Breit frame with a hadronic
target of high energy. The hadron is time dilated from its
rest frame, and therefore the natural scales for internal
processes in the hadron are the large ranges of time and
longitudinal position that arise from the boost to a high
energy. The scattering with the virtual photon involves
much smaller scales, of order 1=Q. To obtain the parton
model, it was hypothesized that the transverse momenta
and virtualities of constituents in the hadron are limited.
Then a factorization formula arises in which the virtual-
photon-quark interaction is restricted to lowest-order in
strong interactions.
However this motivation does not extend to the gener-

alization from the parton model to bare factorization in
QCD. This can be seen from the collinear divergences in
massless partonic cross sections. The divergences involve
infinitely long times and distances (in the longitudinal
direction, the same direction as the hadron). Such scales are
much longer than the scales for hadrons, since hadrons are
massive and their actual interactions therefore do not have
collinear divergences. This indicates that the collinear
divergences in the partonic structure function are a property
of intermediate results in a method of calculation, rather
than a property of full QCD.
Another way to see the problems is to examine the nature

of the divergences in the three quantities in (11). The
hadronic structure function on the left-hand side is meas-
urable and finite. In particular it has no collinear diver-
gences because all true particles in QCD are massive.
Possible UV divergences are canceled by renormalization
counterterms in the Lagrangian.
On the right-hand side, the massless partonic structure

function also has no UV divergences, for the same reason.
But it does have perturbative collinear divergences because
of the masslessness of the partons.
As to the bare pdf, let us copy Candido et al. [3] and say

that the track-B bare pdf is given by the standard operator
formula, as in their Eq. (2.2), essentially the same as our (2)
for track A. When a hadronic target is used, the pdf has no
collinear divergences, because of the massiveness of
hadrons. But it does have UV divergences associated with
the operator; these are beyond those canceled by counter-
terms in the Lagrangian.
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So we have a mismatch of divergences: The right-hand
side of (11) has both collinear and UV divergences,
whereas the left-hand side has none. The obvious con-
clusion is that (11) is wrong, despite the fact that it is so
widely quoted in the literature.
Table I summarizes the divergence properties of the

various quantities we have been discussing.
However, there is in fact a loophole in the argument for

the mismatch of divergences. This is that it might happen
that the two kinds of divergence cancel. Within the context
of dimensional regularization and massless on shell par-
tonic calculations this does happen. Therefore it is useful to
examine more carefully the situations in which bare
factorization holds, which we will do in Sec. IV.
But, as we will show in Sec. VI an almost immediate

consequence of relying on the cancellation of UV and
collinear divergences is that the positivity arguments in
Ref. [3] fail.

D. An alternative definition of a bare pdf

A rather different definition of a bare pdf in track B
was given by Curci et al. in Ref. [30], in their Eq. (2.46).

This quantity is represented diagrammatically by the
bottom-most object in their Fig. 3, labeled “qB:H.” Their
definition is obtained by modifying (2) so that the quark-
antiquark Green function in a hadron is restricted to its two-
particle-irreducible (2PI) part in light cone gauge. The two
particle irreducibility implies, by standard power-counting
arguments, that this bare pdf has no UV divergences. The
massiveness of hadrons ensures that this kind of bare pdf
also has no collinear divergences.
We now have a real contradiction, since the sole

remaining divergences on the right-hand side of (11) are
the collinear divergences in the partonic structure functions,
and there is nothing to cancel them to make a finite left-
hand side.
In Sec. VII, we will explain the rather trivial reasons that

Curci et al.’s assertion of bare factorization (at the start of
their Sec. 2.7) cannot be true with their definition. Their
remaining derivations are rather clear, and it is quite simple
to modify their arguments to make a correct derivation. For
the result, see Sec. 8.9 of [25], which itself is based on an
earlier paper [32]. The announced focus of Ref. [32] was
heavy quark effects, but its argument is not so restricted.
The derivation is definitely of the track-A kind, and the

TABLE I. A summary of the divergences that appear with hadron targets in track A and track B treatments. (See text for more details.)
In the track A table, the only divergences (apart from those involved in renormalizing the QCD Lagrangian) are the UV divergences in
the bare pdf. These get removed by operator counterterms when the pdf is renormalized. Fpartonic and fbare;B appear in Eq. (11), and both
contain collinear divergences that must cancel once all factors are combined to reproduce the physical structure function. [So fbare;B is
not actually the bare pdf in Eq. (2)].

Track A

Object
Hadron structure function,

F
Partonic hard part

CA
Bare hadronic pdf

fbare;A
Renormalized hadronic pdf

frenorm;A

Ultraviolet
behavior

Standard Lagrangian
counterterms

Lagrangian
counterterms and
operator counterterms

Bare pdf, so no
counterterms

Lagrangian
counterterms and
operator counterterms

⇒ UV finite ⇒ UV finite ⇒ UV divergent ⇒ UV finite

Collinear
behavior

Non-massless,
finite range theory

Double counting
subtractions

Non-massless,
finite range theory

Non-massless,
finite range theory

⇒ Collinear finite ⇒ Collinear finite ⇒ Collinear finite ⇒ Collinear finite

Track B

Object
Hadron structure function,

F
Partonic structure function

Fpartonic
Partonic hard part

CB
Bare hadronic pdf

fbare;B

Ultraviolet
behavior

Standard Lagrangian
counterterms

Standard Lagrangian
counterterms

Lagrangian
counterterms and
operator counterterms

Track B bare pdf must be
UV finite to be consistent
with hadronic structure
function

⇒ UV finite ⇒ UV finite ⇒ UV finite ⇒ UV finite

Collinear
behavior

Non-massless,
finite range theory

Massless
partons

Collinear divergence
absorbed into pdf
redefinition

Track B bare pdf must be
collinear divergent to cancel
collinear divergence in
partonic structure function

⇒ Collinear finite ⇒ Collinear divergent ⇒ Collinear finite ⇒ Collinear divergent

POSITIVITY AND RENORMALIZATION OF PARTON … PHYS. REV. D 105, 076010 (2022)

076010-7



definition of a bare pdf is that of track A, not that
of Ref. [30].

IV. RECONSTRUCTING TRACK B
PARTON DENSITIES

We have questioned the validity of bare factorization,
Eq. (11), which is the starting point of track B. The
problematic issue was that an unsubtracted partonic struc-
ture function is used. In this section, we start from the
observation that our argument in Sec. III against the validity
of bare factorization appears to be undermined by the
formulation and proof of the OPE that was given by Wilson
and Zimmermann [23,24]. Their form of the OPE is rather
like bare factorization, in that their coefficient function, the
analog of CB in Eq. (11), also has no subtractions for what
in this case are low-momentum regions (instead of collinear
regions). In this it differs from CB only in that all parton
masses are preserved instead of being set to zero, and so
there are no actual collinear divergences. The Wilson-
Zimmermann derivation relies on the use of a particular
subtraction scheme.
Now the OPE applies in a short-distance asymptote:

qμ → ∞ at fixed hadron momentum P; the operators in the
analog of pdfs are local. In contrast, factorization applies in
the Bjorken asymptote, whereQ → ∞ at fixedQ2=P · q. A
generalization of the Wilson-Zimmermann method should
apply. This would suggest that one can in fact derive bare
factorization, as used in track B. However, it is important
that in the OPE the local operators used are UV-renormal-
ized, not bare. Correspondingly, the pdf in bare factoriza-
tion should be a renormalized quantity, contrary to
assertions in track-B literature.
The purpose of this section is therefore to reverse

engineer what definition of a pdf is needed in order for
bare factorization, Eq. (11), to be correct.
For the following discussion, wewill find that we need to

modify the notation for bare factorization, Eq. (11), to
allow for modified definitions:

FðQ; xbjÞ ¼ ½Fpartonic�R1 ;
IRR

⊗ ½fbare;B�R2 ;
IRR
: ð15Þ

Here R1 and R2 are the UV renormalization schemes for
Fpartonic and fbare;B respectively, and IRR is an IR regulator
scheme. R1 is simply the renormalization in the QCD
Lagrangian because there are no other UV divergences to
deal with in the partonic structure function. A separate UV
scheme is allowed for fbare;B. In the general case, some such
scheme must be present in fbare;B because for the nature of
the divergences on the left and right of Eqs. (11) or (15) to
match, the pdf cannot contain UV divergences. IRR needs
to be defined such that collinear divergences cancel
between Fpartonic and fbare;B in Eq. (15) in order to recover
the physical structure function on the left side of the
equation. In general, the choices of IRR and R2 need to

be carefully adjusted to maintain the overall correctness of
Eq. (15). In Sec. IV C we will show an explicit example of
how this works for the specific case of dimensional
regularization and MS.
The next three subsections form a rather technical detour,

but they are important because they will allow us to state
very rigorously how each factor in Eq. (15) must be defined
for a track B approach to be consistent. This in turn will
allow us to make a truly apples-to-apples comparison with
the corresponding factors defined in the track A approach.
Once this is done, the origin of any differences between the
two approaches regarding questions like positivity will be
clear and easy to diagnose.

A. The Wilson-Zimmermann treatment of the OPE,
generalized to DIS

To understand the relation between the Wilson-
Zimmermann approach to the OPE and the track-B
treatment of factorization, it is useful to summarize the
Wilson-Zimmermann approach as it would apply to a DIS
structure function, with the aid of some of the methods of
Curci et al. [30].
The methods of Wilson and Zimmermann can be

characterized by the observation that there is a close
similarity between the operations needed to extract the
large Q asymptotics of some Green function and those
needed to extract UV divergences and thereby obtain
renormalization counterterms. Moreover, when zero-
momentum subtraction is used, as they do, the operations
are identical except for the characterization of what sub-
graphs they are applied to. The proofs, as written, work to
all orders of perturbation theory. Zero-momentum sub-
tractions can be applied to the integrands of Feynman
graphs. Then no regulator is needed and the scheme is
labeled “BPHZ.”
The limit involved for the OPE is the short-distance limit

where q → ∞ at fixed P, or, equivalently, Q → ∞ with
x ∝ Q. It applies to the uncut amplitude for DIS, which is
the expectation value in the target state of the time-ordered
product of two currents. The short-distance limit entails
x → ∞, which is not in the physical region for actual
physical DIS, but is related to it by a dispersion relation,
giving results for certain integer moments of DIS structure
functions. But the structure of the derivation of the OPE
itself applies equally to DIS in the physical region, and that
is what we will present here.
One begins by examining situations where all the

momenta k inside a subgraph are large while the momenta
l attaching it to the rest of the graph are small. The UV
divergences or the leading power of Q can be quantified by
expanding to the relevant order in powers of l relative to k.
In the renormalization of UV divergences, using the first
term in this expansion to construct counterterms amounts to
defining the counterterms by zero momentum subtraction.
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For the arguments in their simplest form to work in a
gauge-theory, light cone gauge is used.5 In this gauge, the
Wilson line in the operator in the definition of the bare pdf
equals unity and can therefore be omitted. Most impor-
tantly, in the leading power for the largeQ asymptotics of a
structure function, the relevant regions of loop momentum
space are as denoted in

l

P

hard, U

collinear, L

q

. ð16Þ

At the top, there is a subgraphU (the “hard” subgraph) with
large transverse momenta; it has two parton lines at its lower
end. The lower part L (the “collinear” subgraph) has low
transverse momentum. Each graph typically has multiple
possible regions of this form, and for the purposes of this
discussion we omit details of how intermediate regions are
accounted for by a suitable recursive subtraction scheme.
Since all the possible hard subgraphs are nested with

respect to each other, the treatment can be simplified
compared with the general treatment by Zimmermann.
We then have the algebraic structures that were found in

[30] and that we will treat below. In a more general case,
there can be nontrivial overlaps between different possible
hard subgraphs, and the full Zimmermann forest formula,
or some equivalent, would be needed. (The treatment of
UV divergences renormalized by counterterms in the
Lagrangian similarly does not break the algebraic structure
and need not be treated explicitly.)
A similar graphical structure applies for the regions that

give UV divergences in the pdfs,

k

l

P

UV

collinear

,
ð17Þ

where UV divergences arise when the transverse momenta
in the upper subgraph go to infinity, and the crosses denote
the factor corresponding to the operator in the definition of
the pdf. Again, any single graph can have many different
regions of this form.
Therefore to extract the large Q asymptotics of DIS, we

use an expansion in two-particle-irreducible (2PI) sub-
graphs, as was done by Curci et al. [30]. For the DIS
structure functions on a hadron this gives

ð18Þ

Here, F denotes the full matrix element of two currents in a
state of a target of momentum P. The subgraphs A, K, and B
are two-parton irreducible in the vertical channel, withK and
B including full parton propagators on their top two lines, but
excluding the propagators on the lower lines. Finally the

quantityBγ is completely two-parton irreducible in thevertical
channel; it turnsout tobepower suppressedcomparedwith the
contributions from the 2PI graphs in the top line. Generally, a
hadronic target statewill entail the use of some kind of bound-
state wave function. The definition that the lower parton lines
of K are amputated can be notated by short lower lines,

K
.

ð19Þ
5There are certain problems with the use of light cone gauge,

which we will describe later, but it is sufficient to ignore them for
our present purposes.
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In Eq. (18), there is a sum over the number of K rungs from
zero to infinity, and the products of the different factors, as
in AKnB, are defined to entail integration over the loop
momenta connecting the factors and the appropriate sums
over any spin indices. We define each 2PI subgraph to
include all the appropriate counterterms from the
Lagrangian for UV renormalization.
For the actual DIS structure functions, a final-state cut

should be inserted in the graphical structures in Eq. (18).
But essentially all the analysis and factorization apply

equally to the corresponding matrix elements in a target
state of a time-ordered product of two currents, as well as to
the corresponding structure-function-like objects.
With a hadronic target, the bottom 2PI rung B in Eq. (18)

never participates in the hard part. Similarly, in the 2PI
expansion, (20) below, for a pdf, B never participates in the
UV divergence of the pdf.
Similar but simpler expansions in 2PI graphs apply for a

bare pdf (in the track-A sense) on the same target,

P
f

k

= P
B + P

B

K

+ P
B

K

K

+ . . .

= T
1

1 − K
B.

ð20Þ

Here the crosses and T correspond to the operator in the defining matrix element (2) of a pdf (where the case of the pdf of a
quark is shown). Given that we are working in the light cone gauge here, the Wilson line is simply unity. But note that
because we constructed K and B to be UV finite, the quark fields in (2) must now be renormalized fields, not bare fields.
The explicit definition of T, in the case of an unpolarized quark pdf, is

Tf = P
f

k

=
∫

dk− d2−2εkT

(2π)4−2ε
Tr

Dirac, color

γ+

2 P
f

k

, ð21Þ

with kþ ¼ ξPþ.
Compared with the expansion of a DIS matrix element,

the main change in (20) is that the two currents at the top
are replaced by partonic fields and a suitable integral over
the parton momentum k. In addition, there is no special 2PI
subgraph like Bγ containing both pdf vertex and the target.

Next we write the corresponding expansions when the
target is a parton instead of a hadron. Since the target state
is elementary, the 2PI graphs B and Bγ are no longer
needed. Instead we just need an external line factor for each
of the two lines for the incoming parton target. Then we
have for DIS,

ð22Þ
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where each term has the external parton propagators amputated, as in the definitions of A and K. The external-line factors
are the same for all the terms; they play no role in the rest of our treatment, so we have omitted them.
The similar expansion for a pdf is

fpartonic

p

= + K + K

K

+ . . .

=
∞∑

n=0

TKn = T
1

1 − K
.

ð23Þ

In a gauge theory, like QCD, when the Feynman gauge is
used, the graphical specification of the leading regions is
more complicated than given above [25]. The use of light
cone gauge gives the simpler results stated above. However
it comes with the penalty that the 1=n · k term in the gluon
propagator gives what are now known as rapidity diver-
gences. These lead to considerable complications in the
case of transverse-momentum-dependent pdfs and of the
cross sections for which they are used [33]. But for the case
we consider here, the rapidity divergences cancel, although
general proofs, as opposed to examples, are hard to find.
Although these problems are very nontrivial, they are
essentially orthogonal to the issues we discuss here, and
so we will ignore them.
In the generalization of the Wilson-Zimmermann argu-

ment, the first step is to construct for each graph Γ its
remainder remðΓÞ, which is Γ with the subtraction of both
UV divergences and of the behavior at large Q to some
power, which for us is the leading power.
In the original case, the OPE, both the counterterms for

UV divergent subgraphs and the subtractions for the large
Q behavior of hard subgraphs are constructed by zero
momentum subtraction, i.e., of an appropriate polynomial
in the external momenta of the subgraph in question.
A slightly different expansion is needed in the DIS case,
with a generic leading region shown in (16). The expansion
for the leading power of Q in the hard subgraph involves
neglecting the relatively small minus and transverse com-
ponents of the momentum l connecting the two subgraphs.
In contrast, for the OPE, all components of l would be
neglected in the hard subgraph.
For the DIS structure functions, we use a modification of

the notation of Ref. [30] and obtain

remðFÞ ¼
X∞
n¼0

Að1 − TÞ½Kð1 − TÞ�nBþ Bγ: ð24Þ

Here T is what is in fact a generalization of the object of the
same name defined in (21), that corresponded to a pdf
operator. In (24), T is defined to be an operation that

extracts the leading asymptotics when the factor on its left
has large transverse momenta relative to the factor on its
right. Given that a product like AK means

AK ¼
Z

dnl
ð2πÞn AabðQ; l;mÞKabðl;…;mÞ; ð25Þ

ATK is defined to be

ATK

¼
Z

dlþAabðQ;l̂;mÞTab;cd
dl−dn−1lT
ð2πÞn Kcdðl;…;mÞ; ð26Þ

where

l̂ ¼ ðlþ; 0; 0TÞ ð27Þ

and Tab;cd is a matrix that projects out the terms in the sum
over spin indices that are needed for the leading power.
In the case of unpolarized DIS with quark lines connecting
the two subgraphs, we have

Tab;cd ¼
γ−ab
2

γþcd
2

: ð28Þ

The factor γþ=2 here corresponds to the same factor in the
definition of a quark pdf. Similarly, the integrals over l−

and lT in (26), correspond to the integrals in the definition
of a pdf. Thus the result of inserting T is the convolution
product of an approximation to the factor on its left with
some kind of pdf vertex applied to the factor on its right.
Hence it is useful to overload the semantics of T: if there is
no factor to its left, it denotes simply the operator for the
pdf. If instead there is a factor to its left, an approximation
is applied to that factor. In its uses in factorization, a pdf is
always multiplied by a coefficient function that is obtained
by an approximant applied to some graph.
Observe that, as in the Wilson-Zimmermann treatment of

the OPE, masses are left unchanged in all quantities.

POSITIVITY AND RENORMALIZATION OF PARTON … PHYS. REV. D 105, 076010 (2022)

076010-11



In a term like

Að1 − TÞKB; ð29Þ

there is a UV divergence where transverse momenta in K
go to infinity; these correspond to UV divergences in a pdf.
But the corresponding term in remðFÞ is

Að1 − TÞKð1 − TÞB: ð30Þ

Then the second factor of 1 − T removes not only the
leading largeQ asymptotics of Að1 − TÞK, but also the UV
divergence in −ATKB.
Subtracting the remainder Eq. (24) from the original

structure function in Eq. (18) and performing some
algebraic manipulations gives

F ¼
�X∞

n¼0

AKn

��
T
X∞
n0¼0

½Kð1 − TÞ�n0B
�
þ remðFÞ: ð31Þ

Let us define a renormalized pdf by

fren:;BPHZ ¼ T
X∞
n0¼0

½Kð1 − TÞ�n0B: ð32Þ

Then, since remðFÞ is suppressed by a power Q, Eq. (31)
has the form of a factorization property, with the coefficient
function being

CBPHZðq; x=ξÞ ¼
�X∞

n¼0

AKn

�
l→l̂¼ðξPþ;0;0TÞ

: ð33Þ

That is, it is an unsubtracted parton DIS structure function,
with the external parton lines amputated, and with a
lightlike external parton momentum. It is simply
Eq. (22). Note that it can be shown that the renormalized
pdf defined above is a renormalization factor convoluted
with a bare pdf, just as in track A. That is, it is a fully
renormalized version of Eq. (20).
Thus we have a bare factorization just like that in track B,

except that
(i) The masses of internal lines of the (unsubtracted or

“bare”) coefficient function are unchanged instead
of being set to zero.

(ii) The pdf is definitely a UV renormalized quantity
with a particular scheme, not a bare quantity like that
in definition (2).

In this approach, the renormalization scheme for the pdfs is
implemented by counterterms that are obtained by the same
operation T as for extraction of large-Q asymptotics. It is in
fact the same as the BPHZ scheme used by Wilson and
Zimmermann, except for being extended from the pure
zero-momentum renormalization scheme for local opera-
tors to a version suitable for the renormalization of the

bilocal operators in pdfs. The subtractions are at zero
values of only the minus and transverse components of
momentum.
In a renormalizable non-gauge theory with nonvanishing

masses, the above procedure works as is, but in a gauge
theory modifications of the counterterms are liable to be
needed (a) to preserve gauge-invariance and (b) to avoid IR
and collinear divergences associated with a massless gluon
when external momenta are zero or lightlike.
If one wanted to use MS renormalization for the pdfs,

then the above treatment needs to be modified so as to
decouple the subtraction operation for UV divergences
from that for extraction of large Q asymptotics. This was
done in [25,32] and leads directly to the track-A formu-
lation with its subtracted coefficient function.

B. Relation of track B to the Wilson-Zimmermann
treatment of OPE

It would be natural to expect that the coefficient function
in the OPE or factorization is a short-distance quantity, so
that in QCD asymptotic freedom implies that useful
perturbative calculations can be made, since the effective
coupling αsðQÞ is small.
However, in the Wilson-Zimmermann form of the OPE

the construction of the coefficient function does not include
subtractions for the collinear region, and so it does not
obey the purely short-distance property. Thus it is a
nonperturbative quantity in QCD.
As regards the validity of the OPE itself, Wilson and

Zimmermann point out that it is sufficient that all depend-
ence on Q is in the coefficient function.6 Thus the short-
distance part is correctly contained solely in the coefficient
function.
But for the OPE to be valid a suitable definition of the

operators must be made. An important finding of Wilson
and Zimmermann was that zero momentum subtractions
(with unchanged masses) accomplish this, in the BPHZ
scheme. In effect, the OPE can be regarded as giving a
definition of the composite local operators used in the OPE.
Bare factorization in track B also has an unsubtracted

coefficient function but with masses set to zero. So it is
natural to expect that a variation on the Wilson-
Zimmermann approach would lead to bare factorization
together with a suitable definition of the pdfs. In the next
section, we will implement this idea. It will require a
change of scheme to what we will call the BPHZ0 scheme.
It is far from obvious that the initial papers for track B

intended to use the Wilson-Zimmermann method. For
example, Politzer in Ref. [31] does not mention it. His
motivation seems to be entirely different, arising from an
attempt to generalize the parton model.

6As they point out, essentially the same observation for a
similar purpose had been made much earlier by Valatin [34–37].
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Much of the early work that applied the OPE in QCD
appears not to use the actual Wilson-Zimmermann method
with its nonperturbative coefficient functions, even when
the Wilson-Zimmermann papers are referred to. Instead the
composite operators were often defined by MS renormal-
ization for UV divergences. This is exactly like track-A
factorization. The corresponding coefficient function is
then perturbative. The evolution equations are then stan-
dard renormalization-group equations, rather than the
Callan-Symanzik equations that apply to the coefficient
functions in the Wilson-Zimmermann approach, where the
pdfs (or their analogs in the OPE) do not evolve at all.

C. The BPHZ0 scheme

With inspiration from the Wilson-Zimmermann papers,
we will now show how to define the track B “bare” pdfs in a
way that ensures that (a) the track B equations are correct,
(b) the pdfs have a definite relationship to standard operator
matrix elements such as given in (2), and (c) the definition
applies independently of the choice of dimensional regu-
larization for both UV and IR divergences.
Given how Wilson and Zimmermann derive the OPE, as

summarized in Sec. IVA, this amounts to recognizing that
the track-B “bare” pdfs are actually UV-renormalized and
to determining which renormalization scheme is needed.
Recall that, in general, from the UV finiteness of structure
functions, both partonic and hadronic, it follows that fbare;B

is also UV finite in order for Eq. (11) to be true.
Renormalization counterterms for pdfs are used for

subgraphs of the form of the hard subgraphs specified in
(17). So we can infer the UV renormalization scheme for
the pdfs, by examining DIS on an on shell partonic target,
with all parton masses set to zero. Then FðQ; xbjÞ in
Eq. (11) is the same as Fpartonic. Hence the parton densities
for massless partonic targets must be exactly the lowest
order, or free-field values,

fmassless partonic;bare;B
i=j ðξÞ ¼ δðξ − 1Þδij: ð34Þ

The unique renormalization scheme that achieves this is
therefore the one where renormalization counterterms
exactly remove all perturbative contributions to the mass-
less partonic pdf. We call it “BPHZ0.”
To see the nature of this scheme, it is useful to examine

the structure of one-loop calculations of pdfs on a partonic
target, but with nonzero masses, and with the external
parton permitted to be off shell.7 As seen in many
examples, e.g., in Sec. VIII, the basic form can be written
as an integral over transverse momentum,

Ibareðm2; p2; xÞ ¼
Z

d2kT
ð2πÞ2

1

k2T þ CðxÞ ; ð35Þ

multiplied by an overall factor that depends on x but not on
kT. This integral will need a regulator to cutoff its UV
divergence. The quantity CðxÞ summarizes the dependence
on parton mass and external virtuality,

CðxÞ ¼ m2 × AðxÞ þ p2 × BðxÞ; ð36Þ

with the coefficients A and B depending on x but not kT. We
could, of course, use dimensional regularization for the UV
divergence, but that would obscure certain conceptual
issues. Instead for a one-loop integral we can simply use
an upper cutoff Λ, so that

Ibareðm2; p2; xÞ ¼
Z

Λ2

0

dk2T
4π

1

k2T þ CðxÞ : ð37Þ

With purely a zero-momentum subtraction, i.e., the
BPHZ scheme, the renormalized value is

Iren:BPHZ ¼
Z

∞

0

dk2T
4π

�
1

k2T þ CðxÞ −
1

k2T þm2AðxÞ
�
; ð38Þ

in which the counterterm is applied in the integrand, so that
the UV regulator can be removed to give a finite result.
But for the BPHZ0 scheme we need for track B, the

subtraction is of the value of the integrand when both p2

and m2 are zero,

Iren:BPHZ
0 ¼

Z
d2−2ϵkT
ð2πÞ2−2ϵ

�
1

k2T þ CðxÞ −
1

k2T

�
: ð39Þ

Although the integral is UV convergent, it has a collinear
divergence at kT ¼ 0. As such, the BPHZ0 scheme is not
really completely defined until an IR regulator scheme is
chosen. (This is in contrast to the standard BPHZ scheme.)
We have chosen dimensional regularization as the IR
regulator.
The UV divergence is from the asymptote 1=kT2 of the

integrand, which can be characterized by saying that it is
obtained by setting to zero both of the quantities m2 and p2

that are negligible with respect to kT2 when it goes to
infinity. Hence BPHZ0 is actually a very natural scheme, in
a sense more so than BPHZ. It is a kind of minimal
subtraction. By its motivation, this scheme is exactly and
uniquely what is needed to give a renormalized value of
zero when the parton mass is zero and the external parton is
on shell.
The penalty for this subtraction is the introduction of a

collinear divergence that was not at all present in the
original integral, but that is present when we restore the
parton mass and/or the external parton is off shell. Recall
the “IRR” subscript in Eq. (15). The off shell and massive

7That is, we are really treating a Green function with the pdf
operator and two parton fields; a pdf-like Green function.
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case applies to a graph that appears as a subgraph in the pdf
on a hadronic target.
A simple lowest-order example with the application of

renormalization is

P
B

l

k

−
B

P

l

k

.

ð40Þ

The sole UV divergence is in the upper loop of the left-hand
graph. The box denotes the operation that replaces the
integrand of the upper loop by a quantity like the 1=k2T term
in Eq. (39), whose negative gives the counterterm for the
subdivergence.
Since the renormalization counterterm for the upper loop

has a collinear divergence, the full hadronic pdf also has
this collinear divergence, even though there is no collinear
divergence in the bare pdf. Here “bare” is in the track-A
sense that the graphs for the pdf are obtained purely from
graphs for the quantity defined in Eq. (2) without extra
counterterms or a renormalization factor.
However, it could be argued that the counterterm is zero,

because of the vanishing of the dimensionally regulated
integral over the counterterm’s integrand,

−
Z

d2−2ϵkT
ð2πÞ2−2ϵ

1

k2T
¼ 0: ð41Þ

However, this is quite misleading. Suppose we used a cutoff
Λ to regulate the UV divergence and then used dimensional
regularization with ϵ < 0 only to regulate the collinear
divergence. Then the integral is not only nonzero, but is
power-law divergent as Λ → ∞,

−
Z
kT<Λ

d2−2ϵkT
ð2πÞ2−2ϵ

1

k2T
¼ −

Z
Λ2

0

dk2Tðk2TÞ−ϵ
Γð1 − ϵÞð4πÞ1−ϵ

1

k2T

¼ Λ−2ϵ

ϵΓð1 − ϵÞð4πÞ1−ϵ : ð42Þ

Of course, this UV divergence cancels the corresponding
UV divergence in the integral over the first term in Eq. (39).
As we will discuss in Sec. V, the construction of a
dimensionally regulated integral with a UV divergence
has effectively and implicitly introduced a counterterm
localized at kT ¼ ∞ to give the result in Eq. (41).
Given that ϵ < 0 to regulate the collinear divergence, the

collinear divergence in the counterterm is actually negative.
Therefore the supposed positivity of the “bare” track-B
pdfs is actually violated.
We summarize our results in this section, together with

immediate implications;

(1) The so-called bare pdf fbare;Bj=H in track-B is actually a
pdf renormalized to remove its UV divergence, but
in the BPHZ0 scheme: fbare;Bj=H ¼ fren;BPHZ

0
j=H .

(2) The renormalization counterterms entail collinear
divergences in all pdfs on a hadronic target.

(3) This choice of scheme and the use of dimensional
regularization for collinear divergences amounts to a
particular choice of the schemes labeled R2 and IRR
in Eq. (15).

(4) In the bare factorization formula (11), these collinear
divergences cancel against collinear divergences in
the massless partonic structure function, so that there
are no divergences in the hadronic structure function
on the left-hand side.

V. DIMENSIONAL REGULARIZATION
AND POSITIVITY

Under conditions such as superrenormalizable theories,
where it is possible to construct pdfs as literal (light-front)
number densities, the normal properties of positivity follow
automatically from positivity of the metric of quantum-
mechanical state space. But this is a property that is not
necessarily true when there is a regulator. The Pauli-Villars
regulator for UV divergences is the classic case. Here, we
will explain how dimensional regularization, when simul-
taneously applied to UV and IR divergences, violates
positivity.

A. Dimensional regularization

In Wilson’s original argument [38] for defining integra-
tion in n ¼ 4 − 2ϵ dimensions for arbitrary continuous ϵ,
integrals are uniquely determined (aside from normaliza-
tion) by (a) linearity in the integrand, (b) scaling behavior,
(c) invariance under translations. In addition, applications
require an extension to the definition: (d) analytic continu-
ation in n is applied to extend the range of n from where an
integral is convergent by normal mathematical criteria.
(It is not even necessary to require agreement with
ordinary integrals in integer dimension when those are
convergent; that follows from the postulates and a choice of
normalization.)
One can then give a construction of the dimensionally

regulated integrals we need for Feynman graphs in terms of
ordinary integration and analytic continuation in n. It is
unique given the natural choice of normalization, which is
that the integral of a Gaussian in a Euclidean space obeys

Z
dnxe−

P
j
x2j ¼

�Z
dye−y

2

�
n
: ð43Þ

However, dimensional regularization does not preserve
all properties of standard integration. For example, in
general it is not allowed to exchange the order of a limit
and integration, e.g., for the massless limit of the integral
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for a massive Feynman graph. Most importantly for us,
standard integrals obey positivity, of which a trivial
example is that the integral of a positive function is
positive: that is, if fðxÞ is strictly positive, then so is
I½f� ¼ R

dnxfðxÞ. If the integrand is merely required to be
non-negative, the integral is also non-negative; moreover, it
is zero if and only the integrand is zero everywhere.
In dimensional regularization, those properties do apply

if the integral is convergent by the standard mathematical
criteria. Otherwise, it is often violated whenever continu-
ation in n is used in the construction of the integral.
The vanishing of scale free integrals violates positivity

very much. Thus, in dimensional regularization, the
Euclidean integral,

Z
dnk

1

k2
; ð44Þ

is zero but has an integrand that is positive everywhere.
The integrand is rotationally invariant, so that vanishing of
the n-dimensional integral is equivalent to vanishing of the
following one-dimensional integral:

Z
∞

0

dkkn−1
1

k2
¼ 0: ð45Þ

With the standard mathematical definition this integral is
unambiguously positive infinite. Technically, we could say
that in dimensional regularization the integration measure
is not positive everywhere, unlike standard integration.
Whenever the degree of UV divergence of the integral is
non-negative, i.e., n ≥ 2, there is a negative contribution
which we can treat as localized at k ¼ ∞. Similarly,
whenever the degree of IR divergence is non-negative,
i.e., n ≤ 2, there is a negative contribution localized at
k ¼ 0. These two ranges of n overlap at n ¼ 2, thereby
preventing the integral from existing at any n, with the
ordinary mathematical definition.8

By themselves, the above statements about nonpositivity
of the integration measure can prevent a naive application
of the standard positivity argument for pdfs whenever we
use dimensional regularization for both UV and IR/collin-
ear divergences. The positivity argument for pdfs involves
sums and integrals over final states of the absolute square of
matrix elements.

An interesting mathematical example is the integral,

Z
d2−2ϵkT

ðk2T −Q2Þ2
k2Tðk2T þQ2Þ2 : ð46Þ

The integrand is positive definite everywhere, but the
integral evaluated in dimensional regularization is −4π
in the limit that ϵ → 0. For general ϵ, the integral equals
−4πΓð1þ ϵÞðπQ2Þ−ϵ, which is negative for all ϵ > −1.
None of above is to deny that dimensional regularization

is an extremely useful and elegant method for doing many
calculations. But one has to be careful in going beyond
those properties and manipulations that follow from its
definition and construction.

B. Application to pdfs

In light of these results for dimensional regularization,
we examine the basic argument that pdfs are positive.
Now the operator definition of a bare pdf is equivalent to

the expectation value of a light-front number operator
integrated over transverse momentum [18,19], [ [25],
Chap. 6]. Specifically, the pdf is an integral over transverse
momentum of the following expectation value:9

fðx; kTÞ ¼ lim
jψi→state of definiteP

hψ ja†kakjψi
hψ jψi : ð47Þ

A minor complication is that the expectation value of an
operator in a state requires the state to be normalizable, and
so the state cannot be a momentum eigenstate. So we define
the pdf in terms of a limit as the target’s state becomes a
momentum eigenstate. Elementary manipulations [ [25],
Chap. 6] convert that to a standard form like Eq. (2).
Now the numerator in (47) is given by a sum/integral

over intermediate states,

hψ ja†kakjψi ¼
X
X

hψ ja†kjXihXjakjψi

¼
X
X

jhXjakjψij2: ð48Þ

This is non-negative, provided that the sums and integrals
have their standard meanings. Hence the TMD pdf is also
non-negative.
The definition of a collinear pdf has an insertion of an

integral over kT, and the result is similarly non-negative,

8The proof that a scale-free integral is defined (and zero) relies
on defining the integral as a sum of a term with no UV divergence
and one with no IR divergence. Each term is defined by ordinary
integration for values of n where it is convergent by the ordinary
criterion and is then analytically continued to all n except for
n ¼ 2. In the sum, the poles at n ¼ 2 cancel, so the sum is also
defined at n ¼ 2, by analytic continuation.

9For the purposes of this section, we ignore the added
complications in giving a fully correct definition of a trans-
verse-momentum-dependent pdf in QCD.
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fbareðxÞ

¼ lim
jψi→state of definiteP

Z
d2kT

X
X

jhXjakjψij2
hψ jψi ≥ 0: ð49Þ

The UV divergence arises from kT → ∞, and hence
where also the final state X has large transverse momentum.
When we consider a pdf in the massless partonic case,
divergences similarly arise when kT → 0, with correspond-
ing final states. The divergences are not in the integrand
itself, jhXjakjψij2=hψ jψi, but in the integral over certain
limits of it.
Then when we perform the integral and use dimensional

regularization to construct a bare pdf in a massless partonic
target, our analysis of Eqs. (44) and (45) shows that the
integration measure acquires negative terms in any limit of
the integration variables that would otherwise give a
divergence. For a massless integral for a pdf, divergences
are present for all n, and hence the dimensional regulated
integral also violates positivity for all n.
Now positivity of the integrand in Eq. (49) results from

positivity of the metric on a normal quantum-theoretic state
space. So we could interpret a violation of positivity of the
dimensionally regulated integral as corresponding to a non-
negative metric in some kind of extended state space.

VI. FAILURE OF AN ARGUMENT FOR
POSITIVITY OF MS PDFs

We now show how Ref. [3]’s argument for positivity of
MS pdfs breaks down.
A number of critical steps are in the first part of their

Sec. II. It begins with a statement of track B bare
factorization (to use our terminology) in Eq. (2.1). It has
the same form as our Eq. (11), except for changed notation
and normalizations.
One factor is an unsubtracted structure function (Fpartonic

in our notation) for DIS on an on shell partonic target with
all masses set to zero. The other factor is of a pdf, whose
operator definition was given in Eq. (2.2) of [3]. That
definition agrees with the definition that we gave in Eq. (2)
for a bare pdf fbare;A in track A. (The fields and coupling in
[3] must be bare quantities in order that (a) the pdf is a
number density in the light-front sense and (b) the operator
is gauge-invariant.)
In our formula for bare factorization, the bare parton

density is notated fbare;B rather than fbare;A. Hence
Eqs. (2.1), (2.2) and (2.6) of [3] are equivalent to an
assertion of our Eq. (11) together with an assertion that
fbare;B ¼ fbare;A. We have shown in previous sections that
these assertions are valid provided that dimensional regu-
larization is used for both UVand collinear/IR divergences,
but not in general. In Ref. [3], only dimensional regulari-
zation is used.
The derivation of positivity of MS pdfs relies on

positivity both of bare pdfs and of partonic cross sections.

The derivation is indirect, with the definition and use of
subtraction schemes named DPOS and POS, followed by a
scheme change to MS. Primarily the argument is given in
terms of the results of one-loop calculations.
The intermediate subtraction schemes were motivated by

the fact that the standard MS subtraction of a collinear
divergence from a partonic structure function is actually an
oversubtraction. It results in negative subtracted partonic
structure functions. The definitions of the DPOS and POS
scheme remove the oversubtraction, so that the subtracted
partonic structure functions remain positive. This was
needed because one part of the argument—in the early
part of Sec. 3 of [3]—required positivity of all four
quantities in the first line of our Eq. (13), including the
subtracted partonic structure function CB. But to show that
the change of scheme to MS preserves positivity of the pdf
did not need any properties of CB.
We can gain an overall view of the derivation from the

statement [ [3] p. 5]: “If all contributions which are factored
away from the partonic cross section and into the PDF
remain positive, then the latter also stays positive.” In our
notation, what is factored away from the partonic cross
section is ZB in Eq. (12). We absorbed it into a redefinition
of the pdf in Eq. (13).
Now dimensional regularization with space-time dimen-

sion n ¼ 4 − 2ϵ was used, so we apply the results of our
discussion in Sec. VA.
To regulate collinear divergences, a space-time dimension

above 4 is needed, i.e., ϵ < 0. So, when ϵ → 0 from below,
the collinear divergences are positive, Hence the collinear-
divergence factor ZB in Eqs. (12) and (14) only obeys
positivity in space-time dimensions above 4. Positivity of
MS pdfs would then follow were the bare pdfs also positive
for negative ϵ, i.e., for space-time dimensions above 4.
Positivity of bare pdfs appears to be almost trivial to

prove—e.g., Sec. V B—and as such it seems that it should
be an uncontroversial statement. However, we also saw that
the argument only applies if the integrals giving the pdfs are
convergent; failures can occur when dimensional regulari-
zation is used for both UV and IR/collinear divergences.
Now a pdf defined by Eq. (2) has UV divergences, As we
have seen in Sec. V that implies that the contribution from
the UV region is necessarily positive only if the degree of
UV divergence is negative, i.e., in space-time dimensions
below 4, i.e., ϵ > 0. But that is where the collinear
divergence factor does not obey positivity.
If we go in the opposite direction in dimension, i.e.,

ϵ < 0, to make the collinear contribution positive, then the
UV contribution obtained by analytic continuation from
positive ϵ does not obey positivity.
Hence there is no value of ϵ for which positivity is

obeyed by both the factors in the track-B formula for
renormalized pdfs, Eq. (14). A proof of positivity of
renormalized pdfs from positivity of the collinear diver-
gence factor ZB and the bare pdfs fails.
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Alternatively one could use methods of regulation or
cutoff other than dimensional regularization, at the price of
losing the simplicity that goes with its use. We have seen
that bare factorization then generally fails if the pdf is still
the bare pdf defined by its standard formula.
The only way of recovering the validity of the formula

for bare factorization is to replace the bare pdf by a
renormalized pdf with the UV divergences removed by
the BPHZ0 scheme. As we have seen these pdfs acquire
collinear divergences not present in the bare pdf itself—
recall Eq. (39). The subtractions violate positivity of the
resulting pdfs.
To summarize, there are three assertions that need to be

true simultaneously for the derivation of strict positivity in
Ref. [3] to be valid
(1) Bare factorization Eq. (11) is valid.
(2) Each bare pdf, as given by the standard operator

definition (2), obeys positivity.
(3) Partonic cross sections Fpartonic obey positivity.

As we have shown, at least one of items 1–3 must be false.
As a result, negative pdfs are not excluded in the MS
scheme.

VII. CURCI et al.

The treatment in Sec. IVA now enables us to critique the
derivation by Curci et al. [30]. They combine a form of bare
factorization and a version of the derivation in Sec. IVA,
but applied to a massless partonic structure function. They
use light cone gauge just as we did in Sec. IVA.
Their definition of a bare pdf is modified from the one

given in Eq. (2). The matrix element is restricted to 2PI
graphs,

fbare, CFP = P
B = TB.

ð50Þ

It has no UV divergences, and so is a purely collinear
object. Moreover, the factor B is in full QCD, with massive
hadrons, so there are also no collinear divergences in this
pdf. Its definition is clearly different from the standard one
that is given by Eq. (20), which transcribes Eq. (2) in light
cone gauge.
In their Fig. 3, they assert (but do not prove) a bare

factorization formula, which is exactly the same as our
Eq. (11), except that the bare pdf is not given by Eq. (20)
but by Eq. (50). In the notation of Sec. IVA, this
factorization is

F¼
�
A

1

1−K

�
m¼0

TBþpower-suppressed

¼Fmassless;partonic⊗ fbare;CFPþpower-suppressed: ð51Þ

This equation cannot be correct: When a hadronic target is
used, both the bare pdf used here and the hadronic structure

function have no divergences, but the unsubtracted mass-
less partonic structure function does have collinear
divergences.
Despite this problem, it is interesting that, as we saw in

Sec. IVA, their methods can be used very easily to provide
a correct derivation, either in the BPHZ version, the MS
version (track-A) or even the BPHZ0 version.

VIII. EXAMPLES

So far, the discussion has been general but abstract.
Concrete examples illustrate the issues very clearly.
The most direct way to test whether pdfs obey properties

like positivity would be to simply calculate a suitable
sample of them directly from Eq. (3) from first principles in
QCD. But this requires a calculation of their nonperturba-
tive behavior at a level which is beyond current abilities.
However, neither the derivation of factorization nor the

derivation of positivity of MS pdfs in Ref. [3] is specific to
QCD. Instead they apply generally to all theories with the
standard desirable properties like renormalizability, etc.
Therefore, it is convenient to stress-test proposed general
features by examining them in a theory where it is
straightforward to perform appropriate reliable calcula-
tions, i.e., a model QFT in a parameter region where
low-order perturbative calculations are accurate for pdfs
and structure functions.
We will do this in a Yukawa theory, with all particles

massive, and with weak coupling. Of course, even though
factorization is still valid, its utility is much less than in
QCD, which is asymptotically free and where we always
have substantial nonperturbative contributions to pdfs and
structure functions.
Perturbative results in this theory provide a counterex-

ample to any general theorem that MS pdfs are always
positive. Examining the details of the calculation will also
indicate that there is the limited range of low scales over
which positivity can be violated. A primary impact on QCD
is then that it is incorrect to impose a priori positivity
constraints on MS pdfs at a low initial scale when making
phenomenological fits to data. Equally, it is incorrect to
impose positivity on fits to the results of nonperturbative
calculations at low scales. One caution, though, is that the
MS scheme is defined within perturbation theory, so that it
is not at all clear how to ensure it is sufficiently well defined
at low scales that are too close to where QCD is clearly
nonperturbative.
In addition, a careful examination in the model theory of

both how the results for pdfs arise and for where factori-
zation is valid will suggest some conclusions for QCD
itself.

A. Calculation of pdf

We will use a scalar Yukawa field theory with two
separate fermion fields and the following interaction term:
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Lint ¼ −λΨ̄Nψqϕþ H:c: ð52Þ

Here, ΨN is a field that we will refer to as corresponding to
a “nucleon” or a “proton,” of spin-1=2 and mass mp; we
will use the particle as a target in our calculations.
In addition, there is a spin-1=2 “quark” field ψq with mass
mq, and a zero charge scalar “diquark” field ϕ with a mass
ms.

10 We will use the notation aλðμÞ≡ λ2=ð16π2Þ in
analogy with a similar notation, as ¼ g2s=ð16π2Þ from
perturbative QCD. Keeping all masses nonzero ensures
that the theory is finite range in coordinate space, like full
QCD but not massless perturbative QCD. We may choose
the coupling λ small enough that low order graphs in
perturbation theory approximate DIS structure functions
across a wide range of scales to sufficient accuracy for any
given xbj < 1, with controllable sizes of error.
The bare fermion pdf is Eq. (2), but without the Wilson

line, i.e.,

fbare;Ai=p ðξÞ¼
Z

dw−

2π
e−iξp

þw−

× hpjψ̄0;ið0;w−;0TÞ
γþ

2
ψ0;ið0;0;0TÞjpi; ð53Þ

where the i label indicates either the ψq or theΨN field. The
renormalized collinear parton density has the form

frenorm;A
i=p ðξ; μÞ ¼ ZA

i=i0 ⊗ fbare;A
0;i0=p

≡X
i0

Z
dz
z
ZAðz; aλÞi=i0fbare;A0;i0=p ðξ=zÞ: ð54Þ

Wewill work with the quark-in-proton pdf, for which the
lowest order value is at order aλ, from the graph in Fig. 1.
A direct computation gives

frenorm;A
q=p ðξ; μÞ

¼ aλðμÞð1 − ξÞ
�ðmq þ ξmpÞ2

ΔðξÞ þ ln

�
μ2

ΔðξÞ
�
− 1

�

þOða2λÞ; ð55Þ

where

ΔðξÞ≡ ξms
2 þ ð1 − ξÞmq

2 − ξð1 − ξÞm2
p: ð56Þ

[Note that ΔðξÞ is positive if the target state is stable, i.e.,
mp < mq þms.] The MS counterterm used to obtain
Eq. (55) is

MSC:T: ¼ −aλðμÞð1 − ξÞ Sϵ
ϵ
: ð57Þ

This gives ZA
q=p ¼ −aλðμÞð1 − ξÞSϵ=ϵþOða2λÞ, thereby

matching the general form of Eq. (3).
By choosing aλðμ0Þ small enough at some reference

scale μ0, we ensure that the one-loop renormalized pdf in
Eq. (55) is a good approximation to the exact pdf to some
given accuracy over a range of μ. Since the effective
coupling does not increase out of the perturbative range at
small scales, unlike QCD, the calculation retains its
accuracy when μ is of order particle masses. It only
loses accuracy when μ is so large11 that the logarithms
of μ=mass in higher orders of perturbation theory
compensate the smallness of the coupling, and use of
DGLAP evolution becomes necessary; that is not a
concern here.
So that the results of calculations give suggestions as to

what happens in QCD, we choose mass parameters to be
in a range reminiscent of masses in QCD: mq ¼ 0.3 GeV,
mp ¼ 1.0 GeV and ms ¼ 1.5 GeV. Thus the quark mass
is similar to the “constituent mass” [39] of a light quark in
QCD, and similarly the hadron mass is similar to a
nucleon mass. But we choose the diquark mass to be
somewhat larger than might be expected were we to treat
the calculation as an actual model for a pdf in non-
perturbative QCD; this diquark mass allows us to illustrate
that more than one mass scale could be relevant in a ξ-
dependent way.
From Eq. (55), it immediately follows that for any given

value of ξ, the pdf is negative for low enough μ and positive
for large μ. This is illustrated in Fig. 2(a) which shows the
ξ-dependence of the quark pdf for three different values of
μ. The values are chosen to be representative of the low end
of the range of μ used in QCD fits. At fairly low values of μ,
there is a range of moderately large ξ where the pdf is
negative. As μ increases, the range of negativity shrinks and
eventually disappears. Later we will interpret these results
in terms of scales in the shape of the transverse momentum
distribution.

FIG. 1. Lowest order contribution to frenorm;A
q=p ðξ; μÞ.

10The sole purpose of these names is to indicate how we will
use the model theory to construct analogs of what in QCD are the
standard pdfs on hadronic targets.

11The calculation also loses accuracy when μ is very small. But
that is irrelevant to the uses of pdfs, which are in factorization for
hard processes where μ is chosen to be proportional to a large
scale Q.
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One might worry that the strong negativity might be
incompatible with the momentum and flavor sum rules,
which entail that some of the pdfs are sufficiently positive.
This issue is resolved by observing that the nucleon in our
Yukawa model is a possible parton, and that a first
approximation to the corresponding pdf fp=p (diagonal
in parton/particle labels) is the free-field value δðξ − 1Þ,
which is positive, and does not involve any UV renorm-
alization. Thus the quark-in-nucleon pdf that we have
calculated is a minority contribution, i.e., much smaller
than the other pdf at large ξ.

B. Systematics of why the pdf becomes negative

To understand how and where the MS pdf becomes
negative, we relate it to an integral over transverse
momentum of the corresponding transverse momentum
dependent (TMD) pdf. Calculating Eq. (55) involves
calculating the following integral in dimensional regulari-
zation:

aλðμÞ
Z

∞

0

dk2Tk
−2ϵ
T

ð1 − ξÞ½k2T þ ðmq þ ξmpÞ2�
½k2T þ ΔðξÞ�2 : ð58Þ

Suppose that instead of using dimensional regularization
and subtracting the MS pole to define a scale-dependent
pdf, we simply applied a cutoff on transverse momentum in
the unregulated integral,12

aλðμÞ
Z

k2cut;T

0

dk2T
ð1 − ξÞ½k2T þ ðmq þ ξmpÞ2�

½k2T þ ΔðξÞ�2 : ð59Þ

The new pdf is an ordinary integral with a positive
integrand everywhere when 0 < ξ < 1, with no further

subtraction term. So, this pdf is guaranteed to be positive. It
can be verified that when k2cut;T is set to equal μ2, the cutoff
integral matches the MS result in Eq. (55) except for
corrections by a power of m2=μ2, which are small at high
scales. Its evolution is of the DGLAP form, but with a
power-suppressed inhomogeneous term. In a gauge
theory, there are problems with a naive use of a cutoff
in transverse momentum, since the most natural definition
of a TMD pdf suffers from rapidity divergences [33]
associated with lightlike Wilson lines. These necessitate
changes in any method of working with TMD pdfs13 in
QCD. But the same problem does not occur in a nongauge
theory.
Equation (59) is a very intuitive way to represent a scale-

dependent pdf in terms of hadron structure: it contains the
contributions from transverse momenta up to the cutoff. In
particular, when k2cut;T is large, it includes, among other
things, all the physics associated with intrinsic hadron
structure. Then the coefficient function in factorization for
DIS at high Q can simply be characterized as whatever else
contributes to the correct structure function. When k2cut;T is
of order Q2, the coefficient function is only concerned with
physics at the scale Q.
Up to terms of order m2=k2cut;T, the pdf in Eq. (59) is

related to the MS pdf at scale μ by subtracting the term,

aλðμÞð1 − ξÞ
Z

k2cut;T

μ2

dk2T
k2T

; ð60Þ

as can be verified by explicit calculation. The integrand is
the large kT asymptote of the integrand in Eq. (59), as is
appropriate to the minimal subtraction used in the MS
scheme.

(a)

(b)

FIG. 2. (a) An example of the MS quark-in-proton pdf in Eq. (55) for several values of μ, with mq ¼ 0.3 GeV, mp ¼ 1.0 GeV, and
ms ¼ 1.5 GeV. (b) Similar curves but in a form applicable to use in factorization for DIS with μ2 ¼ ŝ=4, given Q ¼ 2.5 GeV and
several values for xbj. The pdfs are only used in the range xbj ≤ ξ ≤ 1, so the curves are restricted to this region.

12Such a definition is used by Brodsky and collaborators
[40,41]. 13Note that the rapidity divergences cancel in MS pdfs [22].
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By taking k2cut;T to infinity, we find that the MS pdf
equals

aλðμÞð1 − ξÞ
Z

∞

0

dk2T

�
k2T þ ðmq þ ξmpÞ2

½k2T þ ΔðξÞ�2 −
θðkT − μÞ

k2T

�
;

ð61Þ

i.e., there is a subtraction of the asymptote of the integrand,
with a lower cutoff.
At high kT, the subtraction term closely matches the first

term. When μ is large, there is a logarithmic contribution
from kT in the rangeΔ≲ kT < μ, since the subtraction term
vanishes there. The positive logarithmic contribution over-
whelms any negativity in the remaining nonlogarithmic
contributions to the integral.
Now when kT goes to zero the 1=k2T term goes to infinity,

unlike the first term in (61), giving a strong mismatch.
Hence when μ is small, there is a large negative logarithmic
contribution to the subtracted integral. Therefore, where the
MS pdf becomes negative is governed by the mass scale(s)
below which the mismatch is strong.
When ξ → 0, the first term in the integrand becomes

1=ðk2T þmq
2Þ. Then the pdf becomes negative when

μ < mq, which is a low scale, well under a GeV.
When ξ → 1, the term is

k2T þ ðmq þmpÞ2
ðk2T þm2

sÞ2
: ð62Þ

Where the integral becomes negative is now governed by a
combination of the scales mq þmp and ms, which are
around a GeV or larger.
The existence of these two scales differing by a modest

factor qualitatively explains Fig. 2. For μ in the middle of
the range between the quark mass and about a GeV, the pdf
is positive at low ξ but not at high ξ. Only when μ is well
above a GeV does the pdf become positive everywhere.
The effect is enhanced by our choice of a somewhat large
value ofms, but it illustrates the effects of different scales of
transverse momentum in different ranges of ξ in a way that
can easily happen in QCD. Indeed recent fits do provide
results with negative values in some ranges of ξ and μ; we
will discuss this below.

C. Relation to factorization

As to the impact of the negative values of pdfs on
possibly predicting a negative cross section from a factor-
ized form, we recall first that the factorized cross section is
independent of μ. But in finite order approximations,
μ-independence is valid only up to errors of the order of
uncalculated higher order corrections. One should choose μ
to avoid large logarithms in the perturbative expansion of
the coefficient functions.

Furthermore, the factorization theorem itself is only valid
up to errors of size mq

2=Q2, ms
2=Q2 and m2

p=Q2, with xbj-
dependent coefficients. These arise from mismatches
between the exact integrands for graphs for a structure
function and the approximations used in obtaining the
factorized form. Once the errors are too large compared
with the factorized value of a cross section, negative values
from the factorized cross section are irrelevant. In addition,
when we work in QCD, the coupling becomes too large at
low scales to allow low-order perturbative calculations of
the coefficient functions to be useful.
In our model the second issue does not arise, and we

examine the sizes of the power-law errors and their impact
on the effect of negative pdfs, especially in relation to the
mass scales involved. Because of our use of a weak
coupling, it is sufficient to work at order aλ. Some details
of our calculations are given in the Appendix.
In Fig. 3, we compare an exact calculation of F1 at order

aλ with the factorized approximation, for three quite
low values of Q. These are within the range of a number
of experiments, e.g., Ref. [42]. The lowest value is
Q ¼ 0.8 GeV, which is below where one normally uses
factorization in QCD. But even there, there is a range of xbj,
viz. ≲0.2, where the factorized approximation is reason-
ably good. Recall that as xbj gets small, the invariant mass
of the final state gets large, so that the collision is quite
inelastic, and there is another larger scale in the problem
than Q.
In contrast, at the larger xbj values and fairly low Q, the

factorized approximation is not merely a poor approxima-
tion, but in some places gives an unphysical negative value
to F1, while the true value is zero because the final state
mass is below threshold.
As Q increases, the range of xbj where the factorized

approximation is good increases, while the range of
negative values for the approximation decreases. But the

FIG. 3. A comparison between Eq. (A1) and the unfactorized
graphs in Fig. 5 for the F1 structure function [dropping Oða2λÞ
terms], for three values of Q. The graphs are independent of the
choice of μ. The zero in the blue curve just above xbj ¼ 0.5 is the
kinematical upper bound on Bjorken-xbj.
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range of negative values does not closely match the range of
negative values for the pdf. This is to be expected, since the
calculation contains contributions from the one-loop coef-
ficient function as well as directly from the negative pdf. At
the highest value Q ¼ 2.5 GeV, the factorized approxima-
tion is positive everywhere. But at large xbj it increases.
Much of the increase is where the true value F1 is zero
because the final state is below the quark-diquark threshold,
so that the factorized approximation is very incorrect.
From our calculation of the pdf in Sec. VIII B, we saw

that at small values of parton momentum fraction ξ, the
width of the internal transverse momentum integration in
the pdf is governed by the quark mass, which is 0.3 GeV, a
typical value for a constituent light quark mass, whereas at
large ξ the width is governed by the larger diquark mass.
The approximation that leads to factorization involves
neglecting quark transverse momentum in the hard scatter-
ing; in addition kinematic approximations involve neglect-
ing xbjmp with respect to Q.
This suggests that at small enough xbj, the power error in

factorization involves a relatively low mass, while at larger
xbj it involves a relatively high mass.
Now a standard choice of scale is μ ¼ Q. But, as

observed in [3] for example, this is quite inappropriate
at large xbj. The partonic transverse phase space is limited
by ŝ=4 ¼ Q2ð1 − xbjÞ=4xbj, which produces large loga-
rithms of ŝ=Q2 at larger values of xbj in the coefficient
function. A consequence [3] is that choosing μ ¼ Q gives
considerable oversubtraction in the coefficient function. A
more sensible value would be μ2 ¼ ŝ=4, at least at large xbj.
For a given value of Q, this gets very small as xbj → 1.
Although this choice of μ should improve the perturbative
treatment of hard parts, it substantially exacerbates the
possibility that the value of a pdf in a calculation will turn
negative, as illustrated in Fig. 2(b). This is the same as
Fig. 2(a) but with μ2 ¼ ŝ=4 and a sequence of large values
for xbj, with Q2 ¼ 2 GeV. But with such low values of the
final state’s invariant mass, we must also expect that
factorization also gives a poor approximation to the actual
cross section.
Regardless of the details, we see that, given the mass

scalesmp,mq, and/orms, low values of μ result in a pdf that
turns negative. The example is enough, therefore, to show
that a pdf defined in the MS scheme is not constrained by
general principles to be positive everywhere. As mentioned
in the Introduction, the result of calculations of heavy-
quark pdfs provides one example of this phenomenon
in QCD.
We have also seen that a negative pdf often occurs in a

region of momentum fraction ξ where power corrections
cause factorization to be a poor approximation if ξ ¼ xbj.
Recall, however, that pdfs in the range xbj ≤ ξ ≤ 1 enter
calculations at higher orders. So ξ ∼ 1 pdfs are relevant
even for small xbj calculations.

D. “Bare” pdf of track B

We now find the corresponding bare pdf in track B. From
the treatment in Sec. IV, we know that fbare;B is just
Eq. (55), but before the MS pole in Eq. (57) has been
subtracted,

fbare;Bq=p ðξ;μÞ¼ frenorm;A
BPHZ0

¼ aλðμÞð1−ξÞ
�ðmqþ ξmpÞ2

ΔðξÞ þ ln

�
μ2

ΔðξÞ
�
−1

�

þaλðμÞð1−ξÞSϵ
ϵ

����
IR
þOða2λÞ; ð63Þ

with terms of OðϵÞ ignored, and with the pole identified as
collinear rather than UV. In the methods of track B,
dimensional regularization is used to regulate collinear
(and IR) divergences, so that ϵ < 0. Then the bare pdf in
Eq. (63) is negative for small negative ϵ.

IX. VALENCE VS NONVALENCE PDFs

The argument in the previous section about MS pdfs
becoming negative at small μ might appear to be quite
general. It may seem that all pdfs should become entirely
negative at small enough μ for all ξ. But this would be in
contradiction with the sum rules obeyed by the pdfs,
notably the momentum sum rule. These entail that the
negativity at low μ cannot be a general property.
That worry is removed by observing that not all graphs

for pdfs have UV divergences. In the model, the simplest
case is for the nucleon-in-nucleon pdf, for which the lowest
order value, including transverse momentum dependence is
a simple delta function: δðξ − 1Þδð2ÞðkTÞ; this obviously has
no UV divergence when integrated over kT.
We characterize the situation by saying that in the model,

the nucleon is itself the analog of a valence quark in QCD,
while the quark in the model is an analog of a sea quark in
QCD, given that the target particle is a nucleon. (For our
rough purpose here, we characterize a valence quark, or,
more generally, a valence parton as one that at large and
moderately large momentum fraction corresponds at low
scales to the largest pdfs and corresponds to the basic
structure of the target state.)
The generalization to other theories, including QCD, can

be explained by using the expansion (20) of a pdf in terms
of 2PI graphs. The part without a UV divergence is the first
term in the expansion, i.e., the term without any rungs in the
ladder. We notated it as TB. All the remaining terms in (20)
have UV divergences. Those statements follow from the
standard power counting for UV divergences in pdfs. (Our
Yukawa model provides a degenerate case where the lowest
order 2PI graph is just a lowest order disconnected graph.)
The TB term is exactly the bare pdf fbare;CFP that was

defined by Curci et al. [30]. This term is necessarily
positive, by a version of the argument given in Sec. V B,
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but without any complications arising due to the need for a
regulator.14

It is natural to suppose that TB is dominated by the
valence quark terms, which essentially correspond to
simple quark models of hadrons. Any other terms, for
non-valence partons, are presumably substantially smaller.
The argument leading to possible negative MS pdfs

applies to the graphs with rungs. We then get a two-
component picture: a positive valence contribution from the
TB term for the relevant pdfs, and then potentially negative
contributions from the graphs with rungs. For nonvalence
partons, the first component is small, and so the potentially
negative component from the renormalization of the UV
divergent terms can dominate. Of course in QCD the
coupling is not particularly small in the low μ region. So
there is the potential for higher-order terms to modify the
results.
As we observed, the negative contribution to a pdf goes

away once μ is enough larger than the scale setting the
width of the kT distribution at small kT. But this is a soft
constraint. As regards the potential for negative cross
sections, the primary point is that negative values for pdfs
arise in pdfs that are small compared with others, so higher-
order perturbative terms in the hard scattering induced by
valence quarks are not suppressed with respect to the
lowest-order term induced by the minority partons.
Motivated by the calculations, a simple idea to see that

some non-valence pdfs are likely to become negative at low
enough scales is as follows. We examine consequences of
DGLAP evolution: dfmin :=d ln μ ≃ kernel ⊗ fmaj. We first
observe that at the lowest order those DGLAP kernels
Pijðz; αsÞ that are off diagonal in parton flavor are positive.
The diagonal kernels are positive when z < 1, but have a
negative delta-function at z ¼ 1.15 Suppose that at large x
we have a valence pdf, notably the u quark in QCD, that is
substantially larger than the others, and that is positive.
Then the positivity of the off diagonal kernel implies that
small pdfs increase with scale, but only for those partons
with a nonzero LO DGLAP kernel with the valence parton.
This is simply because a sufficient smallness of a pdf
implies that the diagonal term in its evolution is smaller
than the off diagonal term.
Hence going to a lower scale takes such small pdfs to

negative values. Direct examples of this are given not only
by our model calculations, but also by the evolution of a

heavy-quark pdf in QCD, when the scale μ is close to the
heavy quark’s mass.
The increase with μ for a minority pdf contrasts with the

well-known decrease of valence pdfs at the larger values of
x. That decrease arises from the dominance of the delta-
function terms in the DGLAP kernels that are diagonal in
flavor. At sufficiently smaller x, the positive continuum part
becomes more important and then the valence pdfs increase.
However, the expectations just summarized are some-

what in contrast with the results of actual fits, as illustrated
in Fig. 4. In these plots we have focused on x above 0.8
using a particular eigendirection pdf set from CT18 that
displays negativity as an example. There is a clear hierarchy
of sizes of pdf, with the pdf of the u quark being the largest.
We also notice that there are large discrepancies between
the different fits for the pdfs of the sea quarks (s, ū) and of

FIG. 4. Pdfs from the CT18 fit [43] restricted to eigendirection
#1 at several values of scale as a function of ξ (upper two rows)
and at several large values of ξ as a function of scale (lower two
rows). To keep the number of plots lower, we have restricted the
sea quark plots to s and ū. Behavior of the d̄ pdf is similar to that
of the ū.

14Here, “regulator” means “UV regulator.” As mentioned
earlier, there are rapidity divergences due to the use of light
cone gauge. In principle, a regulator needs to be applied to
rapidity divergences. but those divergences cancel and they
concern orthogonal issues to those we are concerned with here.

15As is well-known, in a gauge theory there is a plus
distribution at z ¼ 1, so that the coefficient of the delta function
is effectively infinitely negative, with the divergence cancelled by
a positive divergence in the integral over z < 1. But that does not
really affect our argument.

JOHN COLLINS, TED C. ROGERS, and NOBUO SATO PHYS. REV. D 105, 076010 (2022)

076010-22



the gluon. This simply reflects the large uncertainties on
these small pdfs in a region where they are weakly probed
by the currently available data.
Moreover, the evolution for the minority pdfs, at scales

of a GeV or two makes them decrease instead of increase
with scale, initially. Some of the minority pdfs even stay
negative up to μ ∼ 100 GeV, which is not at all in agree-
ment with the elementary prediction.
It is beyond the scope of this article to perform a detailed

analysis. We make the following comments:
(1) None of the other quarks has a lowest-order DGLAP

kernel that connects it to the quark with the largest
pdf, the u quark. So the effect of the u pdf on the
evolution of the other quarks is indirect, both
through an NLO kernel, and via the gluon pdf.
Given the use of subtractions in defining the higher-
order terms, the positivity properties are not at all
clear compared with simple situations.

(2) The coefficient functions in factorization, Eq. (7),
have singularities at x=ξ ¼ 1, as do the DGLAP
kernels. These generate large logarithms whenever
pdfs are rapidly decreasing, as they are at large ξ. So
fixed-order calculations of the kernels and of co-
efficient functions can be insufficient in this region.
Then the errors due to omitted higher-order terms
may not be small relative to lower-order terms, and
large-x resummation is needed to get accurate
results. This was already observed by Candido et al.
]3 ]; their argument for positivity of pdfs fails unless
large-x resummation is used. (That failure is beyond
the other issues we discussed earlier.)

(3) The negative pdfs are a few orders of magnitude
below the largest pdf, of the u quark. Thus the
negativity has no direct consequences for negativity
of cross sections.

(4) They are also in a region where they are badly
determined, and the uncertainty range [43] includes
positivevalues. Soone can always say that thenegative
values are not significant. The quoted values of pdfs in
the unmeasured region are effectively extrapolations
from regions where they are well measured.

(5) Therefore there are liable to be implicit or explicit
assumptions about the functional form of pdfs at
their starting scale. For example, when an explicit
parametrized form is used a restricted parametriza-
tion may be used which may not in reality be
accurate enough at large x.

Another situation where negativity of pdfs is sometimes
encountered is for gluons at small x and fairly low μ. There
is a strong increase with scale of the gluon pdf, and
depending on the size of the singlet and the gluon pdfs,
reverse evolution to lower scales can give a negative gluon.
However at small-x there is loss of accuracy in fixed order
calculations that requires small-x resummation. For in-
stance in [44] a global analysis with small-x evolution was

reported with the inferred gluon replicas being all positive
in the small-x in contrast to their baseline analysis based on
fixed order calculations. As with the case of pdfs at large x,
the possibly negative pdfs are in a region where they are
weakly constrained by data.

X. CONCLUSIONS

One of our main goals with this article has been to draw
attention to gaps in one particularly common approach to
QCD factorization. However, the issues are abstract and it
is tempting to view them as only formal, with no impact on
practical phenomenology. We have focused on the pos-
itivity question, therefore, to illustrate how those gaps can
influence practical considerations. The positivity example
shows that the track-A/track-B dichotomy is especially
relevant to questions about the properties of the pdfs
themselves. Other interesting examples likely exist.
Past approaches to pdf phenomenology have mainly

focused on the universal nature of pdfs to constrain them
from experimental scattering data. But increasingly sophis-
ticated methods are being used to study pdfs and their
properties directly using nonperturbative techniques like
lattice QCD, and to combine those approaches with more
traditional phenomenological approaches. It is important to
check the derivation of properties that originally relied on a
track-B view before they are adopted unchecked into larger
phenomenological programs. More generally, the pitfalls of
the track-B approach need to be taken into consideration in
nonperturbative QCD approaches. Many of these calcu-
lations are performed at rather low scales where, as
illustrated by the positivity example, the problems with
track B are most prominent.
As regards the positivity issue itself, there are several

points to make. First, we emphasize that we have not
argued that MS pdfs must be negative for any particular
choice of scales or μMS. Rather we proved that nothing in
the definition of pdfs or in the factorization theorems
themselves excludes negativity as a possibility, especially
at low or moderate input scales. But we did show argu-
ments that indicate that certain generic situations do tend to
lead to negative pdfs of partons with small pdfs, notably for
nonvalence quarks. Giving a full theoretical answer to the
question of whether a particular pdf turns negative depends
on its large distance/low energy nonperturbative properties,
as the sensitivity to mass scales in the example of Sec. VIII
illustrates. Also, the failure of absolute positivity in the MS
scheme does not necessarily imply that other schemes do
not exist which exactly preserve positivity.
Instead,we argue that imposing strict positivity onMSpdfs

as an absolute phenomenological constraint is an excessive
theoretical bias. As our examples show, this is especially
relevant to the question of how low Q may be before
factorization theorems become unreliable. Applications of
factorization to low or moderate Q are often important for
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studies of hadron structure. Note, for example, that past
Jefferson Lab DIS measurements are in the range ofQ ∼mp

[45], with Q > 1 GeV identified as the “canonical” DIS
range. It is possible that for factorization theorems to continue
to hold at these scales and with the desired precision, exact
positivity constraints need to be relaxed. Indeed, if positivity
constraints are relaxed, it is possible that DIS factorization
theorems can be extended to significantly lowerQ thanmight
otherwise be expected.
As we have seen, once the MS scale μ is large enough

compared with intrinsic transverse momentum scales, the
pdfs indeed become positive.
Further refinements in knowledge about transverse

momentum mass scales will likely help to sharpen esti-
mates of where in kinematics a positivity assumption
begins to be warranted. We leave such considerations to
future work.
Given that positivity of pdfs is not absolutely guaranteed,

there is the possibility that cross sections predicted by
factorization can be negative. Indeed, we illustrated by
calculation that a fixed-order factorized cross section can be
unambiguously negative, without contradicting positivity
of physical cross sections: A factorized cross section is only
an approximation to the true cross section. If the difference
between a measured and calculated cross section is within
the expected error in factorization, then there is no contra-
diction. Two notable sources of error in particular kin-
ematic regions are higher-order perturbative terms with
logarithmic enhancements, and power corrections to
factorization.
We conclude that positivity should not be imposed as an

absolute constraint in fits for pdfs, neither on the pdfs nor
on the calculated cross sections. Instead, any finding of a
negative pdf or especially a negative cross section should
be simply treated as a focus of attention. Does a negative
pdf occur in a region where it can be expected? For a
negative cross section, what are the expected errors and

uncertainties? Which data are critical to obtaining the
negative results?
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APPENDIX: THE FULL CROSS SECTION

Since the MS pdf only turns negative for rather low μ, it
is worthwhile to consider whether the scales must be so low
that factorization theorems are badly violated. To test this,
we can work out the exact, unfactorized lowest order cross
section for deep inelastic scattering in the Yukawa theory of
Sec. VIII and compare the results with the factorized
expression that uses Eq. (55). The graphs contributing to
the DIS cross section at lowest order and for xbj < 1 are
shown in Fig. 5. [The Hermitian conjugate of Fig. 5(c) is
also needed, but for brevity we do not show it.]
The steps for deriving the factorization theorem [25] can

be applied directly to these graphs. Namely, a sequence of
approximations that neglect small, intrinsic mass scales
relative to Q lead (order-by-order in aλ) to the separation
into factors in Eq. (7). Errors are suppressed by powers of
mass2=Q2. In the case of the F1 structure function, the C
becomes a partonic F̂1, and the quark-in-hadron pdf for the
Yukawa theory is just the result in Eq. (55), while the
lowest order hadron-in-hadron pdf is a δ function. The
expression for the factorized F1 structure function in DIS is

F1ðxbj; QÞ ¼xbj<1
X
f

Z
1

xbj

dξ
ξ

1

2

�
δ

�
1 −

xbj
ξ

�
δqf þ aλðμÞ

�
1 −

xbj
ξ

��
lnð4Þ − ðxbjξ Þ2 − 3

xbj
ξ þ 3

2

ð1 − xbj
ξ Þ2

− ln
4xbjμ2

Q2ðξ − xbjÞ
�
δpf

�

×

�
δð1 − ξÞδfp þ aλðμÞð1 − ξÞ

�ðmq þ ξmpÞ2
ΔðξÞ þ ln

�
μ2

ΔðξÞ
�
− 1

�
δfq

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ff=pðξ;μÞ

þOðaλðμÞ2Þ þOðm2=Q2Þ: ðA1Þ

Both the hadron-in-hadron pdf and the order-aλ quark-
in-hadron pdf appear in the braces on the third line. Note
that the μ-dependence cancels between the second and third
lines up to order a2λ, as expected. The expression for the
unfactorized structure function is straightforward but rather
complex, and so we do not display it here.

Using the same numerical values for parameters as were
used in Fig. 2, we compare Eq. (A1) [dropping both the
Oða2λÞ terms and the Oðm2=Q2Þ terms] with the exact
OðaλÞ F1 in Fig. 3 for several values of Q.
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