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Hansen and Sharpe [Phys. Rev. D 92, 114509 (2015)] derived a relation between the scattering
amplitude of three identical bosons,M3, and a real function referred to as the divergence-free K matrix and
denoted Kdf;3. The result arose in the context of a relation between finite-volume energies and Kdf;3,
derived to all orders in the perturbative expansion of a generic low-energy effective field theory. In this
work we set aside the role of the finite volume and focus on the infinite-volume relation between Kdf;3 and
M3. We show that, for any real choice of Kdf;3, M3 satisfies the three-particle unitarity constraint to all
orders. Given that Kdf;3 is also free of a class of kinematic divergences, the function may provide a useful
tool for parametrizing three-body scattering data. Applications include the phenomenological analysis of
experimental data (where the connection to the finite volume is irrelevant) as well as calculations in lattice
quantum chromodynamics (where the volume plays a key role).
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I. INTRODUCTION

Three-body systems lie at the forefront of modern-day
theoretical hadronic physics. Whether in the context of
understanding the resonance spectrum of quantum chromo-
dynamics (QCD) or the binding of nucleons in nuclei,
three-body dynamics play a crucial role. In recent years
there has been significant progress in developing rigorous
theoretical frameworks for studying such systems.
The majority of QCD states are unstable resonances that

decay via the strong force into multihadron configurations.
A quantitative description of these is given by identifying
complex-valued energy poles in the scattering amplitudes
of the resonance decay products. Given that one can only
access real-valued energies experimentally, it is necessary
to construct amplitude parametrizations that can be ana-
lytically continued into the complex energy plane, in order

to determine the pole positions. Since resonance widths
originate from the presence of open decay channels,
unitarity plays a key role in the analytic continuation. It
is straightforward to impose unitarity on two-body ampli-
tudes, but it is far more challenging in the three-body case,
with efforts dating back to the 1960s [1–3].
The availability of high-precision data on various three-

body production and resonance decay channels, together
with the emergence of lattice QCD (LQCD) calculations of
hadron scattering, has reignited interest in the three-body
problem [4–7]. Although unitarity gives a powerful restric-
tion on the structure of scattering amplitudes, it does not
fully determine them. The unconstrained real part, often
referred to as the K matrix, is determined by the underlying
microscopic theory, and in practice is obtained by fitting to
experimental data or LQCD finite-volume spectra. By
comparing results obtained with different K-matrix para-
metrizations it is possible to determine the existence of
amplitude singularities and learn about their microscopic
origin. This approach has proven remarkably powerful, not
only for the determination of simple QCD observables, but
also in multiparticle quantities including scattering and
transition amplitudes.
In LQCD, using the standard approach, one can

directly access only the eigenstates and energies of the
finite-volume Hamiltonian, which are not in direct
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correspondence to multiparticle asymptotic states. This
prevents a direct determination of S-matrix elements.
Nevertheless, it turns out that one can extract scattering
information via model-independent relations between
finite- and infinite-volume quantities. For two-particle
systems there has been a great deal of progress in devel-
oping such formalism, culminating in a general relation
between the finite-volume spectrum of any coupled two-
particle system and its corresponding scattering matrix
[8–18]. In addition, relations have been derived between
finite-volume matrix elements and the corresponding tran-
sition amplitudes mediated by an external current [19–28].
These relations, along with algorithmic advances, have
made possible the study of resonant and nonresonant
scattering amplitudes of various two-body channels
[29–34] including energies where more than one channel
is open [35–38]. We point the reader to Ref. [39] for a
recent review of the formalism and its implementation.
Presently, the extension of these studies to energies

above three-particle thresholds is limited as the required
three-body finite-volume formalism is still under develop-
ment, although finite-volume energy levels coupling to
three-particle states are already being extracted using lattice
QCD [38,40–43]. The need for this extension has motivated
several efforts [44–57], which were recently reviewed in
Ref. [58]. At this stage, the formal approach is complete for
systems of three identical scalar particles, including sys-
tems with two-to-three transitions as well as those with a
resonant two-particle subprocess.
In this article we restrict attention to the formalism

introduced by two of us in Refs. [46,57]. This approach,
derived via an all-orders perturbative expansion of a
generic scalar field theory, relates finite-volume energy
levels to an intermediate infinite-volume quantity referred
to as the three-body divergence-free K matrix and denoted
Kdf;3. In a second step this real-valued intermediate
quantity is related, using a set of known integral equations,
to the complex-valued three-to-three scattering amplitude,
M3. Qualitatively, one can understand Kdf;3 as the part of
the scattering amplitude that describes all of the micro-
scopic interactions between the three particles that
remain after the explicit effects of particle exchanges are
subtracted. This is somewhat analogous to the relation
between the real-valued K matrix and the complex scatter-
ing amplitude in the two-particle sector, reviewed in
Sec. II below.
In this work we set aside the role of the finite volume and

consider the implications of the relation between Kdf;3 and
M3. We demonstrate, to all orders in aKdf;3 expansion, that
any scattering amplitude expressed in terms of this real-
valued quantity exactly satisfies three-body unitarity. We
stress here that the formulation is fully relativistic and
incorporates all partial waves in the three-particle system as
well as its two-particle subsystems. We do, however,
restrict attention to the relations of Ref. [57], meaning that

the expressions describe a single channel of three identical
scalars.
We stress that our result is expected, since the derivation

of the expression for M3 in terms of Kdf;3 is based on an
all-orders analysis in quantum field theory. Nevertheless,
since the derivation is complicated and lengthy, our result
provides an important cross-check of the final expression.
In addition, we hope that our result stimulates comparison
of the unitary expression for M3 in terms of Kdf;3 with
other unitary parametrizations, such as that of Refs. [5,7].
The remainder of this work is organized as follows. In

Sec. II, in addition to introducing some basic notation, we
review the definition of the scattering amplitude in terms of
the K matrix in both the two- and three-particle sectors.
Next, in Sec. III, we review the unitarity relation, with some
details relegated to Appendix A, and demonstrate that
M3½Kdf;3� exactly satisfies the constraining equation. The
derivation proceeds in two steps, first showing that the
relation holds for Kdf;3 ¼ 0 and then incorporating the all-
orders effects of the local three-body interaction. We
conclude briefly in Sec. IV.

II. TWO- AND THREE-BODY SCATTERING

In this section we set up some of the notation and key
relations used in this work to describe both two- and three-
particle scattering. First, in the following subsection, we
introduce the two-particle scattering amplitude and recall
how its relation to the K matrix automatically satisfies
unitarity. Then, in Sec. II B, we give the relation between
the fully connected three-particle scattering amplitude,
M3, and Kdf;3. In this case both the unitarity constraint
and the relation between the K matrix and scattering
amplitude are more complicated. However, as we show
in Sec. III, any form of M3 defined in terms of a real-
valued Kdf;3 will satisfy the unitarity constraint.

A. Two-body scattering amplitude

The three-body T matrix, illustrated in Fig. 1, is defined
in terms of the Smatrix as iT ¼ S − 1. It has a disconnected
contribution, depicted as the first term on the right-hand
side of the figure, in which two particles scatter without
interacting with the third, spectator, particle. As one would
expect, this contribution is fully determined by the two-
particle scattering amplitude, denotedM2. To give a useful
expression for this, we first define k as the momentum of

FIG. 1. The two types of contribution to the three-particle T
matrix. M3 is the fully connected amplitude.
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the spectator particle in some arbitrarily chosen frame. The
four-momentum of this particle is then ðωk;kÞ where ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
andm is the physical mass.We further define the

total three-particle energy andmomentum in this frame to be
ðE;PÞ≡ Pμ. Thus, if we take one of the incoming scattering
particles to carry four-momentum ðωa; aÞ, then the second
incoming scatterer will have ðE − ωk − ωa;P − k − aÞ.
Note that, by enforcing a specific value of total four-

momentum, ðE;PÞ, we have given the second scattering
particle an energy and momentum that do not necessarily
satisfy the on-shell condition. To add this constraint, we
need to introduce some new notation. Define

E⋆
2;k ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ωkÞ2 − ðP − kÞ2

q
ð1Þ

as the energy of the two scattering particles in their center-
of-mass frame. In other words, the four-vector ðE − ωk;
P − kÞ boosts to ðE⋆

2;k; 0Þ. Denoted by ðω⋆
a; a⋆kÞ is the result

of applying this same boost to ðωa; aÞ. It then directly
follows that ðE − ωk − ωa;P − k − aÞ is boosted to
ðE⋆

2;k − ω⋆
a;−a⋆kÞ. We thus place the third particle on shell

by requiring

E⋆
2;k − ω⋆

a ¼! ω⋆
a ⇒ a⋆k ≡ ja⋆k j¼! q⋆k ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⋆2
2;k=4 −m2

q
: ð2Þ

Having enforced this condition we are left with the
following (redundant) degrees of freedom for M2, viewed
as the disconnected contribution to the three-particle T
matrix: total four-momentum [Pμ ¼ ðE;PÞ], spectator
momentum (k), and incoming and outgoing directional
freedom (â⋆k and â0⋆k ). This leads us to write the two-particle
scattering amplitude as

M2ðk; â0⋆k ;k; â⋆kÞ ¼ 4πYl0m0 ðâ0⋆k ÞM2;l0m0;lmðkÞY�
lmðâ⋆kÞ;

ð3Þ

where Ylm are the standard spherical harmonics and the
sum over repeated angular-momentum indices is implicit.
We stress that â⋆k and â0⋆k are the spherical angles of the
relative momenta between the two particles when the
system recoils against the same spectator.
In what follows, we will be interested in determining

the imaginary contributions to the two- and three-body
scattering amplitudes. In doing so, one might have thought
that it would be necessary to keep track of the imaginary
parts of the spherical harmonics. Fortunately, it is easy to
convince oneself that these contributions exactly vanish.
In the case ofM2 this follows from the fact that, as a result
of Wigner-Eckart theorem, the two-body scattering ampli-
tude is diagonal and independent of the azimuthal indices
m0 and m,

M2;l0m0;lmðkÞ ¼ MðlÞ
2 ðkÞδl0lδm0m: ð4Þ

This implies that the product of the two harmonics in
Eq. (3) reduces to the real Wigner-d function, or equiv-
alently the Legendre polynomial,

Xl
m¼−l

4πYlmðâ0⋆k ÞY�
lmðâ⋆kÞ ¼ ð2lþ 1Þdl00ðâ0⋆ · â⋆Þ;

¼ ð2lþ 1ÞPlðâ0⋆ · â⋆Þ; ð5Þ

for each l. An alternative argument is to note that it is
legitimate to use real spherical harmonics, which form a
complete set and satisfy the same orthonormality properties
as the usual complex harmonics. Since the harmonics do
not appear in the final expressions, we can use either basis
in intermediate steps. For the real harmonics, the issue with
the imaginary part does not arise. Since all other steps in the
derivation have the same form in either basis, we will get
the correct answer if we proceed as if the harmonics are
real, even if we use the complex basis. This argument
holds also in the analysis of the connected three-particle
amplitude.
Given that M2;l0m0;lm is diagonal, keeping both pairs of

indices may seem superfluous. However, as we will see
below, it is convenient to think of this as a matrix in
angular-momentum space, especially when combining it
with other nondiagonal objects. To simplify the notation, in
what follows we will largely leave the angular-momentum
indices implicit.
We now define the real-valued two-particle K matrix,

K2, via the standard relation

M2ðkÞ−1 ¼ K2ðkÞ−1 þ ρðkÞ; ð6Þ

where ρ is imaginary above threshold

Imρl0m0;lmðkÞ¼−δl0lδm0mΘðq⋆2k Þρ̄ðkÞ; ρ̄ðkÞ≡ q⋆k
16πE⋆

2;k
:

ð7Þ

Here we are using Eqs. (A6) and (A7) from Ref. [57], with
ΘðxÞ the usual Heaviside step function.
From these relations follows

ImM2ðkÞ ¼ Im

�
K2ðkÞ−1 þ ρðkÞ�
K2ðkÞ−1 þ ρðkÞ�

1

K2ðkÞ−1 þ ρðkÞ
�

¼ M�
2ðkÞΘðq⋆2k Þρ̄ðkÞM2ðkÞ; ð8Þ

where we stress that the overall sign is positive. This result
is equivalent to the standard unitarity relation, given in
Eq. (A18) in Appendix A. In order to compare to the
literature on three-particle amplitudes, and in particular to
Ref. [7], we note that the exact relation of our ρ̄ to the
corresponding quantity in that work is

UNITARITY OF THE INFINITE-VOLUME … PHYS. REV. D 100, 054508 (2019)

054508-3



4πρRef ½7�2k ¼ 2 × ρ̄ðkÞ: ð9Þ

The factor of 4π arises because, in Ref. [7], the angular
integral is left explicit [as shown in Eq. (36) below].
The factor of 2 arises because of the symmetry factor
which reduces the two-body phase space for identical
particles.
We close this subsection by giving an alternative

derivation of Eq. (8) that more closely matches the
three-particle derivation of the following section. To do
so we first expand the relation between M2 and K2 in
powers of the latter

M2ðkÞ ¼
X∞
n¼0

K2ðkÞ½−ρðkÞK2ðkÞ�n: ð10Þ

To evaluate the imaginary part in this form we introduce a
general identity for a product of n complex matrices

ImðA1A2 � � �AnÞ ¼ ImðA1ÞA2 � � �An

þ A�
1ImðA2ÞA3 � � �An þ � � �

þ A�
1 � � �A�

n−1ImðAnÞ: ð11Þ

This follows from simply substituting 2iImAj ¼ Aj − A�
j

and noting that terms cancel in pairs. The complex
conjugation could occur also to the right of the ImðAjÞ
factors, as can be trivially seen by conjugating both sides
and using that ImðxÞ is real.
Applying this identity to the nth term of Eq. (10)

then gives

Im½K2ðkÞ½−ρðkÞK2ðkÞ�n� ¼
Xn−1
m¼0

ðK2ðkÞ½−ρðkÞ�K2ðkÞ�mÞΘðq⋆2k Þρ̄ðkÞðK2ðkÞ½−ρðkÞK2ðkÞ�n−m−1Þ; ð12Þ

where the right-hand side is understood to vanish for n ¼ 0
since then the sum contains no terms. Summing this result
over all n immediately gives Eq. (8). The intuition here is as
follows: For a given series of real K matrices and complex-
valued ρ̄ cuts, the identity (11) gives a prescription for
moving through the chain, summing over all cuts with the
conjugated object appearing to the left. Summing over all
resulting terms then directly leads to the unitarity relation.

B. Three-body scattering amplitude

We now turn to the relevant expressions for the fully
connected three-particle scattering amplitude,M3, which is
depicted in Fig. 1. The three-body scattering amplitude is
naturally more complicated than M2. In Ref. [57], it was
shown in a bottom-up approach based on all-orders pertur-
bation theory, that the scattering amplitude is completely
determined by a real function, denoted Kdf;3. This describes
microscopic interactions among the three particles, i.e., the
part of the scattering amplitude that is not constrained by s-
channel unitarity. For example, in the context of an effective
field theory, it is given by a sum of contact interactions and
virtual particle exchanges below the three-body threshold
[59,60]. In the alternative, top-down approaches of
Refs. [2,5,7,61–63], one uses the S-matrix unitarity to
identify the analytic properties and isolate the analogofKdf;3.
At this stage, it remains to be shown if the two

approaches result in scattering amplitudes with equivalent
analytic properties that can be quantitatively matched with
a proper choice of the remaining functional freedom. As a
first step toward this goal, in this work we demonstrate the
real-axis unitarity of the three-body scattering amplitude,
M3, as defined in Ref. [57]. In this section we review the

result of that work, first by taking the Kdf;3 ¼ 0 limit and
then by including the all-orders corrections in this short-
distance function. With this in hand, in the following
section we review the three-body unitarity constraint and
show that it is satisfied, order-by-order, by any M3

expressed in terms of Kdf;3.

1. Three-body scattering amplitude for Kdf;3 = 0

When Kdf;3 ¼ 0, the three-body scattering amplitude is
completely determined by pairwise scattering. In this case,
we have, from Eqs. (85), (86), and (93) of Ref. [57],

M3ðp; â0⋆p ;k; â⋆kÞ ¼ Dðp; â0⋆p ;k; â⋆kÞ;
Dðp; â0⋆p ;k; â⋆kÞ ¼ SfDðu;uÞðp;kÞg; ð13Þ

where Dðu;uÞ is the solution to the integral equation

iDðu;uÞðp;kÞ¼ iM2ðpÞiG∞ðp;kÞiM2ðkÞ

þ
Z
s
iM2ðpÞiG∞ðp;sÞiDðu;uÞðs;kÞ: ð14Þ

Note that, since this is a genuine three-particle amplitude,
the initial and final momenta, k and p, respectively, differ
in general, unlike forM2 in Eq. (3). The objects appearing
in Eq. (14) are matrices in angular-momentum space, with
adjacent indices contracted in the usual way. The symmet-
rization operator S is defined in Eq. (37) of Ref. [57] and
also explained below, in the paragraph containing Eq. (18).
We use a different shorthand for the integral than in
Ref. [57], namely

R
s ¼

R
d3s=½2ωsð2πÞ3�, with the factor

of ωs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þm2

p
included. This follows the convention

of Ref. [7].
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The kinematic function, G∞, is the pole contribution of the exchange propagator, defined as

G∞
l0m0;lmðp;kÞ ¼

�
k⋆p
q⋆p

�
l0

4πYl0m0 ðk̂⋆
pÞ

Hðp;kÞ
u −m2 þ iϵ

Y�
lmðp̂⋆

kÞ
�
p⋆
k

q⋆k

�
l
; ð15Þ

where u ¼ ðP − p − kÞ2. This is the relativistic form of
G∞, first discussed in Ref. [51]. It differs from the non-
relativistic form used in Ref. [57] away from the pole, but
all expressions involving G∞ remain valid as long as the
relativistic form is used throughout. The function Hðp;kÞ
provides a cutoff on p and k and depends only on Lorentz
invariant combinations of these momenta with the total
momentum P. All we need to know here is that H is real,
and that it equals unity when p and k are chosen so that
u ¼ m2. We reemphasize that the magnitudes, k⋆p and p⋆

k ,
entering the angular-momentum barrier factors (as well as
q⋆k and q⋆p), are evaluated in the two-particle rest frames,
with the subscript giving the spectator momentum. They
are generalizations of a⋆k defined in Eq. (2). When
Kdf;3 ¼ 0, the amplitude Dðu;uÞ is simply the partial-wave
projected, unsymmetrized version of M3.
In Eq. (15), ðk⋆p=q⋆pÞ and ðp⋆

k=q
⋆
kÞ both equal 1 at the pole

and thus could be omitted from the definition of G∞

without affecting the properties relevant to unitarity.
However, doing so would amount to a redefinition of
Kdf;3 and, since these factors cannot be discarded in the
finite-volume relation, we prefer to keep them here as well.
We close this subsection by giving more detailed

explanations of the possibly unfamiliar notation used
above, so as to make this paper self-contained. First we
relate quantities written in the lm basis to functions of â⋆k ,
all for given spectator-momentum k. This is achieved
simply by contracting with spherical harmonics, as in
Eq. (35) of Ref. [57]. We abuse notation by denoting
the corresponding quantities using the same symbols,
distinguished only by their arguments. For example,

Dðu;uÞðp; â0⋆p ;k; â⋆kÞ≡ 4πYl0m0 ðâ0⋆p ÞDðu;uÞ
l0m0;lmðp;kÞY�

lmðâ⋆kÞ:
ð16Þ

In order to lighten the notation, we also sometimes replace
the continuous variables k and p with matrixlike indices,
e.g.,

G∞
pl0m0;klm ≡G∞

l0m0;lmðp;kÞ; ð17Þ

although this does not imply that the spectator momenta are
discrete.
Next we recall the definition of symmetrization from

Ref. [57]:

M3ðp; â0⋆p ;k; â⋆k Þ ¼ SfMðu;uÞ
3;pl0m0;klmg;

≡ X
x;y¼u;s;s̃

Mðx;yÞ
3 ðp; â0⋆p ;k; â⋆kÞ: ð18Þ

Here the superscripts u, s, and s̃ differ by the choice of

spectator momenta. For example, Mðu;sÞ
3 is related to

Mðu;uÞ
3 via

Mðu;sÞ
3 ðp; â0⋆p ;k; â⋆kÞ≡Mðu;uÞ

3 ðp; â0⋆p ; a; k̂⋆
aÞ: ð19Þ

Note that, in order to symmetrize, we must first change
from the klm to the k; â⋆k basis. The two steps needed to
obtain a symmetrized amplitude starting from the k;l; m
basis are summarized in Fig. 2, for the first term contrib-
uting to Dðp; â0⋆p ;k; â⋆kÞ. Figure 2(a) represents the basis
transformation, Eq. (16), while Fig. 2(b) shows the nine
terms that must be summed, each corresponding to the
different choices of the initial and final spectators.
We will also need a version of the symmetrization

operator, S̄, that acts on objects in the k; â⋆ basis:

S̄fMðx;yÞ
3 ðp; â0⋆p ;k; â⋆kÞg≡

X
x;y¼u;s;s̃

Mðx;yÞ
3 ðp; â0⋆p ;k; â⋆kÞ:

ð20Þ

Third, we note that, depending on the specific context,
either the klm or the k; â⋆ form of the amplitudes may be
more convenient. For example, the first choice is useful in
making contact with the finite-volume system, whereas the
second choice allows one to better use the exchange
symmetry of the underlying amplitudes. As an example
of the latter point, consider two functions of incoming and
outgoing three-particle phase space, A and B, assumed to
have exchange symmetry. The integrated “matrix” product
of the two functions can be expressed in the following
different ways:

�Z
s
Aðp; sÞBðs; rÞ

�
l1m1;l2m2

≡
Z
s
Al1m1;lmðp; sÞBlm;l2m2

ðs; rÞ; ð21Þ

¼
�Z

s

Z
â⋆s
Aðp; s; â⋆s ÞBðs; â⋆s ; rÞ

�
l1m1;l2m2

; ð22Þ
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�Z
s
Aðp; sÞBðs; rÞ

�
l1m1;l2m2

¼
Z
s

Z
â⋆s

Z
â0⋆p

Z
â0 0⋆r

4πY�
l1m1

ðâ0⋆p ÞYl2m2
ðâ00⋆r Þ

×Aðp; â0⋆p ; s; â⋆s ÞBðs; â⋆s ; r; â00⋆r Þ; ð23Þ

where
R
â≡

R
dâ=ð4πÞ. In the first two lines the exchange

symmetry is obscured, whereas in the third it can be
directly used via identities such as Aðp; â0⋆p ; s; â⋆s Þ ¼
Aða0; p̂⋆

a0 ; a; ŝ
⋆
aÞ.

Finally, we note that the expressions given above can be
recast in terms of the Lorentz invariants often used in
discussions of three-particle scattering. There are eight
independent invariants, usually defined in the center-of-
mass frame, P ¼ ð ffiffiffi

s
p

; 0Þ. A pair of particles is selected in
each of the initial and final states and the momentum of the

spectator particle corresponds the k and p, respectively.
The ŷ axis defines the so-called production plane and is
given by ŷ ¼ k̂ × p̂. The spherical angles â⋆ and â0⋆ that
specify direction of motion of one of the two particles in
each pair are defined in the respective center-of-mass frame
of each pair, with the ẑ and ẑ0 axes defined to be opposite to
the direction of k̂ and p̂ in the two frames, respectively.
Note that the ŷ axis is invariant under boosts from the P ¼
ð ffiffiffi

s
p

; 0Þ frame to the rest frames of the two-particle
subsystems. As for the remaining four variables (besides
the two sets of spherical angles â⋆ and â⋆) one can choose
the squares of invariant masses of the two pairs, σ and σ0,
respectively, for the initial and final states, the total center
of mass energy squared s ¼ E2, and the cosine of the
scattering angle zs ¼ k̂ · p̂ in the center-of-mass frame. As
an example of using these invariants, we give the explicit
expression for G∞,

G∞
pl0m0;klm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þð2lþ 1Þ

p
dl

0
m0;0ðzkÞdlm;0ðzpÞ

�
λðσ0; u; m2Þ
λðσ0; m2; m2Þ

�
l0=2 Hðσ; σ0Þ

u −m2 þ iϵ

�
λðσ; u; m2Þ
λðσ; m2; m2Þ

�
l=2

; ð24Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc is the triangle function and the arguments zk and zp of the
Wigner-d functions are cosines of the vectors k̂⋆

p and p̂⋆
k , respectively. The momentum transfer variable u is

given by

u ¼ m2 þ σ −
ðsþm2 − σ0Þðsþ σ −m2Þ

2s
−
λ1=2ðs;m2; σÞλ1=2ðs;m2; σ0Þ

2s
zs: ð25Þ

(a)

(b)

FIG. 2. Schematic representation of the definition of symmetrization given in Eq. (18), using the example of the leading term inDðu;uÞ.
(a) Basis transformation from the k;l; m to the one in terms of three momenta. (b) Summing over permutations of assignments of
external momenta. Open circles represent M2, which is itself symmetric under particle interchange. The third momentum on the left-
hand side is given by bka ¼ P − k − a, with bpa0 defined similarly. See main text for further explanation.
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2. All-orders corrections in Kdf;3

We now turn to a general expression for the fully
connected three-to-three scattering amplitude. To do so

it is convenient to introduce MðnÞ
3 ðp; â0⋆p ;k; â⋆kÞ as the

contribution with n powers of the divergence-free
K matrix

M3ðp; â0⋆p ;k; â⋆kÞ¼Mð0Þ
3 ðp; â0⋆p ;k; â⋆kÞ

þMðKÞ
3 ðp; â0⋆p ;k; â⋆k Þ; ð26Þ

¼Mð0Þ
3 ðp;â0⋆p ;k;â⋆kÞ

þMð1Þ
3 ðp;â0⋆p ;k;â⋆kÞþOðK2

df;3Þ; ð27Þ

where Mð0Þ
3 ðp; â0⋆p ;k; â⋆kÞ is the contribution considered

above,

Mð0Þ
3 ðp; â0⋆p ;k; â⋆k Þ ¼ Dðp; â0⋆p ;k; â⋆k Þ; ð28Þ

andMðKÞ
3 ðp; â0⋆p ;k; â⋆kÞ includes all Kdf;3 dependence with

the linear contribution given by Mð1Þ
3 ðp; â0⋆p ;k; â⋆kÞ. As

with the Kdf;3-independent piece, the linear piece is
conveniently expressed in terms of its unsymmetrized
counterpart

Mð1Þ
3 ðp; â0⋆p ;k; â⋆k Þ ¼ SfMð1;u;uÞ

3;pl0m0;klmg: ð29Þ

Heuristically this quantity is understood as a single Kdf;3
insertion dressed with any number of pairwise scatterings

on the incoming and outgoing three-particle states. The
precise definition is

Mð1;u;uÞ
3 ðp;kÞ ¼

Z
s

Z
r
Lðu;uÞðp; sÞKdf;3ðs; rÞRðu;uÞðr;kÞ;

ð30Þ

Lðu;uÞðp; sÞ ¼ 1

3
δ̃ðp − sÞ −M2ðpÞρðpÞδ̃ðp − sÞ

−Dðu;uÞðp; sÞρðsÞ; ð31Þ

Rðu;uÞðr;kÞ ¼ 1

3
δ̃ðr − kÞ − ρðkÞM2ðkÞδ̃ðr − kÞ

− ρðrÞDðu;uÞðr;kÞ; ð32Þ

where, following Ref. [7], we define

δ̃ðp − kÞ≡ ð2πÞ32ωkδ
3ðp − kÞ: ð33Þ

The delta function in the first terms of L andR accounts for
diagrams with no two-body subprocesses. It is accompa-
nied by a factor of 1=3, which arises becauseKdf;3 is itself a
fully symmetric object, meaning SfKdf;3g ¼ 9Kdf;3 and the
factors of 1=3 cancel this overcounting.
The all-orders expression for MðK;u;uÞ

3 can be given by
introducing a new quantity, T , which coincides with Kdf;3

at leading order and incorporates all higher orders in which
all possible pairwise scatterings occur between adjacent
short-distance factors. This is encoded in one final integral
equation

T ðp;kÞ ¼ Kdf;3ðp;kÞ −
Z
s

Z
r
Kdf;3ðp; sÞρðsÞLðu;uÞðs; rÞT ðr;kÞ: ð34Þ

The all-orders Kdf;3-dependent part of M3 is then given by

MðK;u;uÞ
3 ðp;kÞ ¼

X∞
n¼1

Mðn;u;uÞ
3 ðp;kÞ ¼

Z
s

Z
r
Lðu;uÞðp; sÞT ðs; rÞRðu;uÞðr;kÞ: ð35Þ

III. UNITARITY OF THE Kdf;3
TO M3 RELATION

Having reviewed the results of Ref. [57], we now turn to
the main result of this work. Specifically, in this section we
show that any M3 satisfying Eqs. (26) and (35) for real
Kdf;3 will automatically satisfy the constraints imposed by
unitarity. We break the demonstration into three subsec-
tions. First we present the constraint (reviewing some
details of its derivation in Appendix A), then we show

that the Kdf;3-independent piece satisfies unitarity, and
finally we demonstrate that this generalizes to the full
scattering amplitude, M3.

A. Unitarity constraint for three-body scattering

The constraint that follows from unitarity on the three-
body scattering amplitude for identical scalars is reviewed
in Appendix A. We label this general, unitary amplitude
A3. We use a different name fromM3 because our aim is to
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show that M3, which arises from the all-orders perturbation theory analysis reviewed above, satisfies the unitarity relation
that holds for a general A3.

1 The unitarity relation is

ImA3ðp0;pÞ ¼ 1

2 × 3!

Z
p00
1

Z
p00
2

Z
p00
3

ð2πÞ4δ4ðP − p00
1 − p00

2 − p00
3ÞA�

3ðp0;p00ÞA3ðp00;pÞ

þ
X
n

Θðs0n − 4m2Þρ̄ðp0
nÞ
Z dâ00p0

n

4π
A�

2;nnðp0;p00ÞA3ðp00;pÞ

þ
X
j

Θðsj − 4m2Þρ̄ðpjÞ
Z dâ00pj

4π
A�

3ðp0;p00ÞA2;jjðp00;pÞ

þ
X
n;j

πδðujn −m2ÞA�
2;n1ðp0;p00ÞA2;3jðp00;pÞ: ð36Þ

The notation here is potentially confusing, so we explain it
in detail. We use a collective notation for the momenta of
the three particles, e.g., p≡ fp1;p2;p3g. The indices n and
j each run over the three choices of spectator, or equiv-
alently over the possible two-particle subsystems.
A2;njðp0;pÞ is a two-body scattering amplitude in which
pj and p0

n are, respectively, the spectators in the initial and
final states:

A2;njðp0;pÞ ¼ M2ðp0
n; â0⋆p0

n
;pj; â⋆pj

Þ: ð37Þ

This index-heavy notation is needed to accurately
specify the last term in Eq. (36), as discussed further
below. We recall that our notation for M2, already
introduced in Eq. (3), requires p0

n ¼ pj. We do not include
a delta function in the definition but simply adopt the
convention that the amplitude is only written when the
vectors are equal and is otherwise ill defined. Finally, we
have introduced the Lorentz invariants s0n ¼ ðP − p0

nÞ2,
sj ¼ ðP − pjÞ2, and ujn ¼ ðP − pj − p0

nÞ2.
We emphasize that Eq. (36) is closely related to the

unitarity condition given by Eq. (8) of Ref. [7], the only
differences being those associated with the fact that here we
are considering identical particles. The first difference is the
need for additional symmetry factors in the first three terms
[with those in the second and third terms absorbed into the
definition of ρ̄ðkÞ]. Next, the sum over j and n in the last
term is not constrained. This is in contrast to the result of
Ref. [7] where the sum runs over j ≠ n. Thus there are nine
contributions here rather than six. The two-index notation
for A2 is needed here to encode the fact that two adjacent
factors of the two-to-two scattering amplitude cannot arise
on the same particle pair. In other words, the spectator of
one pairwise scattering must participate in the next.

Another difference, is that here that pj simply labels the
momentum, and not the particle type as it does in Ref. [7].
Finally, some kinematic factors have been replaced with
m2, due to the simplification of considering identical
particles.

B. Unitarity of M3 when Kdf;3 = 0

We begin by showing that M3 satisfies unitarity when
Kdf;3 ¼ 0. This amounts to evaluating the imaginary part of
Dðu;uÞ and showing that, after symmetrization, it satisfies
Eq. (36). To do so it is convenient to introduce a shorthand
in which momentum arguments are written as indices,
while angular momentum indices remain implicit. Then, for
example, Eq. (14) can be rewritten as

Dðu;uÞ
pk ¼ −M2pG∞

pkM2k −
Z
s
M2pG∞

psD
ðu;uÞ
sk : ð38Þ

We begin by expanding Dðu;uÞ in Eq. (14) in powers of
M2. Iteratively substituting the expression for Dðu;uÞ then
gives

Dðu;uÞ
pk ¼

X∞
n¼1

Dðn;u;uÞ
pk ; ð39Þ

where

Dðn;u;uÞ
pk ≡ð−1ÞnM2p

�Yn
j¼2

Z
sj

�Yn
j¼1

ðG∞
sjsjþ1

M2sjþ1
Þjs1¼p;snþ1¼k:

ð40Þ

The notation is cumbersome due to the need to keep track
of (and give labels for) the integrated intermediate coor-
dinates. For example, the first three terms are given by

Dð1;u;uÞ
pk ¼ −M2pG∞

pkM2k; ð41Þ

Dð2;u;uÞ
pk ¼

Z
s2

M2pG∞
ps2M2s2G

∞
s2k
M2k; ð42Þ

1We stress that A3 and M3 are the standard, fully-connected
scattering amplitudes. The disconnected parts of three-to-
three amplitudes satisfy unitarity separately, as we review in
Appendix A.
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Dð3;u;uÞ
pk ¼ −

Z
s2

Z
s3

M2pG∞
ps2M2s2G

∞
s2s3M2s3G

∞
s3k
M2k:

ð43Þ

Our strategy in the following is to build up intuition by
showing first how the unitarity condition is satisfied at
quadratic order inM2 (i.e., for Dð1;u;uÞ), then repeating this
analysis at cubic order (i.e., including Dð2;u;uÞ), and finally
carrying out the all-orders analysis by working directly
with the integral equation, Eq. (38).
To evaluate the imaginary parts of the various quantities

we require a compact notation also for the imaginary part of
G∞,

ImG∞
l0m0;lmðp;kÞ ¼ −Δl0m0;lmðp;kÞ; ð44Þ

Δl0m0;lmðp;kÞ≡ 4πYl0m0 ðk̂⋆
pÞ½πδðb2pk −m2Þ�Y�

lmðp̂⋆
kÞ;

ð45Þ

where bμpk ¼ ðE − ωp − ωk;P − p − kÞ. Note that the H
function in Eq. (15) is set to unity by the delta function,
since this sets all three particles on shell. The shorthand
version of this result reads ImG∞

pk ¼ −Δpk. We also use an
abbreviated form of Eq. (8), ImM�

2k ¼ M�
2k½Θρ̄�kM2k.

1. Unitarity constraint on Dð1;u;uÞ

Taking our identity for the imaginary part of a product of
matrices, Eq. (11), it is now straightforward to evaluate
ImDðn;u;uÞ. For example, the leading term gives

ImDð1;u;uÞ
pk ¼ M�

2p½Θρ̄�pDð1;u;uÞ
pk þDð1;u;uÞ�

pk ½Θρ̄�kM2k þM�
2pΔpkM2k: ð46Þ

Before turning to the all-orders extension of this, we think it instructive to explain how Dð1;u;uÞ satisfies Eq. (36) up to
terms that contribute at higher orders. To do so we first apply S to both sides to reach

ImDð1Þðp; â00⋆p ;k; â⋆kÞ ¼ S̄
�Z

â0⋆p
M�

2ðp; â00⋆p ;p; â0⋆p ÞΘðq⋆2p Þρ̄ðpÞDð1;u;uÞðp; â0⋆p ;k; â⋆kÞ

þ
Z
â0⋆k

Dð1;u;uÞ�ðp; â00⋆p ;k; â0⋆k ÞΘðq⋆2k Þρ̄ðkÞM2ðk; â0⋆k ;k; â⋆kÞ

þM�
2ðp; â00⋆p ;p; k̂⋆

pÞπδðb2pk −m2ÞM2ðk; p̂⋆
k ;k; â

⋆
kÞ
�
: ð47Þ

We see that the last term here exactly corresponds to the
last term in Eq. (36) and the counting is reproduced. The
nine terms in the symmetrization lead to the nine terms in
the sum over j and n. Thus this term in Eq. (36) is fully
accounted for and there must be no contributions from
higher orders. The first term in Eq. (47) leads to a
contribution to the second term in Eq. (36), in which
A3 → Dð1Þ. The counting here is trickier: The second term
in Eq. (36) has 3 × 9 ¼ 27 contributions of the form
M2Dð1;u;uÞ; three arise from the sum over n and nine from
the symmetrization ofDð1;u;uÞ. However, of these, only one-
third, i.e., nine, have the M2ρ̄ attached to Dð1;u;uÞ such that

the spectators match. Thus only nine contributions are of
the form of the first term in Eq. (47). This matches the nine
terms that are obtained when symmetrizing Eq. (47). This
leaves 18 remaining M2Dð1;u;uÞ type contributions within
Eq. (36) in which the spectators do not match. These arise
within ImDð2;u;uÞ and will be identified shortly. The same
analysis holds for the second term in Eq. (47), which
contributes to the third term in Eq. (36).

2. Unitarity constraint on Dð2;u;uÞ

We next considerDð2;u;uÞ. From Eq. (42), it is easy to see
that the imaginary part is

ImDð2;u;uÞ
pk ¼ M�

2p½Θρ̄�pDð2;u;uÞ
pk þDð2;u;uÞ�

pk ½Θρ̄�kM2k

þ
Z
s
M�

2pΔpsD
ð1;u;uÞ
sk þ

Z
s
Dð1;u;uÞ�

ps ΔskM2k þ
Z
s
Dð1;u;uÞ�

ps ½Θρ̄�sDð1;u;uÞ
sk : ð48Þ

The analysis of the first two terms follows that of ImDð1Þ, and these contribute to the second and third terms of Eq. (36),
respectively, now with the replacement A3 → Dð2Þ. The third and fourth terms in Eq. (48) exactly generate the missing 18
contributions discussed in the preceding paragraph. In other words, one can show that
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S
�
M�

2p½Θρ̄�pDð1;u;uÞ
pk þ

Z
s
M�

2pΔpsD
ð1;u;uÞ
sk

�
¼

X
j

Θðq⋆2pj
Þρ̄ðpjÞ

Z
â⋆pj

M�
2ðpj; â00pj

;pj; â⋆pj
ÞDð1Þðpj; â⋆pj

;k; â0⋆k Þ; ð49Þ

¼
X
j

Θðsj − 4m2Þρ̄ðpjÞ
Z
â0 0⋆pj

A�
2;jjðp;p00ÞDð1Þðp00;p0Þjp0

1
¼k; ð50Þ

where on the right-hand side of Eq. (49) we have used the notation of Ref. [57], while the second form, Eq. (50), uses the
notation of Ref. [7] and Eq. (36). The additional result needed to show Eq. (49) is given by first noting

ffiffiffiffiffiffi
4π

p
Y�
l0m0 ðâ0⋆p Þ

Z
k
Δl0m0;lmðp;kÞAðuÞ

lmðkÞ ¼ ð4πÞ3=2
Z
k
Y�
l0m0 ðâ0⋆p ÞYl0m0 ðk̂⋆

pÞ½πδðb2pk −m2Þ�Y�
lmðp̂⋆

kÞAðuÞ
lmðkÞ; ð51Þ

¼ 4π

Z
k
δ2ðâ0⋆p − k̂⋆

pÞ½πδðb2pk −m2Þ�AðuÞðk; p̂⋆
kÞ: ð52Þ

Substituting AðuÞðk; p̂⋆
k Þ ¼ AðsÞðp; k̂⋆

pÞ and evaluating the integral then gives

ffiffiffiffiffiffi
4π

p
Y�
l0m0 ðâ0⋆p Þ

Z
k
Δl0m0;lmðp;kÞAðuÞ

lmðkÞ ¼ ΘðE⋆2
2;p − 4m2Þρ̄ðpÞ2AðsÞðp; â0⋆p Þ; ð53Þ

¼ ΘðE⋆2
2;p − 4m2Þρ̄ðpÞ½AðsÞðp; â0⋆p Þ þAðs̃Þðp; â0⋆p Þ�: ð54Þ

This holds for any smooth test function that can be decomposed in spherical harmonics AðuÞðk; â⋆Þ ¼ Y�
lmðâ⋆ÞAðuÞ

lmðkÞ,
and for which only even values of l contribute. The evenness of l follows here from the identical nature
of the two particles in the nonspectator pair. It is needed to obtain the final form, for it allows one to
freely replace the superscript (s) with an ðs̃Þ. We stress that AðsÞðp; k̂�

pÞ is not required to be smooth, as no
harmonic decomposition of this quantity is required in the derivation of the result above. Thus one can use the result to
show that

Z
s
ΔpsD

ð1;u;uÞ
sk ¼ ½Θρ̄�p½Dð1;s;uÞ

pk þDð1;s̃;uÞ
pk �; ð55Þ

despite the fact that Dð1;s;uÞðp; â0⋆p ;k; â⋆kÞ is singular in â0⋆p , and the presence of a similar singularity in Dð1;s̃;uÞ. Given
Eq. (55), one indeed obtains the 18 missing components of the symmetrized Dð1Þ s needed to complete the right-hand
sides of Eqs. (49) and (50).
Finally, the last term in Eq. (48) gives the first contribution to the first term in Eq. (36). Specifically, we find

S
�Z

s
Dð1;u;uÞ�

ps ½Θρ̄�sDð1;u;uÞ
sk þ

Z
s

Z
t
Dð1;u;uÞ�

ps ΔstD
ð1;u;uÞ
tk

�
¼1

6

1

2

Z
p00
1

Z
p00
2

Z
p00
3

ð2πÞ4δ4ðP−p00
1−p00

2−p00
3ÞDð1Þ�ðp0;p00ÞDð1Þðp00;pÞ:

ð56Þ

Here the situation is similar to that in Eq. (50): The first term on the left-hand side is the symmetrization of the last term in
Eq. (48), while the second term on the left-hand side comes from the next order term, i.e., ImDð3Þ. Thus one needs only to
show that the kinematic and counting factors from the first term on the left-hand side of Eq. (56) match those on the right-
hand side coming from the contributions where the M2 factors in the two Dð1Þ’s match. This correspondence follows
directly from

Z
s
ΘðE⋆2

2;s − 4m2Þρ̄ðsÞ
Z
â⋆s
F ðs; â⋆s Þ ¼

1

2

1

2

Z
p00
1

Z
p00
2

Z
p00
3

ð2πÞ4δ4ðP − p00
1 − p00

2 − p00
3ÞF ðp00

1;p
00
2;p

00
3Þ; ð57Þ

where F is a test function. Thus we obtain an overall factor of 1=2 instead of the required 1=6. This is fixed by the relative
counting factors. On the left-hand side there are nine ρ̄ terms, whereas on the right-hand side there are ð1=3Þ × 9 × 9 ¼ 27,
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as shown in Fig. 3. The 1=3 comes from the fact that when
joining two Dð1Þ’s only one-third of the terms have the ρ̄
topology—the others matching with the Δ term on the left-
hand side. In summary, the counting factors are 9 from the
left-hand side and 27 from the right. These differ by exactly
the leftover 1=3 remaining from the 1=6.

3. Unitarity constraint on Dðu;uÞ

We are now ready to argue that Mð0Þ ¼ D satisfies the
unitarity relation to all orders. Starting directly from the
integral equation, Eq. (38), and applying the key identity,
Eq. (11), one finds

ImDðu;uÞ
pk ¼ −M�

2p½Θρ̄�pM2pG∞
pkM2k −M�

2pG
∞�
pk M

�
2k½Θρ̄�kM2k þM�

2pΔpkM2k

−
Z
s
M�

2p½Θρ̄�pM2pG∞
psD

ðu;uÞ
sk þ

Z
s
M�

2pΔpsD
ðu;uÞ
sk −

Z
s
M�

2pG
∞�
ps ImDðu;uÞ

sk : ð58Þ

Introducing shorthand for the delta function, δ̃pk ≡ δ̃ðp − kÞ, this can be rewritten as

Z
s
ðδ̃ps þM�

2pG
∞�
ps ÞImDðu;uÞ

sk ¼ M�
2p½Θρ̄�pDðu;uÞ

pk −M�
2pG

∞�
pk M

�
2k½Θρ̄�kM2k

þM�
2pΔpkM2k þ

Z
s
M�

2pΔpsD
ðu;uÞ
sk : ð59Þ

At this stage it is helpful to return to the result that we aim to prove, Eq. (36). Following the intuition developed in the
analysis of Dð1;u;uÞ and Dð2;u;uÞ, we note that D will satisfy the unitarity constraint if Dðu;uÞ satisfies

ImDðu;uÞ
pk ¼ M�

2p

�
½Θρ̄�pDðu;uÞ

pk þ
Z
s
ΔpsD

ðu;uÞ
sk

�
þ
�
Dðu;uÞ�

pk ½Θρ̄�k þ
Z
s
Dðu;uÞ�

ps Δsk

�
M2k

þM�
2pΔpkM2k þ

�Z
s
Dðu;uÞ�

ps ½Θρ̄�sDðu;uÞ
sk þ

Z
s

Z
t
Dðu;uÞ�

ps ΔstD
ðu;uÞ
tk

�
: ð60Þ

This can be checked by applying S to both sides and taking advantage of the internal symmetrizations arising through Δpk.
We illustrate the right-hand side of this equation in Fig. 4.
Thus our aim is to show that Eq. (59) implies Eq. (60). What we can easily show, instead, is the opposite implication,

namely that Eq. (60) implies Eq. (59). To conclude that the results are in fact equivalent, we require the additional

(a)

(b)

FIG. 3. Counting of the ρ̄ contributions in Eq. (56). (a) The nine contributions from the first term on the left-hand side of Eq. (56). The
notation is as in Fig. 2, except that we do not display the external momenta, which are implicitly held fixed for all diagrams at the same
values as in Fig. 2. Dashed lines depict the ρ̄ cut, and the free ends in the middle of the diagram carry the momentum s. (b) The ρ̄-type
contributions from the right-hand side of Eq. (56). Here the dashed line running through all three particles represents the integral on the
right-hand side of Eq. (56). We do not show all 27 contributions; those not displayed are obtained by further permutations of the external
lines, following the pattern shown in Fig. 2.
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assumption that the integral operator on the left-hand side of Eq. (59) is invertible. This is plausible since the operator is a
deformation of the identity.2 Applying this operator to Eq. (60), one findsZ

s
ðδ̃ps þM�

2pG
∞�
ps ÞImDðu;uÞ

sk ¼
Z
s
ðδ̃ps þM�

2pG
∞�
ps ÞM�

2s

�
½Θρ̄�sDðu;uÞ

sk þ
Z
t
ΔstD

ðu;uÞ
tk

�

þ
Z
s
ðδ̃ps þM�

2pG
∞�
ps Þ

�
Dðu;uÞ�

sk ½Θρ̄�k þ
Z
t
Dðu;uÞ�

st Δtk

�
M2k

þ
Z
s
ðδ̃ps þM�

2pG
∞�
ps ÞM�

2sΔskM2k

þ
Z
s
ðδ̃ps þM�

2pG
∞�
ps Þ

�Z
t
Dðu;uÞ�

st ½Θρ̄�tDðu;uÞ
tk þ

Z
t

Z
l
Dðu;uÞ�

st ΔtlD
ðu;uÞ
lk

�
: ð61Þ

One can simplify this substantially using the integral
equation defining Dðu;uÞ, Eq. (14), which, after complex
conjugation and rearrangement, leads toZ

s
ðδ̃ps þM�

2pG
∞�
ps ÞDðu;uÞ�

sk ¼ −M�
2pG

∞�
pk M

�
2k: ð62Þ

After some straightforward algebra, one finds that the right-
hand side of Eq. (61) equals that of Eq. (59). Assuming the
invertibility of the integral operator, as discussed above, it
follows that the imaginary part of Dðu;uÞ satisfies Eq. (60),
and consequently that D satisfies unitarity to all orders.

C. Unitarity of M3

Having shown in the previous section that the Kdf;3-
independent part ofM3 satisfies Eq. (36), in this section we
show that this holds for the full three-body scattering
amplitude. Following the approach of the previous section,
we begin with the contribution that is linear in Kdf;3,

denoted Mð1Þ
3 , and then generalize to the full amplitude.

As was the case with Dðu;uÞ, it is instructive to first
determine a constraint equation on Mð1;u;uÞ that is equiv-
alent to the general unitarity constraint, Eq. (36),

ImMð1;u;uÞ
3;pk ¼ M�

2p

�
½Θρ̄�pMð1;u;uÞ

3;pk þ
Z
s
ΔksM

ð1;u;uÞ
3;sk

�
þ
�
Mð1;u;uÞ�

3;pk ½Θρ̄�k þ
Z
s
Mð1;u;uÞ�

3;ps Δsk

�
M2k

þ
�Z

s
Dðu;uÞ

ps ½Θρ̄�sMð1;u;uÞ
3;sk þ

Z
s

Z
t
Dðu;uÞ

ps ΔstM
ð1;u;uÞ
3;tk

�

þ
�Z

s
Mð1;u;uÞ�

ps ½Θρ̄�sDðu;uÞ
3;sk þ

Z
s

Z
t
Mð1;u;uÞ�

ps ΔstD
ðu;uÞ
3;tk

�
: ð63Þ

If the above is satisfied, M3 is consistent with unitarity
through first order in Kdf;3. The relation is similar in
structure to Eq. (60), except that the result here has more
terms because the terms linear in Kdf;3 can occur both on
the left and on the right of the imaginary cut. An analog

FIG. 4. Diagrammatic representation of the right-hand side of Eq. (60), which gives the imaginary part ofDðu;uÞ. Squares with rounded
corners depictDðu;uÞ, and for simplicity we do not distinguish betweenDðu;uÞ and its conjugate. The two types of cut, defined in the text,
are distinguished by the shapes of the adjacent lines.

2In particular, if we discretize the matrix equation, the integral
operator becomes the matrix L3δKroneckerps þ 1

2ωp
M�

2pG
∞
ps. This

will only have vanishing eigenvalues for specific, fine-tuned
choices of discretization, encoded here via L. Thus we conclude
the operator is in general invertible.
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of the third term in Eq. (60) is absent here because this
term, which leads to the final term in Eq. (36), is already
completely generated by Dðu;uÞ. As with Eq. (60), the key
point is that symmetrizing both sides gives the relevant
contribution to the original unitarity constraint.
At this stage we note that our notation is overly

complicated for two reasons: first, the same combina-
tion of ½Θρ̄� and Δ appears many times, and, second,
all terms in this, and many of the preceding equations,
have the form of a matrix product with common

indices integrated. With this in mind we introduce the
shorthand

Ips ¼ ½Θρ̄�pδ̃ps þ Δps; ð64Þ

and to adopt the convention that adjacent factors have a
common index that is integrated over all values. We
emphasize the latter convention by including a dot
wherever there is a common, integrated index. With this
notation, Eq. (63) reduces to

ImMð1;u;uÞ
3 ¼ ðM�

2 þDðu;uÞÞ · I ·Mð1;u;uÞ
3 þMð1;u;uÞ�

3 · I · ðM2 þDðu;uÞÞ: ð65Þ
Note that we are implicitly multiplying M�

2 and M2 by a delta function in such expressions, for example,

½M�
2 · I �pr ≡

Z
t
M�

2pδ̃ptI tr ¼ M�
2pIpr; ð66Þ

with no sum or integral in the final expression.
To show that the result is satisfied, we recall the definition of Mð1;u;uÞ

3 given in Eqs. (30)–(32) above, which in our
reduced notation becomes

Mð1;u;uÞ
3 ¼ Lðu;uÞ ·Kdf;3 ·Rðu;uÞ; ð67Þ

Lðu;uÞ
ps ¼ 1

3
δ̃ps −M2pρpδ̃ps −Dðu;uÞ

ps ρs; Rðu;uÞ
rk ¼ 1

3
δ̃rk − ρkM2kδ̃rk − ρrD

ðu;uÞ
rk : ð68Þ

We begin by taking the imaginary part of Lðu;uÞ
ps ,

ImLðu;uÞ
ps ¼ −M�

2p½Θρ̄�pM2pρpδ̃ps þM�
2p½Θρ̄�pδ̃ps − ImðDðu;uÞ

ps Þρs þDðu;uÞ
ps ½Θρ̄�s: ð69Þ

Substituting the result for ImDðu;uÞ
ps given by Eq. (60), we find

ImLðu;uÞ
ps ¼ M�

2p

�
½Θρ̄�pδ̃ps − ½Θρ̄�pδ̃psM2sρs − ΔpsM2sρs − ½Θρ̄�pDðu;uÞ

ps ρs −
Z
t
ΔptD

ðu;uÞ
ts ρs

�

þ
Z
t
Dðu;uÞ�

pt

�
½Θρ̄�tδ̃ts − ½Θρ̄�tδ̃tsM2sρs − ΔtsM2sρs − ½Θρ̄�tDðu;uÞ

ts ρs −
Z
r
ΔtrD

ðu;uÞ
rs ρs

�
; ð70Þ

¼
Z
t
ðM�

2pδ̃pt þDðu;uÞ�
pt Þ

�
½Θρ̄�tδ̃ts −

Z
r
I trðM2rρrδ̃rs þDðu;uÞ

rs ρsÞ
�
; ð71Þ

where in the second form we have collected terms by inserting delta functions as needed and also by using the definition of
I , Eq. (64). Now we observe that the expression in curly braces in Eq. (71) would equal I · Lðu;uÞ were it not for the first
term. However, we now make use of the replacement identity

½Θρ̄�pδ̃ps →
1

3
ð½Θρ̄�pδ̃ps þ ΔpsÞ ¼

1

3
Ips ðwhen acting on a symmetric objectÞ: ð72Þ

This follows from the result Eq. (54), since for a symmetric object there is no difference between versions with (u), (s), and
ðs̃Þ superscripts. Note that the result applies irrespective of whether the action on a symmetric object is to the left or the
right. Here the symmetric object on which Lðu;uÞ acts is Kdf;3 (to the right), as can be seen from Eq. (67).
Applying the identity (72) allows us to write Eq. (71) [and its reflection leading to ImRðu;uÞ] in a compact form,

ImLðu;uÞ → ðM�
2 þDðu;uÞ�Þ · I · Lðu;uÞ; ð73Þ
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ImRðu;uÞ → Rðu;uÞ� · I · ðM2 þDðu;uÞÞ: ð74Þ

Since Kdf;3 is real, we have identified all contributions to ImMð1;u;uÞ
3 [see Eq. (67)]. We deduce that

ImMð1;u;uÞ
3 ¼ ImðLðu;uÞÞ ·Kdf;3 ·Rðu;uÞ þ Lðu;uÞ ·Kdf;3 · ImðRðu;uÞÞ; ð75Þ

¼ ðM�
2 þDðu;uÞÞ · I ·Mð1;u;uÞ

3 þMð1;u;uÞ�
3 · I · ðM2 þDðu;uÞÞ; ð76Þ

which is indeed the desired result, Eq. (65).
Finally, we are in position to demonstrate that the complete connected three-body scattering amplitude,

M3 ¼ DþMðKÞ
3 , satisfies the unitarity constraint, Eq. (36). This requires showing that MðKÞ

3 satisfies the parts of
the constraint that depend on Kdf;3. As above, we rewrite these parts as a required constraint on the unsymmetrized version

of MðKÞ
3 ,

ImMðK;u;uÞ
3 ¼ ðM�

2 þDðu;uÞÞ · I ·MðK;u;uÞ
3 þMðK;u;uÞ�

3 · I · ðM2 þDðu;uÞÞ þMðK;u;uÞ�
3 · I ·MðK;u;uÞ

3 : ð77Þ

Using the same steps as when considering Eqs. (63) and (65), we find that this symmetrizes to parts of Eq. (36) that depend
onKdf;3. Note that the last term of Eq. (36) does not need to be produced, as it is independent ofKdf;3, and has already been
accounted for by ImD.
To demonstrate Eq. (77), we begin by giving the shorthand versions of the results, Eqs. (34) and (35), that give the

Kdf;3-dependent part of M3,

MðK;u;uÞ
3 ¼ Lðu;uÞ · T ·Rðu;uÞ; T ¼ Kdf;3 −Kdf;3 · ρLðu;uÞ · T : ð78Þ

The imaginary part of MðK;u;uÞ
3 ,

ImMðK;u;uÞ
3 ¼ ImðLðu;uÞÞ · T ·Rðu;uÞ þ Lðu;uÞ · ImðT Þ ·Rðu;uÞ þ Lðu;uÞ · T · ImðRðu;uÞÞ; ð79Þ

can be partially evaluated using the replacement rules Eqs. (73) and (74), which can be used since T is symmetric. This
leads to

ImMðK;u;uÞ
3 ¼ ðM�

2 þDðu;uÞÞ · I ·MðK;u;uÞ
3 þMðK;u;uÞ�

3 · I · ðM2 þDðu;uÞÞ þ Lðu;uÞ · ImðT Þ ·Rðu;uÞ: ð80Þ

Thus the first two terms in Eq. (77) are reproduced, and all that remains to demonstrate is

Lðu;uÞ · ImðT Þ ·Rðu;uÞ ¼ MðK;u;uÞ�
3 · I ·MðK;u;uÞ

3 : ð81Þ

To do so requires evaluation of the imaginary part of T . Using the integral equation in Eq. (78), the result (73) for the
imaginary part of Lðu;uÞ, and the reality of Kdf;3, we find

ImT ¼ Kdf;3 · ½Θρ̄�Lðu;uÞ · T −Kdf;3 · ρ�ðM�
2 þDðu;uÞÞ · I · Lðu;uÞ · T −Kdf;3 · ρ�Lðu;uÞ · ImT : ð82Þ

In the first term on the right-hand side one can apply the symmetrization identity (72) to write

ImT ¼ Kdf;3 ·Rðu;uÞ · I · Lðu;uÞ · T −Kdf;3 · ρ�Lðu;uÞ · ImT ; ð83Þ

where we have made use of the definition of R, given in Eq. (68). The result (83) can be rewritten as

IK · ImT ¼ Kdf;3 ·Rðu;uÞ · I · Lðu;uÞ · T ; ð84Þ

where we have introduced
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IK
pr ≡ δ̃pr þ

Z
s
Kdf;3;psρ

�
sL

ðu;uÞ
sr ; ð85Þ

which acts as an integral operator.
We now observe that this same operator can be used to

rewrite the complex conjugate of the relation betweenKdf;3
and T given in Eq. (78),

Kdf;3 ¼ IK · T �: ð86Þ

Thus we find

IK · ImT ¼ IK · T � ·Rðu;uÞ · I · Lðu;uÞ · T : ð87Þ

Assuming that IK is invertible, which is plausible using the
same arguments given in Sec. III B 3 for the integral
operator encountered previously, we can drop the factors
of this operator to reach

ImT ¼ T � ·Rðu;uÞ · I · Lðu;uÞ · T : ð88Þ

Finally, inserting this result into the left-hand side of
Eq. (81), we immediately find the right-hand side, con-
cluding the argument.

IV. CONCLUSION

In this work we have shown that the form of the infinite-
volume three-particle scattering amplitude, M3, derived in
the context of finite-volume formalism, satisfies unitarity.
Though this result was expected, the demonstration turns
out to be highly nontrivial and thus provides an important
check of the derivations of Refs. [46,57]. In particular, the
present derivation shows how the factors of 1=3 in the
expressions for Lðu;uÞ and Rðu;uÞ given in Eq. (68) are
essential for unitarity to hold. Such factors are not present
in the alternative representations of Refs. [5,7] and were
initially a source of confusion in understanding the con-
sistency of the various approaches.
More generally, we have shown how Kdf;3 and D

individually contribute to the imaginary part of the con-
nected amplitude. While the latter is a somewhat standard
object representing all-orders resummation of the one-
particle exchange interactions, Kdf;3 is a quantity unique
to the formalism of Refs. [46,57]. It was introduced in
Ref. [46] as a fully symmetric amplitude that encodes the
short-distance or microscopic physics. In analogy to the

two-particle K matrix, Kdf;3 has no branch points related to
s-channel unitarity and is real for real energies. We expect it
to be an analytic function in and near to the physical
domain, and below the five-particle threshold, with a radius
of convergence determined by the closest singularities in
other channels, or by dynamical poles corresponding to
three-particle resonances.
In other approaches, e.g., Refs. [5,7], similar objects

appear, but these are not invariant under particle inter-
change. The work presented here can shed light on the
connection between these formalisms, as well as to other
approaches that derive three-body amplitudes from unitar-
ity relations [2,61,63–67]. Indeed, the relation between
Kdf;3 and the B matrix used in Refs. [5,7] has been
determined in Ref. [68]. We also think that it will be
worthwhile investigating the use of the Kdf;3 parametriza-
tion ofM3 in analyses of experimental data. Given that the
finite-volume observables that may be accessed via lattice
QCD are more directly related to Kdf;3 [46], this will serve
as a stepping stone toward bridging three-body physics in
experiment and lattice QCD.
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APPENDIX: UNITARITY RELATION FOR THE
THREE-BODY SCATTERING AMPLITUDE

In this appendix we review the derivation of Eq. (36), the
constraint that follows from unitarity on the three-particle
scattering amplitude.
Unitarity implies that the T matrix satisfies T − T† ¼

iT†T. To derive the resulting constraint we evaluate
matrix elements of this equation using relativistically nor-
malized three-particle asymptotic states, jpi ¼ jp1;p2;p3i.
This yields

hp0jTjpi − hp0jT†jpi ¼ 2iImhp0jTjpi ¼ i
3!

Z Z Z
p00
hp0jT†jp00ihp00jTjpi ¼ i

3!

Z Z Z
p00
hp0jTjp00i�hp00jTjpi; ðA1Þ

where we have used

hp0jT†jpi≡ hpjTjp0i� ¼ hp0jTjpi�; ðA2Þ
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in which the second equality follows from Hermitian
analyticity [69,70], as well as the shorthand notation

Z Z Z
p
¼

Z
p1

Z
p2

Z
p3

: ðA3Þ

The factor of 3! in the denominator is needed for identical
particles to cancel the overcounting arising from integrating
over the full three-particle phase space. The result (A1) can
be rewritten as

Imhp0jTjpi ¼ 1

2 × 3!

Z
p0
hp0jTjp00i�hp00jTjpi: ðA4Þ

In the following, we also need the total initial and final
four-momenta:

Pμ ¼ ðE;PÞ ¼ ðωp1
þ ωp2

þ ωp3
;p1 þ p2 þ p3Þ; ðA5Þ

P00μ ¼ðE00;P00Þ ¼ ðωp00
1
þωp00

2
þωp00

3
;p00

1þp00
2þp00

3Þ: ðA6Þ

Next we decompose the T matrix into disconnected and
connected pieces,

T ¼ Td þ Tc; ðA7Þ

with the disconnected piece having the matrix element

hp00jTdjpi ¼
X
j;k

δ̃ðp00
j − pkÞð2πÞ4δ4ðP00

j − PkÞA2;jkðp00;pÞ;

ðA8Þ

¼ ð2πÞ4δ4ðP00 − PÞ
X
j;k

δ̃ðp00
j − pkÞA2;jkðp00;pÞ; ðA9Þ

where the indices j and k run from 1 to 3. HereA2;jkðp00;pÞ
is the two-particle scattering amplitude for the subsystem
defined by the fact that the initial and final spectators have
momenta pk and p00

j , respectively, while P00
j ¼ P − p00

j ¼
ðE − ωp00

j
;P − p00

j Þ and Pk ¼ P − pk. The corresponding

result for the connected part is

hp00jTcjpi ¼ ð2πÞ4δ4ðP0 − PÞA3ðp0;pÞ; ðA10Þ

where A3 is the connected three-particle amplitude.
To proceed we insert the decomposition (A7) into the

unitarity relation, Eq. (A4). The left-hand side becomes

LHS ¼ ½LHS�c þ ½LHS�d; ðA11Þ

½LHS�c ¼ ð2πÞ4δ4ðP0 − PÞImA3ðp0;pÞ; ðA12Þ

½LHS�d ¼ ð2πÞ4δ4ðP0 − PÞ
X
j;k

δ̃ðp0
j − pkÞImA2;jkðp0;pÞ;

ðA13Þ

while for the right-hand side we obtain

RHS ¼ 1

2 × 3!

Z Z Z
p00
fhp0jTcjp00i�hp00jTcjpi þ hp0jTcjp00i�hp00jTdjpi

þ hp0jTdjp00i�hp00jTcjpi þ hp0jTdjp00i�hp00jTdjpig: ðA14Þ

Our aim is to determine the parts of this expression that equal ½LHS�c, for these give the unitarity relation for A3.
We label the four terms in Eq. (A14) as ½RHS�1−4. The first three are fully connected, while the last contains disconnected

contributions. To pull out the latter we insert the expression for the disconnected contribution to the T matrix, Eq. (A9), into
the final term in Eq. (A14), obtaining

½RHS�4 ¼
1

2 × 3!

X
j;k;l;n

Z Z Z
p00
δ̃ðp0

j − p00
lÞδ̃ðp00

n − pkÞð2πÞ4δ4ðP0 − P00Þð2πÞ4δ4ðP00 − PÞA�
2;jlðp0;p00ÞA2;nkðp00;pÞ: ðA15Þ

Here we are using j and k for the external spectator
indices, and l and n for the internal indices. There are
two types of contributions to Eq. (A15): those in which
l ¼ n, which are fully disconnected since the same
momentum is a spectator for both scatterings, and the

connected contributions in which l ≠ n. For a given
choice of j and k, there are three contributions of the
first kind and six of the second. We denote the fully
disconnected contributions by ½RHS�4d and the connected
by ½RHS�4c.
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The three contributions to the fully disconnected part are all equal when considering identical particles, so we can set
l ¼ n ¼ j and multiply by an overall factor of 3.3 This allows us to write

½RHS�4d ¼
ð2πÞ4δ4ðP0 − PÞ

2 × 2

X
j;k

Z Z Z
p00
δ̃ðp0

j − pkÞδ̃ðp00
j − pkÞð2πÞ4δ4ðP00 − PÞA�

2;jjðp0;p00ÞA2;jkðp00;pÞ: ðA16Þ

Next we use the result Eq. (57), which, after carrying out the remaining spectator-momentum integral, gives

½RHS�4d ¼ ð2πÞ4δ4ðP0 − PÞ
X
j;k

ΘðE�2
2;pk

− 4m2Þρ̄ðpkÞδ̃ðp0
j − pkÞ

Z dâ⋆p00
j

4π
A�

2;jjðp0;p00ÞA2;jkðp00;pÞ: ðA17Þ

We recall that â⋆p00
j
is the direction of one of the intermediate particles in the center of mass of the two-particle subsystem for

which p00
j is the spectator momentum.

Equating the fully disconnected contributions to the left- and right-hand sides of the unitarity relation, which are given,
respectively, by Eqs. (A13) and (A17), we find

ImA2;jkðp0;pÞ ¼ ΘðE�2
2;pk

− 4m2Þρ̄ðpkÞ
Z dâ⋆p00

j

4π
A�

2;jjðp0;p00ÞA2;jkðp00;pÞ: ðA18Þ

This is the standard unitarity constraint on the two-body scattering amplitude, as given, for example, in Eqs. (6) and (7)
of Ref. [7], taking into account that here we have an additional factor of 1=2 on the right-hand side due to our use
of identical particles.
We now evaluate the connected piece of Eq. (A15),

½RHS�4c ¼
ð2πÞ4δ4ðP0 − PÞ

2 × 3!

X
j;k;l≠n

Z Z Z
p00
δ̃ðp0

j − p00
lÞδ̃ðp00

n − pkÞð2πÞ4δ4ðP00 − PÞA�
2;jlðp0;p00ÞA2;nkðp00;pÞ; ðA19Þ

¼ ð2πÞ4δ4ðP0 − PÞ
2

X
j;k

Z Z Z
p00
δ̃ðp0

j − p00̄
k
Þδ̃ðp00̄

| − pkÞð2πÞ4δ4ðP00 − PÞA�
2;j1ðp0;p00ÞA2;3kðp00;pÞ; ðA20Þ

¼ ð2πÞ4δ4ðP0 − PÞ
X
j;k

πδðb2jk −m2ÞA�
2;j1ðp0;p00ÞA2;3kðp00;pÞ: ðA21Þ

To obtain the second line we have used the fact that all six terms in the sum over l ≠ n are equal, since they differ only by
the choice of dummy indices. We have thus made a canonical choice (l ¼ 1 and n ¼ 3) and multiplied by 6. To obtain the
final line we have simply carried out the integrals and used the definition bjk ≡ P − p0

j − pk.
The remaining terms in Eq. (A14) are more straightforward to evaluate. For example, the second term gives

½RHS�2 ¼
1

2 × 3!

X
jk

Z Z Z
p00
hp0jTcjp00i�δ̃ðp00

j − pkÞð2πÞ4δ4ðP00 − PÞA2;jkðp00;pÞ; ðA22Þ

¼ ð2πÞ4δ4ðP0 − PÞ
2 × 3!

X
jk

Z Z Z
p00
A�

3ðp0;p00Þδ̃ðp00
j − pkÞð2πÞ4δ4ðP00 − PÞA2;jkðp00;pÞ; ðA23Þ

¼ ð2πÞ4δ4ðP0 − PÞ
X
j

ΘðE�2
2;pj

− 4m2Þρ̄ðpjÞ
Z dâ00⋆pj

4π
A�

3ðp0;p00ÞA2;jjðp00;pÞ: ðA24Þ

In going from the second to the third line, we have again used Eq. (57), and the fact that we are summing over three values of
k, all of which give the same contribution.

3The choice of l and n does not matter as long as they are equal. For example, we could equally well choose l ¼ n ¼ k or l ¼ n ¼ 1.
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The third term in Eq. (A14) can be written similarly (interchanging p ↔ p0 and complex conjugating), while the first
term becomes

½RHS�1 ¼
ð2πÞ4δ4ðP0 − PÞ

2 × 3!

Z Z Z
p00
ð2πÞ4δ4ðP00 − PÞA�

3ðp0;p00ÞA3ðp00;pÞ: ðA25Þ

Equating ½LHS�c to ½RHS�1 þ ½RHS�2 þ ½RHS�3 þ ½RHS�4c leads to the claimed unitarity relation, Eq. (36).
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