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We present the distribution of unpolarized quarks in a transversely polarized proton in three-dimensional 
momentum space. Our results are based on the extractions of the unpolarized and Sivers transverse 
momentum dependent parton distributions (TMDs) in a fully consistent TMD framework.
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The antipode of taking a picture of a black hole is to take a picture of the inside of a proton, unveiling its internal constituents, 
confined in the most common element of the visible universe by the strong forces of Quantum Chromodynamics (QCD). Using data 
obtained from the scattering of a hard virtual photon off a proton, we map the density of quarks in three dimensions, i.e., as a function 
of their longitudinal momentum (along the photon’s direction) and their transverse momentum (orthogonal to the photon). If the proton 
is unpolarized, the distribution is cylindrically symmetric: we determine it using recent results from our group [1]. If the proton is 
polarized in the transverse plane, the distributions of up and down quarks turn out to be distorted in opposite directions. This distortion, 
known as Sivers effect [2], is related to quark orbital angular momentum. We determine its details with the same formalism used for 
the unpolarized distribution. In this way, we obtain a consistent picture of the full 3-dimensional momentum distribution of quarks in a 
transversely polarized proton. Our study constitutes a benchmark for future determinations of multi-dimensional quark distributions, one 
of the main goals of existing and planned experimental facilities [3–6].

We consider a frame where the proton has momentum P with space component in the +ẑ direction, is polarized in the + ŷ direction, 
and is probed by a spacelike virtual photon with momentum q (with Q 2 = −q2) in the −ẑ direction. We define the x̂y plane as transverse 
and we denote it with the subscript T . We consider the light-cone + direction (t̂ + ẑ)/

√
2 and we define it as longitudinal. If Q 2 is much 

larger than the proton’s mass M2, the proton’s momentum is approximately longitudinal (P+ is the dominant component).
Our goal is to reconstruct the distribution of unpolarized quarks inside the nucleon as a function of three components of their mo-

mentum. In the frame we are considering, the distribution of a quark with flavor a in a transversely polarized nucleon N↑ can be written 
in terms of two Transverse Momentum Distributions (TMDs) as [7]

ρa
N↑(x,kx,ky; Q 2) = f a

1 (x,k2
T ; Q 2) − kx

M
f ⊥a
1T (x,k2

T ; Q 2) , (1)

where f a
1 is the unpolarized TMD and f ⊥a

1T is the Sivers TMD [2], k is the momentum of the quark, kT the modulus of its transverse 
component, and x = k+/P+ is its longitudinal momentum fraction. Q 2 plays the role of a resolution scale.

Recent extractions of f1 have been published in Refs. [1,8–10]. Several parametrizations of f ⊥
1T have been released up to now [11–20]. 

At variance with these works, in this paper we start from a recent determination of f1 by our group [1] and we extract f ⊥
1T using the 

same formalism, namely for the first time we reconstruct the 3-dimensional quark density of Eq. (1) in a fully consistent way within the 
TMD framework. Later publications have appeared [21–23] which adopt the same strategy; in the following, we will discuss a comparison 
with their results.

Both unpolarized and Sivers TMDs appear in the cross section of polarized Semi-Inclusive Deep-Inelastic Scattering (SIDIS) and vector-
boson production processes. For SIDIS we consider the process �(l) + N(P ) → �(l′) +h(Ph) + X , where a lepton � with momentum l scatters 
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off a nucleon target N with mass M and momentum P . In the final state, the scattered lepton with momentum l′ = l − q is detected, 
together with a hadron h with momentum Ph and transverse momentum PhT . We define the usual SIDIS variables xBj = Q 2/(2P · q), 
y = P · q/(P · l), and z = P · Ph/(P · q). In this study, we neglect power corrections of order M2/Q 2 and P 2

hT /Q 2, which allow us also to 
identify xBj = x.

At leading twist and for a transversely polarized nucleon target N↑ , the SIDIS cross section can be parametrized in terms of five 
structure functions [24]:

dσ

dxdydzdφSdφhdP 2
hT

= α2

xy Q 2

{
A(y) FU U ,T + B(y) cos 2φh F cos 2φh

U U

+ |S T |
[

A(y) sin(φh − φS) F sin(φh−φS )
U T ,T + B(y) sin(φh + φS) F sin(φh+φS )

U T + B(y) sin(3φh − φS) F sin(3φh−φS )
U T

]}
,

(2)

where α is the fine structure constant, φh and φS indicate the azimuthal orientations of P hT and the target polarization S T in the 
transverse plane, respectively, the structure functions depend only on (x, z, P 2

hT , Q 2), and

A(y) = 1 − y + 1

2
y2 , B(y) = 1 − y . (3)

The structure function FU U ,T can be obtained from the unpolarized cross section after integrating upon all azimuthal angles. The polarized 
structure function F sin(φh−φS )

U T ,T is experimentally measurable through the single spin asymmetry (SSA)

Asin(φh−φS )
U T (x, z, P 2

hT , Q 2) =
∫

dφSdφh[dσ ↑ − dσ ↓] sin(φh − φS)∫
dφSdφh[dσ ↑ + dσ ↓] ≈ F sin(φh−φS )

U T ,T

FU U ,T
. (4)

Factorization theorems make it possible to write the structure functions at small transverse momentum (P 2
hT 
 Q 2) in terms of TMDs 

and to derive their evolution equations. The latter ones are more involved than in the collinear framework because TMDs generally depend 
on two scales, μ2 and ζ , that renormalize ultraviolet and rapidity divergences, respectively [25]. These two scales are usually chosen to 
be equal to the virtual photon mass: μ2 = ζ = Q 2.

The unpolarized TMD f1 enters the structure function FU U ,T , while the Sivers TMD f ⊥
1T enters the structure function F sin(φh−φS )

U T ,T . Both 
structure functions can be defined as convolutions of TMDs upon quark transverse momenta [24], or as Fourier transforms of a product of 
functions in bT [26]. At leading order in the strong coupling αs (LO), they read

FU U ,T (x, z, P 2
hT , Q 2) =

∑
a

e2
a x

∫
d2kT d2 P T δ(2)

(
zkT + P T − P hT

)
f a
1 (x,k2

T ; Q 2)Da→h
1 (z, P 2

T ; Q 2)

= 1

2π

∑
a

e2
a x

∞∫
0

dbT bT J0(bT PhT /z) f̃ a
1 (x,b2

T ; Q 2)D̃a→h
1 (z,b2

T ; Q 2) ,

(5)

F sin(φh−φS )
U T ,T (x, z, P 2

hT , Q 2) = −
∑

a

e2
a x

∫
d2kT d2 P T δ(2)

(
zkT + P T − P hT

) P hT · kT

|P hT |M f ⊥a
1T (x,k2

T ; Q 2)Da→h
1 (z, P 2

T ; Q 2)

= − M

2π

∑
a

e2
a x

∞∫
0

dbT b2
T J1(bT PhT /z) f̃ ⊥(1)a

1T (x,bT ; Q 2)D̃a→h
1 (z,b2

T ; Q 2) ,

(6)

where D̃a→h
1 is the Fourier-transformed expression of the corresponding TMD fragmentation function that describes how the parton a

converts into a hadron h with transverse momentum P hT and carrying a fraction z of the parton energy. The Fourier transform of the 
unpolarized TMD is defined as

f̃ a
1 (x,b2

T ; Q 2) =
∫

d2kT eibT ·kT f a
1 (x,k2

T ; Q 2) = π

∞∫
0

dk2
T J0(bT kT ) f a

1 (x,k2
T ; Q 2) , (7)

where J l is the spherical Bessel functions of order l. Note that there is a factor 2π difference compared to the definition in the extraction 
of Ref. [1], denoted as Pavia17, which has been taken into account in the rest of the article. A similar definition holds for D̃a→h

1 .
In Eq. (6), we have also introduced the first derivative of the Sivers function in Fourier space [26]:

f̃ ⊥(1)a
1T (x,b2

T ; Q 2) = − 2

M2
∂b2

T
f̃ ⊥a
1T (x,b2

T ; Q 2) = π

M2

∞∫
0

dk2
T

kT

bT
J1(bT kT ) f ⊥a

1T (x,k2
T ; Q 2) . (8)

The limit of this formula for bT → 0 corresponds to the definition of the first kT -moment of the Sivers function:

lim f̃ ⊥(1)a
1T (x,b2

T ; Q 2) =
∫

d2kT
k2

T
2

f ⊥a
1T (x,k2

T ; Q 2) = f ⊥(1)a
1T (x; Q 2) , (9)
bT →0 2M

2
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which is an x-dependent function and is related to the so-called Qiu-Sterman function [27,28]. The precise connection with the Qiu-
Sterman function is nontrivial when considering higher-order corrections (see, e.g., [29–31]). However, these differences are relevant 
beyond the order we consider in our analysis.

The unpolarized TMD f1 and the Sivers TMD f ⊥
1T appear also in the process A↑(P A, S AT ) + B(P B) → γ ∗/W ±/Z 0 + X , where a hadron 

A with momentum P A and transverse polarization S AT scatters off an unpolarized hadron B with momentum P B , producing a vector 
boson with four-momentum q and rapidity y = 1

2 log[(q0 + qz)/(q0 − qz)], where P A points towards the ẑ direction [1].
At leading twist and for qT 
 q, the cross section can be parametrized in terms of five structure functions [32]. The relevant terms for 

the Sivers effect can be expressed as [1,21]

dσ

dQ 2dydq2
T

= σ V
0

[
F 1

U U + sin(φq − φS) F 1
T U

]
, (10)

where Q 2 = q2 is the invariant mass of the final state, φq and φS indicate the azimuthal orientations of qT and S AT in the transverse 
plane, respectively, and for V = γ ∗, W ±, Z 0 we have

σ
γ ∗
0 = 4π2α2

3Q 2sNc
, σ W ±

0 =
√

2πG F M2
W BW

R

sNc
δ(Q 2 − M2

W ) , σ Z 0

0 =
√

2πG F M2
Z B Z

R

sNc
δ(Q 2 − M2

Z ) , (11)

where s = (P A + P B)2, Nc is the number of colors, G F is the Fermi weak coupling constant, and B W /Z
R is the branching ratio for the decay 

of vector bosons W ± and Z 0 with mass MW and M Z , respectively [33].
Again, the structure function F 1

T U for the Sivers effect is measurable through the SSA

AV
N (xA, xB ,q2

T , Q 2) = F 1
T U

F 1
U U

, (12)

where xA = e y Q /
√

s, xB = e−y Q /
√

s, and at LO the structure functions read

F 1
U U (xA, xB ,q2

T , Q 2) =
∑

a,a′ |V V
aa′ |2

∫
dbT bT

2π
J0(bT qT ) f̃ a

1 (xA,b2
T ; Q 2) f̃ a′

1 (xB ,b2
T ; Q 2) , (13)

F 1
T U (xA, xB ,q2

T , Q 2) = −M
∑

a,a′ |V V
aa′ |2

∫
dbT b2

T

2π
J1(bT qT ) f̃ ⊥(1)a

1T (xA,b2
T ; Q 2) f̃ a′

1 (xB ,b2
T ; Q 2) , (14)

where the symbol 
∑

implies adding the contribution of the flavor sum with A ↔ B . For V = W ± , the |V W
aa′ |2 are the elements of the 

CKM matrix and a, a′ run over light quark and antiquark flavors corresponding to W ± production:

W + → ud, us, cd, cs , W − → du, dc, su, sc . (15)

For V = γ ∗, Z 0, we have [1,21]

|V γ ∗
aa′ |2 = e2

aδaa′ , |V Z
aa′ |2 =

[
(I3a − 2ea sin2 θW )2 + (I3a)

2
]
δaa′ , (16)

where θW is the Weinberg angle, and the weak isospin I3a = +1/2 for a = u, c, t and −1/2 for a = d, s, b.
In this work, we take the unpolarized functions f1 and D1 from the Pavia17 extraction [1]. We extract the Sivers function using the 

very same approach: it is based on the TMD framework formulated in Ref. [25], which in turn elaborates on the original work of Collins, 
Soper, Sterman [34] (hence, in the following we refer to it as the CSS approach). The renormalization group evolution of TMDs is encoded 
in the so-called Sudakov form factor S , which contains the contribution of large logarithms. In this work, we perform the resummation of 
these logarithms at the next-to-leading-logarithmic (NLL) accuracy, as defined in detail in Ref. [10].1 The expression of S greatly simplifies 
if the starting scale of evolution is chosen as μb = 2e−γE /bT [25], where γE is the Euler constant. However, at large bT the TMD evolution 
runs into a nonperturbative region and becomes unreliable. In the CSS approach, this pathology is cured by the so-called b∗-prescription, 
which amounts to replacing μb = 2e−γE /bT with μb = 2e−γE /b∗(bT ), where b∗ is an arbitrary function of bT with appropriate asymptotic 
conditions [25]. In accordance with the extraction of the unpolarized TMD [1], in this analysis we adopt the following function

b∗(bT ) = bbmax

(
1 − e−b4

T /b4
max

1 − e−b4
T /b4

min

) 1
4

, (17)

where

bbmax = 2e−γE GeV−1 , bmin = 2e−γE /Q . (18)

With this choice, at large bT the function b∗(bT ) saturates to bmax, as already suggested by the CSS approach, and the scale μb freezes at 
1 GeV. In this way, the perturbative contributions to the TMD smoothly merge into the nonperturbative region, described by a parametric 
function (see below). At small bT (large kT ), the TMD formalism is not valid and must match onto the fixed-order formalism. The way the 
matching is implemented is not unique and the TMD contribution can be arbitrarily modified in this region. At variance with the standard 
CSS approach, in Eq. (17) we modify the high-transverse-momentum behavior of TMDs as b∗(bT ) bT →0−→ bmin, which implies μb → Q and 

1 At this accuracy, in the general formula of the Operator Product Expansion the hard functions and the matching coefficients can be neglected.
3
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preserves a meaningful definition of the integrals inside the Sudakov form factor S [1]. The latter prescription partially corresponds to 
modifying the resummed logarithms as in Ref. [35] (and similarly in Refs. [36,37]).

At NLL accuracy, the TMD evolution of the Sivers function from a starting scale Q 2
0 to a generic scale Q 2 is formally very similar to 

the unpolarized TMD f1 [1]:

f̃ ⊥(1)a
1T (x,b2

T ; Q 2) = eS(μ2
b ,Q 2) egK (bT ) ln(Q 2/Q 2

0 ) f ⊥(1)a
1T (x;μ2

b) f̃ ⊥
1T NP(x,b2

T ) . (19)

The gK (bT ) is the above mentioned universal parametric function that describes the nonperturbative evolution. Together with the pertur-
bative Sudakov form factor S , it is the same function that drives the evolution of the unpolarized TMD f1 and is taken from the Pavia17 
fit [1]. Without this information, it would not be possible to reliably calculate the Sivers function at the experimental scales. At the initial 
scale Q = Q 0 = 1 GeV, we have bmax ≡ bmin and μb = Q 0: the exponentials reduce to unity and evolution effects are switched off. The 
Sivers function has an intrinsic nonperturbative bT -distribution given by the function f̃ ⊥

1T NP, which needs to be determined from exper-
imental data. For perturbative small values of bT , it can be shown that consistently f̃ ⊥

1T NP(x, b2
T ) → 1 [10]. Hence, in the limit bT → 0

from Eq. (19) we recover Eq. (9): in the perturbative regime the TMD function f̃ ⊥(1)
1T is indeed matched through the Operator Product 

Expansion onto a collinear function represented by the first kT -moment of the Sivers function, f ⊥(1)
1T .

For f ⊥(1)
1T , we apply the same evolution as the collinear parton density f1 using the HOPPET code [38]. This is an approximation of 

the full evolution [39–44,21]. In order to estimate the impact of the collinear evolution, we compared predictions obtained with our 
assumptions and predictions with no evolution. We found no significant difference in SIDIS kinematics (containing almost all data used 
in our fit) because of the limited range in Q 2 being spanned. For vector boson production, the difference becomes more relevant, but 
in both cases the theoretical predictions are small compared to the data, which are few and affected by large errors. In conclusion, the 
approximation in the implementation of collinear evolution does not affect the results of our present fit. The situation will certainly 
change when more and more precise data at high Q will be available.

The Sivers function must satisfy the positivity bounds [45]2[
k2

T

2M2
f ⊥
1T (x,k2

T )

]2

≤ k2
T

4M2
f 2
1 (x,k2

T ) (20)

for any value of x and kT . This constraint is essential to guarantee that the quark density distribution of Eq. (1) is positive everywhere. 
Therefore, it is convenient to parametrize the nonperturbative function f̃ ⊥

1T NP of Eq. (19) in momentum space. At the initial scale (Q 0 = 1
GeV), we write the Sivers function as

f ⊥a
1T (x,k2

T ; Q 2
0 ) = f ⊥(1)a

1T (x; Q 2
0 ) f ⊥

1T NP(x,k2
T ) . (21)

The nonperturbative term f ⊥
1T NP is given by

f ⊥
1T NP(x,k2

T ) = (1 + λS k2
T ) e−k2

T /M2
1

π K (x) (M2
1 + λS M4

1)
f1NP(x,k2

T ) , (22)

where f1NP is the corresponding nonperturbative term of the unpolarized TMD f1, and is consistently taken from the Pavia17 extrac-
tion [1]. More details about the explicit form of the involved functions can be found in Appendix A. The M1, λS are free parameters, and 
K (x) is a normalization factor to guarantee that the weighted integral of f ⊥

1T NP is 1 and the proper definition of first kT -moment of the 
Sivers function is recovered in Eq. (21) (see Appendix A for details).

The first transverse moment f ⊥(1)a
1T is parametrized as

f ⊥(1)a
1T (x; Q 2

0 ) = Na
Siv

Ga
max

K (x) xαa (1 − x)βa
[

1 + Aa T1(x) + Ba T2(x)
]

f a
1 (x; Q 2

0 ) , (23)

where Tn(x) are Chebyshev polynomials of order n. The unpolarized collinear parton densities f a
1 are taken from the GJR parametriza-

tion [47], consistently with the Pavia17 fit. The flavor-dependent factor Ga
max, and the constraint |Na

Siv| ≤ 1, are introduced to guarantee 
that the Sivers function of Eq. (21) satisfies the positivity condition of Eq. (20) (see Appendix A for more details). The free parameters 
NSiv, α, β, A, B are different for up, down, and sea quarks.

The actual total number of free parameters is 17. We fix them by fitting experimental data for the single transverse-spin asymmetries 
Asin(φh−φS )

U T of Eq. (4) for SIDIS measurements, and AV
N of Eq. (12) for vector-boson-production measurements. In our fit, we include 

SIDIS measurements by the HERMES [48], COMPASS [49,50] and JLab collaborations [51], and W /Z -production measurements taken by 
the STAR collaboration [52]. Usually, the SIDIS asymmetries are presented as projections of the same dataset in x, z, and PhT . To avoid 
fully correlated measurements, we fit only the x projection because it has a direct impact on the x-dependence of the collinear function 
f ⊥(1)
1T . Similarly, for the STAR dataset we include only one of the projections of the measurements, specifically the data projected in 

rapidity. We select data by applying the same criteria used in the Pavia17 fit for unpolarized TMD, i.e., Q 2 > 1.4 GeV2, 0.20 < z < 0.74
and PhT < min[0.2Q , 0.7Q z] + 0.5 GeV [1]. With these kinematic cuts, we have a total of 125 data points: 30 from HERMES, 82 from
COMPASS (32 from the 2009 analysis, and 50 from the 2017 analysis), 6 from JLab, and 7 from STAR.

Similarly to our previous Pavia17 extraction and to other studies of parton densities [53–55], we perform the fit using the bootstrap 
method. The method consists in creating M different replicas of the n original data by randomly shifting them with a Gaussian noise 

2 The full expression of the positivity bound involves also the TMD g1T , which is barely known at present [46]. Here, we used a relaxed version where the modulus of g1T

is set to zero [45].
4



A. Bacchetta, F. Delcarro, C. Pisano et al. Physics Letters B 827 (2022) 136961
Table 1
Values of the best fit parameters for the Sivers distribution. For each parameter, the upper row contains the central 
68% confidence interval obtained from 200 replicas by indicating the average value ± the semi-difference of the 
upper and lower limits. The lower row refers to the replica 105 whose parameter values are the closest to the 
average ones.

M1 λS αd αu αs

All replicas 0.45 ± 0.10 2.45 ± 2.38 1.64 ± 0.87 0.51 ± 0.38 0.62 ± 0.52
Replica 105 0.44 2.00 0.94 0.41 0.61

βd βu βs Ad Au As

All replicas 6.59 ± 3.41 2.83 ± 2.26 5.23 ± 4.77 3.66 ± 16.28 −2.33 ± 5.43 13.67 ± 22.58
Replica 105 10.00 1.66 8.23 −0.78 −0.58 −1.44

Bd Bu Bs Nd
Siv Nu

Siv Ns
Siv

All replicas 3.40 ± 6.78 2.11 ± 3.81 −0.10 ± 5.13 0.00 ± 1.00 −0.03 ± 0.46 0.24 ± 0.53
Replica 105 0.98 1.12 0.92 −1.00 0.42 0.28

with the same variance as the experimental measurement. Each replica represents the possible outcome of an independent measurement. 
The number M is fixed by accurately reproducing the mean and standard deviation of the original data points. In our case, it turns out 
M = 200, which is also consistent with our Pavia17 fit [1]. We denote the replicated measurements as ASiv

r , with the r index running 
from 1 to M, and with ASiv

th

({pr}
)

the outcome of the calculated asymmetry using our functional form with the set of parameters {pr}. 
Once replicas are generated, a minimization procedure is applied to each replica separately to search for the parameter values, {pr0}, that 
minimize the error function

E2
r

({pr}
) =

n∑
i, j=1

(
ASiv

r − ASiv
th

({pr}
))

i
V −1

i j

(
ASiv

r − ASiv
th

({pr}
))

j
, (24)

where the covariance matrix is constructed as

V ij =
[(

�ASiv
stat

)2
i + (

�ASiv
sys,unc

)2
i + (

�ASiv
th

)2
i

]
δi j +

n∑
i, j=1

(
�ASiv

corr

)
i

(
�ASiv

corr

)
j . (25)

For each pair of experimental points (i, j), the covariance matrix contains the contributions of the statistical �ASiv
stat and uncorrelated 

systematic �ASiv
sys,unc experimental errors, the theoretical error �ASiv

th due to the uncertainty in the unpolarized TMDs, as well as the 
correlated experimental uncertainties �ASiv

corr (like, for example, a 7.3% target polarization correlated uncertainty for the HERMES data). 
Following the procedure outlined in Ref. [10], we apply the iterative t0-prescription [56] in order to avoid the D’Agostini bias that would 
lead to underestimate the predictions. The initial parameter values are chosen randomly within reasonable intervals. For each replica, 
the goodness of the fit is evaluated using the usual χ2 test, which corresponds to the error function of Eq. (24), but with the original 
experimental data instead of the replicated ones. The maximal information about our results is given by the full ensemble of 200 replicas, 
combined with the corresponding unpolarized TMD replicas. To report our results in a concise way, we adopt the following choice: for 
any result (χ2 values, parameter values, resulting distribution functions) we quote intervals containing 68% of the replicas, obtained by 
excluding the upper 16% and lower 16% values. These intervals correspond to the 1σ confidence level only if the observable’s values follow 
a Gaussian distribution, which is not true in general. When it is not possible to draw uncertainty bands, we report the results obtained 
using replica 105, which was selected as a representative replica, since its parameters are the closest to the average ones both in the 
unpolarized and polarized case.

In Table 1 we give the value of the parameters obtained from our fit. For each one, we quote the central 68% of the 200 replica values 
(by quoting the average ± the semi-difference of the upper and lower limits). Parameters of replica 105, used for the multidimensional 
plots, are also given.

We obtain an excellent agreement between the experimental measurements and our theoretical prediction, with an overall value of 
χ2/d.o.f. = 1.12 ± 0.04 (total χ2 = 121 ± 5). In Appendix B, we collected all figures that show the quality of our fit. Our parametrization 
is able to describe very well the COMPASS 2009 data set [49] (32 points with χ2 = 26.5 ± 4.2; see Fig. B.3), the COMPASS 2017 data 
set [50] (50 points with χ2 = 31.3 ± 3.8; see Figs. B.4 and B.5), and the JLab data set [51] (6 points with χ2 = 4.1 ± 0.7; see Fig. B.6). The 
agreement with the HERMES data set [48] is somewhat worse (30 points with χ2 = 46.2 ± 3.8; see Fig. B.7). We checked that the largest 
contribution to the χ2 comes from the subset of data with K − in the final state [57]. Looking at the previous figures it is important to 
notice, as a check of the results validity, that our predictions well describe also the z and PhT distributions, even if those projections of 
the data were not included in the fit (see Appendix B for more details).

The agreement with vector-boson-production STAR measurements [52] is worse than the SIDIS case, with a χ2 = 13.97 ± 0.6 for 7
points. However, the lower number of points (see Fig. B.8) indicates that STAR data have less influence on the global fit than the SIDIS 
data. In any case, we observe that our predictions follow the sign of the measurements, being negative for W + and positive for W − and 
Z 0. The agreement is similar for the data points projected in pT not included in the fit (see Appendix B for more details).

In Fig. 1, we show the first transverse moment xf ⊥(1)
1T (Eq. (9), multiplied by x) as a function of x at Q 0 = 2 GeV for the up (left panel) 

and down quark (right panel). We compare our results (solid band) with other parametrizations available in the literature [15,17,18,20]
(hatched bands, as indicated in the figure). In agreement with previous studies, the distribution for the up quark is negative, while for 
the down quark is positive and both have a similar magnitude. The Sivers function for sea quarks is very small and compatible with 
zero.
5



A. Bacchetta, F. Delcarro, C. Pisano et al. Physics Letters B 827 (2022) 136961
Fig. 1. The first transverse moment xf ⊥(1)
1T of the Sivers TMD as a function of x for the up (left panel) and down quark (right panel). Solid band: the 68% confidence interval 

obtained in this work at Q 2 = 4 GeV2. Hatched bands from PV11 [15], EIKV [17], TC18 [18], JAM20 [20] parametrizations, and at different Q 2 as indicated in the figure.

The authors of Ref. [21] also find results very similar to the ones in Fig. 1 when they fit the same SIDIS data and COMPASS Drell–Yan 
data with pion beams [58]. In this case, they also compute predictions for W ± and Z 0 production at STAR kinematics which are very 
close to our fitted bands displayed in Fig. B.8. Their strategy is very similar to the one adopted in this work but at higher perturbative 
accuracy, although their unpolarized TMDs are not obtained from an actual fit. However, when they include the STAR data in the global 
fit they artificially increase the statistical weight of those data by a factor ∼ 13. Their global χ2 largely deteriorates and the uncertainty 
on the Sivers function significantly increases. Our finding is that because of large experimental errors STAR data does not affect much our 
final results when including them in the global fit, as discussed in detail in Appendix B.

The authors of Ref. [23] also perform a consistent extraction of both unpolarized and Sivers TMDs, and build contour plots of the 
density distribution in Eq. (1) similar to Fig. 2. A direct comparison is more difficult because the evolution of TMDs is achieved in a 
different framework, and the classification of the perturbative accuracy does not match the standard described in Ref. [10]. The displayed 
x-dependence of their Qiu-Sterman function (or related first kT -moment of the Sivers function as in Eq. (9)) is roughly similar, at least for 
up and down quarks. However, the sea-quark channel shows large oscillations at large x, which entail a strong breaking of the positivity 
constraint of Eq. (20).

In general, the result of a fit is biased whenever a specific fitting functional form is chosen at the initial scale. In our case, we tried to 
reduce this bias by adopting a flexible functional form, as it is evident particularly in Eq. (23). Nevertheless, we stress that our extraction is 
still affected by this bias and extrapolations outside the range where data exist (0.01 � x � 0.3) should be taken with due care. At variance 
with previous studies, in the denominator of the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted 
from data in our previous Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate 
of the statistical error of the Sivers function.

In Fig. 2, we show the density distribution ρa
p↑ of an unpolarized quark a in a transversely polarized proton defined in Eq. (1), at x = 0.1

(upper panels) and x = 0.01 (lower panels) and at the scale Q 2 = 4 GeV2. The proton is moving towards the reader and is polarized along 
the +y direction. Since the up Sivers function is negative, the induced distortion is positive along the +x direction for the up quark (left 
panels), and opposite for the down quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is evident, since we are close to the maximum value of the function shown in Fig. 1. 
The distortion is more pronounced for down quarks, because the Sivers function is larger and at the same time the unpolarized TMD is 
smaller. The peak positions are approximately (kx)max ≈ 0.1 GeV for up quarks and −0.15 GeV for down quarks. At lower values of x, the 
distortion disappears. These plots suggest that a virtual photon hitting a transversely polarized proton effectively “sees” more up quarks 
to its right and more down quarks to its left in momentum space.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the proton must have 
a component with nonvanishing angular momentum. Secondly, effects due to final state interactions should be present [59], which in 
Feynman gauge can be described as the exchange of Coulomb gluons between the quark and the rest of the proton [60]. In simplified 
models [61], it is possible to separate these two ingredients and obtain an estimate of the angular momentum carried by each quark [62]. 
It turns out that up quarks give almost 50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [15]. 
We will leave this model-dependent study to a future publication. A model-independent estimate of quark angular momentum requires 
the determination of parton distributions that depend simultaneously on momentum and position [63,64]. Nevertheless, the study of 
TMDs, and of the Sivers function in particular, can provide important constraints on models of the nucleon [65] and test lattice QCD 
computations [66].

In the near future, more data are expected from experiments at Jefferson Laboratory and CERN. Pioneering measurements in Drell-Yan 
processes with pion beams have been already reported [58], but they are not included in the present analysis because we do not have yet 
a consistent description of quark unpolarized TMDs in a pion. In the longer term, the recently approved Electron Ion Collider project [3,4]
will provide a large amount of data in different kinematic regions compared to present experiments [67]. With this abundance of data, we 
will be able to reduce the error bands, extend the range of validity of the extractions to lower and higher values of x, and obtain a much 
more detailed knowledge of the 3-dimensional distribution of partons in momentum space.
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Fig. 2. The density distribution ρa
p↑ of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the reader, as a function of 

(kx, ky) at Q 2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1, lower panels at x = 0.01. For each panel, lower 
ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the effect of the distortion due to the Sivers function is maximal) while left ancillary 
plots at kx = 0 (where the distribution is the same as for an unpolarized proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 
(see text).
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Appendix A. Details about the fitting functional form

The functional form we chose to parametrize the Sivers function is built in order to automatically satisfy the positivity bound[
k2

T

2M2
f ⊥
1T (x,k2

T )

]2

≤ k2
T

4M2
f 2
1 (x,k2

T ) . (A.1)

It is given by

f ⊥a(x,k2
T ; Q 2) = f ⊥(1)a

(x; Q 2) f ⊥
1T NP(x,k2

T ) , (A.2)
1T 0 1T 0
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with

f ⊥
1T NP(x,k2

T ) = (1 + λS k2
T ) e−k2

T /M2
1

π K (x) (M2
1 + λS M4

1)
f1NP(x,k2

T ) . (A.3)

The f1NP is the nonperturbative part of the unpolarized TMD f1 and is taken from the Pavia17 extraction [1]:

f1NP(x,k2
T ) = 1

π

1 + λk2
T

g1(x) + λg2
1(x)

e−k2
T /g1(x), (A.4)

with

g1(x) = N1
(1 − x)α xσ

(1 − x̂)α x̂σ
, x̂ = 0.1 . (A.5)

The distributions of values for the parameters N1, α, σ , λ are obtained from the Pavia17 fit and can be found in the NangaParbat 
repository.3 For convenience, we report here the values for the relevant replica 105

N1 = 0.285 GeV2, α = 2.98, σ = 0.173, λ = 0.39 GeV−2 . (A.6)

In Eq. (A.3), the M1, λS are free parameters. The K (x) is a normalization factor to guarantee that the weighted integral of f ⊥
1T NP is 1 

and the proper definition of the first kT -moment of the Sivers function is recovered in Eq. (A.2). It is given by

K (x) ≡ π

∫
dk2

T
k2

T

2M2

(
1 + λSk2

T

)
π

(
M2

1 + λS M4
1

)e−k2
T /M2

1
(1 + λk2

T )

π
(

g1(x) + λ[g1(x)]2
)e−k2

T /g1(x) (A.7)

= g1(x) M2
1

2π M2
(

1 + λg1(x)
)(

g1(x) + M2
1

)2 (
1 + λS M2

1

)
⎡⎣1 + 2(λ + λS)

g1(x) M2
1

g1(x) + M2
1

+ 6λλS

(
g1(x) M2

1

g1(x) + M2
1

)2
⎤⎦ .

The Fourier transform of f ⊥
1T NP in Eq. (A.3) reads

f̃ ⊥
1T NP(x,b2

T ) = π

∫
dk2

T J0(kT bT ) f ⊥
1T NP(x,k2

T ) =
exp

(
− b2

T
4

g1 M2
1

g1+M2
1

)
π K (x)

(
1 + λS M2

1

)(
1 + λg1

)(
g1 + M2

1

)
×

{
1 +

(
λ + λS + 2λλS

g1M2
1

g1 + M2
1

)
g1M2

1

g1 + M2
1

(
1 − b2

T

4

g1M2
1

g1 + M2
1

)
− b2

T

2

(
g1M2

1

g1 + M2
1

)3

λλS

(
1 − b2

T

8

g1M2
1

g1 + M2
1

) }

=
2M2 (g1 + M2

1) exp

(
− b2

T
4

g1 M2
1

g1+M2
1

)
g1M2

1

[
1 +

(
λ + λS + 3λλS

g1 M2
1

g1+M2
1

)
2

g1 M2
1

g1+M2
1

]

×
{

1 +
(

λ + λS + 2λλS
g1M2

1

g1 + M2
1

)
g1M2

1

g1 + M2
1

(
1 − b2

T

4

g1M2
1

g1 + M2
1

)
− b2

T

2

(
g1M2

1

g1 + M2
1

)3

λλS

(
1 − b2

T

8

g1M2
1

g1 + M2
1

) }
. (A.8)

The first transverse moment is parametrized as

f ⊥(1)a
1T (x; Q 2

0 ) = Na
Siv

Ga
max

K (x) xαa (1 − x)βa [1 + Aa T1(x) + Ba T2(x)] f a
1 (x; Q 2

0 ) , (A.9)

where Tn(x) are Chebyshev polynomials of order n, and the unpolarized collinear parton densities f a
1 are taken from the GJR parametriza-

tion [47], consistently with the Pavia17 fit. The flavor-dependent factor Ga
max is defined as

Ga
max = max

kT

[
kT

π M

∣∣∣∣ 1 + λSk2
T

M2
1 + λS M4

1

∣∣∣∣ e−k2
T /M2

1

]
max

x

[
xαa (1 − x)βa

∣∣1 + Aa T1(x) + Ba T2(x)
∣∣] . (A.10)

Together with the constraint |Na
Siv| ≤ 1, it is introduced into Eq. (A.9) to guarantee that the Sivers function of Eq. (A.2) satisfies the 

positivity condition of Eq. (A.1). For the relevant replica 105 we have

Gu
max = 1.99 × 10−2, Gd

max = 5.58 × 10−4, Gs
max = 2.42 × 10−3. (A.11)

3 https://github .com /MapCollaboration /NangaParbat.
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Appendix B. Comparison with data

In this section, we present figures showing the quality of our fit. In all plots, our results are represented by solid bands whenever data 
points are actually included in the fit, while hatched bands are predictions for the same measurements projected over different kinematic 
variables. The predictions are obtained by integrating upon the variables over which they are not projected.

In Fig. B.3, we report the results for the COMPASS 2009 run [49] (32 points with χ2 = 26.5 ± 4.2), while in Fig. B.4 and Fig. B.5
we show the 2017 run for positive and negative final state hadrons, respectively [50] (50 points with χ2 = 31.3 ± 3.8). The results for 
JLab [51] are depicted in Fig. B.6 (6 points with χ2 = 4.1 ± 0.7). The HERMES results [48], together with predictions of projections on 
different variables, are shown in Fig. B.7 (30 points with χ2 = 46.2 ± 3.8). Finally, Fig. B.8 contains the results for W ± and Z 0 production 
measured by the STAR Collaboration [52] (7 points with χ2 = 13.97 ± 0.6).
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Fig. B.3. COMPASS 2009 Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of π+ , π− , K + , K − in the final state [49], presented as function of x, z, 
PhT . Only the x-dependent projections have been included in the fit (solid bands), the dependence on other variables is predicted (hatched bands).
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Fig. B.4. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH3) with production of positive hadrons h+ [50], presented as function of x, z, PhT and divided 
in four different Q 2 bins. Same notation as in previous figure.
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Fig. B.5. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH3) with production of negative hadrons h− [50], presented as function of x, z, PhT and divided 
in four different Q 2 bins. Same notation as in Fig. B.3.
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Fig. B.6. JLab Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of positive and negative π in the final state [51], presented as function of x. Same 
notation as in Fig. B.3.

Fig. B.7. HERMES Sivers asymmetries from SIDIS off a proton target (H) with production of π+, π0, π− , K + , K − in the final state [48], presented as a function of x, z, PhT . 
Same notation as in Fig. B.3.
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Fig. B.8. STAR Sivers asymmetries from p − p↑ collisions producing W ± and Z 0 in the final state [52], presented as function of rapidity y and pW
T . Same notation as in 

Fig. B.3.
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