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We study the role of purely external kinematical approximations in inclusive deep-inelastic lepton–
hadron scattering within QCD factorization, and consider factorization with an exact treatment of the target
hadron mass. We discuss how an observed phenomenological improvement obtained by accounting for
target mass kinematics could be interpreted in terms of general properties of target structure, and argue that
such an improvement implies a hierarchy of nonperturbative scales within the hadron.
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I. INTRODUCTION

Understanding the nature of confined systems of
strongly interacting quarks and gluons (or partons), such
as hadrons and nuclei, remains one of the single most
challenging problems in nuclear and particle physics. An
essential tool in this quest has been the factorization of the
short- and long-distance parts of scattering amplitudes,
which has allowed the systematic study of hard scattering
processes in terms of universal sets of parton distribution
functions (PDFs) [1]. While this has proved an enormously
successful paradigm when applied to reactions at high
energies, where typical momentum transfers Q are much
greater than any hadronic mass scales, Q ≫ Oð1 GeVÞ,
delineating the extent to which factorization techniques
may be applicable at lower energies has been a rather more
formidable task.
The transition region at intermediate momentum trans-

fers, Q ∼ 1–2 GeV, where descriptions of phenomena in
terms of parton degrees of freedom (d.o.f.) give way to
nonperturbative dynamics, is still poorly understood. Here
small-coupling quantum chromodynamics (QCD) tech-
niques are often applicable, while at the same time hadronic
mass effects are not always negligible. Phenomena specific
to this regime, such as quark-hadron duality [2–6] and
precocious scaling [7,8] have attracted much interest, and

it has been the focus of dedicated experimental efforts at
Jefferson Lab [9–11].
Extending standard perturbative QCD (and even general

partonic pictures) to the low-Q region also presents
theoretical challenges, particularly since certain mass
effects that are normally treated as negligible in QCD
processes with large Q may become important there.
Consider the basic statement of factorization for the
inclusive lepton–nucleon (or any other hadron or nucleus)
DIS cross section (see, e.g., Ref. [1]),

dσ
dxBjdQ2

¼
Z

dξ
dσ̂

dx̂BjdQ2
fðξ;QÞ þ p:s:; ð1Þ

where xBj ¼ Q2=2P · q is the Bjorken scaling variable,
with P and q the target nucleon and exchanged virtual
photon momenta, respectively, and for simplicity we omit
explicit flavor dependence. The partonic differential cross
section dσ̂ is expressed in terms of the corresponding
scaling variable x̂Bj ¼ Q2=2k̂ · q for the target parton with

momentum k̂ in the subprocess (see Fig. 1 below). The
function fðξ;QÞ is to be interpreted as a probability
distribution of partons with fraction ξ ¼ k̂þ=Pþ of the
nucleon’s light-cone momentum, with extra scale depend-
ence induced by QCD evolution.1 The first term in Eq. (1)
is the end result of a sequence of canonical approximations
which increase in accuracy as Q increases with fixed xBj
[12], while the second term represents power suppressed
(“p.s.”) errors that are proportional to powers of 1=Q2

relative to the first term. Factorization then describes the
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1We define a four-vector vμ in terms of light-cone variables as
vμ ¼ ðvþ; v−; vTÞ, with v� ¼ ðv0 � vzÞ= ffiffiffi

2
p

.
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limit of large Q, with xBj fixed, where these error terms can
safely be ignored.
Knowing the exact value of the correction term in Eq. (1)

requires a much deeper understanding of complex QCD
dynamics than what is treated by the usual factorization.
However, there are certain standard approximations (see,
e.g., Ref. [[13], p. 95]) contributing to the error in Eq. (1)
that deal only with the external kinematics of P and q and
have nothing specifically to do with the dynamics of the
deeply inelastic collision. These are what we will mean by
“purely kinematical” approximations. The most common
of these is a target mass approximation in inclusive DIS:
if the target is moving in light-cone variables with large
“þ” momentum and zero transverse momentum, then
Pμ¼ðPþ;M2=2Pþ;0TÞ≈ðPþ;0;0TÞ. As will be discussed
in detail below, the resulting errors are proportional to
powers of x2BjM

2=Q2, where M is the target nucleon mass.
By contrast, the derivation of factorization uses approx-

imations on internal partonic constituents, whose exact
properties depend on complex details of QCD dynamics.
The resulting error terms are suppressed by powers of
m2=Q2, where m here represents any of the scales asso-
ciated with intrinsic dynamical properties of bound state
partons, such as their virtualities. Since the factorization
theorem is meant to describe the limiting behavior as
1=Q2 → 0, the x2BjM

2=Q2 errors from the kinematical
expansion are typically lumped with the dynamical
m2=Q2 errors. We will, however, refrain from identifying
theOðx2BjM2=Q2Þ terms as a contribution to theOðm2=Q2Þ
corrections in all our discussions so as to emphasize the
different origins of these two types of errors.
Of course, all mass scales are ultimately fixed by the

QCD scale parameter Λ2
QCD, so the internal scales we

associate with m2 should be understood to be proportional
to M2: m2 ¼ ηM2, with η being a dimensionless propor-
tionality factor. So another way then to state the above is
that we will consider expansions in powers of ηM2=Q2

separately from powers of M2=Q2. This is explained in
more detail in Secs. III and IV.
At moderate Q, a natural question is whether all of the

various types of contributions to the error term in Eq. (1)

are really so negligible and, if not, whether some improve-
ment is possible. For instance, when Q ∼ 1 GeV and xBj is
not especially small (xBj ∼ 1), the x2BjM

2=Q2 purely kin-
ematical errors may no longer be negligible. Since they
arise only from kinematical approximations, it is reason-
able to ask if these purely kinematical errors can be
removed with minimal or no modification to the basic
correctness of the factorization derivation for the first
term in Eq. (1). In fact, as we will discuss in Sec. IV,
the standard derivations do not actually require a massless
target approximation. Setting the target mass to zero is an
ancillary step, while keeping it nonzero leads naturally to
Nachtmann scaling [14]. This was actually recognized
some time ago by Aivazis, Olness and Tung (AOT) [15]
in the context of heavy quark contributions in DIS.
Questions of interpretation remain, however. It must be

established, for example, whether it is reasonable to expect
that correction for kinematical mass errors will result in
phenomenological improvements in applications of QCD
factorization. That it should is not obvious since there is no
reason a priori to assume one type of power correction is
more important than another. The mass scales divided
by Q2 that contribute errors to factorization originate
from nonperturbative features of the target hadron, so
the effectiveness of target mass improvements must be
tied to specific features of individual targets. Questions
concerning the relevance of target mass kinematics there-
fore cannot generally be disentangled from questions about
hadron structure.
In this paper we will argue that it is most natural to

expect an improvement from the approach of AOT [15]
if the structure of the target involves a hierarchy of
nonperturbative scales. Keeping certain powers of 1=Q2

while neglecting others makes sense only when there is a
reasonably large variation in mass-squared factors in the
numerators. Questions about the phenomenological use-
fulness of kinematical target mass corrections can then be
reframed as questions about target structure. This is how we
advocate addressing the issue of target mass kinematics
more generally, as explained in more detail in Sec. V.
Before this, in Sec. II we introduce the basic kinematics of
the DIS process at finite energy, keeping all masses in the
structure functions and the kinematic variables on which
they depend. In Sec. III we introduce the massless target
approximation, carefully defining projection operators
and structure functions in the limit of small M2=Q2. The
factorization of the DIS process into a hard scattering
subprocess from massless and on-shell partons is outlined
in Sec. IV, where we write down the explicit formulas for
the structure functions in terms of partonic scattering
amplitudes and nonperturbative PDFs. The relation
between TMC improvement and nonperturbative scale
hierarchy is discussed in Sec. V. Finally, in Sec. VI we
summarize our results and suggest extensions of our
analysis to other applications.

FIG. 1. Illustration of DIS from a composite target (P) in
collinear factorization, with hard scattering of a virtual photon (q)
from an on-shell, massless parton (k̂).
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II. DEEP-INELASTIC SCATTERING
KINEMATICS

The reaction we will consider in the present work is
inclusive lepton scattering from a target hadron, such as a
nucleon, lðlÞ þ NðPÞ → l0ðl0Þ þ XðPXÞ, where lμ and l0μ
are the incident and scattered lepton four-momenta, and Pμ

and Pμ
X are the four-momenta of the target nucleon and

hadronic final state X, respectively. The reaction will be
assumed to proceed through the exchange of a virtual
photon with four-momentum qμ ¼ lμ − l0μ. To make the
calculation more transparent, we work in a frame where the
nucleon moves in the þz direction, the exchanged virtual
photon moves in the −z direction, and both have zero
transverse momentum. In this case the nucleon and photon
four-momenta are conveniently parametrized in terms of
light-front coordinates as

Pμ ¼
�
Pþ;

M2

2Pþ ; 0T

�
; qμ ¼

�
−xNPþ;

Q2

2xNPþ ; 0T

�
;

ð2Þ

where Q≡ ffiffiffiffiffiffiffiffi
−q2

p
, and xN is the Nachtmann scaling

variable [14,16],

xN ≡ −
qþ

Pþ ¼ 2xBj

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2BjM

2=Q2
q ; ð3Þ

so that the Bjorken variable can also be written

xBj ¼
Q2

2P · q
¼ xN

ð1 − x2NM
2=Q2Þ : ð4Þ

In the Breit frame, where the photon has zero energy, the
target has Pþ ¼ Q=ð ffiffiffi

2
p

xNÞ and the four-momenta simplify
to

Pμ ¼
�

Qffiffiffi
2

p
xN

;
xNM2ffiffiffi
2

p
Q

; 0T

�
; qμ ¼

�
−

Qffiffiffi
2

p ;
Qffiffiffi
2

p ; 0T

�
:

ð5Þ

The total inclusive cross section is expressed as a con-
traction of leptonic and hadronic tensors,

E0 dσ
d3l0

¼ 2α2em
ðs −M2ÞQ4

LμνWμν; ð6Þ

where E0 is the energy of the scattering lepton, s¼ðlþPÞ2
is the invariant mass squared of the system, and αem ¼
e2=4π is the electromagnetic fine structure constant. The
leptonic tensor is

Lμν ¼ 2ðlμl0ν þ l0μlν − gμνl · l0Þ; ð7Þ

and the totally inclusive hadronic tensor is defined as

WμνðP; qÞ≡ 4π3
X
X

δð4ÞðPþ q − PXÞ

× hPjjμð0ÞjXihXjjνð0ÞjPi: ð8Þ

Here, the
P

X symbol represents a sum over all possible
final states jXi, including integrals

Z
d3PX

ð2πÞ32EPX

:

For spin-averaged, parity-conserving scattering the had-
ronic tensor can then be expanded into dimensionless
structure functions according to

Wμν ¼
�
−gμν þ qμqν

q2

�
F1ðxBjðxN;M2=Q2Þ; Q2Þ

þ
�
Pμ −

P · q
q2

qμ
��

Pν −
P · q
q2

qν
�

×
F2ðxBjðxN;M2=Q2Þ; Q2Þ

P · q
: ð9Þ

The structure functions take all Lorentz invariants formed
by P and q as arguments. These include P · q andQ2, while
independent mass dependence is left implicit. Instead of
P · q we choose xBj as the independent variable, although
it turns out that xN, in fact, is a more natural choice in
the context of factorization. We will continue to use
the Bjorken variable xBj, however, since that is the more
traditional choice, but will write it in the form
xBjðxN;M2=Q2Þ, as a function of xN andM2=Q2 explicitly.
While this may appear cumbersome initially, it will help
make later approximation steps unambiguous.
The structure functions Fi (i ¼ 1, 2) can be calculated

from the hadronic tensor Wμν using projection tensors,

FiðxBjðxN;M2=Q2Þ; Q2Þ ¼ Pμνi ðxN; Q;MÞWμνðP; qÞ;
½i ¼ 1; 2� ð10Þ

defined by

Pμν1 ≡ −
1

2
gμν þ 2Q2x2N

ðQ2 þM2x2NÞ2
PμPν; ð11aÞ

Pμν2 ≡ 12Q4x3NðQ2 −M2x2NÞ
ðQ2 þM2x2NÞ4

�
PμPν −

ðQ2 þM2x2NÞ2
12Q2x2N

gμν
�
:

ð11bÞ

Up to this point all of the expressions for the cross sections
and structure functions are for exact kinematics. In the next
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section we consider the limit in which the mass of the target
is taken to be much smaller than the scale Q, M=Q ≪ 1.

III. MASSLESS TARGET
APPROXIMATION (MTA)

Purely kinematical approximations are those which
can be defined in the context of Sec. II; that is, by
considering only overall external momentum and with
no reference to hadrons’ constituents or other dynamical
properties. A kinematical approximation replaces P
and q, and the arguments of the structure functions
FiðxBjðxN;M2=Q2Þ; Q2Þ, by different, approximated quan-
tities, without changing anything about the functions in
Eq. (9) themselves.
Let us define the natural approximate target hadron four-

momentum P̃ in a frame where it is moving at relativistic
speeds by setting the target mass to zero,

P → P̃≡ ðPþ; 0; 0TÞ: ð12Þ

The massless target approximation (MTA) is the kinemati-
cal approximation defined by the replacement

P · q → P̃ · q;

wherever this occurs in Eq. (8). To set up the approxima-
tion, it is convenient to first switch the structure function
decomposition to a basis that uses P̃ instead of P,

Wμν ¼
�
−gμν þ qμqν

q2

�
F̃1ðxBjðxN;M2=Q2Þ; Q2Þ

þ
�
P̃μ −

P̃ · q
q2

qμ
��

P̃ν −
P̃ · q
q2

qν
�

×
F̃2ðxBjðxN;M2=Q2Þ; Q2Þ

P̃ · q
: ð13Þ

Here we have defined

F̃iðxBjðxN;M2=Q2Þ; Q2Þ≡ P̃μνi Wμν; ½i ¼ 1; 2� ð14Þ

with the corresponding tensors to project out the structure
functions defined by

P̃μν1 ≡ Pμν1 ðxN; Q; 0Þ ¼ −
1

2

�
gμν −

4x2N
Q2

P̃μP̃ν

�
; ð15aÞ

P̃μν2 ≡ Pμν2 ðxN; Q; 0Þ ¼ −xN
�
gμν −

12x2N
Q2

P̃μP̃ν

�
: ð15bÞ

This is a more convenient basis if we ultimately want to
neglect the minus component of P. Note that it is xN that
appears in the factors on the right side of Eqs. (15), and not
xBj. To relate structure functions in the two bases, we use

ðP̃μνi WμνÞEq: ð9Þ ¼ ðP̃μνi WμνÞEq: ð13Þ: ð16Þ

Applying the projectors (15) gives

F̃1ðxBjðxN;M2=Q2Þ; Q2Þ ¼ F1ðxBjðxN;M2=Q2Þ; Q2Þ;
ð17aÞ

F̃2ðxBjðxN;M2=Q2Þ; Q2Þ ¼ ðQ2 þM2x2NÞ2
Q2ðQ2 −M2x2NÞ
× F2ðxBjðxN;M2=Q2Þ; Q2Þ:

ð17bÞ
We stress that no approximation has been made in the
discussion up to this point. The coefficients in front of the
structure functions in Eqs. (17) are, in fact, the same as
those in the literature that are referred to as “ξ-scaling”
[15,17–20]. The first step in the MTA is the replacement of
xBjðxN;M2=Q2Þ by xBjðxN; 0Þ in the structure functions in
Eq. (13),

Wμν ⟶
MTA eWμν ¼

�
−gμν þ qμqν

q2

�
F̃1ðxBjðxN; 0Þ; Q2Þ

þ
�
P̃μ −

P̃ · q
q2

qμ
��

P̃ν −
P̃ · q
q2

qν
�

×
F̃2ðxBjðxN; 0Þ; Q2Þ

P̃ · q
; ð18Þ

where eWμν is the approximate hadronic tensor. In this
approximation, Eq. (4) gives

xBjðxN; 0Þ ¼ xN; ð19Þ

so that xBj and xN are interchangeable in the MTA.2

The above discussion suggests a definition for the target
mass approximated structure functions F i,

F iðxBj; Q2Þ≡ F̃iðxBjðxN; 0Þ; Q2Þ; ð20Þ

where the script notation is a shorthand that means
xBjðxN;M2=Q2Þ is understood to be everywhere replaced
by xBjðxN; 0Þ, so that kinematical dependence on the ratio
M2=Q2 is neglected. Part of the MTA is to approximate
structure functions defined in the “tilde” [Eq. (13)] and
“nontilde” [Eq. (9)] bases as being the same. From
Eqs. (17), this also introduces only an OðM2=Q2Þ error.
Expanding the structure functions in powers of M2=Q2

gives a concise expression of the MTA,

2Note that an alternative way to project the F̃i structure
functions in both Eqs. (13) and (18) is to replace the explicit
q vectors by q → q̃≡ ð−xBjPþ; Q2=ð2xBjPþÞ; 0TÞ and use
xBjðxN; 0Þ in Eqs. (15) instead of xBjðxN;M2=Q2Þ. We do not
do this here since we wish to regard the q vector as exact.
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FiðxBjðxN;M2=Q2Þ; Q2Þ ¼ F̃iðxBjðxN;M2=Q2Þ; Q2Þ

þO

�
x2BjM

2

Q2

�
¼ F̃iðxBjðxN; 0Þ; Q2Þ

þO

�
x2BjM

2

Q2

�

¼ F iðxBj; Q2Þ þO

�
x2BjM

2

Q2

�
;

ð21Þ

where the approximation is to drop all the xBj2 M2=Q2

errors. In other words, assuming an exact hadronic tensor in
Eq. (8), the MTA [Eqs. (14)–(18)] is equivalent to a set of
natural argument replacements that are reasonable when Q
is very large or xBj is very small. This approximation is
usually made implicitly in discussions of high energy
scattering in the literature [13]; here we have made it very
explicit so that it will be straightforward to reverse it. Each
step in Eq. (21) can be traced back to the unapproximated
hadronic tensor and structure functions. Operationally, it is
implemented by the replacement in Eq. (18).
This completes our general discussion of the exact and

target mass approximated structure functions, based on
considerations of external kinematics alone. In the remain-
der of the paper we will specialize the discussion to the role
of the target mass in collinear factorization.

IV. THE MTA AND COLLINEAR
FACTORIZATION

In this section we discuss how the MTA of the last
section, combined with the standard factorization steps
[12], leads to the well-known collinear factorization theo-
rem of Eq. (1). Again, we will present the steps in greater
detail than is common in the literature, which will help later
to unravel the source of purely kinematical mass sensitivity.
Before any factorization approximations are made, the

exact parton momentum k can in general have both a
virtuality and transverse momentum,

k ¼
�
ξPþ;

k2 þ k2T
2ξPþ ; kT

�
: ð22Þ

The steps to obtain factorization approximate certain
internal lines by exactly lightlike ones. In particular, all
lines entering and exiting the hard partonic scattering
subprocess in Fig. 1 are taken to be massless and on-shell,
so that in Eq. (22) both jk2j and k2T can be taken to be
∼Oðm2Þ ≪ Q2 and hence dropped. The approximated
parton momentum, k̂, is then parallel to the hadron
momentum,

k̂ ¼ ðξPþ; 0; 0TÞ; ð23Þ

where ξ ¼ k̂þ=Pþ is the fraction of the target momentum
carried by the struck parton. These steps for approximating
the partonic momenta are justified in the standard deriva-
tions of collinear factorization, as discussed for instance in
Ref. [12]. The factorization approximations make no
reference to the target mass, so none of the approximations
of the previous section are necessary to move forward with
a factorization derivation.
The structure tensor for the target parton in the factorized

subprocess has a form similar to that of Eq. (9), but with Pμ

replaced by k̂μ,

bWμνðk̂; qÞ ¼
�
−gμν þ qμqν

q2

�
F̂1ðx̂Bjðx̂N; k̂2=Q2Þ; Q2Þ

þ
�
k̂μ −

k̂ · q
q2

qμ
��

k̂ν −
k̂ · q
q2

qν
�

×
F̂2ðx̂Bjðx̂N; k̂2=Q2Þ; Q2Þ

k̂ · q
; ð24Þ

where F̂i are the corresponding structure functions for the
parton. In analogy with the scaling variables for the hadron,
here x̂N is the partonic version of the Nachtmann variable
xN, as the natural generalization of Eq. (3),

x̂N ¼ −
qþ

k̂þ
¼ 2x̂Bj

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x̂2Bjk̂

2=Q2
q ¼ xN

ξ
; ð25Þ

and x̂Bj is the obvious generalization of Eq. (4),

x̂Bj ≡ Q2

2k̂ · q
¼ Q2

2k̂þq−
¼ xN

ξ
: ð26Þ

Since for massless partons k̂2 ¼ 0, the MTA is automatic
for the partonic structure tensor, and x̂N ¼ x̂Bj. Using the
notation of Eq. (20), but now for the partonic target, the
partonic structure tensor can be written as

bWμνðk̂; qÞ ¼
�
−gμν þ qμqν

q2

�
F̂ 1ðx̂Bj;Q2Þ

þ
�
k̂μ −

k̂ · q
q2

qμ
��

k̂ν −
k̂ · q
q2

qν
�
F̂ 2ðx̂Bj;Q2Þ

k̂ · q
;

ð27Þ

where F̂ i are the partonic versions of the massless structure
functions of Eq. (20). The factorization theorem, Eq. (1),
now in terms of hadronic and partonic structure tensors, can
be represented as
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WμνðP; qÞ ¼
Z

1

ξmin

dξ
ξ

bWμνðk̂ðξÞ; qÞfðξÞ þOðm2=Q2Þ: ð28Þ

For brevity here we have suppressed the dependence on the renormalization group scale Q in the PDF fðξÞ, but have
included the explicit ξ argument of k̂ðξÞ to emphasize that the plus component of the target parton is related to the hadron
through the momentum fraction ξ. Applying the projectors in Eqs. (11) allows factorization to be written in terms of
structure functions, still without the MTA,

F1ðxBjðxN;M2=Q2Þ; Q2Þ ¼
Z

1

ξmin

dξ
ξ
F̂ 1ðx̂BjðξÞ; Q2ÞfðξÞ þOðm2=Q2Þ; ð29aÞ

F2ðxBjðxN;M2=Q2Þ; Q2Þ ¼ Q2ðQ2 −M2x2NÞ
ðQ2 þM2x2NÞ2

Z
1

ξmin

dξ F̂ 2ðx̂BjðξÞ; Q2ÞfðξÞ þOðm2=Q2Þ; ð29bÞ

where from Eq. (26) one has x̂BjðξÞ ¼ xN=ξ. For the lower limit of the ξ integration, the minimum ξ occurs when
ðk̂þ qÞ2 ¼ 0, which gives ξmin ¼ xN. Thus, without kinematical target mass approximations, the factorized expressions for
the structure functions are

F1ðxBjðxN;M2=Q2Þ; Q2Þ ¼
Z

1

xN

dξ
ξ
F̂ 1ðxN=ξ; Q2ÞfðξÞ þOðm2=Q2Þ

≡FAOT
1 ðxBjðxN;M2=Q2Þ; Q2Þ þOðm2=Q2Þ; ð30aÞ

F2ðxBjðxN;M2=Q2Þ; Q2Þ ¼ Q2ðQ2 −M2x2NÞ
ðQ2 þM2x2NÞ2

Z
1

xN

dξ F̂ 2ðxN=ξ; Q2ÞfðξÞ þOðm2=Q2Þ

≡ FAOT
2 ðxBjðxN;M2=Q2Þ; Q2Þ þOðm2=Q2Þ: ð30bÞ

The errors here arise entirely from assumptions about the smallness of intrinsic parton scales; there are no xBj2 M2=Q2 types
of errors since no MTA has been made. The second lines of Eqs. (30a) and (30b) define the “AOT structure functions,”
FAOT
i , as the factorized structure functions with exact external kinematics [15], and this prescription for taking target masses

into account will be referred to as the AOT method. (Note that the notation in Eqs. (30) differs from that in Ref. [15], whose
focus was more on the treatment of heavy quark effects rather than on kinematical errors.) If, in addition, xN is expanded in
powers of xBj2 M2=Q2, then Eqs. (30) become

F1ðxBjðxN;M2=Q2Þ; Q2Þ ¼ F 1ðxBj; Q2Þ þO

�
x2BjM

2

Q2

�

¼
Z

1

xBj

dξ
ξ
F̂ 1ðxBj=ξ; Q2ÞfðξÞ þO

�
max

�
m2

Q2
;
x2BjM

2

Q2

��
; ð31aÞ

F2ðxBjðxN;M2=Q2Þ; Q2Þ ¼ F 2ðxBj; Q2Þ þO

�
x2BjM

2

Q2

�

¼
Z

1

xBj

dξ F̂ 2ðxBj=ξ; Q2ÞfðξÞ þO

�
max

�
m2

Q2
;
x2BjM

2

Q2

��
: ð31bÞ

The expressions in Eqs. (30) are the most immediate
results of a factorization derivation of the style of Ref. [12],
and the factorized terms on the right-hand side can be
considered nearly exact if the m2=Q2 errors (i.e., quantities
like parton virtuality) are negligible. On the other hand,
Eqs. (31) are the more usual way of presenting the final
factorization result, which arises from applying the MTA of

Sec. III to the factorized expressions in Eq. (30). The
resulting errors are suppressed by xBj2 M2=Q2 and are here
seen to be of purely kinematical origin. The approximation
of dropping all power corrections in Eq. (31) and keeping
only the first term on the right will be referred to as the
“factorized massless target approximation” (FMTA), since
it just combines standard factorization with the MTA. If we
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wish to keep kinematical target mass effects, we will simply
maintain Eqs. (30).
In order to make the various approximations very

explicit, the discussion in the last two sections of the basic
theoretical set up has been much more detailed than what
is usually found in the literature. This has required the
introduction of a number of new notations for structure
functions, which is useful to briefly summarize here:

(i) Hadronic structure functions, which are represented
by the Roman font Fi, are functions of the inde-
pendent variables xBj and Q2; however, since it is
ultimately convenient to express them in terms of xN
and Q2, we write xBj explicitly as a function of xN
and M2=Q2 as in Eq. (9).

(ii) The hadronic tensor can be reexpressed in a different
basis of Lorentz vectors, by using P̃μ rather than Pμ

to define the corresponding structure functions F̃i in
the massless basis, which we distinguish by the tilde
[“ e”] symbol.

(iii) When this is combined with the approxima-
tion xBjðxN;M2=Q2Þ → xBjðxN; 0Þ we obtain the
F̃iðxBjðxN; 0Þ; Q2Þ structure functions evaluated as
in Eq. (18).

(iv) The script notation for the structure functions F i is
an abbreviation for the special case when M2=Q2 is
set to zero in xBjðxN;M2=Q2Þ, as in Eq. (20).

(v) A hat [“ b ”] on a structure function denotes a
massless and on-shell partonic target. Note that
structure functions in roman font with a hat (F̂i)
and in script font with a hat (F̂ i) are identical, since
k̂2 ¼ 0. Also, partonic structure functions are identi-
cal with (the partonic analogues of) either the Wμν

[Eq. (9)] or eWμν [Eq. (18)] bases, since the target
parton in thehard part is alwaysmassless and on-shell.

For many subsequent practical applications some of these
notations will be redundant; however, since they make the
different layers of conventions and approximations very
explicit, they will be useful for our present purposes.
To conclude this section, let us also summarize the key

observations:
(1) There are two independent types of approximations.

One is the purely kinematical approximation de-
scribed in Sec. III, with errors suppressed by powers
of x2BjM

2=Q2. It is independent of whatever theo-
retical techniques might be used to actually calculate
the structure functions. The second approximation is
the factorization theorem in Eq. (28), with errors
suppressed by powers of m2=Q2, where m2 is a
typical scale associated with intrinsic dynamical
properties of partons, such as their virtualities.

(2) The MTA is not necessary for deriving collinear
factorization. The relation x̂Bj ¼ xN=ξ in Eq. (26)
is usually automatically approximated to xBj=ξ, but

this is not needed. One may simply stop at Eqs. (30)
and view the MTA application that leads to Eqs. (31)
as ancillary.

(3) The standard factorization derivation, as embodied
in the AOT method, automatically gives xN instead
of xBj as the natural scaling variable for the structure
functions (neglecting logarithmic Q dependence
from higher orders in αs).

Before concluding, let us also mention that a number of
other prescriptions for dealing with the effects of a nonzero
target mass on kinematics have been proposed in the
literature, but generally these impose extra assumptions
on the dynamics. We discuss these in more detail in
Appendix. Having reviewed the mathematical statement
of factorization in the presence of target masses in detail,
and the corresponding expressions for the structure func-
tions, in the next section we turn to the question of the
physical interpretation of an observed improvement from
target mass effects.

V. WHEN ARE TARGET MASS
KINEMATICS RELEVANT?

The most straightforward and correct approach to
computing the inclusive DIS structure functions is to
simply avoid introducing unnecessary kinematical errors
by choosing to keep target momentum exact and applying
the AOT expressions for factorization in Eqs. (30). A
question of interpretation remains, however; without spe-
cial knowledge of the target structure there is no reason
a priori to expect the powers of x2BjM

2=Q2 from purely
kinematical approximations to be any more important than
other power-suppressed corrections.

A. Scattering from subsystems

To interpret an observed phenomenological improve-
ment obtained by using the AOT method instead of the
FMTA, consider several generic scenarios for scattering
from an extended target that could reveal a nontrivial
relation between target mass effects and general properties
of hadron structure. Consider, for instance, that if the target
is a composite object (the precise nature of which need
not be specified at this stage), then the sum of scattering
amplitudes may described as occurring off subsystems of
the target, as depicted in Fig. 2. We leave the nature of the
dynamics completely unspecified at this stage and only
assume that diagrammatic arguments apply generally. To be
completely general, we also allow for the possibility that
the lower (nonperturbative) blob is empty so that scattering
can occur off the entire target as a whole.
To be quantitative, we define the generic subsystem to

have a momentum before the collision parametrized by the
four-vector
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p ¼
�
XPþ;

m2
T

2XPþ ; pT

�
; ð32Þ

where the squared transverse mass m2
T ≡ p2 þ p2

T denotes
the sum of the virtuality p2 (which could in principle be
negative) and transverse momentum p2

T of the subsystem,
and X ¼ pþ=Pþ is the light-cone fraction of the target
carried by the subsystem. The collision with the exchanged
virtual photon produces another system of particles with
invariant mass-squared

v2 ≡ ðpþ qÞ2: ð33Þ

Such a system need not be physical and could be off-shell;
for example, it could be a part of a hadronizing string.
Without loss of generality, we may describe the total lepton
scattering amplitude for the whole target AtotðP; q; l0Þ,
which in general depends on three variables (chosen here
to be P, q and l0), in terms of the amplitude for scattering
off the subsystem,

Apðp; q; l0Þ:

To connect to the total amplitude Atot, the subsystem
amplitude needs to be integrated over all components of
p, weighted by a function that characterizes the four-
momentum distribution of the subsystem in the overall
target.
To avoid confusion in what follows below, it is important

not to view the diagram in Fig. 2 as the sort of “region”
diagram common in factorization derivations [12], but
rather as a topological representation in which the blobs
are not necessarily characterized by any particular (small or
large) momentum. The blobs simply denote an arbitrary
subgraph assignment for some graphical contribution to the
amplitude; some lines are routed through the (upper)
photon–subsystem part of the graph, while others are
diverted through the (lower) part of the graph connected
to the target.
Such organization does not achieve much interest until

we pose questions about possible relationships between the

total target and subsystem momenta, P and p. If we find
that there is an assignment in Fig. 2 such that p2

T,m
2
T ≪ Q2

for typical values of p2
T and m2

T, then up to power-
suppressed errors the amplitude for scattering from the
subsystem becomes a function of X only,

Apðp; q; l0Þ ¼ ApðX; q; l0Þ þO

�
max

�
p2
T

Q2
;
m2

T

Q2

��
: ð34Þ

The entire factorization derivation can then be performed
for the subamplitude ApðX; q; l0Þ rather than for the total
amplitude AtotðP; q; l0Þ.
In general the invariant mass v2 varies between small

values (≈0) and large values (of order Q2 or larger). In the
standard QCD factorization paradigm, large-v2 behavior is
describable by perturbative calculations. One can therefore
define an approximate invariant mass squared ṽ2 of the
final state subsystem which is calculated by approximate
methods that deal with values of v2=Q2 ¼ Oð1Þ,

v2 ≡ ṽ2 þ δv2; ð35Þ

where δv2 is the correction needed to recover the exact v2

value. The approximate invariant mass squared ṽ2 may vary
from zero to OðQ2Þ, while δv2 is of the order of a typical
small scale comparable to p2

T and m2
T. Expanding X in

terms of these variables, we can write

X ¼ xN

�
1þ ṽ2

Q2
þp2

T þ δv2

Q2
−
m2

Tðp2
T þ ṽ2 þ δv2Þ
Q4

þ � � �
�
;

ð36aÞ

and, further expanding the Nachtmann variable xN, the
light-cone fraction becomes

X ¼ xBj

�
1þ ṽ2

Q2
þ p2

T þ δv2 − x2BjM
2

Q2

−
ðm2

T þ x2BjM
2Þðp2

T þ ṽ2 þ δv2Þ − 2x4BjM
4

Q4
þ � � �

�
:

ð36bÞ

If the typical values of small mass scales associated with the
interactions between subsystems (p2

T, m2
T and δv2) are

totally negligible, but x2BjM
2 is comparatively large, then

the expansion in Eq. (36a) is an improvement over the
expansion in Eq. (36b). In other words, in the limit of
large Q,

X ≈ xN

�
1þ ṽ2

Q2

�
ð37aÞ

provides a better approximation than

P 

p p+q 

q 

FIG. 2. DIS from a subsystem (p) of a composite target (P).
The solid lines connecting to the virtual photon (q) through the
upper blob can be any constituents of the target.
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X ≈ xBj

�
1þ ṽ2

Q2

�
: ð37bÞ

In both of these cases, the connection between X and
external observables has lost any sensitivity to the details of
interactions between subsystems. The only dependence on
dynamics is through ṽ2, which is calculable in factorization
and perturbation theory. Suggestively defining�

1þ ṽ2

Q2

�
≡ 1

ξ
; ð38Þ

the subsystem amplitude in Eq. (34) can be written

Apðp; q; l0Þ ¼ ApðxN=ξ; q; l0Þ þO

�
max

�
p2
T

Q2
;
m2

T

Q2

��
ð39aÞ

¼ ApðxBj=ξ; q; l0Þ þO

�
max

�
p2
T

Q2
;
m2

T

Q2
;
x2BjM

2

Q2

��
: ð39bÞ

If x2BjM
2 ∼Q2 but p2

T, m
2
T, δv

2 ≪ Q2, then truncating the
expansion in (39a) is valid while in (39b) it is not. If,
however, xBj2M2 ∼ p2

T, m
2
T, δv

2, then there is no reason to
expect either expansion to be any better or worse than the
other. The same statements apply to the overall cross
section, since it is related to Ap by taking the square
modulus, summing over hadronic final states, and integrat-
ing over pT and mT (whose typical values are restricted by
the p2

T, m
2
T ≪ Q2 assumption to be small and are thus

decoupled from Ap).
The above discussion naturally leads us to the conclusion

that, if x2BjM
2 is large but subsystem scales are small, then

the cross section reduces to a function of xN=ξ, with the
momentum fraction ξ calculable from methods that account
for large ṽ2—all of which can be performed within standard
factorization. The AOT set of expressions [Eqs. (30)] is just
a specific realization of this within collinear factorization.
Namely, the hard scattering subprocess is always a function
of xN, while large final state invariant masses in the hard
part of the scattering amplitude are accounted for by using
xN=ξ in the subprocess, with ξ obtained as in Eqs. (37). In
other words, if the typical jp2j is small and p is collinear to
P, then the steps for deriving factorization can be applied
directly to jApðp; q; l0Þj2 with p2 ¼ 0 rather than to
jAtotðP; q; l0Þj2. The result is automatically the AOT fac-
torization in Eqs. (30). Furthermore, since it accounts for
large ṽ2, the AOT improvement applies to all orders in
perturbation theory.

B. TMC improvement and hierarchy of scales

Now we may ask what general characteristics of a
composite target can give rise to a scenario where p2

T,

m2
T ≪ x2BjM

2, which would justify the result in Eq. (39a)
being an improvement over that in Eq. (39b). At one
extreme, it cannot be the case of scattering from a single,
isolated perturbative quark or gluon, as these can emit
large amounts of collinear and soft radiation. Moreover, a
perturbative quark has virtuality that ranges up toOðQ2Þ. A
system of collinearly propagating quarks and gluons that
are nearly massless and on-shell cannot be described purely
in terms of short-distance, perturbative propagators. At the
other extreme, the p2

T, m
2
T ≪ x2BjM

2 condition also cannot
arise when all or most of the lines in Fig. 2 are routed
through the upper part of the diagram, leaving the blob in
the lower part of the diagram completely empty, which
would correspond to mT ∼M.
The only way, therefore, to consistently arrive at a

scenario whereby p2
T, m

2
T ≪ x2BjM

2, and thus Eq. (39a)
(in terms of xN) be an improvement over Eq. (39b) (in terms
of xBj), is if the target consists of more than one separate,
low-invariant mass (relative to x2BjM

2) subsystem that can
play the role of the lines entering the upper blob in Fig. 2.
To avoid pushing jp2j too high, the interactions between
subsystems need to be reasonably weak. While the indi-
vidual subsystems necessarily need to have a small typical
invariant mass jp2j relative to x2BjM

2, each subsystem can
involve internal interactions that involve scales much larger
than p2

T,m
2
T, δv

2, but still much smaller thanQ2. Therefore,
it is only the scales involved in the interactions between
subsystems that need to be very small in order for the above
argument for the usefulness of the AOT method to be valid.
Our general conclusion is that any observed improvement

in the theoretical description of scattering that comes from
using Eq. (39a) instead of Eq. (39b) is suggestive of a
hierarchy of “clustered” structures within the target, repre-
senting correlated subsystems of strongly interacting par-
ticles. We stress that we are totally agnostic about what those
clusters might be; our observation is simply that, kinemat-
ically, some sort of clustering is preferred. Thus, an improve-
ment in the phenomenological description using the AOT
method can be interpreted as evidence that scattering occurs
off a collection of weakly interacting subsystems (since p2

T,
m2

T and δv2 must be small relative to x2BjM
2), while a failure

to observe any improvement suggests a more complicated
type of scattering. (Some of this also echoes earlier dis-
cussions of TMCs in DIS at low energies, such as in Ref. [3],
see pg. 325, where the scale M0 there is analogous to the
mass m used in the present work.) A subsystem can in
general be any nonperturbative system, consisting of one or
more interacting particles, whose internal interactions are
stronger than interactions with other subsystems in the
target. The subsystem could, for example, be colored or
colorless; for the latter, we notice that for a nucleon target the
region of kinematics where the x2BjM

2=Q2 corrections are
important corresponds to the nucleon resonance region, and
the subsystems might be a collection of hadrons, such as
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nucleons and pions. However, the exact nature of the target
or its subsystems and their interactions is not relevant to our
discussion.
The above argument is very general, since it only relies

on the kinematics of scattering off subsystems in a target,
and the assumption that scattering from the composite
object can be described in generally diagrammatic terms.
In particular, it applies to arbitrary orders in perturbation
theory. In fact, arriving at Eqs. (39) does not even require
factorization or partonic d.o.f. specifically. It only states
that, if scattering occurs off weakly interacting light and
nearly on-shell subsystems in a heavier target, then the
cross section at a particular v2 becomes a function of xN=ξ,
where ξ is either 1 or is obtainable from large-ṽ2 methods.
An example of such a scale hierarchy could be nuclear

targets, where the subsystems correspond to nucleons; the
hierarchy arises because interactions between nucleons are
much weaker than the typical interactions binding quarks
and gluons inside the nucleons [21,22]. Other examples
may be nucleons coupled to soft pseudoscalar mesons
through chiral dynamics, which can give rise to unique
nonperturbative features in sea quarks in the proton
[23–27]. A possible hierarchy with explicit color d.o.f.
could involve partons clustered into constituent quarklike
subsystems [28,29]. Conversely, an example of a target
where one would not expect an improvement would be the
case of a hadron target whose mass comes almost entirely
from a single pointlike quark, such as a heavy quark
hadron. We stress again, however, that our arguments here
do not rely on any assumptions about dynamics of the
composite object or the nature of its subsystems, but only
on the kinematical considerations associated with target
mass improvement.

VI. CONCLUSION

In this paper we have presented a detailed description of
the basic structure function analysis of deeply inelastic
scattering in the context of QCD factorization, fully taking
into account hadronic masses in order to give clarity to the
notion of “purely kinematical” mass effects. Even when
clearly stated, however, the meaning of an improvement in
the theoretical description of the scattering process from
purely kinematical effects of the target mass begs for a
physical interpretation.
The discussions in Secs. III–V make clear that an

improvement is natural if factorization is understood to
apply to scattering off a small invariant mass subsystem or
cluster inside a composite target. Models of the nucleon
with multiple scales and a clustering structure imply a
particular kind of phenomenological prediction—that stan-
dard collinear QCD factorization, in the form of AOT
framework for treating target masses with exact external
kinematics, can be extended to smaller Q and larger xBj
than might otherwise be expected from perturbative QCD
arguments. In the limit of large Q, with all other scales

fixed, and assuming xBjM ≈Q, it is the first terms on the
right-hand sides of Eqs. (30a) and (30b) that give the
asymptotic behavior. The clustering hypothesis suggests
that, as Q decreases, the power corrections initially come
mainly from switching between xBj and xN in the usual
factorized expressions, and also accounting for overall
kinematic factors such as in Eq. (30b).
An interesting consequence is that the degree of purely

kinematical improvement found by keeping the target mass
can be viewed as probing the degree of clustering in the
target. To quantify this, it will be interesting to investigate
how much improvement can be expected within specific
models of the target. This way of viewing the target mass
effects suggests a variety of future directions for research.
From phenomenological and global QCD analyses of

deep inelastic lepton–nucleon scattering data, it is already
well established that treatments of the target mass that
switch xBj to xN significantly improve the description of
the data and extend its range to lower Q and larger xBj
values [3,5,30–35]. On the other hand, clear room for
refinement exists, for example to distinguish between
precise implementations of TMCs that have been proposed
in the literature [18–20,36–41]. Also, upcoming experi-
ments will allow for comparison between different target
structures, including pions, kaons, and nuclei [6,42–44].
While the discussion in the present work has for simplicity
been restricted to a single flavor, the generalization to the
more realistic case of multiple flavors is straightforward.
Moreover, the treatment of structure functions in Secs. II
through IV can be directly extended to spin and polariza-
tion dependent structure functions. This will be important
since the extraction of certain spin dependent effects can
be especially sensitive to target mass effects [45–50]. We
leave these interesting and important topics for future
consideration.

ACKNOWLEDGMENTS

We thank J. C. Collins for useful discussions. This work
was supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under Award No. DE-
SC0018106, and by the DOE Contract No. DE-AC05-
06OR23177, under which Jefferson Science Associates,
LLC operates Jefferson Lab. F. S. is funded by the Deutsche
Forschungsgemeinschaft (DFG) Project No. 392578569.

APPENDIX: CONTRAST WITH OTHER
TMC METHODS

Throughout this paper we have adopted what could be
viewed as the most natural meaning of a “purely kinemati-
cal correction”; namely, a correction that is totally inde-
pendent of any assumptions pertaining to the dynamics
within the target. The MTA from Sec. III accounts for all
such approximations that one encounters in the context
of standard collinear factorization in DIS. The purely
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kinematical target mass correction is therefore uniquely of
the form derived by AOT [15] (see Sec. IV), since this is
merely the combination of the MTA and standard factori-
zation, which is independent of target mass kinematics.
Any other corrections must involve at least some set of
additional assumptions about parton dynamics.
In the literature there exist a number of other pre-

scriptions that are sometimes described as “purely kin-
ematical” target mass corrections, but which in various
ways differ from the AOT approach. Probably the best
known of these is the treatment by Georgi and Politzer
[36] based on the operator product expansion (OPE). (For
extensions to the polarized case see Refs. [45–48].) Here
the expressions for target mass corrected structure func-
tions contain extra terms involving integrals of structure
functions, which arise from additional constraints or
assumptions that are beyond the purely kinematical
corrections implicit in the AOT approach. As discussed
by Ellis, Furmanski and Petronzio [38], and more recently
by D’Alesio, Leader and Murgia [51], the origin of the
additional integral factors is the constraint that the struck
partons inside the target correlation function should be
exactly massless and on-shell, for all longitudinal
momenta and for all transverse momenta. Absent some
exotic dynamical mechanisms within the target, this
appears to be a relatively strong assumption, which in
itself is not a necessary one for the standard derivation of
collinear factorization.
Another way to understand the difference between the

AOT approach and the OPE-based prescription is to note
that in the latter the kinematical TMCs that are kept are
only those that are relevant for a leading twist treatment,
while kinematical corrections associated with higher twists
are neglected. This type of assessment of Oðm2=Q2Þ-
type errors runs the risk of entangling the Oðx2BjM2=Q2Þ
target mass corrections with those from other sources. By
refraining from introducing Oðx2BjM2=Q2Þ-type errors
from the outset, the direct method used by AOT has
the advantage of including all kinematical target mass
effects regardless of twist. It is worth emphasizing here that

modern derivations of factorization do not need to use the
OPE, but rather can be formulated as direct, arbitrary-order
expansions in powers of 1=Q2 [12]. An added benefit
of the direct method, which can be argued to be the more
rigorous one, is that it does not a priori need to entail
an MTA.
Still other TMC formalisms have been proposed that also

differ from, or go beyond, AOT [19,38]. For example, the
Accardi-Qiu prescription [19] uses collinear factorization
together with the dynamical assumptions that well-defined
target and jet directions exist at rather low Q2 [52,53] and
that the initial state baryon number flows only along one
such direction [54]. This relies on a very literal matching
between virtual partonic states and a particular final state
distribution of hadrons, which goes beyond the standard
factorization paradigm [1,12] but regulates the behavior
near the kinematical threshold at xBj ¼ 1.
The direct factorization approach can also help to

contextualize the so-called “threshold problem” [36],
which is the observation that the structure function for
nonzero target mass in the OPE derivation has support at
xBj ¼ 1 (where kinematically only elastic scattering should
contribute) and can be nonzero in the unphysical region
xBj > 1 (up to xN ¼ 1) [55]. This has led to various
proposals for modifying the target mass corrected structure
functions such that they have support only in the physical
region [40,41,51,55–57]. The solution to the “threshold
problem” from the factorization perspective is simply that
the conditions for which QCD factorization itself is valid
break down as xBj → 1. While the structure functions are
defined through Eq. (10) for all xBj ≤ 1, and the parton
distribution fðξÞ exists for all parton momentum fractions
ξ ∈ ½0; 1�, the factorization formulas in Eqs. (28) and (30)
relating the two receive increasingly large corrections at
large xBj that render the perturbative expansion in powers of
both αs and 1=Q2 no longer a useful one. Improvements
beyond this require more sophisticated methods for treating
the large-xBj region than what is available in the standard
factorization treatment.
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