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A B S T R A C T

Computing the trace of the inverse of large matrices is typically addressed
through statistical methods. Deflating out the lowest eigenvectors or singu-
lar vectors of the matrix reduces the variance of the trace estimator. This
work summarizes our efforts to reduce the computational cost of computing
the deflation space while achieving the desired variance reduction for Lattice
QCD applications. Previous efforts computed the lower part of the singular
spectrum of the Dirac operator by using an eigensolver preconditioned with
a multigrid linear system solver. Despite the improvement in performance in
those applications, as the problem size grows the runtime and storage demands
of this approach will eventually dominate the stochastic estimation part of the
computation.

In this work, we propose to compute the deflation space in one of the fol-
lowing two ways. First, by using an inexact eigensolver on the Hermitian, but
maximally indefinite, operator Aγ5. Second, by exploiting the fact that the
multigrid prolongator for this operator is rich in components toward the lower
part of the singular spectrum. We show experimentally that the inexact eigen-
solver can approximate the lower part of the spectrum even for ill-conditioned
operators. Also, the deflation based on the multigrid prolongator is more effi-
cient to compute and apply, and, despite its limited ability to approximate the
fine level spectrum, it obtains similar variance reduction on the trace estimator
as deflating with approximate eigenvectors from the fine level operator.

c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

To estimate ab initio elementary particle properties, Lattice Quantum Chromodynamics (LQCD) involves the
evaluation of correlation functions expressed as traces over products of propagators with constant matrices. The
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propagators include the inverse of the Dirac operator defined on a 4- or 5-dimensional lattice. In practice, the resulting
matrix size makes it impossible to compute these traces directly by evaluating the propagators at every point in the
lattice. The general strategy is to replace the exact computations by stochastic estimations and control its variance.
For the case study in this paper, the propagators are closed, which leads to the evaluation of the trace on the inverse
of the Dirac operator, A−1.

There are several methods to estimate the trace of an inverse matrix. The simplest method is to estimate the trace
as a multiple of the average diagonal element of A−1, E[Ne†i A−1ei], where ei is the i-th column of the identity matrix,
and N is the dimension of A. The variance of this estimator grows with N2 and can be very large even when the
diagonal elements of A−1 have a small variance. Sophisticated versions of this approach can be found in [1, 2].

The standard tool for this problem is the Hutchinson method [3] which estimates the trace of A−1 as

t(A−1) = E[x†Ax] =
1
s

s∑
j=1

x†j A
−1x j, (1)

where x is a random vector whose elements xi satisfy E[x†i x j] = δi, j.
If the xi are Rademacher vectors, i.e., following the discrete uniform distribution with values ±1, the trace es-

timator can also be written as t(A−1) = 1
s A−1 � XX†, where X is a matrix with all the xi as columns and � is the

element-wise product of matrices. Then, the variance associated with the trace estimator t(A−1) is

Var[t(A−1)] =
2
s
‖A−1‖2F −

2
s

N∑
i=1

|(A−1)i,i|
2. (2)

In practice A−1x j is computed approximately as A−1
ξ (x j) by an iterative solver that stops when ‖A A−1

ξ (x j) − x j‖ ≤

ξ ‖x j‖. The bias of the resulting operator can be corrected by an independent estimation of the trace of A−1 − A−1
ξ .

This trick is known as the Truncated Solver Method [4].
As in any Monte-Carlo process, the variance reduces linearly with the number of samples, s. Every sample

involves solving a linear system with the Dirac operator, and for cases where the variance is too large, collecting
enough samples can be expensive. Partitioning and deflation can reduce the variance further.

A deterministic way to reduce the variance is by partitioning the matrix rows and columns into k groups and
approximating the trace of the diagonal blocks [5, 6, 7]. As k approaches N, the variance reduces to zero. In practice,
it is used to remove known strongly coupled components on A−1 by setting them on different groups. Examples of this
technique are spin-color dilution (separating strongly coupled spin-color components) and partitioning (separating
close spacetime components). The most basic way of lattice spacetime partitioning is the red-black (immediate
neighbors have the opposite color to the node). Hierarchical probing [8] is a sophisticated extension of this approach
that identifies a series of nested colorings at increasing lattice distance. The nesting ensures that, in case of increasing
the number of partitions, only linear systems associated with the new colors have to be solved. The drawback of
this technique is that the variance is significantly reduced only at the particular number of partitions k = 2Di, for
i = 0, 1, . . . and D being the number of dimensions of the lattice. Those particular values of k are called the closing
colors.

For similar configurations to the 323 × 64 lattice used in this paper, and with spin-color dilution in all cases, the
red-black partition reduces the variance of the original trace estimator by 3-fold, while using higher-level hierarchical
probing with 512 vectors reduces the variance by 10-fold [9, 10]. The latter reduction in variance is modest compared
with merely using Hutchinson with the same number of random vectors. In practice, partitioning is combined with
other techniques and especially deflation.

The initial motivation for deflation is that singular values near zero of the Dirac operator are responsible for the
large variance in the trace estimator. Equation (2) relates the variance with the spectrum of the traceless matrix inverse
through the Frobenius norm, which is the addition of all singular values squared. The singular value spectrum of the
traceless matrix is a small perturbation of the original spectrum if the largest singular values of A−1 are far greater than
the diagonal elements of A−1 in magnitude, which is the case for Dirac operators. As shown in [10], if the left and
the right singular vectors of a non-Hermitian matrix A are statistically independent standard random unitary matrices,
then the variance of t(A−1) is approximately

∑N
i=1 σ

−2
i (Theorem 2.6 in [10]), where σi are the singular values of A.

The authors also show various examples where the variance is close to that estimation, even when the assumptions of
the theorem on the singular vectors are slightly relaxed.
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A−1 A−1(I − UU†) (A−1(I − UU†)) � (HH†)

Fig. 1. Absolute value of the elements of the inverse of a Wilson 2D 322 (left), after deflating the space associated to the 100 smallest singular
values (middle), and, besides that, applying spin-color dilution and 32 basis of hierarchical probing (right).

The above suggests that the trace estimator has less variance if applied to an operator removing the near-null part
of the spectrum (deflation). The strategy is, therefore, to split the trace into two parts, A−1P and A−1(I −P), so that the
trace of A−1P can be efficiently computed, and the variance of estimating the trace of A−1(I−P) is far smaller than the
variance with A−1. If the singular values of A−1 decay quickly, only a small percentage of the spectrum needs to be
deflated to reduce sufficiently the variance on the trace estimator of A−1(I − P). For the trace of A−1, the left singular
vectors of A should be used in P [10].

An interesting synergy occurs when combining partitioning and deflation. The lower part of the operator’s spec-
trum has the dominant contribution to the magnitude of the elements of A−1, mainly affecting the matrix elements that
correspond to long distances in the lattice (see Fig. 1, left). After removing part of the lower spectrum, the remaining
eigenvectors contribute to more localized regions of the matrix (see middle graph), for instance, among certain sub-
diagonals of the matrix, that can be better addressed by partitioning (see right graph). For the same lattice 323 × 64
that hierarchical probing reduces the variance by 10-fold over the original Hutchinson method; also deflating 1000
approximate singular values gives a 100-fold total variance reduction [10]. In [4], they reported a speedup of two in
cost by combining both techniques. They also considered the acceleration stemming from solving linear systems with
the deflated operator, A−1(I − P), which is a well-known effect [11, 12, 13].

To compute the deflation space, previous efforts computed the eigenpairs of the Hermitian Dirac operator, Aγ5,
usually with Chebyshev-accelerated Arnoldi [14, 4]. [10] briefly discussed alternatives to compute the deflation
space. In particular, they discourage the use of methods such as eigCG [15] or Lanczos because they have to be used
unpreconditioned, and thus the convergence is slow. Instead they show results using the state-of-the-art preconditioned
eigensolver PRIMME [16]1 on A†A. The preconditioner employed is based on the adaptive algebraic multigrid (AMG)
[13] as implemented in QOPQDP2. In this paper, we consider a different strategy for preconditioning that seems more
effective.

Because the number of singular vectors required scales as a small percentage of the lattice volume, for large-size
lattices the cost of computing and storing the singular vectors becomes unaffordable. Iterative eigensolvers, e.g.,
Krylov and Davidson-type, access the operator at least once for every singular vector computed, yielding a quadratic
cost in terms of lattice volume3. Similarly, storage and the application of the deflation basis involve quadratic terms.
In addition, orthogonalization of eigenvectors introduces a cubic cost on the number of singular vectors, and thus on
the lattice volume, albeit with a much smaller constant because of more efficient memory access patterns.

1For an introduction to preconditioned eigensolvers see [17] and section 11 in [18].
2http://usqcd-software.github.io/qopqdp/
3The block version of the eigensolvers can reduce the number of accesses and the computational time by a constant factor, but it does not

remove the quadratic term of the cost.
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In LQCD, the Dirac operator becomes more ill-conditioned as the fermion mass is lighter and, as a consequence,
linear system solvers take more iterations (critical slowing down). The adoption of multigrid techniques has accel-
erated the solution of the linear systems dramatically, not only keeping the number of iterations independent of the
operator’s conditioning but also making the cost of the solvers scale linearly to the lattice volume [13, 19].

In this work we propose the use of multigrid directly into reducing the variance of the trace estimator to overcome
the scalability limitations of deflation. The approach is described in section 2. Although we compute the lower part
of the singular spectrum of a much smaller dimension operator, its performance continues to be critical, as we show
in section 3. In section 4, we evaluate the variance reduction of the new approach experimentally. We offer some
conclusions in Section 5.

2. Multigrid Variance reduction

To establish notation, we show the two-grid method for solving Ax = b for a Hermitian matrix A. A two-grid
iterative method alternates between the following two steps:

1. Coarse grid correction: xc
i = xi + V(V†AV)−1V†(b − Axi)

2. Smoothing: xi+1 = xc
i + M−1(b − Axc

i ).

In step 1, the method projects the residual vector to a lower dimension (coarsening), corrects it, and prolongates it
back. The matrices V and V† are the multigrid’s prolongator (or interpolator) and restrictor respectively. In step 2, the
new residual vector b − Axc

i is smoothed by applying few iterations of a linear system solver, e.g., GCR, on A which
we represent by the operator M−1. The goal of the coarse grid is to correct directions that the fine grid smoothing
struggles to fix. One of the most relevant distinctions between multigrid variants is the coarsening.

In adaptive multigrid for LQCD, the setup starts with the approximate solutions of Ay(i) = 0 for n different random
initial guesses. The returned n solution vectors, Y , are rich in directions of singular vectors with singular values close
to the origin, because linear solvers have difficulty resolving these lower spaces. Interestingly, these singular vectors
on the lower part of the spectrum look similar on a local lattice scale, and nearby singular vectors can be generated
by combining local pieces from different singular vectors [20, 21]. Taking advantage of that, the adaptive multigrid
method partitions the lattice into a set of m compact subdomains that maintain these “local” features. Then, each of
the solution vectors is broken into j = 1, . . . ,m vectors, each with support only on the subdomain D j. This process is
referred to as blocking,

[Y]D = [D1Y, D1Y, . . . , DmY] , with Di ∩ D j = ∅ ∀i , j,

where Di is the projector onto the domain Di. For numerical stability, implementations work with an orthonormal
basis V of the blocked solutions [Y]D.

To see the role of deflation in multigrid, we rewrite the previous two steps in terms of the oblique projector
P = AV(V†AV)−1V† on the space of V ,

xi+1 = xi + A−1P(b − Axi) + M−1(I − P)(b − Axi).

The coarse grid correction is interpreted as the exact solution of the components of the residual vector on P, and
smoothing takes care of the remaining components of the residual vector. The deflation view suggests that, in general,
if V approximates the lower part of A’s spectrum, then the effective condition number of A−1(I − P) is smaller than
that of A−1, accelerating the convergence of the iterative method M−1.

In the case of the trace estimation, the deflation splits the trace of A−1 into the trace of A−1(I − P) and the trace of
A−1P, so that the trace of A−1P can be computed efficiently, and the variance of estimating the trace of A−1(I − P) is
far smaller than with A−1. As with solving linear systems, we are interested in P approximating the lower part of A’s
spectrum.

2.1. Choice of projector
If P is the oblique projector defined above and V is of much smaller rank than N, the trace of A−1P can be

computed efficiently since trace A−1AV(V†AV)−1V† = trace V(V†AV)−1V† = trace(V†AV)−1, which is the trace of a
smaller matrix. If V is an invariant subspace, P becomes the orthogonal spectral projector. If V is far from an invariant
space, the variance of the trace estimator t(A−1(I − P)) is usually smaller with the orthogonal projector than with the
oblique projector. Unfortunately, there is no efficient way to approximate the trace of A−1P if P = VV†, unless V is
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close enough to left singular space of A so that the errors on the singular values are smaller than the standard deviation
of the trace estimator. In this work, we propose the use of the oblique projector but also spend the time to compute
and report the variance of t(A−1(I − P)) for the orthogonal projector as a rough estimate of the lower bound to the
variance achievable by any projector of that rank.

If A is not a Hermitian positive definite matrix, and V is not close to a left singular space, the coarse operator
V†AV may have singular values that are close to zero but do not correspond to singular values of A, which are known
as spurious values. In addition to making V†AV ill-conditioned, these small spurious values increase the variance of
the t(A−1(I − P)). One can consider variants of the oblique projector that may prevent the directions in V that are far
from an eigenspace from harming the final variance,

trace A−1 = trace A−1(I − AV(V†KAV)−1V†K) + trace V†KV(V†KAV)−1.

Setting K = A−1 avoids the problems of spurious values and makes P the orthogonal projector on V . If A is not
Hermitian, another obvious choice for K is A†, but it makes the coarse operator more expensive by introducing more
nonzero elements. In the results presented in Section 4, we use K = γ5, that does not protect against the directions in
V that are far from eigenspaces and may result in small spurious eigenvalues, but it is somehow optimal as we explain
in the following. For the spurious values, we supplement this technique with filtering of the prolongator space, as
explained in the next section.

If A−1 is not Hermitian, one can reduce the variance by evaluating the trace of the symmetric operator (A−1+A−T )/2
instead, which has the same trace and less or equal variance. So symmetric and Hermitian matrices are optimal for
variance reduction under symmetrization. The spin-color dilution probing basis H transforms any γ5-Hermitian matrix
into a Hermitian, and we wish that the deflated operator be also γ5-Hermitian. It is easy to see that the operator with
the projector for K = γ5, A−1(I − AV(V†γ5AV)−1V†γ5), is γ5-Hermitian.

2.2. Filtering

The blocking of the approximate solutions to the n equations Ayi = 0 (the yi are often called the null vectors)
produces approximations to a large part of the lowest singular spectrum of A. However, the quality of these approxi-
mations deteriorates rapidly beyond a few lowest singular vectors. Still, using these approximations as an orthogonal
projector would effectively reduce the variance of the trace estimator. With the oblique projector, there is an optimal
size for the deflation space beyond which the interior singular vectors are not accurate at all, and variance increases.
We have confirmed this experimentally with Laplacian matrices and the ensembles presented in Section 4.

It is not clear how to identify this optimal size of the deflation basis a priori. However, this is not necessary since
the application of the oblique deflation operator can be decoupled from the inversions of A−1zi in the Hutchinson
method. Specifically, we propose to compute and store first a sufficiently large rank of the lower part of the spectrum
of the coarse operator V†AV , say ŪΣV̄†. The deflated operator in the Hutchinson method would then involve A−1(I −
P)zi = A−1zi−VV̄(Ū†V†KAVV̄)−1Ū†V†Kzi, for the entire Ū, V̄ or some column subset of them. After completing the
inversions with the noise vectors Z = {zi, i = 1, . . . , n}, the deflation part can be recomputed with different number of
triplets, and the optimal rank of P can be identified. This a posteriori analysis can be done efficiently without storing
any vector of lattice dimension, just the matrices, Z†VV̄ , and Ū†V†KZ.

Finally, we note the difference between our approach, which computes the eigenspaces from the coarse space, and
the approach in [21] where the computed fine grid eigenspace is stored compactly using the prolongator.

3. Computation of the deflation space

The γ5-Hermiticity of the Wilson operator as well as of the coarse operators built by multigrid allows for several
algorithmic alternatives for computing the smallest singular values and their vectors. First, we examine the relative
performance of these alternatives. However, as the density of singular values near zero increases with lattice volume,
the eigenvalue problems become particularly challenging for iterative methods, and complementary techniques must
be employed.

3.1. Choice of eigensolver

A common approach to approximate the smallest singular values of A is to use some variant of the Lanczos
method on either A†A or Aγ5. However, without preconditioning, Lanczos converges slowly for the operators that we
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Table 1. Number of inversions in computing the 10 smallest singular vectors on a Schwinger model Wilson 322 with several approaches.
The eigensolvers mark an eigenpair (λ, x) as converged when ‖γ5A−1x − λ−1x‖ ≤ 10−2‖A−1‖. The inverter used in all cases, A−1

ξ , is QMR
stopping at relative tolerance ξ = 10−2. GD+k is from PRIMME, and Lanczos is Matlab’s eigs, both with default settings.

Approach # Inversions
GD+k on A†A with preconditioner A−1

ξ A−1
ξ

† 60

GD+k on A−1
ξ A−1

ξ

† 34
GD+k on Aγ5 with preconditioner γ5A−1

ξ 27
GD+k on γ5A−1

ξ 23

Lanczos on A−1
ξ A−1

ξ

† 100
Lanczos on γ5A−1

ξ 25

are working with. Alternatively, the shift-and-invert Lanczos has much faster convergence at the expense of solving a
linear system of equations per (outer) iteration. We consider the inexact Lanczos variant, in which the linear systems
are solved approximately with a relative tolerance ξ. The approximation also limits the accuracy of the computed
eigenspace by ξ.

Besides inexact Lanczos, we also consider Generalized Davidson, a preconditioned method that offers a few more
techniques for improving convergence and robustness (the GD+k method) [22]. We test both the inexact GD+k
variant on the operator A−1

ξ and the exact GD+k on the operator Aγ5 or A†A, while providing the solution of linear
systems as a preconditioner instead.

Table 1 shows a comparison of the various eigensolver alternatives on a Schwinger model Wilson operator4, a
322 lattice, and β = 6. The experiments are performed in MATLAB and, although the problem size is small, they
are indicative of the performance of these methods on much larger problem sizes. We observe that working with
A†A involves more solutions of linear systems than working with Aγ5. For the latter operator, inexact Generalized
Davidson performs slightly better than Generalized Davidson with preconditioner and inexact Lanczos.

3.2. Eigensolver tuning

The Dirac operators that we work with exhibit a fast decay of the singular value spectrum, so most of the eigen-
methods on γ5A−1

ξ obtain good approximations within an average of two iterations per singular triplet. The singular
triplets closest to the origin need more inversions (outer steps), and each of those inversions takes many more iter-
ations than for more interior triplets. Therefore tuning the eigensolver and the multigrid inverter can be performed
early before computing thousands of singular triplets.

Because γ5A−1
ξ and the corresponding coarse grid operator are indefinite Hermitian matrices, they still may suffer

from many spurious eigenvalues near zero. In some cases, this may cause the inverter to stagnate at an error level well
above the requested ξ. A common way to avoid stagnation is to shift the operator of the linear systems to reduce its
condition number. Shifting the operator by the diagonal iγ5 moves the eigenvalues away from the origin (see Fig 2,
left), while the eigenvectors of γ5A−1 and (Aγ5 + iτI)−1 have the same order with respect to the distance of their
eigenvalues from the origin (see Fig 2, right).

The new operator after the shifting is no longer Hermitian but is normal. One option is to modify a Hermitian
eigensolver to support normal operators. Specifically, the projected Rayleigh-Ritz problem at every iteration needs
to be solved with a Schur decomposition instead of a Hermitian eigensolver. Another option is to use non-Hermitian
eigensolvers. We followed the former approach, making the proper changes in PRIMME. When the inverter fails, it
happens in the first few iterations of the eigensolver when spurious eigenvalues near zero are present. In that case, we
rebuild the multigrid inverter with a larger shift, and the eigensolver is restarted.

A challenge with any eigensolver that computes a large number of eigenpairs is the cost of orthogonalization. The
number of floating-point operations associated with orthogonalization grows as O(N×#SV×iterations). In addition, on
massively parallel environments, orthogonalization involves between O(#SV) and O(#SV2) global synchronizations
depending on the algorithm. It is clear, therefore, that for sufficiently many singular values (#SV) orthogonalization

4Generated with quantum-mg, source code at https://github.com/weinbe2/quantum-mg.

https://github.com/weinbe2/quantum-mg
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Table 2. Configuration of the Dirac-Wilson operator and the multigrid solver used in the experiments. The Preconditioned settings build
the multigrid for the odd-even operator for solving linear systems. The Unpreconditioned multigrid is used to obtain the singular vectors
of the original operator.

Preconditioned Unpreconditioned
Configuration Dimension Blocking Null vectors Blocking Null vectors Dimension

fine grid (N) per level (m) per level (n) per level per level of coarsest

323 × 64 25,165,824 44, 24 24, 32 44 24 393,216
β = 6.3 44, 24 24, 32 32,768

µ = −0.2390 44 48 786,432
44, 24 48, 64 65,536

643 × 128 402,653,184 44, 23 × 4 24, 32 44 48 12,582,912
β = 6.3 44, 24 48, 64 1,048,576

µ = −0.2416

Table 3. Running times for computing the partial singular decomposition on Wilson operators and coarse operators listed on Table 2.
Configuration # Inversions Inverter time Ortho. time Total time

Wilson 323 × 64 on 22 nodes:

1024 SV on A τ = 0.00 1,429 655 254 957
nv 24 & 1024 SV on coarse op. τ = 0.04 7,544 1,770 16 1,797

nv 24, 32 & 1024 SV on coarse op. τ = 0.04 6,664 90 2 97
nv 48 & 1024 SV on coarse op. τ = 0.04 7,794 8,570 92 8,826

nv 48, 64 & 1024 SV on coarse op. τ = 0.04 7,725 193 22 364

Wilson 643 × 128 on 256 nodes:

1024 SV on A τ = 0.02 3,821 5,874 860 6,952
nv 48, 64 & 1024 SV on coarse op. τ = 0.02 6,675 586 119 807
nv 48, 64 & 4096 SV on coarse op. τ = 0.02 21,865 1,919 1,036 3,122

time eventually dominates the eigensolver performance for LQCD. We demonstrate the performance of the GD+k
eigensolver on the configurations of two large lattices shown in Table 2.

In Table 3 we can see that orthogonalization time starts to dominate for the coarse operator of the Wilson 643×128
case. Going from 1024 to 4096 singular triplets, the number and the cost of inversions increases by a factor of 3.3.
However, the orthogonalization time increases by a factor of 8.8, making it a third of the total computation time.
Block variants of iterative methods, including GD+k, can utilize better optimized linear algebra library functions and
thus may reduce the orthogonalization time by a small factor. However, orthogonalization remains the scalability
bottleneck.

The motivation to find the deflation space from a coarse operator is twofold: compute a much larger space and
do all the operations on matrices of much smaller dimension. However, the benefits are not commensurate. First, the
coarse level operators V†AV are typically much denser in nonzeros per row than A, so despite a significant reduction
in the dimension of the matrix, the time savings are moderate. For example, consider the 323 × 64 lattice in Table 2.
The first coarse level (24 null vectors) is 12 times smaller than the fine level. Yet, the cost per inversion is only half.
Second, although the floating-point operations in orthogonalization reduce linearly with the dimension, the number
of processors and synchronizations remains the same. Therefore the parallel performance of the orthogonalization
kernel deteriorates and its time does not reduce. In the examples of Table 2, the matrix of the coarsest levels (with
48, 64 null vectors) is 384 times smaller than the fine level. However, when solving for 1024 singular vectors, the
orthogonalization times per iteration reduce only by factors of 62 and 12 for the lattices 323 × 64 and 64 × 128
respectively.

To conclude, even though the inverter on A spends most of the time on the coarsest level, the eigensolver on the
coarse operator spends significantly less time on the inverter.

4. Experimental Performance of the Estimator

Our benchmark deflation test is the use of the orthogonal projector of the approximate left singular vectors of A,
computed with an inexact eigensolver as described in Section 3 and Algorithm 1 below. Our proposed method uses an
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Fig. 2. Eigenvalue spectrum after shifting a Schwinger model Wilson 322, A, with τiγ5 for values of τ of 0.5 and 1 (left). Transformation of
the eigenvalue spectrum of the inverse of the Hermitian operator, γ5A−1, after shifting, (Aγ5 + τiI)−1 (right).

oblique projector to deflate the subspace of a multigrid prolongator that corresponds to the lower part of the singular
spectrum of the coarse operator as described in Algorithm 2.

Input: Operator, A; deflation space rank, k; tolerance, ξ; shift, τ; partition basis, H
1 Compute deflation space: U = eigs(γ5(A + iτγ5)−1

ξ , largest magnitude, k, ξ)
2 Compute the deterministic part: t0 =

∑
i u†i A−1

ξ ui

3 Compute the stochastic part: t1 = t(A−1
ξ (I − UU†) � HH†)

4 Return t0 + t1
Algorithm 1: Variance reduction for trace estimation using an orthogonal projector of approximate singular vectors
of A

Input: Operator, A; deflation space rank, k; tolerance, ξ; shift, τ; partition basis, H
1 Compute multigrid prolongator W; γ5W = WγW

5
2 Compute deflation: Ū = eigs(γW

5 (W†AW + iτγW
5 )−1

ξ , largest magnitude, k, ξ)
3 Factorize ÛΛÛ† = Ū†γW

5 W†AWŪ, and set U = ŪÛ
4 Compute the direct part: t0 =

∑
i u†i γ5uiλ

−1
i

5 Compute the stochastic part: t1 = t(A−1
ξ (I − AWγ5UΛ−1U†W†) � HH†)

6 Return t0 + t1
Algorithm 2: Variance reduction for trace estimation using an oblique projector from approximate singular sub-
space of the coarse operator

The implementation is developed within QOPQDP, a library in the USQCD suite which provides several operators
and linear system solvers. We only use the Wilson clover operator and the multigrid even-odd solver. We instantiate
two multigrid variants as explained in the caption of Table 2. The preconditioned multigrid variant is based on the
odd-even operator and is used for solving the linear systems in the stochastic approximation of the trace, and also
for the inversions of the inexact eigensolver of Algorithm 1. The unpreconditioned multigrid variant is used for
generating the prolongators and the coarse operators from which the deflation space will be computed in Algorithm 2.
At coarse levels, the solution of the linear systems is not accelerated with a multigrid recursion. Instead, even-odd
preconditioned GCR is employed. We extended the implementation of QOPQDP solvers to support the implicit iτγ5
shifting of the operator and the access to the coarse operators from PRIMME.
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Fig. 3. Experimental estimation of the variance of t(A−1
ξ (I − P) � HH†) as the rank of the deflation projector P increases (left), and the sine

of the angles between the approximate singular vectors from the operator and the subset of the prolongators used for deflation (right), for
Wilson 323 × 64 (top) and Wilson 643 × 128 (bottom). Error bars indicate the jackknife error. The tolerance is ξ = 10−2.

For the stochastic estimation step, t(A−1
ξ (I − P) � HH†), our implementation follows a blocked approach in which

the 12 vectors of spin-color dilution of each hierarchical probing vector hi are processed together. This can poten-
tially accelerate the solution of the linear systems, and the application of the projectors for Algorithm 1, where the
orthogonal projectors can employ optimized BLAS matrix-matrix multiplication routines.

Tuning the prolongators configuration is crucial to get good variance reduction. In the examples tested, we found
that the number of null vectors used for setting up the multigrid levels should be twice as many for Algorithm 2 than
the ones used only to solve linear systems. For variance reduction, we configure the solver used on the null vectors to
stop at a relative residual norm tolerance of 10−2 or after 200 iterations.

4.1. Variance Reduction
We show that deflating with a prolongator subspace reduces the variance of the trace estimator, and the effective-

ness is related to how close the prolongator subspace is to the lower part of the operator’s spectrum. As a base case for
comparison, we consider the undeflated matrix after 2 hierarchical probing (HP) vectors have been applied with full
spin-color dilution, i.e., 24 inversions. The best results are obtained after 512 HP vectors with the maximum number
of vectors deflated.



10 Eloy Romero etal / Journal of Computational Physics (2019)

Table 4. Times on NERSC’s Edison estimating the trace from 2 noise vectors (s = 2) solving the linear systems with a tolerance ξ = 10−2

using a partitioning of full spin-color dilution and 512 hierarchical proving vectors. Approaches detailed in algorithms 1 and 2 are
compared.

Computing t(A−1
ξ (I − P) � HH†)

Computing deflating space P Applying P Solving LS Variance

Wilson 323 × 64 on 22 nodes:

1024 SV on A 957s 353s 2,400s 10
nv 24 & 1024 SV on coarse op. 269s 297s 2,400s 35

nv 24 32 & 1024 SV on coarse op. 97s 303s 2,400s 55
nv 48 & 1024 SV on coarse op. 5489s 318s 2,400s 8

nv 48 64 & 1024 SV on coarse op. 430s 326s 2,400s 18

Wilson 643 × 128 on 256 nodes:

1024 SV on A 6,952s 725s 5,903s 1,700
nv 48 64 & 4096 SV on coarse op. 3,122s 1,126s 5,903s 640

In Fig. 3(a) we show results on the Wilson 323 × 64 lattice. Deflating the 1024 smallest singular triplets computed
with Algorithm 1 with tolerance ξ = 10−2 and 512 HP, spin-color diluted vectors reduces the variance more than
four orders of magnitude. The top-left graph in Fig. 3(a) shows the effect of prolongators with the four different
configurations listed in Table 2. For the HP2 and HP32 cases, deflation does not have as much of an effect because
the nearest neighbor connections that HP has not removed yet dominate. For 512 HP vectors, we see that deflation
from the first coarse level is very close to the benchmark fine grid deflation (curves 1 and 3). Deflating with singular
spaces from the second level is also close to the benchmark up to 100 singular vectors but deflating with more does
not have an additional benefit.

An explanation for the limited benefit at the coarsest level is seen in the top-right graph of Fig. 3 that shows the
sines of the angles between the computed singular vectors of A and the prolongator subspaces. The prolongators
with smaller angles tend to perform better. The graph also shows how fast these angles increase in the interior of
the spectrum. All prolongator subspaces have almost no component to singular spaces after the 1000th lowest one,
and we should not expect a further reduction on the variance estimation by increasing the rank. Finally, notice that
prolongators generated with more null vectors (curves 3 and 5) yield a smaller variance.

In Fig. 3(b) we show a similar experiment on the Wilson 643 × 128 lattice. We limit the number of computed
triplets from the original operator to 1024 due to memory limitations on Edison’s nodes, but we let the multigrid
deflation use up to a rank of 4096. As in the previous case, both deflation spaces have a similar effect on the variance
for the same rank. Deflation achieves a speedup of 20 over the undeflated HP512 experiment.

The second operator is 16 times larger than the first, so it expected that many more vectors are needed to get a
similar deflation effect as on the first operator. At the same time, the prolongator subspace from the second coarse
level of the second operator has more components on the inner part of the spectrum. This fact may indicate that the
effectiveness of the multigrid deflation also scales with the operator dimensions. Further experiments are required to
confirm these claims.

Finally, we give a rough estimate on the speedup of these techniques over performing simply a Hutchinson method
with random vectors and no HP or dilution. Both experiments start at 24 inversions and obtain a little more than 4
orders of magnitude improvements with 512*12 = 6144 inversions. This corresponds to speedups of about 50-100
over the Hutchinson method.

4.2. Performance
Table 4 reports the timings for the computational kernels involved in estimating the trace with just two noise

vectors. The most expensive operations are the computation of the deflation space and the inversions in the stochastic
estimation of the trace. Notice that applying the deflation for approximate singular vectors from the original matrix is
usually cheaper than applying the oblique projector in multigrid deflation, even though the latter prolongator requires
less storage. This is because the oblique projector involves a multiplication with the original operator, and because the
orthogonal projector is implemented in a block fashion, which is ten times faster than applying the deflation vector by
vector. Using a block version of the oblique projectors, i.e., applying the operator and the prolongators on multiple
vectors at once, may also accelerate the computation significantly.
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5. Summary

In this work, we show that, in the context of reducing variance in the stochastic evaluation of disconnected loops
in LQCD, inexact eigensolvers are efficient in approximating the lower part of the singular value spectrum when a fast
linear system solver is available. The Dirac operator can be shifted if the problem is too ill-conditioned. However,
computing and storing a fraction of the lattice volume of the singular vectors is computationally prohibitive.

We show that the prolongators generated by adaptive multigrid solvers without even-odd preconditioning have
limited accuracy on the lower part of the spectrum, and the accuracy degrades quickly into the inner part of the
spectrum. However, the decay in the accuracy may be slower on larger Dirac operators. In addition, proper tuning of
the multigrid configuration can give enough accuracy to make the prolongators suitable for reducing the variance of
trace estimators on the ensembles we have tested and with significant computational gains over the fine-grid deflation.
As noted before, for large matrices, the speedup over plain Hutchinson method without hierarchical probing can reach
two orders of magnitude.
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