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We use a chiral model for pion interactions, in the inverse amplitude formalism, to perform a
simultaneous analysis of lattice QCD results for pion-pion scattering in all three isospin channels. The input
is the finite-volume two-pion spectrum computed using lattice QCD from six ensembles on lattices
elongated in one of the spatial dimensions. A two-flavor dynamical lattice QCD action is used with two
quark masses corresponding to a pion mass of 315 and 224 MeV. The spectrum in the elastic region is
subjected to a global fit which takes into account full correlations across isospin, pion mass and decay
constant. The parameters from the fit are used to perform a chiral extrapolation to the physical point. The
cross-channel fit results in a more precise determination of the parameters of the model when compared
with single channel fits. We obtain, mπaI¼0

0 ¼ 0.2132ð9Þ, and mπaI¼2
0 ¼ 0.0433ð2Þ as well as mσ ¼

443ð3Þ − i221ð6Þ MeV and mρ ¼ 724ð4Þ − i67ð1Þ MeV. Several aspects of scale setting and consistency
with previous analyses of lattice QCD results are discussed as well.
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I. INTRODUCTION

Lattice QCD calculations provide an ab-initio access to
particle scattering subject to the strong interaction.
Calculations of two-hadron states are performed in a small
cubic volume with periodic boundary conditions and they
are connected analytically to infinite-volume scattering
amplitudes via mapping established in Refs. [1–3]. In this
context, pion-pion scattering has been a prime subject for
lattice QCD calculations, in isospin I ¼ 2 [4–21], I ¼ 1
[22–37], and I ¼ 0 [38–42].
Since most lattice QCD calculations are carried out, for

technical reasons, using quark masses heavier than the
physical ones, extrapolation of lattice QCD results to the
physical point requires a model for energy and pion mass
dependence. Chiral perturbation theory (ChPT) allows for
the controlled expansion of the ππ scattering amplitude in
quark masses and meson momenta. The ChPT expansion is
valid only in the nonresonant region around the threshold.
Resonances such as ρð770Þ and f0ð500Þ (or “σ”), but also

the high energy behavior of the scattering amplitudes,
require a nonperturbative treatment, usually guided by
imposing constraints from analyticity and two-body uni-
tarity. The inverse amplitude method (IAM) [43–48]
provides a well-established framework in this sense. It is
unitary and matches the chiral pion-pion amplitude [49,50]
up to the next-to-leading order (NLO).
The IAM describes different isospin channels within the

same approach; the fit parameters in form of low-energy
constants, pion masses, and pion decay constants enter
different channels and connect them. Here, for the first time
we apply this method to lattice QCDdata in different isospin
channels determined from the same ensembles [27,40,51],
thus minimizing the effect of data inconsistencies.
In comparison to previous studies in which the IAM was

applied [52–55] we allow here the pion mass and decay
constant to vary and include their full correlations with the
two-hadron energy levels (ELs) in the fit; for the isospin
I ¼ 2 channel alone, this was recently achieved in
Ref. [51]. In addition, the correlations of ELs between
different isospin channels are taken into account, for the
first time. We work in lattice units throughout the paper up
to the last step, when evaluating the amplitude at the
physical pion mass, which involves a scale setting.
The global fit allows one to address issues that remained

unresolved in previous studies. For example, using SU(3)
unitarized ChPTwith contact terms [56], which can only be
approximately matched to NLO SU(3) CHPT, it was found
that data from Nf ¼ 2 lattice QCD calculations by different
groups [24–27] extrapolate to consistently low physical ρ
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masses [54] [see Refs. [57–60] for more recent one-loop
SU(3) versions]. Within the model, the KK̄ channel could
explain the discrepancy, but also missing higher orders in
the model could be responsible, or systematic effects on the
side of lattice QCD calculations: Small volumes could
induce large exponential corrections that cannot be sys-
tematically represented in models for the scattering region.
Scale setting can be another source of discrepancy in lattice
QCD data. See also Ref. [52] for a corresponding analysis
of Nf ¼ 2þ 1 lattice QCD calculations. Here, we have the
opportunity to analyze different isospin channels at the
same time with a model that matches to NLO two-flavor
ChPT. This will allow us to avoid some of the potential
pitfalls at least for the results computed by the GW lattice
QCD group [27,40,51].

II. LATTICE QCD DETAILS

The input used in this study are two-hadron state
energies in a finite box with periodic boundary conditions
computed using lattice QCD. Our results use two different
quark masses corresponding to a pion mass of mπ ¼
224 MeV and mπ ¼ 315 MeV. For each quark mass we
use three different box geometries to scan the energy region
below the inelastic threshold in each channel. The param-
eters for each of the six lattice ensembles are listed in
Table I.
All lattice results are computed using QCD with two

mass-degenerate quark flavors (Nf ¼ 2 QCD). This is a
good approximation of the real world when focusing on the
lightest hadrons which are composed mainly of up and
down quarks, as is the case in this study. Moreover, Nf ¼ 2

QCD is also a very interesting theoretical model with a
minimal number of parameters: one quark mass and ΛQCD.
This can be used as a precise test bed for nonperturbative
aspects of QCD. To generate the ensembles, both gauge and
quark actions use improved discretizations. For the gauge
action we use Lüscher-Wise action [61] and for the quarks
we use normalized hypercubic (nHYP) discretization [62].
The data analyzed here correspond to two-pion states for

all three possible isospin combinations. Specific details can
be found in Refs. [27,28] for I ¼ 1, Ref. [40] for I ¼ 0, and

Ref. [51] for I ¼ 2. Here we review briefly the lattice
methods used to compute the two-pion state energies and
the other relevant observables used in this study.

A. Two-pion finite-volume spectrum

The spectrum of two-hadron states in a box with periodic
boundary conditions is quantized. The energy levels, in the
elastic region, can be related with the scattering amplitude
in the infinite volume. To extract the energy levels we use
the standard variational method [63]. For each isospin
channel we construct a set of interpolating fields that are
expected to have large overlap with the lowest lying states
in the spectrum. We include sufficient interpolators to
resolve all the states with energies below the inelastic
threshold. The interpolators Oi are used to construct a
correlator matrix,

CijðtÞ ¼ hOiðtÞO†
jð0Þi: ð1Þ

The eigenvalues are extracted by solving the generalized
eigenvalue problem,

Cðt0Þ−1
2CðtÞCðt0Þ−1

2ψ ðnÞðt; t0Þ ¼ λðnÞðt; t0Þψ ðnÞðt; t0Þ: ð2Þ

Here t0 is a parameter that is adjusted for each isospin to
help dampen the effects of excited state contributions. It
was shown in Refs. [63,64], that the energies of the system
can be extracted from the long-time behavior of the
generalized eigenvalues

λðnÞðt; t0Þ ∝ e−Ent½1þOðe−ΔEntÞ�: ð3Þ

Finite-volume states will inherit the symmetries of the
box and they can be classified according to the irreducible
representations (irreps) of the box symmetry group. To
properly identify the states corresponding to the energy
levels extracted from the variational analysis, we need to
design interpolating fields that have the appropriate trans-
formation properties. For this study we use both cubic
boxes and boxes that are elongated in one of the dimen-
sions. The relevant lattice symmetry group for the cubic
box is Oh whose 10 irreps are conventionally named as

TABLE I. Summary of the ensembles used in all isospin channels. Included for reference are the lattice geometry and elongation η, the
lattice spacing a, the number of configurations in each ensemble, the pion mass, the current quark mass [see Eq. (5)], and the pion decay
constant.

Ensemble Nt × N2
x;y × Nz η a½fm� Ncfg amπ ampcac

u=d afπ

E1 48 × 242 × 24 1.00 0.1210(2)(24) 300 0.1931(4) 0.012 26(5) 0.0648(8)
E2 48 × 242 × 30 1.25 300 0.1944(3) 0.012 39(4) 0.0651(6)
E3 48 × 242 × 48 2.00 300 0.1932(3) 0.012 27(5) 0.0663(6)
E4 64 × 242 × 24 1.00 0.1215(3)(24) 400 0.1378(6) 0.006 12(5) 0.0600(10)
E5 64 × 242 × 28 1.17 378 0.1374(5) 0.006 20(4) 0.0600(8)
E6 64 × 242 × 32 1.33 400 0.1380(5) 0.006 19(4) 0.0599(10)
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A�
1 ; A

�
2 ; E

�; T�
1 ; T

�
2 , and for the elongated box D4h whose

10 irreps are A�
1 ; A

�
2 ; E

�; B�
1 ; B

�
2 . In the energy range we

study, scattering in the I ¼ 0 and I ¼ 2 is dominated by the
l ¼ 0 partial wave, and for I ¼ 1 the l ¼ 1 partial wave. In
a finite box, different partial waves are mixed by the finite-
volume effects. The rotationally symmetric SO(3) angular
momentum multiplets in the continuum are split into
multiplets transforming under the symmetry group of the
box. The splitting is shown in Table II (for details see
Ref. [65]). We see that the relevant lattice irreps for I ¼ 0, 2
channels are Aþ

1 in both box symmetries. For the I ¼ 1

channel we use the A−
2 irrep which is sensitive to the

elongation.
Once the appropriate operators are determined, correla-

tion functions are computed using Wick contractions on the
quark fields. The resulting quark diagrams depend on the
isospin channel—the details are included in the references
listed above. The correlation functions require the evalu-
ation of the all-to-all quark propagator, that is the quark
propagator from every point on the lattice to any other
point. To avoid the full expense of this calculation we use
the Laplacian-Heaviside method (LapH) [66]. The idea is to
truncate the quark interpolating fields by dropping out the
high-frequency modes of the three-dimensional Laplacian
on each time slice while preserving the symmetry of the
resulting “smeared” fields. The interpolating fields con-
structed out of these quarks excite the same QCD states, but
overlap better with the low-energy states. An additional
advantage is that we only need to invert the Dirac matrix for
the LapH modes, reducing the numerical cost. For all
isospin channels we used the Nv ¼ 100 lowest eigenvec-
tors corresponding to a smearing radius of approximately
0.5 fm [27]. The smeared quark propagators were com-
puted efficiently using a set of GPU inverters [67].

B. Other observables

Besides the energy of the two-pion states, the other
lattice QCD inputs for the analysis are the pion mass and
the pion decay constants. These parameters for each lattice
ensemble are listed in Table I. We note that all ensembles
are generated with the same coupling, which should
generate the same lattice spacing (or cutoff). For ensemble
E1;2;3 the quark mass is the same and similarly for
ensembles E4;5;6. The differences in pion mass within these

sets is thus expected to be the result of statistical fluctuation
and/or finite-volume effects. The pion mass was computed
by evaluating the two-point function of the pion using
LapH with a ūγ5d interpolating field.
The value of the pion decay constant fπ was computed

using standard methods (see for example Ref. [68]). We use
two two-point correlation functions: hA4ðtÞPð0Þ†i and
hPðtÞPð0Þ†i, where P is the pseudoscalar density q̄γ5q
and A4 is the axial current density q̄γ4γ5q. Both PðtÞ and
A4ðtÞ are projected to zero spatial momentum. From the
hPðtÞPð0Þ†i correlation function the pion mass mπ and
overlap factor Z are extracted:

hPðtÞPð0Þ†i !t→∞ Z2

2mπ
e−mπt: ð4Þ

The ratio of the two correlation functions is used to
calculate the current quark mass

mPCAC ≡ 1

2

h∂tA4ðtÞPð0Þ†i
hPðtÞPð0Þ†i ; ð5Þ

where ∂tA4ðtÞ≡ ½A4ðtþ 1Þ − A4ðt − 1Þ�=2. Using these
values the pion decay constant is defined as

fπ ≡
ffiffiffiffiffiffiffiffi
2Z2

p mPCAC

m2
π

: ð6Þ

The decay constant needs to be renormalized, but the
renormalization is expected to introduce only a couple of
percent shift [69].
For each pion mass we use one cubic box, and two

elongated boxes. The elongated boxes are important for
getting a good scan of the relevant scattering region in each
isospin channel. The lowest momentum of a particle
moving in the elongated direction is 2π

Lη. The energy of
the particle thus changes as we vary η. For two-pion states
with total momentum P ¼ ½000� the energy changes little
with η unless the state corresponds to two pions with
nonzero relative momentum, which tends to be the case for
the excited levels in each channel. For states with total
momentum P ¼ ½100� in the elongated direction, even for
the lowest state the energy usually varies with η and the
energy levels cover well the kinematic region of interest.
This is indeed observed in the extracted spectrum shown
in Fig. 1.

III. GLOBAL STUDY OF ππ SCATTERING

The determination of the I ¼ 2 finite-volume spectrum
from lattice QCD calculations concludes a multiyear
program [27,40,51] of the GW lattice group in obtaining
comprehensive information on ππ scattering from first
principles. The obtained set of energy eigenvalues covers
a large energy region from below the production threshold
to and beyond the resonance region. At the same time these

TABLE II. Resolution of angular momentum in terms of irreps
of the Oh and the D4h group.

l Oh D4h

0 Aþ
1 Aþ

1

1 T−
1 A−

2 ⊕ E−

2 Eþ ⊕ Tþ
2 Aþ

1 ⊕ Bþ
1 ⊕ Bþ

2 ⊕ Eþ

3 A−
2 ⊕ T−

1 ⊕ T−
2 A−

2 ⊕ B−
1 ⊕ B−

2 ⊕ 2E−

4 Aþ
1 ⊕ Eþ ⊕ Tþ

1 ⊕ Tþ
2 2Aþ

1 ⊕ Aþ
2 ⊕ Bþ

1 ⊕ Bþ
2 ⊕ 2Eþ
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FIG. 1. Top panel: Energy eigenvalues (light blue bars) of all ππ channels determined on 6 gauge configurations, fE1; ::E6g for a given
isospin, irrep and boost momentum P. The horizontal gray and orange lines denote the location of noninteracting levels and that of the
central value of the global fit to these data. Lower panel: Phase shifts in all three ππ channels after mapping finite-volume spectrum
(upper panel) and the global fit results using Lüscher’s method for a given isospin and angular momentum. The orange bands show the
uncertainty of the global fit.
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results describe ππ scattering at two unphysical pion
masses (∼1.5 and ∼2.5 mphys

π ). Thus, they provide a unique
opportunity for mapping out themπ vs E plane with respect
to ππ interactions in all three isospins, which is explored in
the following.
To make full use of the available information, a scatter-

ing amplitude is required which not only takes into account
the analytic properties in E but also the chiral behavior,
consistent with constraints from perturbative ChPT at NLO
as well as those from Ref. [70]. A method reconciling both
demands is the so-called modified inverse amplitude
method (mIAM) [43,45,71]. In the past, it has been shown
to be very successful in describing experimental data on ππ
scattering [46,48,58] in all three isospin channels, while
also having correct chiral behavior up to the next-to-leading
chiral (NLO) order. Likewise it fulfills the general require-
ments on the chiral trajectory for resonances, derived in
Ref. [70] to all chiral orders.

A. Infinite-volume spectrum

The modified inverse amplitude method is based on the
leading [TIl

2 ðsÞ] and NLO [TIl
4 ðsÞ] chiral amplitudes pro-

jected to a specific isospin (I) and angular momentum (l). A
unitary scattering amplitude TIl

mIAMðsÞ can then be derived
[43] using dispersion relations, namely

TIl
mIAMðsÞ ¼

ðTIl
2 ðsÞÞ2

TIl
2 ðsÞ − TIl

4 ðsÞ þ AIl
mðsÞ

: ð7Þ

The term AIl
mðsÞ in the denominator does not arise for

dynamical reasons, but has been introduced [45,72] to
avoid the appearance of an unphysical pole. Such a pole is
associated with appearance of the so-called Adler zero—a
subthreshold energy at which the amplitude vanishes as
demanded by chiral symmetry. Explicitly it reads

AIl
mðsÞ ¼ TIl

4 ðs2Þ

−
ðs2 − sAÞðs − s2Þ

s − sA
ðTIl

2 ðs2Þ − TIl
4 ðs2ÞÞ0; ð8Þ

where sA and s2 are the zeros of T2ðsÞ − T4ðsÞ and T2ðsÞ,
respectively. With this the TmIAM is an analytic, unitary
scattering amplitude, which indeed reproduces the usual
chiral expansion and is crossing symmetric up to the next-
to-leading chiral order.
The leading order chiral amplitude is a function of

energy, Goldstone-boson mass, m2 ¼ Bðmu þmdÞ and
pion decay constant in the chiral limit, f0. The amplitude
TIl
4 involves in the two-flavor case two low-energy con-

stants (LECs) l̄1 and l̄2. Two additional low-energy con-
stants l̄3, l̄4 enter the NLO chiral amplitude when replacing
the above mass and decay constants by their physical
values using one-loop results [50],

m2
π ¼ m2

�
1 −

m2

32π2f20
l̄3

�
; fπ ¼ f0

�
1þ m2

16π2f20
l̄4

�
:

The constants l̄i do not depend on the regularization
scale, but only on the parameters of the underlying
theory—the quark masses. However, they are related to
the scale-dependent, but quark-mass independent renor-
malized LECs via

lir ¼
γi

32π2

�
l̄i þ log

m2

μ2

�
ð9Þ

where γ1 ¼ 1=3, γ2 ¼ 2=3, γ3 ¼ −1=2, γ4 ¼ 2. Hence, for
a fixed scale μ one can determine the renormalized LECs
and then make predictions for two-particle scattering at a
different pion mass. In the course of this work we use
dimensional regularization with μ ¼ 770 MeV, but empha-
size that the amplitude (7) is manifestly scale independent.

B. Finite-volume spectrum

The scattering amplitude introduced in the previous
section describes the scattering of two pions in infinite
volume in terms of a complex-valued function of continu-
ous energy/momentum variables. In finite volume,
momenta are discretized leading to a discretized interaction
spectrum. The way to convert the latter into phase shifts is
given by Lüscher’s method [1,2], see also Refs. [65,73]. In
the context of mIAM its implementation has been used and
is described in Refs. [74,75].
In infinite volume, the scattering amplitude (7) is related

to the phase shifts via

TIl
mIAMðsÞ ¼

ffiffiffi
s

p
2pðcot δIlmIAMðsÞ − iÞ : ð10Þ

We use Eq. (7) to compute the phase shifts predicted by
mIAM:

cotδIlmIAMðsÞ¼
ffiffiffi
s

p
2p

�
TIl
2 ðsÞ− T̄Il

4 ðsÞþAIl
mðsÞ

ðTIl
2 ðsÞÞ2

−16πReJðsÞ
�
;

ð11Þ

where T̄Il
4 denotes the NLO chiral amplitude without s-

channel loop diagrams and JðsÞ denotes the meson-meson
loop in dimensional regularization for μ ¼ 770 MeV.
The determination of the corresponding finite-volume
spectrum amounts to finding the roots of the following
set of equations:

CROSS-CHANNEL STUDY OF PION SCATTERING FROM … PHYS. REV. D 100, 114514 (2019)

114514-5



p cot δ00ðsÞ ¼ 2π

L
Z00ð1; q2; ηÞ

π3=2η
;

cot δ11ðsÞ ¼ Z00ð1; q2; ηÞ
π3=2ηq

þ 2ffiffiffi
5

p Z20ð1; q2; ηÞ
π3=2ηq3

;

cot δ20ðsÞ ¼ Z00ð1; q2; ηÞ
π3=2ηq

ð12Þ

for the irreps Aþ
1 , A−

2 , and Aþ
1 , respectively. In every

interaction channel (I ¼ 0, 1, 2 from top to bottom,
respectively) the right-hand side carries the information
on the geometry of the lattice (size L, elongation η), and
kinematics via q ¼ L=ð2πÞpðsÞ, where p is the magnitude
of the pion relative three-momentum in the center of the
mass system. The required Lüscher functions for elongated
boxes as well as corresponding formulas for moving frames
are quoted in Ref. [65]. The left-hand side of the above
equations contains only the information on the pion
interaction in the corresponding channel.
We note that Eq. (12) is valid when neglecting higher

partial waves and only below the inelastic threshold (4mπ).
The cutoff in the angular momentum space is justified by
the smallness of higher partial waves in all channels.
Additionally, note that the factor p on the left-hand side
of the first equation makes it well defined below ππ
threshold, where the lattice QCD result also exists, see
also previous studies [38,40,53] of this channel.

C. Fit to finite-volume spectrum

As discussed above there are four parameters in the
model—the LECs lir. Multiple work flows are possible
when confronting lattice QCD results with the model, i.e.,
with respect of how many interaction channels are
included, or which of the experimental or lattice data are
included. After evaluating several such options, we decided
to fit to lattice QCD results only and predict ππ scattering at
the physical point. This is possible due to the correct chiral
properties of the mIAM also in the vicinity of resonances
[70]. Additionally, the fitted lattice QCD eigenvalues
include correlations,1 which as we found, make consid-
erable contribution to the total χ2.

Overall, the data consist of 95 energy eigenvalues in the
I ¼ 0, 1, 2 channels, extracted from 6 ensembles as in
Table I and depicted in Fig. 1. For each of the ensembles the
mπ and fπ have been recorded including the corresponding
correlations. Varying the pion mass can lead to non-
negligible effects as noted in Ref. [17]. In relation to the
recorded pion mass we noted a systematic effect in E2, i.e.,
leading to the different central value quoted in Table I.
Thus, we exclude this ensemble from further fits. This
leaves us with 88 data points and correlations between
different channels, energy levels, pion masses and decay
constants within each ensemble. In exploratory fits we have
found that the value of l3r does not lead to any notable
improvement of the χ2 so that we fix it to the value reported
by FLAG [76], i.e., l3r ¼ 8.94 × 10−6. This leaves us with
three fit parameters (l1r , l2r , l4r) of the model as well as two
pairs ðmπ; fπÞheavy=light for heavy and light ensembles,
respectively. We allow the pertinent four parameters to
vary instead of using their central values due to the high
precision of the data especially in the threshold proximity.
In each fit scenario the correlated χ2,

χ2 ≡X6
i¼1

ðXi − YiÞT · Cov−1Ei · ðXi − YiÞ ð13Þ

is minimized with respect to the seven fit parameters. Here
Xi denotes the vector containing central values of mπ , fπ
and energy eigenvalues of a given lattice ensemble. The
vector Yi contains the corresponding result obtained from
the model as in Eq. (12). The covariance matrix CovEi
contains uncertainties and correlations of all data, including
correlations between different isospin channels.

D. Fit results

The best fit gives χ2d:o:f: ¼ 218=ð88 − 7Þð≈2.7Þ with the
parameters collected in Table III. We explored various other
fit scenarios to determine the root of the relatively large χ2

value. For instance, we note that a sizable contribution to
the total χ2 is generated by the correlations within each
ensemble across different isospin channels (up to 50%).
Furthermore, we have performed separate fits for light and
heavy ensembles only. The best fit results of those are
χ2light ¼ 63.8=ð47 − 5Þ ≈ 1.5 and χ2heavy ¼ 107.2=ð43 − 5Þ≈
2.8. The tension between the heavy and light mass fits,
noted in Ref. [51] [i.e., χ2light&heavy=ðχ2light þ χ2heavyÞ ≈ 2], is

TABLE III. The fitted LECs (lir · 103) and mπ and fπ from the mIAM fit [χ2d:o:f: ¼ 218=ð88 − 7Þ] to all GWU
lattice QCD results [40,51].

l1r ¼ −4.07þ0.12
−0.13 l2r ¼ þ5.14þ0.23

−0.19 l4r ¼ þ9.05þ0.54
−0.70

mlight
π ¼ 223.98þ0.07

−0.13 MeV mheavy
π ¼ 315.40þ0.09

−0.05 MeV

flightπ ¼ 98.29þ0.22
−0.12 MeV fheavyπ ¼ 107.48þ0.08

−0.12 MeV

1The covariance matrices as well as the energy eigenvalues are
collected for all channels for convenience at https://github.com/
chrisculver/Pipi_Energies_Covariances.
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reduced when all channels are considered. Moreover, the
fact of χ2heavy > χ2light is easy to understand since the model
used relies on the chiral amplitudes up to the fourth chiral
order. Thus, it is not too surprising that the corresponding
description begins to fail at the heavier pion mass. In this
respect, see the discussion in Ref. [77]. Also, as depicted in
Fig. 1, large contributions to the χ2 come from energy
eigenvalues at high energies in I ¼ 1 and I ¼ 2 channels,
where the error bars are especially narrow. A similar
observation was also made in Ref. [27] dealing with the
I ¼ 1 channel only, supported by two simpler (Breit-
Wigner and Lippmann-Schwinger type) models.
The probability distribution function of the low-energy

constants is depicted in Fig. 2 together with that of the
resampled χ2res in the inset. The latter should follow a
noncentral χ2 distribution function with noncentrality
parameter λ ¼ χ2 ¼ 218 of the fit to the original data
and k ¼ 88 − 7 degrees of freedom, peaking at a resampled
χ2res of around χ2res ¼ 300 shown as the blue curve over-
laying the histogram in the inset of Fig. 2. The difference
between histogram and theoretical expectation for the χ2res
distribution is explained by the mentioned shortcoming of
the fit at higher energies/pion mass and across different
isospin channels. The errors on LECs are on the order of
5%–10%, which is an order of magnitude smaller than
those from the fit of the same model to one channel (I ¼ 2)
only [51]. This shows that inclusion of all isospin channels
indeed restricts the model and thus the extraction of
physically relevant information strongly.
Finally, the results of the fit in all three channels at two-

pion masses are also presented in terms of infinite-volume
quantities in the lower part of Fig. 1. There the energy
eigenvalues obtained from a lattice calculation are also
mapped to the phase shifts using Lüscher’s method. In

terms of the phase shifts some of the results produce error
bars wrapping through the whole codomain of this map-
ping. This occurs when the error on energy eigenvalue
overlaps with a noninteracting value.

E. Predictions at the physical point

The parameters of the model ðl1r ; l2r ; l4rÞ have been
determined in a fit to the lattice results in a model with
correct (up to second chiral order) pion mass dependence.
This allows us to extrapolate the amplitude to the physical
point to confront the pertinent phase shifts with the
phenomenological results. The extrapolations are shown
in Fig. 3 together with the phase shifts extracted from
experiment. The bands show the 1σ region, originating
from the resampling of the fits. To emphasize that unitarity
is strictly fulfilled only up to the first inelastic threshold
(4mπ), we use a different color for the predicted curves
above this region.
We observe that in the even-isospin channels the

prediction agrees with the experimental data very well in
the elastic region and even beyond it. In the I ¼ 1 channel
the functional behaviour is very similar to the one sug-
gested by experiment, but is shifted to the left. This
suggests a lighter mass of the ρ resonance and we will
return to this discussion point below.
The physical parameters, such as scattering lengths,

resonance pole positions and couplings have been dis-
cussed in length in the previous papers, dealing with single
channels [27,40,52,54]. There the dependence on the
utilized model has been discussed using a broad class of
chiral unitary models, Breit-Wigner type, and models based
on conformal mapping. Given that the mIAM is a better
compromise between constraints from chiral symmetry
[70] and analytic properties of scattering amplitudes we
simplify the discussion here by discussing the results of this
approach only. The collection of scattering lengths and
resonance properties at physical and both unphysical pion
masses can be found in Table IV.
The sizes of the even-isospin scattering lengths are

slightly smaller than the phenomenological values
mπaI¼0

0 ¼ 0.2198ð46Þstatð16Þsystð64Þth and mπaI¼2
0 ¼

−0.0445ð11Þstatð4Þsystð8Þth of Ref. [86]. Interestingly, most
lattice QCD based determinations of the latter tend to be
smaller in magnitude than the results based on experimental
results, see the discussion in the FLAG report [76].
The extrapolated pole position of the isoscalar resonance

agrees well in the real part but is too small in the imaginary
part when compared to the phenomenologically driven
analysis of Ref. [48]: mσ ¼ 449þ22

−16 − i275þ12
−12 MeV which

is an average of analyses based on Roy equations and
related methods [88–91]. For the chiral extrapolations of
the HadronSpectrum data [38] in Ref. [53] and the GW
lattice QCD data [40] similarly narrow σ pole positions
were found; also, in fits to experimental data only, e.g., in

FIG. 2. Probability distribution of the LECs as determined in a
resampling procedure of the global fit to all scattering channels at
both unphysical pion masses. The inset shows the distribution of
the resampled χ2res’s (histogram) together with the prediction from
a noncentral χ2 distribution (blue line).
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Refs. [71,92,93] based on the mIAM or unitarized ChPT
with contact terms only, the σ was rather narrow compared
to the averaged value of Ref. [48] from Roy equations.
These observations suggest that methods based only on
s-channel unitarization (with up to one loop in the t, u
channels) tend to produce slightly narrower σ resonances
compared to the Roy equations which provide better
subthreshold analytic properties.
The extrapolated result on the isovector resonance agrees

well in its width with the phenomenological value [94]
of Γ ≈ 150 MeV. However, its mass is too small by
∼40 MeV. This corroborates a similar finding for the
chiral extrapolation of several Nf ¼ 2 lattice QCD calcu-
lations in Ref. [54] based on a simpler model and using
only data from the I ¼ 1 channel. In this model only NLO
contact interactions were used in the unitarization, based on
Ref. [56]. As shown here, the light ρ is not a consequence
of this simplification.
Another potential reason for the discrepancy between the

physical ρ mass and our extrapolation can be attributed to
the ambiguity in determining the lattice spacing. We argue
here that this issue is a bit more subtle: the lattice spacing is
not directly relevant while the definition of the physical

point is. To see this note that all fits are carried using inputs
in lattice units: energy levels, pion masses and decay
constants, and their correlations are all dimensionless.
The lattice data together with the mIAM predicts the phase
shifts δIJðlir; E=mπ; fπ=mπ; μ=mπÞ, all parameters being
dimensionless ratios. The LEC’s lir are fixed by the fit to
the dimensionless lattice data. The dependence on μ=mπ is
very small and can be disregarded. The prediction of δIJ vs
E=mπ is completely independent from the lattice spacing a.
The only relevant parameter is fπ=mπ , which needs to be
set to the value corresponding to the physical point. For the
results in Fig. 3 we define the physical point by setting
fπ=mπ ¼ 92.4=139, the physical values for πþ. Note that
there is an ambiguity in defining this point for Nf ¼ 2

simulations due to the absence of the strange quark and
isospin breaking effects.
Finally, we have also checked the effects on the pion

mass due to the elongation of the box. We could not detect
any systematic shift of the pion mass when allowing for
different fit parameters for the pion masses in the different
spatial elongations. In particular, the pertinent independent-
mass fit leads to a very similar chiral extrapolation. Other
possible explanations for the discrepancy could be related

FIG. 3. Prediction of phase shifts in all pion-scattering channels at physical pion mass using mIAM and parameters fitted to the lattice
QCD data only (Table III). Error bands are determined from a resampling routine, while the gray bars denote phase shifts extracted from
experiment [78–85] for comparison. Predictions above the inelastic threshold are grayed out.

TABLE IV. Scattering lengths and pole positions from the global mIAM fit to lattice QCD data [40,51]. The third column shows the
extrapolation to the physical point. Error bars are determined in a resampling routine corresponding to the parameters quoted in
Table III. The couplings g are defined as residua at the complex pole positions at s� ¼ m2

σ or s� ¼ m2
ρ via g2 ¼ lims→s� jðs − s�ÞTðsÞj.

The last column shows the phenomenological values extracted from experimental data, accounting for differences in definition of g.

mπ [MeV] ∼315 ∼224 139 Phenomenology

mπaI¼0
0 þ1.9008þ0.0521

−0.0593 þ0.6985þ0.0010
−0.0015 þ0.2132þ0.0008

−0.0009 þ0.2198ð46Þstatð16Þsystð64Þth [86]

mπaI¼2
0 −0.1538þ0.0021

−0.0018 −0.0952þ0.0010
−0.0009 −0.0433þ0.0002

−0.0002 −0.0445ð11Þstatð4Þsystð8Þth [86]

mσ [MeV] þ591þ6
−5 − i109þ4

−4 þ502þ4
−4 − i175þ6

−5 þ443þ3
−3 − i221þ6

−6 þ449þ22
−16 − i275þ12

−12 [48]

gσππ [MeV] 533þ2
−2 426þ2

−2 397.8þ0.6
−0.6 345þ25

−22 [48]
mρ [MeV] þ789þ1

−1 − i20þ0
−0 þ738þ2

−1 − i43þ1
−1 þ724þ2

−4 − i67þ1
−1 þ763.1þ1.5

−1.5 − i73.3þ1.4
−1.4 [87]

gρππ [MeV] 226þ2
−2 282þ3

−2 323þ5
−3 349þ4

−4 [87]
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to the missing KK̄ channel [54] or higher orders effects in
the chiral expansion [95].

IV. SUMMARY AND CONCLUSIONS

We study pion-pion elastic scattering across all three
isospin channels in two-flavor dynamical lattice QCD. It is
the first time such a cross-channel analysis of lattice QCD
scattering data is attempted. We use elongated lattices
which offer a cost-effective alternative to cubic lattices in
mapping out the momentum dependence in scattering
processes. We consider six ensembles with elongations
up to a factor of 2 in one of the spatial dimensions, and two
quark masses corresponding to pion masses at 315 and
224 MeV. The lattice input includes two-pion states at rest
and also states boosted along the elongated direction for
enhanced momentum coverage.
To make contact with phenomenology, we put the finite-

volume spectrum across all three channels through a
correlated global analysis using the inverse amplitude
method. This method unitarizes chiral perturbation theory
in the s-channel, matching the chiral ππ scattering ampli-
tude to next-to-leading order, and it allows for chiral
extrapolation of lattice data to the physical point over a
wide energy range. We treat the pion mass and decay
constant as fit parameters and include their full correlations
with the energy eigenvalues in the corresponding analysis;
likewise, full correlations across different isospin channels
are included.
The model qualitatively captures the scattering phase

shifts in the entire elastic region. However, the χ2 indicates
a tension between the model and the lattice QCD data.
Remarkably, a large contribution to the χ2 originates from
correlations between different isospin channels, which have
been taken into account for the first time in the present
study. Quantitatively the agreement is better for the lower
quark mass and lower energies as expected from a ChPT-
based model. The cross-channel fit provides better

constraints on the model parameters and this in turn leads
to a tighter extrapolation to the physical point. The
extrapolation agrees well with the experimental phase
shifts in the I ¼ 0 and I ¼ 2 channel. In the I ¼ 1 channel,
the extrapolations favor a lower mass for the ρ resonance,
as was found in previous studies. We argued here that this
disagreement is not related to the determination of lattice
spacing, since this has almost no effect on the determi-
nation of the model parameters. Among other possible
explanations for the discrepancy, there is, however, an
ambiguity in defining the physical point since the exper-
imental data is not directly comparable with Nf ¼ 2

simulations.
Overall our results demonstrate that elongated lattices

combined with a global analysis in the inverse amplitude
method can be an effective tool in probing hadron-hadron
scattering processes from first principles. We plan to extend
the approach to more systems, such as three pions above
threshold, and pion-baryon scattering.
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