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We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking
B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we
derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We
find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as
logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance
coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large
momentum effective theory or evaluating inverse moment of B-meson LCDA on the lattice.
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I. INTRODUCTION

The structure of a high energy hadron can be depicted by
nonperturbative functions like parton distribution functions
(PDFs), light-cone distribution amplitudes (LCDA), etc.
Because of their nonperturbative nature, parton distribu-
tions cannot be calculated with perturbation theory, instead,
should be either extracted from experimental data or
evaluated with nonperturbative methods like lattice
QCD. However, parton distributions are defined with
matrix elements of nonlocal operators located on the
light-cone, which cannot be simulated on the lattice.
In recent years, it was pointed out that the difficulties of

simulating parton physics on a Euclidean lattice can be
overcome by employing the large momentum effective
theory (LaMET) proposed by X. Ji [1]. The idea underlying
LaMET is to introduce quasidistributions, which are
defined with matrix elements of equal-time nonlocal
operators. The quasidistribution, when boosting to infinite
momentum frame, i.e., P3 → ∞ with P3 being the hadron
momentum on the moving direction, can be reduced to
a light-cone distribution. The quasidistribution and its

light-cone counterpart are related by a matching relation
and the matching coefficient can be calculated with
perturbative QCD since the difference between quasi and
light-cone distributions is accompanied with a hard
momentum scale P3 ≫ ΛQCD. In recent years, LaMET
has been applied on the lattice calculation of PDFs,
LCDAs, etc., for various hadrons. For recent reviews of
LaMET, see, e.g., [2,3]. Other related approaches include
pseudodistributions [4,5], lattice cross sections [6], etc.
It is interesting to study the moments of a quasidistri-

bution. The positive moments, which are related to local
operators, have been discussed in Refs. [7–10]. For a quasi-
PDF f̃ðx; P3Þ, the asymptotic behavior at jxj → ∞ is 1=jxj,
thus the integral

R
dxxnf̃ðx; P3Þ leads to power divergence

if n is a non-negative integer; on the other hand, if n is a
negative number, the inverse moment (IM) defined by such
integral has no power divergence. Until now, there are few
studies on IM of quasidistributions, except the quasidis-
tribution amplitude (quasi-DA) of heavy quarkonia [11].
In this work, we will study the IM of B-meson quasi-DA.

The B-meson LCDA in LaMET is of particular interest. It is
an inherent part of soft-collinear factorization theorems for
many exclusive B decay reactions [12–20]; moreover, it is
also an essential element in the light-cone sum-rule studies
of the B-meson decays [21–27]. The B-meson LCDA has
been studied in the framework of quasidistribution ampli-
tude [28,29] and the reduced Ioffe-time distribution [30]
approaches. However, there are still no lattice results. It is
still of great significance if the moment can be calculated
from lattice QCD. There are no positive moments for
B-meson LCDA [31], but the IM exists. Moreover, the first
IM is an indispensable part of many factorization theorems
in B physics, e.g., the decay fraction of B-meson radiative
decay [32–36] and B → P; V form factors (see [37] for a

*Corresponding author.
xuji_phy@zzu.edu.cn

†Corresponding author.
ZXRxiruo@163.com

‡Corresponding author.
shzhao@jlab.org

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, L011503 (2022)
Letter

2470-0010=2022=106(1)=L011503(6) L011503-1 Published by the American Physical Society

https://orcid.org/0000-0002-5635-4903
https://orcid.org/0000-0002-2182-9710
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.L011503&domain=pdf&date_stamp=2022-07-26
https://doi.org/10.1103/PhysRevD.106.L011503
https://doi.org/10.1103/PhysRevD.106.L011503
https://doi.org/10.1103/PhysRevD.106.L011503
https://doi.org/10.1103/PhysRevD.106.L011503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


recent review). Furthermore, the first IM is an essential
parameter to build models for LCDA. The value of the first
IM of B-meson LCDA has been estimated with various
approaches, see, e.g., Refs. [31,38–41]. However, there are
few lattice-based calculations, and the precision has a large
space to be improved. It will be of phenomenological
significance to study the IM of quasi-DA, which may shed
light on the evaluation of LCDA on the lattice.
In this Letter, we will introduce the IM of B-meson quasi

DA and perform a theoretical study on the first IM of
B-meson quasi-DA in LaMET. We will investigate the
structure of IM of B-meson quasi-DA up to one-loop level.
The renormalization, as well as one-loop matching between
IMs of LCDA and quasi-DA, will be investigated.

II. QUASIDISTRIBUTION AMPLITUDE
AND INVERSE MOMENT

We follow the notations in [30]. To start with, let us
consider a nonlocal heavy-light operator Oμðz; 0; vÞ≡
q̄ðzÞγμγ5hvð0Þ in heavy quark effective theory (HQET),
where hv is a heavy quark field in HQET, with v denoting
the velocity of B-meson. v satisfies v2 ¼ 1 and =vhv ¼ hv;
q̄ðzÞ is a light quark field locating at z; Sðz; 0Þ≡
P exp½−ig R 1

0 dtzνA
νðtzÞ� is a Wilson line where P denotes

the path ordering of operators. By analyzing the Lorentz
structure of its meson-to-vacuum matrix element, we have

h0jq̄ðzÞSðz; 0Þγμγ5hvð0ÞjB̄ðvÞi
¼ iFðμÞ½vμMB;vðν;−z2; μÞ þ zμMB;zðν;−z2; μÞ�; ð1Þ

where MB;vðν; μÞ and MB;zðν; μÞ are two scalar functions
and ν≡ v · z will be referred to as the “Ioffe-time” of the
B-meson.1 FðμÞ is the decay constant of B-meson. MB;v

term gives the twist-2 distribution when z2 → 0 whileMB;z

is a higher-twist contribution. We rename the leading-twist
functionMB;v asMB and defineMBðν;−z2; μÞ as the Ioffe-
time distribution amplitude (ITDA) of the B-meson for
convenience. If z is a lightlike vector with minus compo-
nent of z being the only nonzero component, then ITDA
will reduce to the light-cone ITDA Iþ

B ðν; μÞ, i.e.,
MBðν; 0; μÞ ¼ Iþ

B ðν; μÞ, which is in fact the LCDA in
coordinate space. The B-meson LCDA is defined by the
Fourier transform of Iþ

B ðν; μÞ [38].
It was proposed in Refs. [1,44] that one can study equal-

time separations z ¼ ð0; 0; 0; z3Þ on the lattice. The same
idea has also been applied for the B-meson LCDA [28–30].
In this case, ν ¼ −v3z3 and z2 ¼ −z23. The B-meson quasi-
DA ϕ̃þ

B ðω; v3; μÞ can be expressed in terms of ITDA
as [28,29]

ϕ̃þ
B ðω; v3; μÞ ¼

jv3j
2π

Z
∞

−∞
dz3eiωv3z3MBð−v3z3; z23; μÞ: ð2Þ

The matching relations linking the LCDA and quasi-DA or
reduced-ITDAwere derived in Refs. [28–30]. The first IM
of LCDA is defined as

λ−1B ðμÞ≡
Z

∞

−∞
dω

ϕþ
B ðω; μÞ
ω

: ð3Þ

Note that LCDA ϕþ
B ðω; μÞ only has nonzero support in

½0;∞Þ, hence the lower limit in Eq. (3) is effectively 0.
Other important quantities in phenomenology are the
logarithmic moments [31]

σnðμÞ ¼ λBðμÞ
Z

∞

−∞

dω
ω

lnn
μ

ω
ϕþ
B ðω; μÞ: ð4Þ

Similarly, we introduce IM of quasi-DA:

λ̃−1B ðv3; μÞ≡
Z

∞

−∞
dω

ϕ̃þ
B ðω; v3; μÞ

ω
: ð5Þ

In this case, however, the region of integration ð−∞;∞Þ is
necessary because the support of quasi-DA extends to the
whole axis.
We note that the singularities at ω ¼ 0 in the integrals

Eqs. (3), (5) need prescription. For future convenience, we
add a small imaginary part þiϵ to the denominator, i.e.,
ω → ωþ iϵ, to ensure that the IMs are well defined.
However, IM of LCDA is independent of prescription
because ϕþ

B ðωÞ ∼ ω when ω → 0 [45].
From Eqs. (1), (2) and (5), one can write down the

operator definition of IM of B-meson quasi-DA as

λ̃−1B ðv3;μÞjþiϵ ¼
1

v0FðμÞ
Z

−∞

0

dξ

·

�
0

����q̄
�
ξ

v3
n

�
S

�
ξ

v3
n;0

�
γ0γ5hvð0Þ

����B̄ðvÞ
�
;

ð6Þ
where n ¼ ð0; 0; 0; 1Þ is the unit vector along the third
direction. We choose the 0-component of γμ so that the
MB;z term is eliminated. “þiϵ” denotes that the above
definition is based on the þiϵ prescription. For −iϵ
prescription, the range of integral is from 0 to þ∞. The
definition under Cauchy’s principal value is an average of
þiϵ and−iϵ prescriptions. In the rest of this paper, the IM is
underþiϵ prescription unless otherwise stated. Because the
inverse moment is defined with the matrix element of an
equal-time operator, it can be simulated by lattice QCD
directly, without calculating the whole quasi-DA first.

III. ONE-LOOP CALCULATION

To study the renormalization andmatching in perturbation
theory, one can replace the hadron state with Fock state jbq̄i,

1In QCD case, Ioffe-time is the inner product of momentum p
and z [42,43].

JI XU, XI-RUO ZHANG, and SHUAI ZHAO PHYS. REV. D 106, L011503 (2022)

L011503-2



aswhatwe have done forDAs. Letp be themomentumof the
light quark, p ¼ ω0vþ p⊥ with ω0 > 0, where v is the
velocity of B-meson. We set v ¼ ðv0; 0; 0; v3Þ, or in light-
cone coordinates, v ¼ ðvþ; v−; 0⊥Þ. Assuming that the light
quark is slightly offshell, i.e., p2 < 0, then −p2 will work
as an infrared (IR) regulator. At tree level, we have
ϕþ
B ðω;ω0Þ ¼ ϕ̃þ

B ðω;ω0Þ ¼ δðω − ω0Þ. This leads to the tree
level result for IM: 1=λ̃B ¼ 1=λB ¼ 1=ω0.
To evaluate the one-loop corrections, we work in the

Feynman gauge. The Feynman diagrams are shown in
Fig. 1. Dimensional regularization (DR) is applied to
regularize the UV singularities, where the space-time
dimension is set to d ¼ 4 − 2ϵ.
In Fig. 1(a), there is a hard gluon exchange between the

heavy quark and Wilson line. We have

λ−1B ðω0;μÞjðaÞ

¼ i
n ·v2

n ·p

Z
ddk
ð2πÞd

g2μ̃2ϵCF

ðk2þ iϵÞð−v ·kþ iϵÞðn ·kþn ·pþ iϵÞ ;

ð7Þ

where μ̃ ¼ μ
ffiffiffiffiffi
eγE
4π

q
, μ is an energy scale in DR and γE is the

Euler-Mascheroni constant; CF is a color factor with the
value 4=3. Since we have written the above expression in a
Lorentz covariant form, it is applicable for both light-cone
and quasicases. For IM of LCDA, we let n be light-cone
vector and n · a ¼ aþ for an arbitrary vector a. We have

λ−1B ðω0; μÞjðaÞ
¼ −

αsCF

4π

1

ω0

�
1

ϵ2
þ 1

ϵ
ln

μ2

ω2
0

þ 1

2
ln2

μ2

ω2
0

þ 3π2

4

�
: ð8Þ

On the other hand, for IM of quasi-DA, we choose n as a
unit vector in the 3rd direction of space-time, n · a ¼ a3 for
an arbitrary vector a, and n2 ¼ −1. After integration,
one has

λ̃−1B ðω0;v3;μÞjðaÞ ¼−
αsCF

4π

1

ω0

�
2
ln2iv3

ϵ

þ2 ln2iv3

�
ln
μ2

ω2
0

− ln2iv3

�
þπ2

3

	
: ð9Þ

In the light-cone case one can observe a double pole 1=ϵ2,
which is the indication of cusp singularity; in the IM of
quasi-DA, there is only single pole but accompanied with a
meson-velocity-dependent coefficient. There are single and
double logarithmic dependences on v3 in the quasicase.
Similar calculations can be performed to other diagrams.

For Fig. 1(b), one has,

λ−1B ðω0; μÞjðbÞ ¼
αs
4π

CF
1

ω0

�
2

ϵ
þ 2 ln

μ2

−p2
þ 4

�
; ð10aÞ

λ̃−1B ðω0;μÞjðbÞ ¼
αs
4π

CF
1

ω0

�
1

ϵ
þ2 ln

μ2

−p2

þ2 ln2iv3− ln
μ2

ω2
0

þ2

�
: ð10bÞ

There is no contribution for light-cone case from
Fig. 1(c). For IM of quasi-DA, the result reads

λ̃−1B ðω0; v3; μÞjðcÞ
¼ αs

2π
CF

1

ω0

�
−
1

ϵ
þ 2 ln 2iv3 − ln

μ2

ω2
0

− 2

�
: ð11Þ

In the calculation of quasi-DA, Wilson line self-energy
diagram Fig. 1(c) has a linear divergence. How to deal with
the linear divergence is one of the major missions in the
development of quasi and pseudo distribution approaches
in the last few years. Many schemes, e.g., RI/MOM
[46,47], reduced Ioffe-time distribution [48,49], hybrid
scheme [50], etc., have been proposed to renormalize the
linear divergence in quasidistributions. However, the IM
involves only logarithmic UV divergence and has no linear
divergence.
For the box diagram Fig. 1(d), we have

ig2μ̃2ϵCF

Z
ddk
ð2πÞd

1

ðk2þiϵÞ½ðpþkÞ2þiϵ�ð−v ·kþiϵÞ: ð12Þ

This integral does not depend on n, indicating that it
contributes the same results to IMs of LCDA and quasi-DA.
Furthermore, the integral is UV finite. Therefore, the box
diagram can be ignored both in renormalization and
perturbative matching. In fact, it has already been shown
in [29,30] that the box diagram does not contribute, both in
the quasi and pseudodistribution approaches. Thus, it will
not contribute to the renormalization and matching of IM as

(a)

(c)

(b)

(d)

FIG. 1. The Feynman diagrams for IMs of quasi-DA and
LCDA. The horizontal double line represents the gauge link,
while the vertical double line denotes the heavy quark in HQET.
The single line represents the light quark.
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well. It can also be clarified through a v3 power-counting
argument.

IV. RENORMALIZATION GROUP EQUATION

We renormalize the IMs of LCDA and quasi-DA in MS
scheme:

λ−1B;bareðω0Þ¼
�
1−

αsðμÞ
4π

CF

�
1

ϵ2
þ1

ϵ
ln
μ2

ω2
0

−
2

ϵ

�	
λ−1B ðω0;μÞ;

ð13aÞ

λ̃−1B;bareðω0; v3Þ ¼
�
1 −

αsðμÞ
4π

CF

�
1

ϵ
þ 2

ϵ
ln 2iv3

�	

× λ̃−1B ðω0; v3; μÞ: ð13bÞ
With the above renormalization equation, we obtain RGE
for IM of LCDA,

μ
d
dμ

λ−1B ðμÞ ¼ −
αsðμÞ
2π

CF½2λ−1B ðμÞσ1ðμÞ − λ−1B ðμÞ�: ð14Þ

This result repeats the RGE derived in [45,51]; it can also
be derived from the Lange-Neubert equation for LCDA
[45]. On the other hand, for IM of quasi-DA, one has

μ
d
dμ

λ̃−1B ðv3;μÞ¼−
αsðμÞ
2π

CFð2 ln2iv3þ1Þλ̃−1B ðv3;μÞ: ð15Þ

One can observe that the IM of LCDA is not multiplicative
renormalized, it will get mixed with logarithmic moment σ1
at one-loop. However, for IM of quasi-DA, there is no
mixing between 1st IM and logarithmic moments at one-
loop level, which is different from IM of LCDA. If one
works at next-to-leading order accuracy, one can evolve λ̃B
to other scales without the input of other parameters.

V. MATCHING RELATION IN LAMET
AND VELOCITY RGE

In LaMET, light-cone and equal-time (“quasi”) quan-
tities can be linked by a matching relation, with a
perturbatively calculable hard function. When v3 → ∞,
the equal-time matrix element that defines the IM of quasi-
DA will become a light-cone matrix element, it indicates
that under large Lorentz boost, λ̃Bðv3; μÞ → λBðμÞ. With the
spirit of LaMET, one can expect the IR physics of λ̃Bðv3; μÞ
and λBðμÞ are the same and there is a matching formula
between IMs. Since the IMs have no dependence on ω, a
naive expectation for the matching relation is a multipli-
cation instead of a convolution, i.e.,

λ̃Bðv3; μQÞ ¼ Cðv3; μQ; μLÞλBðμLÞ þOð1=v3Þ; ð16Þ
where Cðv3; μQ; μLÞ is the hard coefficient, which can be
expanded in series of αs as

Cðv3; μQ; μLÞ ¼
X
n¼0

�
αsðμÞ
2π

CF

�
n
CðnÞðv3; μQ; μLÞ;

μQ and μL are the scales that define the IMs of quasi and
light-cone DAs, respectively.
We note that, a very similar multiplication-type matching

relation was introduced in [52], which connects the IMs of
LCDAs defined in HQET and full QCD; it can also be
reproduced from the convolution-type matching between
the LCDAs defined in QCD and HQET [53,54]. Another
example is the matching of IMs of quasi-PDF and the
normal PDF. One can start with the convolution-type
matching relation for quasi PDF f̃ and normal PDF f,
then derive the matching relation for their IMs, which reads

Z
∞

−∞

dx
x
f̃ðx; P3; μQÞ

¼
Z

∞

−∞

dt
t
Zðt; P3; μQ; μLÞ ·

Z
1

−1

dy
y
fðy; μLÞ; ð17Þ

which indicates that IM of quasi-PDF can be factorized as
IM of normal PDF multiplied by a hard coefficient.
Expanding λ̃BðμQÞ, λBðμLÞ and Cðv3; μQ; μLÞ in series of

OðαsÞ in Eq. (16), up to one-loop level, we haveCð0Þ ¼1, and

Cð1Þðv3;μQ;μLÞ
¼ − ln2

μL
ω0

þ ð2 ln2iv3 þ 3Þ ln μL
ω0

þ ð2 ln2iv3 þ 1Þ lnμQ
μL

− ln2iv3ðln2iv3 þ 3Þ− 5π2

24
þ 3: ð18Þ

On the one hand, the IR singularities in IMs of LCDA and
quasi-DA,which are regularized by lnð−p2Þ, are canceled, so
the matching coefficient is IR free; on the other hand,
Cð1Þðv3; μQ; μLÞ depends on ω0. It means the matching
coefficient depends on ω0v—the momentum of external
light quark, which indicates the failure of naive factorization
relationEq. (16);moreover, the single and double logarithmic
dependences on ω0 should be absorbed into other non-
perturbative quantities when ω0 is small. Thus the matching
relation should not be a multiplication equation, which is
different from the PDF case, and also the case ofmatching IM
in QCD to HQET [52].
Noticing that the lnn μL=ω0 terms are related to the

logarithmic moments defined in Eq. (4), we propose a
modified factorization formula as

λ̃Bðv3; μQÞ ¼ C0

�
v3;

μQ
μL

�
λBðμLÞ

þ
X
n¼1

Cn

�
v3;

μQ
μL

�
σnðμLÞ þOð1=v3Þ: ð19Þ

Again, the matching coefficients Cnðv3; μQ=μLÞ can be
expanded in series of αs as
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Cn

�
v3;

μQ
μL

�
¼

X
m¼0

�
αsðμÞ
2π

CF

�
m
CðmÞ
n

�
v3;

μQ
μL

�
:

Performing the perturbative expansion, at the leading order,

it gives Cð0Þ
0 ¼ 1 and Cð0Þ

n ¼ 0 for n ≥ 1. With one-loop
results, we get the next-to-leading order corrections of the
hard coefficients, which read

Cð1Þ
0

�
v3;

μQ
μL

�
¼ ð2 ln 2iv3 þ 1Þ ln μQ

μL

− ln 2iv3ðln 2iv3 þ 3Þ − 5π2

24
þ 3; ð20aÞ

Cð1Þ
1

�
v3;

μQ
μL

�
¼ 2 ln 2iv3 þ 3; ð20bÞ

Cð1Þ
2

�
v3;

μQ
μL

�
¼ −1; ð20cÞ

Cð1Þ
n

�
v3;

μQ
μL

�
¼ 0 ðn ≥ 3Þ: ð20dÞ

The matching relation Eqs. (19) and (20) provide a
convenient approach of extracting the inverse and loga-
rithmic moments of LCDA. At one-loop order, because the
matching coefficient Cð1Þ

n are zero for n ≥ 3, λ̃Bðv3; μQÞ can
be expressed as a second-order polynomial of ln 2iv3, with
some coefficients involving the light-cone quantities λB, σ1,
σ2. Thus one can calculate λ̃B for several values of v3 and
then extract light-cone moments with a polynomial fit.
Inversion of the matching formula is not necessary, and the
only input is the first IM of quasi-DA.
The matching relation indicates that the momentum

evolution of λ̃Bðv3; μÞ is only related to itself and the first
logarithmic moment. In fact, one can write down the
velocity evolution equation for λ̃Bðv3; μÞ as

v3
d
dv3

λ̃Bðv3; μÞ ¼ −
αs
2π

CF½ð2 ln 2iv3 þ 3Þλ̃Bðv3; μÞ

− 2σ̃1ðv3; μÞ�: ð21Þ
To evolve λ̃Bðv3; μÞ from one velocity to another, one needs
the input of the first IM and logarithmic moment.
At last, one may notice that the matching coefficients Cn

are complex numbers, therefore, the IM of quasi-DA is also
complex. This is due to theþiϵ prescription we employed at
ω ¼ 0. One can also get real values for IM and matching
coefficients with other prescriptions, e.g., Cauchy principal
value. Since P:V:ð1=ωÞ ¼ 1

2
ð 1
ωþiϵ þ 1

ω−iϵÞ, one can get λ̃B
under principal value prescription by averaging the results
underþiϵ prescription and their complex conjugates, and this
is equivalent to taking the real parts in our results. It is verified
by a direct calculation under principal value prescription.

VI. DISCUSSIONS AND SUMMARY

We introduce the inverse moment of B-meson quasi-DA
and explore its properties. The IM of quasi-DA can be
simulated on a Euclidean lattice since it is defined with an
integral of equal-time matrix elements. With a one-loop
calculation of IMs, we derive the RGE for the first IM of
quasi-DA and figure out the correct form of matching
relation in LaMET. The first IM of quasi-DA is not only
factorized into the first IM but also the logarithmic moments
of LCDA, accompanied by hard coefficients which are free
of IR singularities and independent of external states.
Distinguished from non-negative moments, IM is not

defined by a local operator, so the determination of IM needs
the matrix elements for all z. However, our approach in this
work has some advantages in practical calculations.
According to the definition of IM in Eq. (6), IM of quasi-
DA can be calculated with an integral of the equal-time
matrix element, which can be approximated by a summation
over discrete points when ξ is small; on the other hand, one
can extrapolate the large ξ contributionwith the help of long-
distance asymptotic behavior of spatial correlation function,
and perform the integration in this region analytically [50].
Then, because the matching relation is a linear combination
instead of a convolution, the errors and unphysical oscil-
lations due to Fourier transform and convolution can be
avoided. The mixing of IM and logarithmic moments of
LCDA in the matching formula may cause other difficulties.
Such difficulties caused by mixing may be overcome by
evaluating λ̃B with several v3 and extracting the IM and
logarithmic moments by fitting the v3 dependence.
Furthermore, because the lattice simulation of nonlocal

HQET matrix element is very challenging, a realistic idea
may be building proper models for quasi-DA and fitting the
parameters of models with a few lattice data. The IM of
quasi-DA will be an essential parameter for quasi-DA
models, just like the IM for the models of LCDA
[31,38]. Further lattice simulations on IM of quasi-DA
will be crucial to improve the determination of IM and
other parameters of B-meson LCDA.
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