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We report on the first global QCD analysis of the quark transversity distributions in the nucleon from
semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested
sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the
available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive
reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller
gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δu ¼ 0.3ð2Þ
and δd ¼ −0.7ð2Þ at a scale Q2 ¼ 2 GeV2.
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Along with the unpolarized (f1) and helicity-dependent
(g1) parton distribution functions (PDFs), the transversity
distribution (h1) completes the full set of quark PDFs that
characterize the collinear structure of the nucleon at leading
twist. While considerable information has been accumu-
lated on the first two distributions from several decades
of deep-inelastic scattering (DIS) and other high-energy
experiments [1–4], comparatively little is known about the
transversity PDFs. The transversity PDF, hq1ðxÞ, gives the
distribution of a transversely polarized quark q carrying
a momentum fraction x in a transversely polarized nucleon,
and its lowest moment, δq≡ R

1
0 dx½hq1ðxÞ − hq̄1ðxÞ�, gives

the nucleon’s tensor charge for quark q [5–11]. In addition
to providing fundamental information on the quark spin
structure of the nucleon, the tensor charge also plays an
important role in constraining hadronic physics back-
grounds in probes of physics beyond the standard model
[12–14].
Compared with the chiral-even f1 and g1 PDFs, the

experimental exploration of the chiral-odd h1 is consid-
erably more involved, requiring the coupling of the trans-
versity distribution to another chiral-odd function [6].
Observables sensitive to transversity include the Collins

single-spin asymmetries in semi-inclusive deep-inelastic
scattering (SIDIS), where h1 couples to the chiral-odd
Collins fragmentation function (FF) H⊥

1 [15], while two
Collins FFs generate an azimuthal asymmetry in two-
hadron production in eþe− annihilation [16].
Several previous analyses have attempted to extract the

transverse momentum dependent (TMD) transversity dis-
tributions from both SIDIS and eþe− data. Anselmino et al.
[17–19] employed a factorized Gaussian ansatz to relate the
TMDdistributions to the hq1 PDFs, while Kang et al. [20,21]
used, in addition, theTMDevolution formalism [22]. In both
cases, the x dependence of hq1ðxÞwas parametrized in terms
of the sum of unpolarized and helicity distributions at
the initial scale. Working within collinear factorization,
Bacchetta et al. [23–25] also extracted transversity PDFs
frompion pair production in SIDIS using dihadron FFs from
eþe− data. These analyses gave values for the isovector
moment gT ≡ δu − δd in the range 0.4–1, with sizeable
(30%–50%) uncertainties. In all of these studies, the
experimental coverage was restricted to the region
0.02≲ x≲ 0.3, so that the determination of the full moment
required extrapolation outside the measured range.
Complementing the challenging empirical extractions of

transversity, first-principles lattice QCD calculations can
provide additional information on the nucleon transverse
spin structure. While recent breakthroughs in quasi-PDFs
have allowed the first direct lattice computations of the x
dependence of transversity [26,27], calculations of
moments of the isovector hq1 PDF are more developed,
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with a number of simulations of gT having been performed
[28–34] at physical pion masses and with multiple lattice
spacings and volumes. No significant contamination from
excited states has been observed, along with very mild
volume and lattice spacing dependence, making gT a
“golden” channel in lattice nucleon structure studies.
Curiously, however, all of the simulations give values of
gT close to unity, in contrast to the phenomenological
values, which are generally smaller [10,21], with central
values ∼0.5–0.6. This prompts the question of whether the
systematic differences between the lattice and phenomeno-
logical results suggest a real tension between the two. From
the uncertainties found by Kang et al. [21], for example,
one would conclude that after the inclusion of data from the
future SoLID experiment at Jefferson Lab [10], the phe-
nomenological values of gT would be incompatible with
lattice at more than 5σ C.L.
In this Letter, we address the question of whether

the experimental data on transversity are compatible
with the lattice gT results—whether there indeed is a
“transverse-spin puzzle,” as suggested by some of the
previous analyses [10,21]—by using the lattice data on
gT as an additional constraint on the global QCD analysis
of transversity. We implement several important improve-
ments over previous analyses, making use of a more
robust fitting methodology based on Monte Carlo (MC)
sampling methods. Specifically, we use the nested sam-
pling algorithm [35–37], which maps the likelihood
function into an MC-weighted parameter sample and
allows a rigorous determination of PDF uncertainties.
This approach improves the fitting methodology of
Refs. [20,21] by allowing more flexible parametrizations
of the initial conditions of the transversity and Collins FFs.
Similar MC-based methods have recently been used to
analyze collinear PDFs [38,39] and FFs [39,40], but they
have never before been applied to TMDs.
To begin with, we revisit the existing lattice QCD

simulations of gT to obtain a reliable averaged data point
that can be used in the global QCD analysis. One challenge
is that the various lattice calculations estimate systematic
uncertainties differently, making it problematic to simply
average the reported values. We instead combine the
available dynamical simulation data, using only calcula-
tions with multiple lattice spacings, volumes and quark
masses; we use several procedures to ensure that the final
uncertainties are not underestimated.
There are three available data sets that meet these

criteria: the PNDME Collaboration results with Nf ¼ 2þ
1þ 1 flavors [28], the RQCD Collaboration data with
Nf ¼ 2 [33], and the LHPC set with Nf ¼ 2þ 1 [30]. Cuts
on the data are imposed for pion masses m2

π < 0.12 GeV2

and for mπL > 3, where L3 is the lattice volume, to control
the chiral and infinite-volume extrapolations. Since all of
the lattice simulations show a mild dependence on the
volume and lattice spacing a, the simplest approach is to

extrapolate gT considering only the mπ dependence.
Extrapolating the data either linearly in m2

π or including
chiral logarithms (∼m2

π lnm2
π), as predicted from chiral

effective theory [41,42], gives glattT ¼ 1.006ð22Þ.
To further include uncertainties from taking the con-

tinuum limit, we assign a different lattice discretization
extrapolation coefficient for each simulation [28,30,33].
To account for the different actions, we use OðaÞ for the
PNDME and LHPC results, and Oða2Þ for RQCD. For the
volume dependence, we consider both emπL and m2

πemπL

forms. Taking all possible combinations then gives 12
distinct fitting formulas for the continuum extrapolation
of gT . The results of these fits are combined using theAkaike
information criterion, AIC ¼ 2kþ χ2, where k is the num-
ber of free parameters in the fit and χ2 is theminimum sumof
squared fit residuals. Each fit is weighted by the factor
wi¼Pi=ð

P
jPjÞ, where Pj¼exp½−ðAICj−minAICÞ=2�,

which yields glattT ¼ 1.008ð56Þ.
Another approach is to average the lattice data using

methods advocated by the Flavor Lattice Averaging Group
(FLAG) [43]. However, given that most extrapolations of
nucleon matrix elements do not explicitly control finite
volume and lattice spacing systematics, such an averaging
will be dominated by results with the most optimistic
systematic uncertainty estimates. We extrapolate each
group’s data using a single, universal formula, assuming
linear dependence on m2

π , emπL and a (or a2), and then
perform a weighted analysis as in the FLAG approach. The
result is glattT ¼ 1.00ð5Þ, which is consistent with the above
estimate. To be conservative, we take the larger uncertainty,
glattT ¼ 1.01ð6Þ, as the final averaged value to be used in the
global analysis.
For the experimental data used in our fit, we consider the

sinðϕh þ ϕsÞ modulation of the differential SIDIS cross
section, or Collins asymmetry,

AsinðϕhþϕsÞ
UT ¼ 2ð1 − yÞ

1þ ð1 − yÞ2
Fsin ðϕhþϕsÞ
UT

FUU
; ð1Þ

where ϕh and ϕs are the azimuthal angles for the transverse
momentum of the produced hadron h and the nucleon spin
vector with respect to the lepton plane in the virtual
photon–nucleon center of mass frame, and y is the frac-
tional energy loss of the incident lepton. The structure

functions FUU and Fsin ðϕhþϕsÞ
UT are functions of the Bjorken

variable x ¼ Q2=2P · q, the hadron momentum fraction
z ¼ P · Ph=P · q, and the hadron transverse momentum
Ph⊥, where P, Ph and q are the four-momenta of the target,
produced hadron, and exchanged photon, respectively,
and Q2 ¼ −q2. For Ph⊥ ≪ Q these can be written as
convolutions of the unpolarized fq1 TMD PDF and unpo-

larized Dh=q
1 TMD FF, and the TMD transversity PDF hq1

and H⊥h=q
1 (Collins) FF, respectively,
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FUU ¼ Cðf1 ⊗ D1Þ; ð2Þ

Fsin ðϕhþϕsÞ
UT ¼ C

�
ĥ · p⊥
zmh

⊗ h1 ⊗ H⊥
1

�
; ð3Þ

where C is the standard TMD convolution operator [44], ĥ
is a unit vector along Ph⊥, and p⊥ is the transverse
momentum of h with respect to the fragmenting quark.
The TMD PDFs depend on x and the parton transverse

momentum k⊥, while the FFs depend on z and p⊥, with
their Q2 dependence governed by the Collins-Soper equa-
tions [22,45]. The existing data on Collins asymmetries
have very mild dependence on Q2 and are compatible
with no evolution [21,46]. For the parametrization of the
unpolarized and transversity TMD PDFs, we follow
Refs. [17–19] in adopting a factorized form,

fqðx; k2⊥Þ ¼ fqðxÞGq
fðk2⊥Þ; ð4Þ

where the generic function fq ¼ fq1 or hq1, and the k2⊥
dependence is given by a Gaussian distribution,

Gq
fðk2⊥Þ ¼

1

πhk2⊥iqf
exp

�
−

k2⊥
hk2⊥iqf

�
: ð5Þ

The transverse widths hk2⊥iqf are in general flavor depen-
dent, and can be functions of x, although here we assume
their x dependence is negligible. For the TMD FFs, the
unpolarized distribution is parametrized analogously,

Dh=q
1 ðz; p2⊥Þ ¼ Dh=q

1 ðzÞGh=q
D1

ðp2⊥Þ; ð6Þ

while the Collins FF involves an additional z dependent
weight factor,

H⊥h=q
1 ðz; p⊥Þ ¼

2z2m2
h

hp2⊥ih=qH⊥
1

H⊥ð1Þ
1h=qðzÞGh=q

H⊥
1

ðp2⊥Þ: ð7Þ

The p2⊥ dependence of the functions Gh=q
D1

and Gh=q
H⊥

1

is

assumed to be Gaussian, in analogy with (5), with the
average hp2⊥ih=q independent of z. The z dependence of the
Collins FF is parametrized in terms of its p2⊥-weighted
moment, H⊥ð1Þ

1h=qðzÞ [21]. Using the TMD PDFs and FFs in

Eqs. (4)–(7), the P2
h⊥ dependence in the structure functions

is then proportional to exp ð−P2
h⊥=hP2

h⊥ih=qf;DÞ, where

hP2
h⊥iqf;D ¼ z2hk2⊥iqf þ hp2⊥ih=qD .
Our global analysis fits SIDIS π� production data from

proton and deuteron targets, including their x, z, and Ph⊥
dependence, with a total of 106 data points from the
HERMES [47] and COMPASS [48,49] experiments.
This gives four linear combinations of transversity TMD

PDFs and Collins TMD FFs for different quark flavors,
from which we extract the u, d, and antiquark transversity
PDFs (from four x-dependent combinations) and the
favored and unfavored Collins FFs (from four z-dependent
combinations), together with their respective transverse
momentum widths (from the Ph⊥ dependence). We do not
include lower-energy Collins asymmetry data from
Jefferson Lab on 3He nuclei because of concerns about
the separation of the current and target fragmentation
regions at relatively low energies [50].
In selecting the data to be used in the fit, we place several

kinematic cuts on the z,Ph⊥, andQ2 dependencies in order to
isolate samples where the theoretical framework used in this
analysis is applicable. To stay within the current fragmenta-
tion region, only data for z > 0.2 are included, and to
avoid contamination from vector-meson production and
soft-gluon effects, we exclude data above z ¼ 0.6. For the
Ph⊥ dependence, we exclude the regions where Ph⊥ is very
small (Ph⊥ > 0.2 GeV) or very large (Ph⊥ < 0.9 GeV): the
former to avoid acceptance issues for the lowest-Ph⊥ bin of
the HERMES multiplicity data, and the latter to ensure the
applicability of the Gaussian assumption, without the need
for introducing the Y term [50]. To stay above the charm
threshold, we restrict ourselves to Q2 > m2

c.
Because the existing SIDIS Collins asymmetry data have

a rather small Q2 range, and Q2 evolution effects tend to
cancel in ratios, there is no clear empirical indication of
scale dependence in the asymmetries. It is a reasonable
approximation, therefore, to neglect the Q2 dependence in

the FsinðϕhþϕsÞ
UT structure function, and freeze the scale in the

unpolarized fq1 andD
q
1 distributions in FUU at a valueQ2 ¼

2 GeV2 that is typical of SIDIS data. (In contrast, since
eþe− data are taken at higher energies, neglecting the scale
dependence between the eþe− and SIDIS measurements
would introduce uncontrolled errors from not including the
full TMD evolution where its effects may be important).
In determining the transversity TMDs hq1ðx; k2⊥Þ, we

parametrize the x dependence by the form hq1ðxÞ ¼
Nqxaqð1 − xÞbq for each of the flavors q ¼ u, d, and q̄,

assuming a symmetric sea, hū1 ¼ hd̄1 ¼ hs1 ¼ hs̄1, and use
isospin symmetry to relate the distributions in the proton
and neutron. For the Collins π� distributions, we use a
similar functional form to parametrize the z dependence of

the favored H⊥ð1Þ
1ðfavÞ ≡H⊥ð1Þ

1πþ=u ¼ H⊥ð1Þ
1πþ=d̄ FFs and the unfa-

vored H⊥ð1Þ
1ðunfÞ FFs for fd; ū; s; s̄g → πþ, with the distribu-

tions for π− related by charge conjugation. For the x
dependence of the spin-averaged fq1 distributions we use
the CJ15 leading-order parametrization [51], while for the z
dependence of Dq

1 , we utilize the leading-order DSS fit
[52]. Choosing a different FF parametrization would not
affect the results significantly, as changes in the z depend-
ence of the FFs could be compensated by modified widths
in the Gaussian Ph⊥ distributions.
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For the transverse-momentum widths hk2⊥iqf of the TMD
PDFs fq1 and h

q
1 , two Gaussian widths are used, one for the

valence type (q ¼ u, d) and one for the sea-quark type
(q ¼ ū; d̄; s; s̄) functions. Similarly, for the TMD FFs two
Gaussian widths for hp2⊥ih=qD are used, for the favored (such
as u or d̄ to πþ) and unfavored (ū or d to πþ) type of FF.
In total, we therefore have 23 parameters to be extracted

from data, 19 of which describe FsinðϕhþϕsÞ
UT and 4 for the

transverse part of FUU. To determine the latter, we perform
an independent fit to the HERMES π� and K� multiplicity
data [53], which include 978 data points that survive the

same cuts as employed for AsinðϕhþϕsÞ
UT .

Using the nested sampling MC algorithm [35–37], we
compute the expectation value E[O] and variance V[O],

E½O� ¼
Z

dnaPðajdataÞOðaÞ ≃
X
k

wkOðakÞ; ð8aÞ

V½O� ¼
Z

dnaPðajdataÞðOðaÞ − E½O�Þ2

≃
X
k

wkðOðakÞ − E½O�Þ2; ð8bÞ

for each observable O (such as a TMD or a function of
TMDs), which is a function of the n-dimensional vector
parameters a with probability density PðajdataÞ [40].
Using Bayes’ theorem, the latter is given by

PðajdataÞ ¼ 1

Z
LðdatajaÞπðaÞ; ð9Þ

where πðaÞ is the prior distribution for the vector param-
eters a, and

LðdatajaÞ ¼ exp

�
−
1

2
χ2ðaÞ

�
ð10Þ

is the likelihood function, with Z ¼ R
dnaLðdatajaÞπðaÞ

the Bayesian evidence parameter. Using a flat prior, the
nested sampling algorithm constructs a set of MC samples
fakg with weights fwkg, which are then used to evaluate
the integrals in Eqs. (8).
The results of the fit indicate good overall agreement

with the Collins πþ and π− asymmetries, as illustrated in
Fig. 1, for both HERMES [47] and COMPASS [48,49]
data, with marginally better fits for the latter. The χ2=datum
values for the πþ and π− data are 28.6=53 and 40.4=53,
respectively, for a total of 68.9=106 ≈ 0.65. The larger χ2

for π− stems from the few outlier points in the x and z
spectra, as evident in Fig. 1. The SIDIS-only fit is almost
indistinguishable, with χ2SIDIS ¼ 69.2. Clearly, our MC
results do not indicate any tension between the SIDIS data
and lattice QCD calculations of gT , nor any “transverse spin
problem.”

The resulting transversity PDFs hu1 and hd1 and Collins

favored and unfavored FFs, H⊥ð1Þ
1ðfavÞ and H⊥ð1Þ

1ðunfÞ, are plotted
in Fig. 2 for both the SIDIS-only and SIDISþ lattice fits.
The positive (negative) sign for the u (d) transversity PDF
is consistent with previous extractions, and correlates with
the same sign for the Collins FFs in the region of z directly
constrained by data. The larger jhd1j compared with jhu1j
reflects the larger magnitude of the (negative) π− asym-
metry than the (positive) π− asymmetry. At lower z values,
outside the measured region, the uncertainties on the
Collins FFs become extremely large. Interestingly, inclu-
sion of the lattice gT datum has very little effect on the
central values of the distributions, but reduces significantly
the uncertainty bands. The fitted antiquark transversity is
consistent with zero, within relatively large uncertainties,
and is not shown in Fig. 2.
For the transverse momentum widths, our analysis of the

HERMES multiplicities [53] gives a total χ2=datum of
1079=978, with hk2⊥iqf1¼0.59ð1ÞGeV2 and 0.64ð6Þ GeV2

for the unpolarized valence and sea quark PDF widths,
and hp2⊥iπ=qD1

¼ 0.116ð2Þ GeV2 and 0.140ð2Þ GeV2 for the

FIG. 1. A comparison of the full SIDISþ lattice fit with the πþ
(filled circles) and π− (open circles) Collins asymmetries

AsinðϕhþϕsÞ
UT from HERMES [47] and COMPASS [48,49] data

(in percent), as a function of x, z, and Ph⊥ (in GeV).

FIG. 2. Transversity PDFs hu;d1 and favored zH⊥ð1Þ
1ðfavÞ and

unfavored zH⊥ð1Þ
1ðunfÞ Collins FFs for the SIDIS þ lattice fit (red

and blue bands) at Q2 ¼ 2 GeV2, compared with the SIDIS-only
fit uncertainties (yellow bands). The range of direct experimental
constraints is indicated by the horizontal dashed lines.
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unpolarized favored and unfavored FF widths. These values
are compatible with ones found in the analysis by
Anselmino et al. [54] of HERMES and COMPASS charged
hadron multiplicities. On the other hand, the similar values
found for the sea and valence PDF widths disagree with the
chiral soliton model [55], for which the sea to valence ratio
is ∼5. Note also that while there appear some incompa-
tibilities between the x dependence of the HERMES and
COMPASS Ph⊥-integrated π� multiplicities, our analysis
uses only Ph⊥-dependent HERMES data that are given in
bins of x, z, Q2, and Ph⊥.
The transverse momentum widths for the valence and

sea transversity PDFs are hk2⊥iqh1 ¼ 0.5ð2Þ GeV2 and

1.0ð5Þ GeV2, respectively, and hp2⊥iπ=qH⊥
1

¼ 0.12ð4Þ GeV2

and 0.06ð3Þ GeV2 for the favored and unfavored Collins
FF widths, respectively. The relatively larger uncertainties
on the h1 and H⊥

1 widths, compared with the unpolarized
widths, reflect the higher precision of the HERMES
multiplicity data, and the order of magnitude smaller
number of data points for the Collins asymmetries.
Integrating the transversity PDFs over x, the resulting

normalized yields from our MC analysis for the δu and δd
moments are shown in Fig. 3, together with the isovector
combination gT . The most striking feature is the signifi-
cantly narrower distributions evident when the SIDIS data
are supplemented by the lattice gT input. The u and d tensor
charges in Fig. 3(a), for example, change from δu ¼
0.3ð3Þ → 0.3ð2Þ and δd ¼ −0.6ð5Þ → −0.7ð2Þ at the scale
Q2 ¼ 2 GeV2, while the reduction in the uncertainty is
even more dramatic for the isovector charge in Fig. 3(b),
gT ¼ 0.9ð8Þ → 1.0ð1Þ. The earlier single-fit analysis of
SIDIS data by Kang et al. [21] quotes δu ¼ 0.39ð11Þ and
δd ¼ −0.22ð14Þ, with gT ¼ 0.61ð25Þ at Q2 ¼ 10 GeV2, in
apparent tension with the lattice results. This can be
understood from Fig. 3(b), which demonstrates that the
peak of the SIDIS-only distribution at gT ∼ 0.5 is consistent
with the lower values found in earlier maximum likelihood
analyses [10,21], but does not give a good representation
of the mean value because of the long tail of the gT
distribution.

Future extensions of this work will explore incorporating
TMD evolution via the CSS framework [22,56], and the
improved treatment of the large-Ph⊥ contributions through
the addition of the Y term [50]. The inclusion of K� SIDIS
and eþe− annihilation data will allow further separation of
sea quark flavor contributions to h1 and better constraints
on the favored and unfavored Collins FFs. Upcoming high-
precision data from Jefferson Lab should also provide
significantly improved kinematical coverage at intermedi-
ate x and z values.
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