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In this supplemental note we provide a more detailed account of the maximum-entropy techniques we utilize to
obtain the response functions Rαβ(q, ω) from their imaginary-time counterparts Eαβ(q, τ). For notational simplicity,
we drop below the subscripts αβ and only keep the explicit dependence on ω (or τ).

According to Bayesian principles, the “most probable” response function is the one that maximizes Pr[R|E], the
conditional probability of R(ω) given E(τ). Bayes theorem states that Pr[R|E] ∝ Pr[E|R]× Pr[R], where Pr[E|R] ∝
exp(−χ2/2) is the likelihood function and Pr[R] is the prior probability. Attempting an inversion of the Laplace
transform by merely minimizing the χ2, and hence assuming that that Pr[R] is either unimportant or unknown, leads
to unphysical oscillations of the reconstructed response function. Within the maximum entropy method, the response
function, being positive definite and integrable, is interpreted as a probability distribution. As such, it maximizes the
the entropy S and a natural choice for the prior is Pr[R] ∝ exp(S).

The practical implementation of the scheme above proceeds as follows. We compute by GFMC methods a set
of NE = 1280 Euclidean response functions (a set for each value of the momentum transfer). A single Euclidean
response function is obtained by averaging the independent unconstrained imaginary-time propagation of 2000 initial
configurations. Hence, a total of 2,560,000 configurations are used (for each value of q), which allows us to control the
Monte Carlo statistical error up to relatively large imaginary time. We employ a uniform grid in τ up to τmax= 0.1
MeV−1 with a spacing ∆τ = 0.0005 MeV−1 (so Nτ = 200 grid points τi between 0 and τmax). The average Euclidean
response function and covariance matrix are estimated as
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where E
(n)
i = E(n)(τi) is the Euclidean response function corresponding to the nth GFMC propagation.

After discretizing the energy transfer variable ω on Nω evenly spaced points (spacing ∆ω), the Laplace transform
reported in Eq. (11) of the main article is expressed as

Ei =

Nω∑
j=1

KijRj , (3)

where Ei =E(τi), Rj =R(ωj), and Kij = ∆ω exp(−ωjτi) is the discretized Laplace kernel.
There is a high degree of correlation between subsequent time steps, since the imaginary-time evolution from one

step to the next involves small changes in the space and spin-isospin amplitudes. As a consequence, the covariance
matrix is non-diagonal, and the χ2 is given by
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Following Ref. [1], we diagonalize the covariance matrix so that (U−1CU)ij = δij σ
′ 2
i , and define the rotated kernel

and data as, respectively, K′=U−1 K and E
′
=U−1 E. In terms of these, the likelihood then reads
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2
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. (5)

We also define the entropy of the distribution R as

S =

Nω∑
i=1

[
Ri −Mi −Ri ln(Ri/Mi)

]
∆ω , (6)

with Mi =M(ωi) being the default model. Note that the above expression is valid even when R(ω) and M(ω) have
different normalizations.

In the context of maximum entropy techniques, the key step in the “inversion” of the Laplace transform is the
minimization of αS − χ2/2. To this end, we utilize the so-called “Brian algorithm” [2], a detailed discussion of which
can also be found in the supplemental material of Ref. [3]. There, two non-informative default models for the prior
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FIG. 1. Charged-current response functions of 4He at momentum transfers in the range q = (10–110) MeV. The results obtained
including one-body only and both one- and two-body terms in the weak current are displayed on the left (right) panels.
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were considered: (i) a flat one MF (ω) ∝ θ(ωM − ω), where θ(ω) is the step function and ωM = 2 GeV, and (ii) a
simple Gaussian MG(ω) ∝ exp(−ω2/σ2) with σ as specified below.

The historic maximum entropy prescription was adopted in Ref. [3]. It consists in determining, for the parameter α,
the value αh in correspondence to which the minimum of αS−χ2/2 occurs for χ2 = 1. The error bands shown in Ref. [3]
reflected the change in the response functions associated with the two choices above of the prior. In a subsequent
paper [4], a more refined strategy was devised to estimate the theoretical uncertainty in the electromagnetic response
functions of 12C. Because of the substantial computational cost involved in evaluating the large number of response
functions we utilize to map out the rate dependence on Eν , this latter procedure was deemed to be impractical here.
Thus, in order to estimate this uncertainty, we simply compute the response functions corresponding to α= 2αh and
α=αh/2. We follow this procedure for both the flat and Gaussian prior; in the latter case, we take σ=mµ≈ 105
MeV.

In Fig. 1 we show the charged-current response functions of 4He for momentum transfer ranging from q= 10 MeV to
q= 110 MeV. All response functions, but Rxy, turn out to be positive definite. Since the maximum entropy algorithm
is only applicable to positive definite responses, we first flip the sign of Exy(τ), then perform the inversion, and finally
flip back the sign of the resulting Rxy(ω). The situation is slightly more complicated when only the axial contribution
to the current operator is retained, since in that case R0z changes sign. We deal with this difficulty by adding to the
original Euclidean response the Laplace transform of the positive definite distribution R̃0z(ω) = c θ(ω−ωth) θ(ωM−ω),
where ωth≈ 19.8 MeV is the breakup threshold of 4He into 3H+n. The constant c is chosen so as to make the sum
R0z(ω) + R̃0z(ω) positive over the whole ω domain. Once the inversion is performed, R̃0z(ω) is subtracted out. We
explicitly verified that this procedure is stable against small variations in c.

When performing the inversion, no information on the location of the threshold is imposed, and the response
functions are different from zero for ω < ωth. To remedy this shortcoming, one could evolve to much larger imaginary
time, possibly up to τmax = 0.2 MeV−1. However, in order to reduce the statistical fluctuations associated with the
fermion-sign problem, this would require increasing the already large set of configurations employed in the propagation,
making the calculation considerably more computationally intensive than is already. On the other hand, we find that
the total capture rate is rather insensitive to the choice of τmax. Including one- and two-body terms in the weak
current, we obtain Γ =(303 ± 21, 303 ± 10, 306 ± 9) s−1 for τmax =(0.05, 0.08, 0.1) MeV−1. Moreover, the integrated
strength beyond the physical threshold varies as (57± 8, 42± 3, 40± 3) s−1 as τmax is increased over the same range.

Finally, we note that the monotonic behavior exhibited by the responses as function of the momentum transfer
simplifies the interpolation needed to compute the differential capture rate displayed in Fig. 1 of the main article.
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