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Short-distance structure of unpolarized gluon pseudodistributions
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We present the results that form the basis for calculations of the unpolarized gluon parton distributions
(PDFs) using the pseudo-PDF approach. We give the results for the most complicated box diagram both for
gluon bilocal operators with arbitrary indices and for combinations of indices corresponding to three matrix
elements that are most convenient to extract the twist-2 invariant amplitude. We also present detailed results
for the gluon-quark transition diagram. The additional results for the box diagram and the gluon-quark
contribution may be used for extractions of the gluon PDF from different matrix elements, with a possible

cross-check of the results obtained in this way.
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I. INTRODUCTION

Extraction of the parton distribution functions (PDFs)
from lattice calculations attracts now considerable interest
(see Refs. [1,2] for recent reviews and references to
extensive literature). Modern efforts aim at getting PDFs
f(x) themselves rather than their xV moments. The recent
progress in this endeavor has been stimulated by the paper
of Ji [3]. Its basic proposal is to consider equal-time
versions of nonlocal operators that define parton functions,
such as PDFs, distribution amplitudes, generalized parton
distributions, and transverse momentum dependent distri-
butions. In the case of ordinary PDFs, the major object of
Ji’s approach is a “parton quasidistribution” (quasi-PDF)
Q(y, p3) [3,4]. They produce PDFs obtained in the large-
momentum p; — oo limit of quasi-PDFs.

Alternatively, one may use coordinate-space oriented
methods, namely, the “good lattice cross sections”
approach [5,6], the Ioffe-time analysis of equal-time
correlators [7-9], and the pseudo-PDF approach [10-12].
In these cases, parton distributions are extracted through
taking the short-distance z3 — O limit.

In converting the Euclidean lattice data into the light-
cone PDFs, one should take into account that both the
p3 — o0 and z3 — O limits are singular, and one needs to
incorporate matching relations to perform the conversion.

The matching conditions in the quasi-PDF approach
were studied for quark [3,13—-15] and gluon PDFs [16-18],
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for the pion distribution amplitude (DA) [19] and gener-
alized parton distributions (GPDs) [19-21].

The matching relations in the pseudo-PDF approach
were also derived in several cases, in particular, for non-
singlet PDFs [15,22-25]. The procedure of lattice extrac-
tion of nonsinglet GPDs and the pion DA within the
pseudo-PDF framework was outlined in Ref. [26], in which
the relevant matching conditions have been also derived.

In our earlier paper [27] (see also Ref. [28]), we outlined
the basic points of pseudo-PDF approach to extraction of
unpolarized gluon PDFs and presented the one-loop match-
ing conditions for a particular combination of gluon matrix
elements, that has the “cleanest” projection on the twist-2
gluon PDF. These results have been used already in lattice
extractions of the unpolarized gluon PDFs in Refs. [29] and
[30] and [31].

However, because of the letter nature of Ref. [27], we
have skipped there some intermediate expressions and also
results for two other matrix elements that may be used for
the gluon PDF extraction.

In the present paper, we present a full result for the most
lengthy contribution of the “box” diagram and also its
projections onto all three matrix elements containing the
“twist-2” invariant amplitude. We also give more details
about our calculations of the gluon-quark mixing correc-
tions both for these matrix elements and for matrix
elements with arbitrary indices. The additional results
given in the present paper may be used for extractions
of the gluon PDF from two other matrix elements, which
may give a possibility to cross-check the results obtained
from different matrix elements.

The paper is organized as follows. In Sec. II, we study
the structure of the matrix elements of the gluonic bilocal
operators. In particular, we identify those that contain
information about the twist-2 gluon PDE. In Sec. III,
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we discuss one-loop corrections and specific properties of
their ultraviolet and short-distance behavior. In Sec. IIIf and
Appendix A, we present our results for the most compli-
cated box diagram. The subject of Sec. IV is the structure of
perturbative evolution of the gluon operators, gluon-quark
mixing, and matching conditions. The result for the gluon-
quark contribution generated by the gluon bilocal operator
with arbitrary indices is given in Appendix B. Section V
contains summary of the paper.

II. MATRIX ELEMENTS

We are going to consider the nucleon spin-averaged
matrix elements for operators composed of two-gluon
fields in the most general case when all four indices are
not contracted,

(PlGua(2) [z, 0]G(0) ). (2.1)

M/m;v/i (Z’ p) =

where [z, 0] stands for usual straight-line gauge link in the
gluon (adjoint) representation

[x,y] = Pexp{igA1 dt(x — y)HA, (tx + (1 - t)y)}.
(2.2)

A. Invariant amplitudes

We want to decompose M, 4(z. p) in several tensor
structures accompanied by corresponding invariant ampli-
tudes. The latter may be built from two available 4-vectors,
namely, p,, Z,, and the metric tensor g,z Building the
tensors, we incorporate the antisymmetry of G,, with
respect to its indices. This gives [27]

M ﬂa;y/}(z’ p)
= (QuwPaPp = GupPaPv = 9o Pulp + GapPuP)Mp)p
+ (GuwZaZp = GupZaZu = JavZuZp + GapZuzn) M:;
+ (Guw2aPp = GupZaPy = 9o ZuPp + GapZuPu) Mzp
+ (GuwPazp = GupPaZv = JawPuZp + JapPuzn) Mp:
+ (Puza = Pau)(Puzp = Ppz) M ppez
+(

9wYep — gﬂ/}g(w>Mgg' (23)

The amplitudes M are functions of the Lorentz invariants
of the problem, i.e., the invariant interval z> and the Ioffe
time [32] (pz) = —v (for further convenience, we define v
with the minus sign).

Since the matrix element should be symmetric with
respect to interchange of the fields, the functions M, ,,
M, My, M, .., and M, — M, are even functions of
v, while M. + M_, is odd in v.

B. Twist-2 projection
The standard light-cone gluon distribution f,(x) is
defined through the convolution ¢*’M .5, (z. p), with

the separation z taken in the light-cone “minus” direction,
z=2_:

1 .
9PM oy, (2. p) = P / ldxe’x”“*ng(X)- (2.4)

Extracting the projection g“’ﬁMW;ﬁJr from the decom-
position (2.3), we get

gaﬂM+a;ﬂ+(Z—v p)= (2.5)

This means that the gluon PDF is determined by the M,
invariant amplitude
/ dxe—lxl/ >‘

In view of Eq. (2.6), our strategy is to choose matrix
elements M,,.; that contain M, , in its parametrization,
and ideally nothing else.

Having in mind lattice calculations, it is convenient to
split the “+” components onto the sum of space and time
components. Also, due to antisymmetry of G, with respect
to its indices, the combination ¢g*’M 5, (z. p) includes
summation over the transverse indices i, j = 1, 2 only, and
reduces to

2piM,,(v.0).

~M,,(1,0) (2.6)

ij —
M iy = =My — Mgy

= Moo + M35 + (Moizi + M3i0;),  (2.7)

with summation over i = 1, 2 implied.

C. Picking out M,,, amplitude

As found in Ref. [27], there is an extension of the M ;.
matrix element that contains the M,, amplitude only,
Mojio + Mjii; = 2pg M, (2.8)
where the summation over both i and j is implied.
One can apply a similar procedure on M3;.;;. Using the
expression

M3p03 = (PG30(2)Go3(0)| p)
- szpp - 2M - Z3p3(MZp + Mpz)
- poZgMppzy + ng, (29)
we construct the combination
M35 + 2M 3,03 = 2p(2)Mpp - 2P(2)Z§Mppzzv (2.10)
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which still has an additional term proportional to the
M,,,.. invariant amplitude. Another minimally contami-
nated combination is given by

Moii3 + M0 = 4popsM,pp + 2poz3(M . + M.,).
2.11)

D. Multiplicatively renormalizable combinations

Off the light cone, the M,,,.); matrix elements have extra
ultraviolet divergences related to the presence of the gauge
link. For any set of its indices {ua;Af}, each matrix
element is multiplicatively renormalizable with respect to
these divergences [33] but, in general, with different
anomalous dimensions.

In Ref. [34], it was established that the combinations
represented in Eq. (2.7), namely, M;.;0, Ma;.i3. Moz +
Ms;.0 (and also My,;.;3 — Mj;.0), with summation over
transverse indices i, are each multiplicatively renormaliz-
able at the one-loop level. Furthermore, as noted in
Ref. [27], the combination G;;G;; (with summation over
transverse i, j) has the same one-loop UV anomalous
dimension as M y,.;5, while the matrix element G3,G3 has
the same one-loop UV anomalous dimension as Mj;,;3.
Hence, the combinations of Egs. (2.8) and (2.10) are
multiplicatively renormalizable at the one-loop level.

E. Reduced Ioffe-time distribution

Within the pseudo-PDF approach [10], the link-related UV
divergences are eliminated through introducing the reduced
loffe-time distribution (ITD). Namely, for each multiplica-
tively renormalizable amplitude M, we build the ratio

M(v,73)
M(0.23)

M(v, 23) (2.12)
in which the link-related UV-divergent Z(z3u?y) factors
generated by the vertex and link self-energy diagrams cancel.
As aresult, the small-z3 dependence of the reduced pseudo-
ITD M (v, z3) comes from the logarithmic DGLAP evolution
effects only.

III. ONE-LOOP CORRECTIONS

Below, we briefly summarize the results on “nonbox”
one-loop corrections presented in Ref. [27] and then
discuss a rather lengthy contribution of the box diagram
that was presented there in part only.

A. Link self-energy contribution

The self-energy correction for the gauge link is given by
the simplest diagram (see Fig. 1). In lattice perturbation
theory, it was calculated at one loop in Ref. [35]. An
important property of this contribution is the presence of a
~z3/ay linear term, where a; is the lattice spacing that
provides here the ultraviolet cutoff.

z tiz toz 0

g

FIG. 1. Self-energy-type correction for the gauge link.

Such corrections clearly factorize into a v-independent
factor, and cancel in the ratio (2.12), so that their explicit
form is not essential in the pseudo-PDF approach. Still, in
dimensional regularization, one has

&N, (d/2-1)
T (P T B = d) &) O):

(3.1)

where the pole for d = 3 (d = 4) corresponds to the linear
(logarithmic) UV divergences present in this diagram.

B. Vertex contribution

There are also vertex diagrams involving gluons that
connect the gauge link with the gluon lines; see Fig. 2.

We use the method of calculation described in Ref. [36]. It
is based on the background-field technique, with the gluon
propagator taken in the “background-Feynman” gauge [36].
The full, “uncontracted” vertex contribution is given by

OVertcx _ g2N¢F(d/2 — 1) 1 d M3—d —u
7/ W A u 5

X Go(112) (235G, (0) = 2,G 4(0))
wd—y
+ <ﬁ> (24Gpu(iz) = z,,Gm(ﬁz))Gyﬁ(O)}

@N.I(d)2—2)
8”2(_Z2)d/2—2
1 w3 -1
« / a2 G @60, (32)
; =3 |,

In this expression, just one of the fields in the
G,4(2)G,5(0) operator is corrected, while another remains
intact. In particular, the diagram 2(a) changes G,,(z) into

tz 0 =z tz 0

Q3000000000008

() (b)

FIG. 2. Vertex diagrams with gluons coming out of the gauge link.
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the sum of two terms. One of them contains UV diver-
gences, while the other one is UV finite. The UV-divergent
term is given by

N.g# T(d/2-1) ! _
o), =
X (ZanM(ﬁZ) - ZﬂGza(ﬁZ))7

(3.3)

where G, = 7’G,, and it = 1 — u. The overall d-depen-
dent factor here is finite for d =4, but the u-integral
diverges at the lower limit. The divergence disappears if
one uses the UV regularization by taking d =4 — 2¢yy,
which converts it into a pole at ey = 0.

Since the UV divergence comes from the u — 0O inte-
gration, we can isolate it by taking i# = 1 in the gluonic
field, which gives

N.#T(d/2-1) 1

82 (_Zz)d/z_l 4—d (Zanﬂ(Z) - ZﬂGzrx(Z))' (34)
The remainder is given by
N.g* r'd/2-1) 3—d
7% (d — 2)(_Z2)d/2—1/0 dufu’= = u], ()
X (Zanﬂ(uZ) - Zqu(ﬁZ))’ (35)

where the plus prescription at u = 0 is defined as
1 1
[ s gat = [ aurl -g0). 30

The second, UV finite term from the diagram 2a is
given by

N.g> TI'(d/2-2 1 B
875; (d_g)é_zz)d)/z—zl dufu?~ — 1]+(0)
X Gﬂa(ﬁZ)Gﬁﬂ(O).

(3.7)

Note that the gluonic operator in Eq. (3.7) has the same
tensor structure as the original operator G,,(z)Gg,(0),
differing from it just by rescaling z — #z. There is no
mixing with operators of a different type. The u-integral in
this case does not diverge for d =4, but the overall
['(d/2 —2) factor has a pole 1/(d —4).

Formally, there is also a pole 1/(d — 3), corresponding
to a linear UV divergence. However, the singularity for
d = 3 is eliminated by the [#*~¢ — 1] combination in the
integrand. One may say that the linear divergences present
in “u3~%” and “~1” parts cancel each other.

The remaining 1/(d — 4) pole corresponds to a collinear
divergence developed because all the propagators corre-
spond to massless particles.

(®)

FIG. 3. Gluon self-energy-type insertions into the right leg.

C. Gluon self-energy diagrams

Another simple type of one-loop corrections is repre-
sented by the gluon self-energy diagrams, one of which is
shown in Fig. 3(a). These diagrams have both the UV and
collinear divergences. The combined contribution of the
Fig. 3 diagrams and their left-leg analogs is given by

N, 1
gszﬂ 2-d/2 {2 - QﬁTO] Gua(2)Gp(0),  (3.8)

where f, = 11N_./3 in gluodynamics, so that the terms in
the square bracket combine into 1/6.

D. Box diagram

The most complicated technically is the calculation of
the box diagram which contains a gluon exchange between
two gluon lines (see Fig. 4). This diagram does not have
UV divergences, but it has DGLAP log z3 contributions. In
contrast to the vertex diagrams, the original G,,(z)G,4(0)
operator generates now a mixture of bilocal operators
corresponding to various projections of G,,(uz)G,4(0)
onto the structures built from vectors p, z and the metric
tensor g.

Our result for arbitrary indices payf is given in the
Appendix A. It is presented in the operator form; however,
it contains only those operators that survive in the forward
case (i.e., the operators that have the form of a full
derivative are abandoned). Still, the expression is rather
lengthy. Furthermore, we mostly need it for particular
combinations of indices corresponding to matrix elements
Moijo + Mjiijs M3iiz +2M3003 and My,.;3 + M3, that
contain the M,, invariant amplitude and are listed in
Egs. (2.8), (2.10), and (2.11). To shorten the formulas,
let us introduce the following notations for the bilocal
operators corresponding to these matrix elements:

0000080000000 O

FIG. 4. Box diagram.
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Ouo(z1,22) = Goi(21)Gio(22) + Gij(21)Gi(22)s (3.9)
033(21722) = G3i(Zl)Gi3(Zz) + 2G30(21)Go3(22)’ (3-10)
O3(z1:22) = Goi(21)G3(22) + G3:(21)Gio(22)- (3.11)

In the case of Oyy(z,0) and Os3(z,0) operators, the box diagram produces the following corrections:

2 =3
box gNCF d/2—1) 1 _ u
O (z,0) = — 477,'2(—(12)‘1/2_2 ) du| uu + 3 O33(uz,0)

N.I(d/2-2)
8”2(_Z2)d/2—2

2 =3
box g NLF d/2 - 1 1 _ _ u _
O33(2,0) = - WA duy | &+ ult + = ) Os3(uz, 0) = 1O (u1z. 0)

N.I(d/2-2)
871'2(—Z2)d/2_2

/)1 dud{ (a(u® + 1) — 2u)Ogy(uz, 0) + @(u* + 1)O33(uz,0)}, (3.12)

A Cduf (@ + 1) = 2u)Oy3(uz, 0) + a® + 1) Opo(uz,0)}. (3.13)

One can see that the box diagram contribution for each of them involves matrix elements of both the operators Oy, (uz, 0)
and O33(uz, 0). Thus, these two operators mix here with each other. Furthermore, matrix elements of both of them contain
the M, invariant amplitude. Thus, it is interesting to rewrite Egs. (3.12) and (3.13) in terms of the invariant functions:

2 -3
box ¢NJI(d/2—1 1 _ o u
M, (0,222 - WA du <uu —l-?) M, (uv, 22) — 2ZM,, .. (uv, 2%))

gchr(d/z - 2)

87[2(—22)‘1/2_2

2 —3
box gNLF(d/2—1) 1 _ u
M, (v, 2) - z%/\/lm,zz(u, )5 — —4ﬂ2(—22)d/2_2 | dul | un + ) M, (uv, )

Al duf{2(a(u? + 1) = u) M, (uv, 2%) — u(u® + 1)3M,, . (uv, 2%) }, (3.14)

e
_ <u17t + 3 + ﬁ) BM, . (uv, z2)}

2 —
%/01 duf{2(a(u? + 1) = u)M,, ,(uv, z%)

—[a(u? 4+ 1) = 2ulz3M,, . (uv, 22)}. (3.15)

These relations have a very similar structure and, in fact, coincide if one discards the M
these expressions gives a very simple result for the box correction to M

ppzz terms. Taking the difference of

ppz>

_gchF(d/Z— 1) ¢@N.I'(d/2-2)

1 1
TR iMoo ) =S [ My ). (316

box
Mppzz(’* Zz)_>

The situation is simpler for the Og;(z,0) operator, for which the box diagram contribution is expressed through the
Ogs(uz,0) operator only,

2
boxg Ncr(d/z—l) 1 _ 2_
Op3(2.0) = A2 (=72)22 A du | uu "‘5”3 Og3(uz,0)

+%leu(ﬁ(ﬁ+ 1) = )05 (uz, 0). (3.17)
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In all the cases, Eqgs. (3.14), (3.15), and (3.17), the I'(d/2 — 2) terms are singular for d = 4, which results in log(—zz)
terms generating the DGLAP evolution. The I'(d/2 — 1) terms are singular for d = 2, which corresponds to the fact that the
gluon propagator in two dimensions has a logarithmic log(—z?) behavior in the coordinate space. For d = 4, these terms are
finite. Note that, unlike the vertex part, the box contribution does not have the plus-prescription form.

IV. DGLAP EVOLUTION STRUCTURE

Adding the results for all the diagrams discussed above, we get the following expressions for their combined contribution
for the three operator combinations listed in Eq. (3.11):

MOi;i3 + M3i;i0 = 4’170[73-/\/11717(7/7 Z%) + ZPOZS(Mpz(I/’ Z%) + sz(y’ Z%))

2 2 7
g°N, [1 3 1 err _ u  log(u) _ 2.
~ 0 | d”{KE_E log z%u%VT +2|6(w) + u_3ﬁ_4T ++2 uu+§u3

ee 1 — unn)?
—210g<z3/41R 1 ) [7( - ) ] }(4p0p3/\/lpp(uu, 23) + 2upoz3 (M, (uv, 23) + M, (uv, 23))), (4.1)
+

Moo+ M.
5 JsJt 2
2 - Mpp(”v Zs)

T

—log <ZzﬂIR

2N

M35 + 2M 30,03

=M,,(v,23)
20 pp\Vs 33

- Z%Mppzz(y’ Z%)

2 2

ch 1 ) evE
2—— |1

= o (25 e (305

2eN 12(1 — uit)?
—1 2,2 ¢
0og (Z3ﬂIR 4 ) [ 7

N [1 _ 20 €\ o 2.2 2
% ), du< 2@ + log Z3HiR a(u” +1) puzzM,, . (uv, z3).

All these combinations contain the log (z3uf 6%) evolu-
tion term accompanied by the gg-component of the
Altarelli-Parisi kernel,

However, they have different z3-independent parts, as a
result of mixing with “higher-twist” functions M, + M,
in Eq. (4.1) and M,, .. in Egs. (4.2) and (4.3). The kernel
(4.4) has the plus-prescription structure reflecting the fact
that, in the local limit, M,,(z, p) is proportional to the
matrix element of the gluon energy-momentum tensor that
is conserved in the absence of the gluon-quark interactions.
From now on, + means the plus prescription at 1.

(4.4)

< - —> log (ZzﬂUv eZF
VP Y

2 rE
+5.3 du{g(l —u?) + log <z3,um 1 ) (u? + 1)}u2z§/\/lppzz(uv, z3),

) s -1 )

u

) +2)5(u) - (%5(&) + E(l —u?) +%} +)

- ] }(Mp,,uw, 2) =AM, (D))
+

(4.3)

The log (z3,uUV ¢7) term in each result comes from the
UV-singular contributions. They contain the §(i) factor
which reflects the local nature of the UV divergences and
converts M(uz, p) into M(z, p). Each result shares the
same UV-singular contribution from the link renormaliza-
tion and self-energy contributions, but differ in their vertex
contribution, as mentioned in Sec. III B.

The expressions given above include gluon-gluon tran-
sitions only. Thus, we need to include also the one-loop
diagrams describing the gluon-quark transition.

A. Gluon-quark mixing

The correction to the gluon operator with arbitrary
indices generated by the gluon-quark diagram shown in

014008-6
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,Z 9 The singlet combination of quark fields O4(z3) is
% % defined as
3 3 I _ _

O4(2) =5 >_(Wr(@)rws(0) = (0)rws(2)).  (4.6)

f

with f numerating quark flavors. Since the matrix element
FIG. 5. Gluon-quark mixing diagram. of O%(z) is odd in z, it can be parametrized by
1
(p|Og(z3)|p) = 2p A dy sin (ypz)fs(y)
Fig. 5 is presented in Appendix B. To illustrate its structure, .
let us take the projection corresponding to the Oj; operator. = -2pty / daZg(av), (4.7)
In the MS scheme, it reads 0

, where v = —(pz), as usual, and
g Cr /1 — M0 = 3
du[220;(uz3) + 2uuz3000, (uz)|. _ 1
drtzg Jy IO+ 2001 o 70) = [(ayeostmyrst) @49
g°Cr 2,2 e ! — _ 0 ’
T4z In GRS du(2iu + #7)0; 0 (uz3) is the singlet quark Ioffe-time distribution.

Applying this parametrization, the gg correction to M,

— (@ + u?) 004 (uz)], _- (4.5) may be written as

2 1 ere
(PIG(G0(0) + GG 1) = ~2p0ps G [l (5 ) Btu) + 1420 | Tyt (49)

with the gg component of the evolution kernel given by B,,(u) = 1 + (1 — u)?. For two other matrix elements listed in
Eq. (3.11), the analogs of Eq. (4.5) are given by

2 ez}'E 1
(PIGuGO1p) + (PIGsGHOr) ~ -3 n (A S [ aubipTow)  (a10)

and

(PIGH(IGS(O01p) + 2plG3o)Gus(O)) = =t 5t [ au[in (33 S Byt + 4| Ty, (@)

B. Matching relations
As discussed already, the combination M.;o + M,j.;; = 2 p(z)/\/l »p» at the tree level, is proportional to the twist-2 amplitude
M, without contaminations. The amplitude M, , (v, z3) obtained in this way may be used to form the reduced pseudo-ITD
M,y (v.23)
Mpp (0, Z%)
as in Eq. (2.12). Using the results (4.2), (4.10) of our calculations for the one-loop corrections to M ;..o + M
matching relation

Moo (v, 23) (4.12)

j:ji» We obtain the

2

(ZSC 6275 1 T (

N, [1 2vE log (i 2
Mos(115)7,(0,) = 7, 000) = 5 [ ou s o (5027 i) 48B4 Ty
0 +

N 1 2 2re
TR At du{—(l —u’) + log <z%,u12ReT> w(u? +1)

2 Jo o \3
L)

T0.5) (4.13)

X u*z3 [Mppzz(uv, 73) — M, (0, z
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between the “lattice function” My (v, z3) and the light-cone
ITDs Z (v, u?) and Zg(v, ).

This matching condition also includes the ‘“higher
twist” term M, . on its right-hand side. This term is
accompanied by a z3 factor that suppresses its contribution
for small z3 values and is omitted in the matching
conditions given in our original paper [27]. The size
of the M,,,.. term may be estimated by comparing the

lattice signals for M;.,0 + M;;.;; and Mj;.;3 + 2M30.03
|

l]jl

matrix elements. To this end, denoting M;,;3(z3, p) +

2M30.03(z3, p) = 2p3M33(v,23), we define the “33”
reduced ITD,
Ms3(v, Z%)
N (v, Z2 =— - 4.14
33( 3) M33 (0, Z%) ( )

Now, using Egs. (4.3) and (4.11), we obtain the matching
condition

M3 (v, 3)[ZL4(0. %) = 23M e (0.23)] = Ty (v, 1) — Z3M e (v, 23)
N, [1 e u?/2 +1o 2
- [ ) = My ) o (0 ) -4 B
7 Jo ‘ 4 & u 3
a,Cp [1 Z,(v,u?) —3M,,,..(v, z%)]{ < 275)
- du|Z ) = Tg(0,u2) =L PPz 1 B, (u) + 4
2r A ”|: s(uw ) S( g )19(07/‘2) - Z%MPPZZ(O’Z%) o8 Z3ﬂ 4 gq( !
N,
-5 / du{2u+log 2y >12u +1)}
W) =M, (v,23)
xuzzz[/\/l uv, 7 M 0,z Ty, 37 ppzi 3} 4.15
3 Pﬂzz( 3) Pzz( 3) ( 2) _ ZgMppzz(O’ Z%) ( )
|
that may be combined with Eq. (4.13) to estimate the V. SUMMARY

impact of the M, . contamination.
The gluon light-cone ITD Z (v, u?) is related to the
gluon PDF f,(x, u*) by

1 [1 .
Z,v.p?) = 5/ dxe™xf,(x,u?). (4.16)
-1

In fact, xf,(x, u*) is an even function of x. Hence, the real
part of Z (v, u?) is given by the cosine transform of
xf(x, %), while its imaginary part vanishes. The overall
factor Z (0, u?) corresponds to the fraction of the hadron
momentum carried by the gluons, Z (0, u#*) = (x,) 2. This
means that Eq. (4.13) allows us to extract just the shape of
the gluon distribution. Its normalization, i.e., the magnitude
of (x,),, must be taken from an independent lattice
calculatlon similar to that performed in Ref. [37]. The
singlet quark function Zg(wv, u?) that appears in the O(a)
correction should be also calculated (or estimated)
independently.

The matching condition (4.13) (without the M, ,.. terms
and neglecting the gluon-quark mixing term) has been
already used in lattice extractions of the unpolarized gluon
PDFs by the MSU group [29,30] and the HadStruc
Collaboration [31].

In this paper, we have presented the results that form the
basis for the ongoing efforts to calculate gluon PDF using
the pseudo-PDF approach.

In particular, we have displayed our results for the most
complicated box diagram. We have presented the expres-
sion for the situation when all four indices are arbitrary and
also for combinations of indices corresponding to three
matrix elements that are most convenient to extract the
twist-2 invariant amplitude M, ,. We also displayed the
evolution structure for these matrix elements.

The results of our earlier publication [27,28] have been
already used in the lattice extractions [29-31] of the gluon
PDF from the studies of the M;.;o + M j;,;; matrix element.
The additional results for the box diagram and the gluon-
quark contribution given in the present paper may be used
for extractions of the gluon PDF from two other matrix
elements, with a possible cross-check of the results
obtained from different matrix elements.
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APPENDIX A: BOX DIAGRAM WITH ARBITRARY INDICES

The full result for a forward matrix element is

w  ONTI(d)2) 2ir?
Oza wp WA du(zﬂzvgaﬁ — ZaZu9up — ZuZpGer + Zazﬂg/w) Tsz(uZ>G§<O)

#N.I(d/2-1) [1 -
i W[) du{ (g“ﬁg/”/ - gﬂﬂgm> T sz(uz)Gg (O)

%

+ (gaﬂGZI/(uZ)G (0) - g;tﬂqu(uZ>Gza<0) - gaszﬁ(uZ)qu (O) + gﬂszﬁ(uZ)Gza(O))

3
+ | 2ui + )(gaﬁqu(uZ)G (O) - gﬂﬂGza(uZ)sz(O) - gaszy(uZ)Gzﬂ(O) + g;sza(uZ)Gzﬁ<0))

+ @7(2,Gap(uz) Gy (0) = 2,Gp(2) G 4(0) = 25G o (42) Gy (0) + 25 G, (u2) G 4 (0)
= 224G (u2)Gep(0) + 24 ZD(MZ) p(0) + 2,6 5(uz) G (0) — 24G5(u2) G (0))
(1 + u)(2,G o (u2)Gp(0) = 2,G 1 (42) Gp(0) — 25Gy (uz) Gy (0) + 25G o (uz) G (0)
— 2,Gop(u2)G,(0) 4 2,Gp uz) (0) + 2,G o (u2) G 45(0) — 2,G,, (u2) G 5(0))

i
(5 -5 CuttrGueu2)GE00) = 2,6 0)GE(0) = 50 Ge12)GE0) + 235 G ) GO

:I T~ W

) -
(

+ 290§ G2 (42) G (0) = 2,0pG ¢ (u2) G5 (0) = 29 G (u2) G (0) + 2, G e (uz) G (0
+ ZugaﬁGvé( Z)G (O) Zagy[iGyf(u )GLZS(O) Z;Ag(wG/i(f(uZ)Gg 0) + Zag;wG/}/j uz Gg 0
)Gi( ( )

(
: ( (uz)G2(
S 0) Z(thu/)’sz(MZ)GE O) Zﬂg(w (MZ)GE;’(O + Zag;w f(uZ)Gi(O )
4

+201(2,2, G e (uz) G5(0) = 2,2,Gie(42) G5 (0) = 2,25Gge(uz) G (0) + 242G (uz) G5 (0))

)
)
+ Zyga/)’GzS(uZ G )
)
u?a
— & (% Yap = ZaTuup = uZpen + zazﬂgﬂy)Ggg(uZ)GC‘f(O)}
2 _ 1
st [ @ 11216 0) = G116 0) = G (1) 0) + G (1))
= 2uG 4 (uz)G3(0) + (1 = 2u)Gp(u2) G 1 (0) + (1 + 2u) G, (uz)G,45(0)
u?
+ 2 (gaﬂGué(uZ)G§<0) - gﬂﬂGaé(uZ>Gl€(0) - gamaf(uZ>G§(0) + gpuGaé(uZ)Gfi(O»
M2

N

T (gaﬂGvf(uZ)Glél <0) - gﬂﬂGué(uZ)Gg(O) - gm/Gﬂcf(uZ>Gl€ (0) + gﬂuGﬂc_f(uz)Gi(O»

+
+u (g;w (zf(MZ)G/i’(O) - gaszyé(uZ)G§ (O) gu/}Gaé(uZ)G (0) + grz/}G;tf(uZ)Gé(O))

1713
Gty = ) g (0060 . (A1)

APPENDIX B: GLUON-QUARK CONTRIBUTION WITH ARBITRARY INDICES

92 CFF(d/z)ZﬂZD

iG,4(2)G5(0) — WA duitr . (uz)[=Gopzn?" = i€azpyy"7s5lw(0)

FCrI(d/2-1) .
i W / dud gy 19 o (2)[(2a9pn + 290 = JapZn)V" = i€azpy?"¥sy(0)

+ 2, (@ (u2)D, [y =~ Gapzn) V" = 1€acp?"131w7(0)
+ m//c(uz)[(gﬂﬂgan - gaﬂgun)yn - ieaﬂﬁn}/HYS]Wc (0))
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+ Zﬂ(ﬁuwc(uz)év[<zﬂgan - gaﬂzn)yn - ieazﬂﬂyn}/S]Wc(O)
+ ﬁl/_/c(uZ)Kgavgﬁn - gaﬂgvn)}’” - ieavﬂnV"?’S]l/’c (0)>
- Zﬂzuﬁz [li/c(uz)(aayﬁ + }/aaﬁ)l//c (O)]}

FCI(d)2-2)

1 - -
+ WA du{_gﬂvﬁzl/_/c(uz)(aayﬁ + yaaﬂ)l//c (0)

+ uuzl/_/c(uz)avaﬂ[(zagﬁn + 2p9an — gaﬂzn)yn - ieazﬂn}/ﬂ}/S]Wc(O)

+ g (uz)d,|
+ g, (uz) )|

(guﬁgan - gaﬁg,w])yn - ieaﬂﬁnY”YS]WC (O)
(gavgﬂn - gaﬂgvn)yn - ieayﬂn}/ﬂ}/S]l//c (O)

- uﬁzzvayaﬂl/?c(uz)yal//c (O) - uﬁzzuavaa‘/_/c(uz)yﬂlﬂc (0)}
—Hec. - {p<wa}-{vopl+{ineav<ep} (B1)
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