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Pion-pion elastic scattering in the isospin I ¼ 2 channel is investigated in two-flavor dynamical lattice
QCD. Six ensembles are used with lattices elongated in one of the spatial dimensions at two quark masses
corresponding to a pion mass of 315 MeV and 226 MeV. The energy of the low-lying states below the
inelastic threshold are extracted in each case using the standard variational method. The extracted finite-
volume spectrum is fitted by the inverse amplitude method simultaneously for both quark masses and
extrapolated thereafter to the physical point. The resulting phase-shifts and scattering length are compared
with those from experiment, leading-order chiral perturbation theory and other lattice studies. Our
calculations match the experimental results.
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I. INTRODUCTION

The prediction of scattering phase-shifts of strongly
interacting systems directly from quark-gluon dynamics
has become possible through rapid advances in lattice QCD
calculations. In such ab initio calculations one can also vary
parameters that are inaccessible in experiment like the
number of flavors Nf. In addition, they serve to test models
that extrapolate in hadron masses, allowing for deeper
insights into the QCD dynamics at the hadronic scale,
including resonances and their dependence on quark masses
and flavors.
Lattice QCD calculations are performed in a small cubic

volume and in imaginary time, so that a direct evaluation of
phase-shifts is not possible. However, the discrete energy
eigenvalues of the QCD Hamiltonian in a cube with
periodic boundary conditions can still be put into relation
with phase-shifts as shown by Lüscher [1,2]. Varying the
lattice size, through, e.g., elongated boxes [3,4], allows one
to produce a number of phase-shifts at the eigenergies;
additional phase-shifts can be determined by projecting the
particles to moving frames [5]. This enabled lattice QCD
calculations of the ρ meson phase-shifts in Nf ¼ 2 [6–12]

andNf ¼ 2þ 1 [13–20]. The isoscalar sector is particularly
interesting because of the presence of the broad f0ð500Þ “σ”
resonance. Only recently, phase-shifts in this channel have
been calculated [21–23] (for calculations of the scattering
lengths, see, e.g., Refs. [24,25]).
The infinite-volume extrapolation of the πþπþ system

was the first physical application of the original Lüscher
formalism, for the scattering length [26–37] and extended
to higher energies [38–40]. See also Refs. [41,42] for a
comprehensive calculation of meson-meson scattering
lengths. Systems of more than two pions with maximal
isospin have been calculated in lattice QCD [43,44] and
serve as a test ground for infinite-volume mapping tech-
niques that are currently being developed [45–54]. In
Ref. [48] such a formalism was, for the first time, applied
to the above-threshold 3πþ system.
In this study we determine the πþπþ isospin I ¼ 2

phase-shifts using elongated boxes. Our study is carried
out using Nf ¼ 2 dynamical configurations with nHYP
fermions [55]. We analyze two sets of ensembles with
different sea quark masses: one corresponding to mπ ¼
315 MeV and the other one to mπ ¼ 226 MeV. For each
pion mass we use three ensembles with different lattice
geometry. For each ensemble we analyze states at rest,
P ¼ ð0; 0; 0Þ, and states moving along the elongated
direction with momentum P ¼ ð0; 0; 1Þ. For each case,
we use two-hadron ππ interpolators with different back-to-
back momenta in the variational basis. We extract the
lowest energy states using the variational method [56].
The scattering length is computed at the two pion masses

and the results are extrapolated to the physical point using
chiral perturbation theory. In the wider energy range the
inverse amplitude method (IAM) [57,58] is utilized to fit
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the data and obtain predictions for the phase-shifts at the
physical quark mass. This model is unitary and matches the
chiral pion-pion amplitude [59,60] up to the next-to-leading
order. The obtained predictions overlap nicely with the
experimentally obtained values.
In comparison to previous studies in which this method

was applied [61–64] we allow here the pion mass and decay
constant to vary and include their full correlations with the
energy eigenvalues in the fit.
In an upcoming paper [65] we will use the I ¼ 2 energy

eigenvalues determined here, together with the correspond-
ing results of the isovector and isoscalar channels [12,23],
to perform a global analysis of pion-pion-scattering with
IAM. The full energy dependence of the I ¼ 2 partial-wave
amplitude is also needed as input for upcoming calculations
of the 3πþ system above threshold along the lines of
Ref. [48], as required by three-body unitarity [66].
This paper is organized as follows. In Sec. II details of

the lattice calculation are provided, including the varia-
tional basis and interpolating operators, followed by a
description of the extraction of energy eigenvalues in
Sec. III. The determination of phase-shifts, effective range
expansion fit, IAM fit, and chiral extrapolation is discussed
in Sec. IV.

II. LATTICE SETUP

For the I ¼ 2 channel we cannot use q̄q interpolating
fields since the maximum isospin for such operators is 1.
We will construct our variational basis out of two-pion
interpolating fields, two πþ pions to be precise, projected to
the appropriate momentum combinations. Different inter-
polating fields will only differ by the choice of pion
momenta. Using the interpolating fields we construct the
correlator matrix,

CijðtÞ ¼ hOiðtÞO†
jð0Þi: ð1Þ

The eigenvalues of this matrix are obtained by solving the
generalized eigenvalue problem,

Cðt0Þ−1
2CðtÞCðt0Þ−1

2ψ ðnÞðt; t0Þ ¼ λðnÞðt; t0Þψ ðnÞðt; t0Þ; ð2Þ

where t0 is a parameter. The energies of the πþπþ system
can be extracted from the long-time behavior of the
eigenvalues [56,67],

λðnÞðt; t0Þ ∝ e−Ent½1þOðe−ΔEntÞ�; n ¼ 1;…; N: ð3Þ

When t < 2t0 the correction term vanishes at a rate given
by ΔEn ¼ ENþ1 − En, the difference between the energy
level of interest and the lowest level excluded from the
variational basis [67]. The variational method filters out
contaminations in the spectrum from states included in
the basis.

For each ensemble we include in the variational basis all
interpolating fields with momenta corresponding to two-
hadron states that in the absence of interactions will be
below the inelastic threshold at E ¼ 4mπ , and the next
momentum just above it. In our analysis we include only
the energies extracted from the variational method that lay
below the inelastic threshold.
In this work we will use two cubic lattices and four

lattices elongated in one spatial direction. The relevant
symmetry groups are Oh and D4h for the cubic and
elongated boxes, respectively. The elongation direction is
chosen to be z. The angular momentum labels used for the
irreducible representations (irreps) of SOð3Þ are split into
multiplets of the irreps of the lattice symmetry groups. The
splitting of angular momentum for Oh and D4h can be
found in Table I.
To get additional states in this scattering region, we

will also use interpolators for nonzero momentum states.
By constructing operators with a total momentum P we
will access additional energy levels in the elastic region.
The relativistic effects cause the box to shrink in the
direction of the total momentum, changing the symmetry
group. We align the boost direction with the direction
of elongation so that the relevant symmetry group
remains D4h.
The πþπþ interpolating fields are constructed using two

πþ interpolators with the appropriate momenta,

ππðP;p; tÞ≡ πþðΓðpÞ; tÞπþðΓðP − pÞ; tÞ; ð4Þ

where

πþðΓðpÞ; tÞ ¼ d̄ðtÞΓðpÞuðtÞ: ð5Þ

Here the quark fields uðtÞ and dðtÞ represent a three-
dimensional slice of the field, and they can be viewed as
N ¼ 4 × 3 × V3 vectors, where V3 is the number of points
in a time slice. The matrix Γ is an N × N matrix that acts in
the spin, color and position space. The only structure used
in this study is ΓðpÞ ¼ γ5eip. This matrix acts trivially in
the color space, and in position space we have
½eip�x;y ¼ eipxδðx − yÞ. For more details see Refs. [10,12].

TABLE I. Resolution of angular momentum in terms of irreps
of the Oh and the D4h group.

l Oh D4h

0 Aþ
1 Aþ

1

1 F−
1 A−

2 ⊕ E−

2 Eþ ⊕ Fþ
2 Aþ

1 ⊕ Bþ
1 ⊕ Bþ

2 ⊕ Eþ

3 A−
2 ⊕ F−

1 ⊕ F−
2 A−

2 ⊕ B−
1 ⊕ B−

2 ⊕ 2E−

4 Aþ
1 ⊕ Eþ ⊕ Fþ

1 ⊕ Fþ
2 2Aþ

1 ⊕ Aþ
2 ⊕ Bþ

1 ⊕ Bþ
2 ⊕ 2Eþ
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To access the zero angular momentum, l ¼ 0, phase-
shifts in πþπþ we need to project our operators to the
Aþ
1 irrep of Oh and D4h. According to Table I the lowest

contribution to this irrep comes from l ¼ 0 states and the
corrections come from l ¼ 4 states for Oh and l ¼ 2
states for D4h. These higher phase-shifts are expected to
be small in the kinematic region we explore and can be
safely neglected.
To construct interpolating fields with the right symmetry

properties, we start with a “seed” interpolating field and
project it on the Aþ

1 irrep using

ππðP;pÞ ¼ 1

jGj
X
g∈G

χAþ
1
ðgÞππðRðgÞP; RðgÞpÞ: ð6Þ

Here G is the group (Oh or D4h), g is an element of G, χ is
the character of g in the irrep Aþ

1 and RðgÞ is the rotation
corresponding to the element g.
The collection of “seed”momenta used in this study are

presented in Table II. As mentioned earlier, we used all
momenta that in the noninteracting case had energy less
than 4mπ and the next just above. Then the operator is
plugged into Eq. (6) to generate the linear combination
that overlaps with Aþ

1 . In Fig. 1 we highlight which
operators were used in the 315 MeV ensembles. For
example, at elongation η ¼ 1.25 there are three energies
in the elastic scattering region; thus four operators are
selected.
These operators are evaluated on a set of six ensembles.

The parameters for these ensembles are listed in
Table III. To compute the correlation functions we need
to perform the Wick contractions and the correlation
functions become functions of quark propagators. All
correlation functions used in this study are linear combi-
nations of

CðP;p;p0; tÞ≡ hππðP;p0; tÞππðP;p; 0Þ†i
¼ −½5ðP − p0Þtj5ð−Pþ pÞ0j5p0tj5ð−pÞ0�
þ ½5ðP − p0Þtj5ð−Pþ pÞ0�½5p0tj5ð−pÞ0�
− ½5ðP − p0Þtj5ð−pÞ0j5ðp0Þtj5ð−Pþ pÞ0�
þ ½5ðP − p0Þtj5ð−pÞ0�½5ðp0Þtj5ð−Pþ pÞ0�: ð7Þ

Above we introduced the following notation to denote
the quark propagator traces:

½i1p1j1j…jikpkjk�≡ Tr
Yk
α¼1

ΓðpαÞM−1ðtjα ; tjαþ1
Þ; ð8Þ

where M−1ðt; t0Þ represents the quark propagator N × N
matrix between two time slices.
Evaluating these diagrams requires the all-to-all quark

propagator. This is a very expensive calculation and to
avoid it we use the Laplacian-Heaviside method (LapH)
[68]. The basic idea is to replace the quark interpolating
fields with smeared quark interpolators that have the same
symmetries. The smearing is introduced by truncating the
three-dimensional Laplacian operator on each time slice by
keeping the lowest-lying Nv operator modes. The net effect
is that the point-quark all-to-all propagatorM−1 is replaced
with the propagator for smeared quarks M̃−1. The smeared
propagator can be computed efficiently since we only have
to invert the Dirac matrix for the LapH modes, rather than
for each point on the lattice. We stress that this replacement
is not an approximation, but rather creates operators with
the right quantum numbers which have a different overlap
with the relevant states. The number of LapH modes Nv
controls the smearing radius and the overlap; if the
truncation is aggressive, keeping only a few LapH modes,

FIG. 1. Energy levels extracted from the 315 MeV ensembles
with total momentum P ¼ ½000� as a function of elongation. The
dashed lines correspond to the noninteracting ππ energies.
The lattice data are plotted with the error bars within the markers.
In the figure the notation follows the text: the ππðP;pÞ inter-
polator has total momentum P and relative mometum p.

TABLE II. The “seed” momentum p used to create interpolat-
ing fields for the zero momentum states and the moving states.
The momentum components are indicated in units of the smallest
nonzero momentum allowed in the corresponding direction; for
the elongated boxes the smallest momentum in the z-direction is
reduced proportional to the elongation. Each of these operators is
projected onto the Aþ

1 irrep for the D4h group in the elongated
case, or Oh group for the cubic case (indicated with an star in the
ensemble label).

P ¼ ½000� P ¼ ½001�
E�
1 [000] [001] [002] [001] [101] [002]

E2 [000] [001] [100] [001] [101] [002]
[101] [111]

E3 [000] [001] [100] [001] [101] [002]
[101] [002] [102] [111] [003] [102]

E�
4 [000] [001] [001] [101] [002]

E5 [000] [001] [100] [001] [101] [002]
E6 [000] [001] [100] [001] [101] [002]
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the overlap decreases and correlation functions need to be
computed accurately at large time separations to resolve the
relevant states. For our study we used Nv ¼ 100 which
corresponds to a smearing radius of roughly 0.5 fm [12].
To compute the smeared propagator efficiently we use
GPU inverters [69]. In our calculations all steps remain
unchanged except that the quark traces in Eq. (8) are
computed using the smeared propagator M̃−1.

III. EXTRACTING FINITE-VOLUME
SPECTRUM

The variational method gives us the generalized eigen-
values as a function of time separation between sink and
source. To extract the energy levels we have to fit these
functions. When the correlation functions are saturated by
a single state, the mass can be extracted using a single-
exponential fit. To determine the appropriate range for this
fit we plot the effective mass, meff ≡ − log λðtþ 1Þ=λðtÞ,
and look for a plateau. As we can see from Fig. 2, the data
are very precise and the effect of the corrections is
statistically significant for all time ranges (see the inset).
As such, we have to fit the correlators to include the effects
of the excited states and thermal corrections,

λðtÞ ¼ A1e−E1ðt−t0Þ þ A0
1e

−E0
1
ðt−t0Þ þ Be−ΔEðt−t0Þ: ð9Þ

Above the fitting parameters are the energy levels E1 and
E0
1, the spectral weights A1 and A0

1, and B the coefficient
of the leading thermal correction, to be discussed below.
The inclusion of the excited level allows us to fit the
correlator at earlier times, and E0

1 should have a value
corresponding to the lowest states excluded from the
variational basis. This is indeed the case in our analysis.
One unusual feature for two-pion correlation functions is

that the wraparound effects, due to thermal fluctuations, lead
to constants or slowly decaying exponential contributions to
the correlation function [33,38]. To see how the thermal
effects contribute, consider the correlation function,

CðtÞ ¼ 1

Z

X
n

hnje−HðT−tÞππðP;p0Þe−HtππðP;pÞ†jni; ð10Þ

where T is the time-extent of the lattice. The leading order
contribution comes from jni ¼ j0i, which leads to the usual
superposition of exponentials for the correlation function.
The next order term for ππ comes from jni ¼ jπðpÞi, single
pion states with momentum p. The effect of these states is to
generate a set of slowly decaying exponentials,

δCðtÞ ¼ 1

Z

X
p

e−EπðpÞTe−ΔEðpÞt; ð11Þ

with EπðpÞ the energy of a single pion with momentum p
and ΔE ¼ EπðPþ pÞ − EπðpÞ. Note that these contribu-
tions are suppressed by coefficients that vanish exponen-
tially fast with T. However, when fitting our correlators
for t ∼ T=2, their effects are important, as can be seen
from Fig. 2, and this correction needs to be included.
In our fits we fix the exponential term ΔE to the lowest
value generated by varying p over the allowed momenta:
for P ¼ 0 we fix ΔE ¼ 0, and for P ¼ ½001� we fix ΔE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=L=ηÞ2
p

−mπ .
For elongated boxes an interesting feature arises: the

noninteracting levels cross as we vary the elongation.
This can be easily seen in Fig. 1. In particular, we draw
the reader’s attention to the intersection between the
ππð½000�; ½100�Þ and ππð½000�; ½002�Þ that occurs at
η ¼ 2. This has consequences also for the energy levels
in the interacting case. Even in the presence of interactions,
states appear with energies at (or very close to) non-
interacting levels. To understand this note that the inter-
acting energy levels fall in between two noninteracting
ones. This can be understood in the case that the only
partial wave contributing is l ¼ 0. In this case the energy
levels satisfy Eq. (12) below, and theZ00 function has poles
at the energies corresponding to noninteracting levels,
bracketing the interacting solutions. In Fig. 3 we show
the solutions of Eq. (12) as we vary the elongation of the
box past η ¼ 2. Notice the vertical lines that are the poles of
the Z00 functions: one corresponding to ππð½000�; ½100�Þ
state that remains fixed since the momentum in the trans-
verse directions does not change as we change elongation,

TABLE III. Summary of the ensembles used in all isospin channels. Included for reference are the lattice spacing (a), the number of
configurations (Ncfg), the pion mass (mπ), the renormalized quark mass (mpcac

u=d ), and pion decay constant (fπ).

Ensemble Nt × N2
x;y × Nz η a[fm] Ncfg amπ ampcac

u=d afπ

E1 48 × 242 × 24 1.00 0.1210(2)(24) 300 0.1931(4) 0.01226(5) 0.0648(8)
E2 48 × 242 × 30 1.25 0.1944(3) 0.01239(4) 0.0651(6)
E3 48 × 242 × 48 2.00 0.1932(3) 0.01227(5) 0.0663(6)
E4 64 × 242 × 24 1.00 0.1215(3)(24) 400 0.1378(6) 0.00612(5) 0.0600(10)
E5 64 × 242 × 28 1.17 378 0.1374(5) 0.00620(4) 0.0600(8)
E66 64 × 242 × 32 1.33 400 0.1380(5) 0.00619(4) 0.0599(10)
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and one corresponding to πð½000�; ½002�Þ that moves as we
vary η. The two lines bracket one of the solutions of Eq. (12),
and when η ¼ 2 the poles merge and the corresponding
solution has exactly the same energy as the noninteracting
two-pion state.
Note that this argument relies on Eq. (12) being exact,

which only works in the limit where the higher partial
waves are zero. We expect that when the other partial waves
are taken into account, the energies will be shifted slightly
away from this position. This is for example the case when
the poles for ππð½000�; ½100�Þ and ππð½000�; ½001�Þ merge,
which happens for η ¼ 1, corresponding to a cubic box. In
that case, the energy level that is pinched by the poles ends
up belonging to the Eþ representation of the symmetry
group for cubic boxes Oh. The lowest angular momentum
that this irrep overlaps with is l ¼ 2. In this case it is then
natural that the energy for this level coincides with the
noninteracting case if we assume that all partial waves
above l ¼ 0 are small: the shift will be proportional to
the δI¼2;l¼2.
It is important to emphasize that the presence of these

levels do not imply that the phase-shift δ20 is zero for this
energy, as one would expect. For example in Fig. 3 the
phase-shift is clearly nonzero at the pole. To understand this
note that the connection between the phase-shift and energy
is controlled by the Z00 function which is infinitely steep
when the poles merge. Thus, finite changes in the phase-
shift away from zero lead to infinitesimal (zero) changes in
the energy away from the pole. This is also important when
analyzing the levels extracted from numerical simulations.
The energy levels will be determined with some finite
stochastic error, which is mapped through this infinitely
steep function into infinite errors in the phase-shift space.

As such, these energy levels offer no real constraint on the
phase-shifts, and we do not include them in our analysis.
Note that large error bars in phase-shifts always arise when
the error bars cross a pole, which happens even without
pinching (see for example the left panel of Fig. 5).

IV. EXTRACTING PHYSICAL QUANTITIES

Having computed the finite-volume energy levels of ππ
scattering in maximal isospin, we now connect them to
physical quantities. For energies below the inelastic thresh-
old we use Lüscher’s formula [1] and the extensions to
elongated boxes [3] and boosted frames [4]. The s-wave is
the lowest partial wave that contributes to ππ scattering in
isospin 2. For cubic boxes, elongated boxes, and boosted
systems, the irrep that overlaps with δ20 is Aþ

1 . Higher
partial waves (l ¼ 2; 4; 6…) also overlap with this irrep in a
finite volume; however, we neglect these from further
analysis since they are known to be negligible in this channel.
See, e.g., Refs. [38,70]. Thus, for the extraction of the phase-
shifts in this channel the relevant Lüscher formula is

cot δ20 ¼ W00 ¼
Z00ð1; q2; ηÞ

π3=2ηq
: ð12Þ

Boosting the system has the effect of changing the value of η;
see Ref. [4] for further details and the explicit form of
Z00ð1; q2; ηÞ. In the following we will use two distinct
parametrizations of the phase-shifts, which alsowill allow us
to interpolate them in energy as well as to extrapolate them to
the physical point.

FIG. 3. Energy levels as derived from Eq. (12) at the inter-
section of the phase-shift curve generated by the IAM model
(orange line) and W00 (blue line.) The vertical lines indicate the
position of the noninteracting energies. The three panels corre-
spond to elongations around η ¼ 2, to help visualize how the
interacting energy is forced to coincide with the noninteracting
level.

FIG. 2. Effective masses for the two lowest P ¼ ½000� levels in
the E1 ensemble. The solid line corresponds to the fitted function.
The dashed lines correspond to the energies extracted from the fit,
the thin barely visible rectangles correspond to the error-bands,
and they span the fitting range. The error bars are present but
for most points smaller than the symbol size. In this plot t is
measured from t0.
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A. Effective range expansion

The effective range expansion (ERE) is expected to hold
in channels without resonances in vicinity of the production
threshold. The drawback is that with a finite number of
terms we can only describe low momentum data. We will
use the first two terms of the ERE, i.e.,

p cot δðpÞ ¼ 1

a0
þ 1

2
r0p2: ð13Þ

The parameters a0 and r0 are the scattering length and
effective range, respectively. The lattice energy spectrum
can be used to compute phase-shifts, and we can find an a0
and r0 from a fit to this results. To perform this fit, the
above-given phase-shift is related to the finite-volume
spectrum via the Lüscher’s formula. The corresponding
correlated χ2 with the energy eigenvalues is minimized then
with respect to a0 and r0.
For both pion masses we restrict the fit to the lowest

two energy levels in each ensemble. For the 315 MeV data
the scattering length extracted is mπa0 ¼ −0.20ð3Þ with a
χ2=d:o:f: ¼ 5.6=ð6 − 2Þ. The 226 MeV ensemble yields a
scattering length mπa0 ¼ −0.10ð2Þ with a χ2=d:o:f: ¼
3.3=ð6 − 2Þ. The 315 MeV scattering length is within
two sigma of the leading order (LO) ChPT value for that
pion mass, while the 226 MeV scattering length is con-
sistent with the LO ChPT value within one sigma.
We can extrapolate these scattering lengths to the

physical pion mass using ChPT at NLO [60]. The expan-
sion of mπa0 reads

mπa0 ¼ −
m2

π

16πf2π

�
1þ m2

π

32π2f2π

�
3 ln

m2
π

2f2π
− 1 − lππ

��
;

ð14Þ

where lππ is a combination of the usual low-energy
constants (LECs). This function is fit to our two extracted
scattering lengths at unphysical pion masses, with respect
to lππ . With a χ2=d:o:f: ¼ 0.74=ð2 − 1Þ we obtain a value
of lππ ¼ −1.09ð2.52Þ. We do not make a direct comparison
of the extracted value to other lattice determinations, as the
definitions of lππ vary. Evaluating the ChPT expansion at
the physical pion mass we obtain mπa0 ¼ −0.0455ð16Þ.
We compare this result to the physical value and other
lattice studies in Fig. 4 indicated as “ERE.” The gray band
represents the result of the estimation from the Roy
equation [71]. The references for other determinations of
the scattering length are, in order: NPLQCD2006 [31],
NPLQCD2008 [32], ETMC2010 [33], ETMC2015 [42],
Yagi2011 [34], Fu2013 [35], and PACS-CS2013 [36].
The error bars indicated in the figure are statistical only.
This allows for a straightforward comparison of the error as
not all determinations include systematic error. This figure
also contains a second scattering length from the lattice data

using the inverse amplitude method as explained below,
indicated as “IAM.”

B. Inverse amplitude method

The available data on the finite-volume spectrum of ππ
scattering at maximal isospin cover a large region in energy
and pion mass. Therefore, to connect those data to each
other but also to the physical point one requires a
framework that can extrapolate in energy and mπ . The
so-called inverse amplitude method (IAM) [57,58] recon-
ciles both these requirements. In particular, it provides a
scattering amplitude, which fulfills two-body unitarity
exactly and has correct chiral behavior up to next-to-
leading chiral order [59,60]. Furthermore, it fulfills the
general requirements on the chiral trajectory for resonan-
ces, derived in Ref. [72] to all chiral orders. The corre-
sponding cotangent of the phase-shift reads

cot δIAMðsÞ ¼
ffiffiffi
s

p
2p

�
T2ðsÞ − ReT4ðsÞ

ðT2ðsÞÞ2
�
; ð15Þ

where T2ðsÞ and T4ðsÞ are the leading and next-to-leading
order chiral amplitudes, respectively, projected to isospin
I ¼ 2 and angular momentum l ¼ 0. The total energy
squared of the system is denoted by the Mandelstam
s ¼ E2.
The leading order chiral amplitude T2ðsÞ is a function of

energy, Goldstone-boson mass, m2 ¼ Bðmu þmdÞ and
pion decay constant in the chiral limit, f0. The amplitude
T4 involves in the two-flavor case two low-energy con-
stants (LECs) l̄1 and l̄2. Two additional low-energy con-
stants l̄3, l̄4 enter the NLO chiral amplitude when replacing
the above mass and decay constants by their physical
(lattice) values using one-loop results [60],

FIG. 4. Plot of the scattering length as extracted from this,
“ERE” and “IAM,” and other lattice QCD studies in a similar
representation as in Ref. [42]. Only statistical errors are included
for lattice results. The red star is the LO ChPT value for the
scattering length [60] and the gray band depicts the more recent
result using Roy equations [71]. For the other references, see
main text.
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m2
π ¼ m2

�
1 −

m2

32π2f20
l̄3

�
& fπ ¼ f0

�
1þ m2

16π2f20
l̄4

�
:

The constants l̄i do not depend on the regularization scale,
but only on the parameters of the underlying theory—the
quark masses. However, they are related to the scale-
dependent, but quark-mass independent renormalized
LECs via

lri ¼
γi

32π2

�
l̄i þ log

m2

μ2

�
;

where γ1 ¼ 1=3, γ2 ¼ 2=3, γ3 ¼ −1=2, γ4 ¼ 2. For a fixed
scale μ one can, thus, determine the renormalized LECs
and then make predictions for the two-particle scattering
for a setup with a different pion mass. In the course of
this work we use dimensional regularization with μ ¼
770 MeV, but emphasize that the expression (15) is
manifestly scale independent.
As discussed before, the finite volume spectrum con-

sists of a large set of energy eigenvalues as well as mπ and
fπ . In the past it has been noted [39] that variations of the
pion mass and decay constant can lead to non-negligible
effects in the energy spectrum. Therefore, it is important
to asses this source of uncertainty in a systematic way.
In relation to this we noted some systematic effects in E2,
cf., different central value of the pion mass recorded in
Table III. Thus, we exclude this set from further fits,
which leaves us with 21 energy eigenvalues, five pion
masses and five decay constants to fit. The latter is
performed plugging in Eq. (15) into Eq. (12) while
minimizing the correlated χ2 with respect to three dynami-
cal parameters1 l1r , l2r and l4r . We let the fit also determine
the values of the pion mass and decay constants that are
common for the three light and two heavy ensembles,
respectively. Note that all correlations between pion mass,
decay constant and energy eigenvalues are taken into
account. The best parameters of the overall fit to light and
heavy data produce χ2=d:o:f: ¼ 75.4=ð31 − 7Þ with the
LECs given in Table IV.
The errors on the parameter have been estimated in a

resampling procedure. We have explored the origin of the

large χ2 of this combined fit extensively. As a matter of fact,
the fit to the results of only heavy or light ensembles gives
χ2=d:o:f:, heavy ¼ 21.2=ð17 − 5Þ and χ2=d:o:f:, light ¼
7.0=ð14 − 5Þ. Thus, it appears that IAM is flexible enough
to address all lattice QCD results up to the inelastic
threshold as a function of energy. However, the simulta-
neous parametrization of the pion mass dependence is less
reliable for such a large pion mass range. To some extent
this is expected, since IAM coincides with the chiral
expansion only up to next-to-leading chiral order.
Furthermore, we refer at this point to the recent study of
systematic uncertainties tied to the use of lattice data at
unphysical pion mass in the context of ChPT [74].
We note that, for the individual fits where the model fits

well the data, a significant part of the χ2 comes from the
cross-correlation between the data points. This demon-
strates that the cross-correlations should be taken into
account.
Table V lists the scattering lengths for the obtained set of

parameters.
The result at the physical pion mass is depicted together

with other lattice QCD based estimations in Fig. 4. It shows
that the extrapolated value is well in agreement with the
value extracted from the Roy equations [71] as well as
overlaps with most recent lattice QCD determinations.
The compilation of phase-shifts for the combined fit

to light and heavy energy eigenvalues is depicted in Fig. 5.
It also contains the lattice results after extrapolating them
to the physical point (right panel). Recall that fitting is
performed at the level of energy eigenvalues including
full information about cross-correlations. Overall we note,
that while the LECs of the model have sizable statistical
uncertainties, the corresponding error bands on phase-shifts
are quite narrow. Clearly, the prediction of the phase-shifts
at the physical point depicted in Fig. 5 shows a nice
agreement with the available experimental data even far
beyond the elastic region. This observation has been
also noted in Ref. [48] where the two and three pion
lattice QCD results of the NPLQCD collaboration [44,75]
were discussed.

TABLE V. Scattering length determined from the effective-
range expansion.

mπ Heavy 315 MeV Light 226 MeV Phys 139 MeV

mπa0 −0.1673þ0.0177
−0.0191 −0.1001þ0.0067

−0.0064 −0.0436þ0.0013
−0.0012

TABLE IV. The fitted LECs (lir · 103) and mπ and fπ from the IAM analysis.

l1r ¼ þ11.6þ16.2
−14.4 l2r ¼ −0.7þ6.9

−7.4 l4r ¼ þ52.4þ25.1
−25.5

mlight
π ¼ 223.83þ0.19

−0.18 MeV mheavy
π ¼ 315.25þ0.06

−0.09 MeV

flightπ ¼ 97.45þ0.56
−0.30 MeV fheavyπ ¼ 107.44þ0.16

−0.25 MeV

1We found that the value of l3r does not lead to any notable
improvement of the fit and fix this value to the one reported by
FLAG [73]: l3r ¼ 8.94 × 10−6.
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V. CONCLUSION

We have performed a calculation of the pion-pion
elastic scattering in the isopsin I ¼ 2 channel in two-
flavor dynamical lattice QCD. One novel feature com-
pared with other I ¼ 2 studies is the use of elongated
lattices which has proven a cost-effective approach in
mapping out the momentum dependence in scattering
processes. We considered six ensembles (see Table III)
with elongation up to a factor of 2 in one of the spatial
dimensions, and two pion masses at 315 MeV and
226 MeV. Boosting of the ππ system in the elongated
direction is also considered for enhanced energy coverage.
In each case, we extract multiple low-lying states using
the standard variational method.
The data are analyzed simultaneously at both pion

masses making use of the inverse amplitude method.
This unitary model matches the chiral ππ scattering
amplitude to next-to-leading order and allows, thus, for
chiral extrapolation to the physical point in a wide
energy range. In the current application of the method,
we allow the pion mass and decay constant to vary and
include their full correlations with the energy eigenval-
ues in the corresponding fit. The scattering length
extrapolated to the physical point reads mπa0 ¼
−0.0436ð13Þ. As an additional check we also perform
an effective range expansion, which in combination with
the perturbative chiral form of the scattering length
gives a consistent value of mπa0 ¼ −0.0455ð16Þ at the
physical point.
A closer analysis of the χ2 reveals a slight tension in the

model description between light and heavy ensembles if the
full energy range is fitted. Overall, this suggests that more
reliable extraction of low-energy parameters requires
results at lower pion mass as well. Another possibility,

is to include cross channels, I ¼ 0, 1, in the analysis, which
might restrict these constants more strongly. In any case, we
note that the phase-shifts extrapolated to the physical point
match the experimental phase-shifts.
Overall our results demonstrate the efficacy of using

elongated lattices and IAM analysis as an effective tool in
studying hadron-hadron scattering processes from first
principles. Work is under way to carry out a global
IAM analysis across all three isospin channels of ππ
scattering on elongated lattices. Such a study can pave the
way for extending to systems that include three pions
above threshold.
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APPENDIX: EXTRACTED ENERGIES AND
CORRELATION MATRICES

In this section we summarize results from fitting the
correlation function to extract the finite volume energies.

FIG. 5. Plots of the phase-shifts as a function of energy for pion masses 315 MeV, 226 MeV, 139 MeV in order from left to right. The
points on the first two plots are lattice QCD data as described in the text. The empty points are for systems with P ¼ ½000� while the
filled points are for systems with P ¼ ½001�. The phase shifts extracted from experiment (right panel) are from Refs. [76,77]. The curves
and error bands show the result of an IAM fit to the I ¼ 2 lattice QCD energy eigenvalues and the pertinent prediction at the physical
point in the right panel.
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The energies from nonboosted systems were fit with the
functional form A1e−E1t þ A0

1e
−E0

1
t þ B, while boosted

systems were fit with A1e−E1t þ A0
1e

−E0
1
t þ Be−ΔEt with

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ½2π=ðηLÞ�2
p

−mπ . The results of all extrac-
tions are reported in Table VI. The fit window was chosen
to minimize the χ2 per degree of freedom. The parameter

Q is the confidence level of the fit corresponding to the
probability that χ2 is larger then the fit result. The value of
amπ is extracted from the two point correlation function.
We also include tables of the cross-correlations between
the extracted energies for all ππ scattering channels in
Table VII.

TABLE VI. Energy levels in isospin 2 with fitting details. η is the elongation and t0 is the variational time.

Mπ ¼ 315 MeV

P η amπ n t0 Fit window aE χ2=d:o:f: Q

(0,0,0) 1.0 0.1931(4) 1 3 5–15 0.391(1) 1.36 23
2 3 7–17 0.669(2) 1.24 28

1.25 0.1944(3) 1 3 4–13 0.393(1) 1.23 29
2 3 6–14 0.577(1) 1.10 36
3 3 5–13 0.663(1) 0.98 42

2.0 0.1932(3) 1 3 4–13 0.3883(6) 0.90 48
2 3 6–13 0.4712(7) 0.76 52
3 3 2–12 0.6509(6) 0.97 44
4 3 5–11 0.6579(8) 0.76 47
5 3 5–12 0.715(1) 0.65 58

(0,0,1) 1.0 0.1931(4) 1 3 6–13 0.526(1) 1.02 38
2 3 6–15 0.762(4) 1.00 42

1.25 0.1944(3) 1 3 4–10 0.487(1) 0.91 40
2 3 6–14 0.729(1) 0.61 66
3 3 4–16 0.754(2) 1.40 19

2.0 0.1932(3) 1 3 3–12 0.4311(6) 1.06 38
2 3 6–12 0.5630(8) 0.51 60
3 3 3–15 0.6880(7) 1.04 40
4 3 2–16 0.764(1) 0.68 74
5 3 4–10 0.782(1) 1.01 36

Mπ ¼ 226 MeV

P η amπ n t0 Fit window aE χ=d:o:f Q

(0,0,0) 1.0 0.1378(6) 1 3 4–12 0.280(1) 0.84 50
1.17 0.1374(5) 1 3 5–13 0.280(1) 0.88 47

2 3 3–12 0.537(1) 0.78 56
1.33 0.1380(5) 1 3 6–13 0.280(1) 1.32 27

2 3 3–12 0.490(1) 0.76 58

(0,0,1) 1.0 0.1378(6) 1 3 3–12 0.446(1) 1.10 35
1.17 0.1374(5) 1 3 3–10 0.411(1) 1.02 38
1.33 0.1380(5) 1 3 3–9 0.385(1) 1.05 35
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