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We perform a one-loop study of the small-z2
3 behavior of the Ioffe-time distribution (ITD) M(ν, z2

3), the 
basic function that may be converted into parton pseudo- and quasi-distributions. We calculate the cor-
rections on the operator level, so that our results may be also used for pseudo-distribution amplitudes 
and generalized parton pseudodistributions. We separate two sources of the z2

3-dependence at small z2
3. 

One is related to the ultraviolet (UV) singularities generated by the gauge link. Our calculation shows 
that, for a finite UV cut-off, the UV-singular terms vanish when z2

3 = 0. The UV divergences are absent in 
the reduced ITD given by the ratio M(ν, z2

3)/M(0, z2
3). Still, it has a non-trivial short-distance behavior 

due to ln z2
3�2 terms generating perturbative evolution of parton densities. We give an explicit expres-

sion, up to constant terms, for the reduced ITD at one loop. It may be used in extraction of PDFs from 
lattice QCD simulations. We also use our results to get new insights concerning the structure of parton 
quasi-distributions at one-loop level.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The usual parton distribution functions (PDFs) f (x) [1] are of-
ten mentioned now as “light-cone PDFs”, since they are related 
to matrix elements M(z, p) of the 〈p|φ(0)φ(z)|p〉 type taken on 
the light cone z2 = 0. The parton pseudo-distributions P(x, −z2)

[2,3] generalize PDFs for a situation when z is off the light cone, 
in particular, when z is spacelike z2 < 0. To obtain them, one 
should treat M(z, p) as a function M(ν, −z2) of the Ioffe time 
(pz) ≡ −ν [4] and z2. Fourier-transforming M(ν, −z2) with re-
spect to ν gives pseudo-PDFs P(x, −z2).

As suggested by X. Ji [5], using purely spacelike separations 
z = (0, 0, 0, z3) (or, for brevity, z = z3) allows one to study ma-
trix elements M(z3, p) (and hence, the Ioffe-time distributions [6]
M(ν, z2

3)) on the lattice. To extract PDFs from such studies, one 
needs to understand the small-z2

3 behavior of the pseudo-PDFs 
P(x, z2

3).
In any renormalizable theory, a perturbative calculation of the 

matrix element M(z3, p) reveals logarithmic ln z2
3 singularities 

resulting in the perturbative evolution of PDFs. Further com-
plications arise in quantum chromodynamics (QCD), where the 
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parton fields are connected by a gauge link E(0, z; A). As em-
phasized by Polyakov [7], perturbative corrections to gauge links 
(and loops) result in specific ultraviolet divergences requiring 
an additional renormalization (see also [8–10]). Studies of the 
UV and short-distance properties of the QCD bilocal operators 
ψ̄(0)γ α E(0, z; A)ψ(z) were performed by Craigie and Dorn in 
Ref. [11] (see also recent papers [12–14]).

An important point is that the effects of perturbative gluon 
corrections may be formulated on the operator level, without ref-
erence to a particular matrix element in which the operator is 
inserted. This idea is most efficient when realized in the form of 
the nonlocal (or string) form of light-cone operator product expan-
sion (OPE) [15] that was developed in much detail by Balitsky and 
Braun [16] who applied it to studies of the light-cone limit. For 
this reason, they skipped the discussion of the link-specific UV di-
vergences that, at a finite UV cut-off, disappear when z2 = 0. Also, 
they did not present the z2-independent part of the one-loop con-
tribution.

In the present paper, we perform a complete one-loop study 
of the QCD bilocal operators off the light cone. In the context 
of the quasi-distributions approach [5], the one loop corrections 
have been recently calculated for quasi-PDFs [17,18], for gener-
alized parton quasi-distributions and for pion quasi-distribution 
amplitude [19]. All of them result from independent calculations of 
Feynman diagrams in momentum space, specific for each type of 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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quasi-distributions. The produced results have rather lengthy an-
alytical forms, that strongly differ for each case. In particular, the 
very question did not arise if, say, the results for the pion quasi-
distribution amplitude and quasi-GPDs in Ref. [19] are consistent 
with the result for the nonsinglet quasi-PDF in Refs. [17,18].

In contrast, using the nonlocal OPE requires just a single calcu-
lation of Feynman diagrams. The results obtained in the operator 
form are rather compact, and may be converted into any par-
ton distribution by a relevant Fourier transform. As examples, we 
present an expression for the reduced ITD, and we also show how 
a simple ln(z2

3m2) evolution logarithm proliferates into a rather 
complicated structure for quasi-PDF.

Furthermore, working in the coordinate representation allows 
one to clearly separate UV singular terms from those governed by 
the evolution effects. We pay a special attention both to the UV-
singular link-related contributions and to the UV-finite evolution-
related terms singular in the z2

3 → 0 limit.
Technically, our calculations are similar to those performed in 

our paper [20] within the formalism of virtuality distributions [21]. 
In some aspects, our calculations also resemble those of Ref. [16], 
where the calculations, however, did not go beyond the leading 
evolution logarithm.

We start, in Section 2, with a short overview of the basic ideas 
of our approach formulated in Refs. [22,2]. In Section 3, we out-
line the nonlocal OPE calculation of the one-loop diagrams in the 
operator form, and identify the terms responsible for the behav-
ior of the ITD M(ν, z2

3) for small z3. In Section 4, we show that 
rather simple expressions for the one-loop ITD may be used for 
a straightforward calculation of the one-loop quasi-PDFs, provid-
ing new insights concerning their structure. Section 5 contains the 
summary of the paper.

2. PDFs

2.1. Ioffe-time distributions

The basic parton distribution functions (PDFs) introduced by 
Feynman [1] are extracted from the matrix elements of bilocal op-
erators, generically written as 〈p|φ(0)φ(z)|p〉. We use here scalar 
notations for the partonic fields because complications related to 
spin are not central to the very concept of PDFs.

In many situations (especially in extraction of parton distribu-
tions from the lattice), it is very useful to treat such a matrix 
element as a function M(ν, −z2) of two Lorentz invariants, the 
Ioffe time [4] (pz) ≡ −ν and the interval −z2. Thus, we write

〈p|φ(0)φ(z)|p〉 ≡ M(z, p)

= M(−(pz),−z2) = M(ν,−z2) . (2.1)

The function M(ν, −z2) is the Ioffe-time distribution [6].
It can be shown [22,23] that, for all contributing Feynman dia-

grams, the Fourier transform P(x, −z2) of the ITD with respect to 
ν has the −1 ≤ x ≤ 1 support, i.e.,

M(ν,−z2) =
1∫

−1

dx eixν P(x,−z2) . (2.2)

Note that in this covariant definition of x we do not assume that 
z2 = 0 or p2 = 0.

2.2. Light-cone PDFs

The expressions for various types of parton distributions, all in 
terms of the same ITD M(−(pz), −z2), may be obtained from spe-
cial choices of z and p. In particular, taking a lightlike z, e.g., that 
having the light-front minus component z− only, we parameterize 
the matrix element through the twist-2 parton distribution f (x)

M(−p+z−,0) =
1∫

−1

dx f (x) e−ixp+z− . (2.3)

It has the usual interpretation of probability that the parton carries 
the fraction x of the target momentum component p+ . The inverse 
relation is given by

f (x) = 1

2π

∞∫
−∞

dν e−ixν M(ν,0) = P(x,0) . (2.4)

Since f (x) =P(x, 0), we may say that the function P(x, −z2) gen-
eralizes the concept of the usual light-cone parton distribution 
onto intervals z2 that are not light-like. The functions P(x, −z2)

will be referred to as parton pseudo-distributions (or pseudo-
PDFs) [2].

2.3. Quasidistributions

Since one cannot have light-like separations on the lattice, it 
was proposed [5] to consider equal-time separations z = (0, 0,

0, z3) [or z = z3, for brevity]. Then, in the p = (E,0⊥, P ) frame, 
one introduces quasi-PDF Q (y, P ) through a parametrization

M(P z3, z2
3) =

∞∫
−∞

dy Q (y, P ) eiy P z3 . (2.5)

The quasi-PDF describes the distribution of parton’s k3 = y P mo-
mentum. Using the inverse relation

Q (y, P ) =|P |
2π

∞∫
−∞

dz3 e−iy P z3 M(P z3, z2
3) , (2.6)

we can express the quasi-PDF Q (y, P ) in terms of the pseudo-PDF 
P(x, z2

3) corresponding to the z = z3 separation

Q (y, P ) = |P |
2π

1∫
−1

dx

∞∫
−∞

dz3 e−i(y−x)P z3 P(x, z2
3) . (2.7)

When P(x, z2
3) does not depend on z3, i.e., when P(x, z2

3) =
f (x), the quasidistribution Q (y, P ) does not depend on P , and co-
incides with the PDF f (y).

It should be noted that the integration variable z3 in Eq. (2.6)
enters into both arguments of the ITD M(P z3, z2

3). In contrast, 
the pseudo-PDF P(x, z2

3) is obtained through integrating the ITD 
M(ν, z2

3) just with respect to its first argument,

P(x, z2
3) = 1

2π

∞∫
−∞

dν e−ixν M(ν, z2
3) . (2.8)

2.4. Transverse momentum dependent distributions

If one treats the target momentum p as longitudinal, p =
(E, 0⊥, P ), but chooses z that has a transverse z⊥ = {z1, z2} com-
ponent, one can introduce the transverse momentum dependent 
distributions (TMDs). Namely, taking z+ = 0, one defines the TMD
F(x, k2 ) by
⊥
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M(ν, z2⊥) =
1∫

−1

dx eixν

∞∫
−∞

d2k⊥ei(k⊥z⊥)F(x,k2⊥) . (2.9)

One may also write

P(x, z2⊥) =
∫

d2k⊥ei(k⊥z⊥)F(x,k2⊥) . (2.10)

This means that the pseudo-PDF P(x, z2⊥) coincides in this case 
with the impact parameter distribution, a concept that is well known 
from TMD studies.

While z = z3 corresponds to a purely “longitudinal” separation, 
the Lorentz invariance requires that P(x, −z2) is the same function 
of −z2 no matter what kind of a space-like z we deal with. In 
other words, the dependence of P(x, z2

3) on its second argument 
reflects the same physics that leads to TMDs.

2.5. QCD case

The formulas given above may be used in case of nonsinglet 
parton densities in QCD. The relevant matrix elements are

Mα(z, p) ≡ 〈p|ψ̄(0)γ α Ê(0, z; A)ψ(z)|p〉 , (2.11)

where Ê(0, z; A) is the standard 0 → z straight-line gauge link in 
the quark (fundamental) representation

Ê(0, z; A) ≡ P exp

⎡
⎣ig zν

1∫
0

dt Âν(tz)

⎤
⎦ . (2.12)

These matrix elements have pα and zα parts

Mα(z, p) = 2pαMp(−(zp),−z2) + zαMz(−(zp),−z2) .

(2.13)

When z2 → 0, the Mp part gives the twist-2 distribution, while 
Mz is a purely higher-twist contamination. Note, however, that 
Mz does not contribute in the standard definition of unpolarized 
TMDs because it is based on taking z = (z−, z⊥) in the α = + com-
ponent of Oα . Then the zα-part drops out. As a result, F(x, k2⊥) is 
related to Mp(ν, z2⊥) by the scalar formula (2.9).

To keep a simple relation between TMDs and z3-pseudo-PDFs
(and, hence, quasi-PDFs), we need to arrange that the zα contam-
ination does not contribute to pseudo-PDFs. This is achieved by 
taking the time component of Mα(z = z3, p) and defining

M0(z3, p) =2p0Mp(ν, z2
3) = 2p0

1∫
−1

dxP(x, z2
3) eixν . (2.14)

The quasidistribution Q (y, P ) is defined in a similar way:

M0(z3, p) =2p0

∞∫
−∞

dy Q (y, P ) eiy P z3 . (2.15)

As a result, the connection between Q (y, P ) and P(x, z2
3) is 

given by the scalar formula (2.7). From now on, we will shorten 
the notation by using Mp →M.

In QCD, M(ν, z2⊥) contains ∼ ln z2⊥ terms corresponding to the 
∼ 1/k2⊥ hard tail of F(x, k2⊥). Thus, it makes sense to visualize 
M(ν, z2⊥) as a sum of a soft part Msoft(ν, z2⊥), that has a finite 
z2⊥ → 0 limit, and a logarithmically singular hard part reflecting 
the evolution. The same applies to M(ν, z2).
3
Fig. 1. Renormalization of the gauge link.

3. Hard contribution in coordinate space

Even if one starts with a purely soft TMD (or pseudo-PDF), the 
gluon exchanges generate the hard part. Our goal is to describe this 
on the operator level, as a modification of the original soft bilocal 
operator by gluon corrections.

3.1. Link self-energy contribution

To begin with, we consider the modification resulting from the 
self-energy correction to the gauge link (see also Refs. [7,24]). At 
one loop, it is given by

	
(z) =(ig)2 C F
1

2

1∫
0

dt1

1∫
0

dt2 zμzν Dc
μν [z(t2 − t1)] , (3.1)

where Dc
μν [z(t2 − t1)] is the gluon propagator connecting points 

t1z and t2z, see Fig. 1. For massless gluons in Feynman gauge, we 
have Dc

μν(z) = −gμν/4π2z2, and end up with a divergent integral

1∫
0

dt1

1∫
0

dt2

(t2 − t1)2
. (3.2)

This divergence has an ultraviolet origin. For spacelike z, it may be 
regularized by using the Polyakov prescription [7] 1/z2 → 1/(z2 −
a2) for the gluon propagator. Taking z = z3 we have

	
(z3,a) = − g2 C F
z2

3

8π2

1∫
0

dt1

1∫
0

dt2

z2
3(t2 − t1)2 + a2

. (3.3)

Calculating the integrals gives the result

	
(z3,a) = − C F
αs

2π

[
2
|z3|

a
tan−1

( |z3|
a

)
− ln

(
1 + z2

3

a2

)]

(3.4)

coinciding with that given in Ref. [24].
If we keep z3 fixed and take the small-a limit, we can expand

	
(z3,a)|a→0 = − C F
αs

2π

[
π |z3|

a
− 2 − ln

z2
3

a2
+O(a2/z2

3)

]

(3.5)

(see also Ref. [12]). This result clearly shows a linear divergence 
∼ |z3|/a in the a → 0 limit. As explained in the pioneering pa-
per [7], it may be interpreted as the mass renormalization δm of a 
test particle moving along the link,

δm = C F
αs

2π

π

a
. (3.6)
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Fig. 2. Insertions of gluons coming out of the gauge link.

Alternatively, for a fixed a and small z3, the factor in the square 
brackets behaves like z2

3/a2, i.e., 
(z3, a) vanishes at z3 = 0. This 
distinctive feature of such UV contributions is a mere consequence 
of the fact that the gauge link converts into unity for z3 = 0.

As a result, the UV terms vanish on the light cone, and that is 
why they are usually not discussed in the context of the light-cone 
PDFs. Also, the fact that 
(z3 = 0, a) = 0 means that, at fixed a, 

 gives no corrections to the vector current, i.e. the number of the 
valence quarks is not changed.

Eq. (3.5) also shows a logarithmic divergence corresponding to 
the anomalous dimension 2γend due to two end-points of the link. 
In the lowest order (see, e.g. [10])

γend = − C F
αs

4π
. (3.7)

In an Abelian theory, the vacuum average of an exponential is 
the exponential of the one-loop vacuum average. Hence, the one-
loop term exponentiates. In the a → 0 limit, this produces a factor

Z link(z3,a) = e−δm|z3|e−2γend ln(z2
3/a2) . (3.8)

The exponentiation works also in a non-Abelian case [25–27], but 
the exponential involves then higher-αs corrections accompanied 
by higher irreducible color factors. The all-order renormalization 
of Wilson loops and lines was discussed in Refs. [8–10].

The Polyakov prescription 1/z2
3 → 1/(z2

3 + a2) softens the gluon 
propagator at distances z3 ∼ several a, and eliminates its singular-
ity at z3 = 0. In this respect, it is similar to the UV regularization 
produced by a finite lattice spacing. Thus, we find it instructive to 
use this prescription in the studies of the UV properties of pseudo-
PDFs.

3.2. Vertex contribution

Working in Feynman gauge, we need also to consider vertex 
diagrams involving gluons that connect the gauge link with the 
quarks, see Fig. 2.

3.2.1. Basic structure
There are two possibilities: gluon may be connected to the left 

(Fig. 2a) or to the right (Fig. 2b) quark leg. To facilitate integration 
over z1, we write the fields at this point in the momentum rep-
resentation. If the gluon is inserted into the right quark line, we 
start with

Oα
R (z) =(ig)2 C F

1∫
0

dt

∫
d4z1 Dc(z1 − tz)

×
∫

d4k ei(kz1) �̄(k)/zSc(z1)γ
αψ(z)] . (3.9)

The insertion into the left leg gives a similar expression. Using 
Sc(z) = i/z/2π2(z2)2 and Dc(z) = 1/4π2z2 combined with the rep-
resentation
1

(z2/4)N+1
= iN−1

N!
∞∫

0

dσσ N e−iσ z2/4 (3.10)

gives a Gaussian integral over z1. Taking it, we obtain

Oα
R (z) =i

g2

8π2
C F

1∫
0

dt

∞∫
0

σ1
dσ1dσ2

(σ1 + σ2)3

×
∫

d4k ei(t(kz)σ2−σ1σ2t2z2/4)/(σ1+σ2)

× �̄(k)
[
(kz) + tσ2z2/4

]
γ αψ(z) . (3.11)

The external quark lines enter into the soft part, thus we ne-
glect their virtuality, i.e. the k2 term in the exponential. For the 
same reason, we also neglect the �̄(k)/k term.

Switching to λi = 1/σi , introducing common λ = λ1 + λ2, with 
λ1/λ = β , then relabeling λ = 1/σ , we obtain

Oα
R (z) = i

g2

8π2
C F

1∫
0

dt

∞∫
0

dσ e−iσ t2z2/4

1∫
0

dβ

×
∫

d4k eiβt(kz) �̄(k)[(1 − β)(kz)/σ + t z2/4]γ αψ(z) . (3.12)

3.2.2. UV singular term
We can take the d4k integral for the second, namely tz2, term 

in Eq. (3.12) to get

Oα
R2(z) = i

g2

8π2
C F

1∫
0

dt t

1∫
0

dβ

× z2

4

∞∫
0

dσ e−iσ t2z2/4 ψ̄(tβz)γ αψ(z) . (3.13)

Now, integration over σ leads to an UV divergence from the 
small-t integration. The situation is similar to that in the case of 
the link renormalization. Thus, we regularize 1/z2 → 1/(z2 − a2)

in the initial expression (3.10) for the gluon propagator. Since the 
singularity is accompanied by the quark field ψ̄(tβz) at t = 0, we 
isolate it by splitting ψ̄(tβz) into ψ̄(0) + [

ψ̄(tβz) − ψ̄(0)
]
. The UV-

singular term is then given by

Oα
R,UV(z,a) = g2

8π2
C F ψ̄(0)γ αψ(z)

×
1∫

0

dβ

1∫
0

dt
tz2

t2z2 − a2/(1 − β)
. (3.14)

Taking integrals over t and β gives the expression

Oα
R,UV(z,a) = g2

16π2
C F ψ̄(0)γ αψ(z)

×
[(

1 − a2

z2

)
ln

(
1 − z2

a2

)
− 1

]
(3.15)

that contains the same ln
(
1 − z2/a2

)
logarithmic term as in the 

self-energy correction (3.4). In the a → 0 limit, this result agrees 
with that obtained in Ref. [12]. The diagram with the insertion into 
the left leg gives the same contribution, thus the total UV-singular 
contribution doubles Oα (z, a) = 2Oα (z, a).
UV R,UV
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Switching to z = z3, we have the ln(z2
3/a2) structure in the 

a → 0 limit, and we may combine it with the UV divergences gen-
erated by the link self-energy diagrams. Again, for a fixed a, the 
Oα

UV(z3, a) contribution vanishes in the z2
3 → 0 limit.

3.2.3. UV finite term
The 

[
ψ̄(tβz) − ψ̄(0)

]
term vanishes for t = 0, and for this rea-

son its contribution

Oα
R,reg(z3,a) = g2

8π2
C F z2

3

1∫
0

dt t

1∫
t

dβ

t2z2
3 + β2a2/(1 − β)

× [ψ̄(tz3)γ
αψ(z3) − ψ̄(0)γ αψ(z3)] (3.16)

is finite in the a → 0 limit. Taking a = 0 and integrating over β
gives

Oα
R,reg(z3,a = 0) = αs

2π
C F

1∫
0

du

[
ū

u

]
+

ψ̄(uz3)γ
αψ(z3) ,

(3.17)

where we have relabeled t → u, and introduced ū ≡ 1 − u. The 
plus-prescription is defined by

1∫
0

du

[
ū

u

]
+

F (u) =
1∫

0

du
ū

u
[F (u) − F [0] , (3.18)

assuming that F (0) is finite. Again, the plus-prescription structure 
of Eq. (3.17) guarantees that this term gives no corrections to the 
local current.

Adding the contribution of the diagram with the left-leg inser-
tion, we may write the total regular term as

Oα
reg(z3,a = 0) = αs

2π
C F

1∫
0

du

1∫
0

d� ψ̄(uz3)γ
αψ(�̄z3)

×
{
δ(�)

[
ū

u

]
+

+ δ(u)

[
�̄

�

]
+

}
. (3.19)

In terminology of Balitsky and Braun [16], ψ̄(uz)γ αψ(�̄z) is a 
“string operator”. It involves two fields on the straight line segment 
(0, z), separated from its endpoints by uz and �z, respectively. The 
difference with Ref. [16] is that z here is not on the light cone 
z2 = 0.

3.2.4. Evolution terms
Now, let us analyze the (1 − β)(kz)/σ term in Eq. (3.12),

Oα
R,Evol(z) =i

g2

8π2
C F

1∫
0

dt

∞∫
0

dσ

σ
e−iσ t2z2/4

1∫
0

dβ (1 − β)

×
∫

d4k (kz) eitβ(kz)�̄(k)γ αψ(z) . (3.20)

This expression has a logarithmic infrared divergence resulting 
from the lower limit of the σ integration.

In fact, if we would keep the k2 term in the exponential of 
Eq. (3.11), it would produce a eik2/σ -type factor in the expres-
sion above, and there would be no infrared divergence. In other 
words, the quark virtuality would provide an IR cut-off. In the 
coordinate representation, this corresponds to a cut-off produced 
by the nonperturbative z2

1-dependence of the soft matrix element 
〈p|ψ̄(0)γψ(z1)|p〉 (we refer here to Fig. 2a).
An example of calculations, in which such a dependence was 
taken into account, may be found in our paper [20], where the 
virtuality distribution formalism was applied to the pion transition 
form factor. In our present context, the cut-off will be provided by 
the k⊥-dependence of the soft part of the TMD F(x, k2⊥), i.e. by 
the hadron size. Leaving a detailed investigation for future studies, 
we will just assume now some reasonable form of an IR cut-off 
function.

In particular, the IR singularity may be regularized by the 
e−im2/σ factor, which is equivalent to adding the same mass term 
m2 to both propagators. In this case (switching to z2 = −z2

3), we 
define

Lm(t2z2
3m2) ≡

∞∫
0

dσ

σ
eiσ t2z2

3/4−im2/σ = 2K0(tm|z3|) . (3.21)

This function has a logarithmic ln z2
3m2 singularity for small z3 and 

an exponential e−|z3|m fall-off for large z3. One should realize that 
since m parametrizes the IR cut-off imposed by the hadron size, 
numerically m should be of an order of 0.5 GeV.

Another simple possibility to regularize the IR singularity is to 
cut the σ -integral from below. Then we have

L1/z0(t
2z2

3/z2
0) ≡

∞∫
1/z2

0

dσ

σ
eiσ t2z2

3/4 = 	[0, t2z2
3/4z2

0] , (3.22)

where 	[0, x] is the incomplete gamma-function. Again, we have 
a logarithmic ln z2

3/z2
0 singularity for small z3, but now a Gaussian 

e−z2
3/4z2

0 behavior for large z3. As observed in Ref. [20], the two 
forms of the IR cut-off automatically follow from soft distributions 
with the exponential and Gaussian fall-off at large z⊥ , respectively.

For small |z3|, we may write in both cases

L�(t2z2
3�

2) = L�(z2
3�

2) − 2 ln t +O(�2z2
3) . (3.23)

The logarithms ln(z2
3�

2) contained in L�(z2
3�

2) reflect the pertur-
bative evolution.

Integrating over t in the part corresponding to the L�(z2
3�

2)

term in Eq. (3.23), changing the notation β → �, and adding the 
contribution from the left-leg insertion, we get the total logarith-
mic contribution coinciding with that of Ref. [16]

Oα
log(z3) = L�(z2

3�
2)

αs

2π
C F

1∫
0

du

1∫
0

d�

×
{
δ(u)

[
�̄

�

]
+

+ δ(�)

[
ū

u

]
+

}
ψ̄(uz3)γ

αψ(�̄z3) .

(3.24)

For small z2
3, this result corresponds to the following correction to 

the ITD

Mlog(ν, z2
3) = L�(z2

3�
2)

αs

2π
C F

1∫
0

dw

[
2w

1 − w

]
+
Msoft(wν,0) .

(3.25)

Note that, in contrast to the UV divergent contribution, the 
L�(z2

3�
2) function is singular in the z2

3 → 0 limit, and the pa-
rameter |z3| in the integrals of Eqs. (3.21), (3.22) works like an 
ultraviolet rather than an infra-red cut-off.
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Fig. 3. a) Gluon exchange diagram. b) One of quark self-energy correction diagrams.

3.2.5. IR finite term
The ln t-term in Eq. (3.23) produces an IR finite contribution

Oα
R,Fin(z) = − i

g2

4π2
C F

1∫
0

dt ln t

1∫
0

dβ (1 − β)

×
∫

d4k (kz) eitβ(kz) �̄(k)γ αψ(z) . (3.26)

Transforming the β-integral through integrating exponential by 
parts, changing β = �/t and adding the left Oα

L,Fin(z) contribution, 
we obtain

Oα
Fin(z) = − αs

π
C F

1∫
0

du

1∫
0

d� ψ̄(�z)γ αψ(ūz)

× [δ(u) s+(�) + δ(�) s+(u)] , (3.27)

where s+(u) is the plus-prescripted version of s(u) given by

s(u) ≡
1∫

u

dt
ln t

t2
= 1 − u + log(u)

u
. (3.28)

Since this part depends on z through the fields only, we deal with 
a finite radiative correction to the soft contribution.

3.3. Quark–gluon exchange contribution

There is also a contribution to the hard part given by Fig. 3a
containing a gluon exchange between two quark lines. Taking the 
time component α = 0, we have

O 0
exch(z3) = αs

2π
C F

1∫
0

du

1−u∫
0

d�

×
{

LR(z2
3 R2) − 1

}
ψ̄(uz3)γ

0ψ(�̄z3) . (3.29)

For the ITD, this gives the integral

Mexch(ν, z2
3) = αs

2π
C F

1∫
0

dw (1 − w)

×
{

LR(z2
3 R2) − 1

}
Msoft(wν,0) (3.30)

with the (1 − w) integrand. Its logarithmic part, combined with 
the 2w/(1 − w) term coming from the vertex correction, gives 
the expected form (1 + w2)/(1 − w) [28] of the evolution kernel. 
Note, however, that unlike the vertex part, the exchange contribu-
tion (3.30) does not have the plus-prescription form.

The standard expectation is that one would get it after the ad-
dition of the quark self-energy diagrams, one of which is shown 
in Fig. 3b. As usual, one should take just a half of each, absorb-
ing the other halves into the soft part. These diagrams have an 
ultraviolet divergence that may be regularized by the same (for 
uniformity) Polyakov prescription 1/z2 → 1/(z2 −a2) for the gluon 
propagator. The result is a ln(a2m2) contribution. But, since it has 
no z-dependence, it cannot help one to get the plus-prescription 
form for the logarithmic (in z2

3) part of the exchange contribution.
A possible way out is to represent ln(a2m2) as the difference 

ln(z2
3m2) − ln(z2

3/a2) of the evolution-type logarithm ln(z2
3m2) and 

a UV-type logarithm ln(z2
3/a2). The latter can be added to the UV 

divergences of Figs. 1 and 2, so that the total UV divergent contri-
bution is

	UV(z3,a) = − αs

2π
C F

[
2
|z3|

a
tan−1

( |z3|
a

)

−2 ln

(
1 + z2

3

a2

)
+ 1

2
ln

(
z2

3

a2

)]
. (3.31)

The ln(z2
3m2) part should be added to the evolution kernel, and it 

converts the (1 − w) term into (1 − w)+ .

3.4. Reduced Ioffe-time distribution

Another possibility is to use the reduced Ioffe-time distribution 
of Refs. [2,3,29,30]

M(ν, z2
3) ≡ M(ν, z2

3)

M(0, z2
3)

. (3.32)

Then the UV divergences generated by the link-related and quark-
self-energy diagrams cancel in the ratio (3.32).1 Furthermore, since 
ν = 0 is equivalent to p = 0, the denominator factor automatically 
completes the gluon-exchange contribution (1 − w) to (1 − w)+ .

The vertex part (3.25) of the evolution kernel has the plus-
prescription structure from the start. For this reason, it does 
not contribute to the denominator factor M(0, z2

3). As a result, 
M(ν, z2

3) satisfies the evolution equation

d

d ln z2
3

M(ν, z2
3) = − αs

2π
C F

1∫
0

dw B(w)M(wν, z2
3) (3.33)

with respect to z2
3, where B(w) is the full plus-prescription 

Altarelli–Parisi (AP) evolution kernel [28]

B(w) =
[

1 + w2

1 − w

]
+

. (3.34)

The evolution ln z2
3 dependence of the reduced ITD M(ν, z2

3)

is clearly visible in the results of the lattice study performed in 
Ref. [29], where the evolution effects were analyzed within the 
leading-logarithm approximation (LLA). To go beyond the LLA, one 
needs also non-logarithmic terms2 from (3.19) and (3.27) that con-
tribute to the numerator factor ITD M(ν, z2

3). However, since they 
have the plus-prescription structure, they vanish in the denomina-
tor factor M(0, z2

3). Thus, we get the one-loop expression for the 
hard part of the reduced ITD in the following form

1 According to Ref. [12], the cancellation holds to all orders in perturbation the-
ory. See also [13,14], and earlier papers [8–11].

2 Such terms also appear in the expression for the pseudo-PDF in Ref. [31]. There 
is a difference with our results, because its authors use dimensional regularization 
of IR singularities.
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Mhard(ν, z2
3)

= − αs

2π
C F

1∫
0

dw

{(
1 + w2

1 − w

)
+

[
ln(z2

3m2e2γE /4) + 1
]

+4

[
log(1 − w)

1 − w

]
+

}
Msoft(wν,0) , (3.35)

where we also have explicitly displayed the logarithmic part of the 
modified Bessel function K0(|z3|m).

4. Hard contribution to quasi-PDFs

The Ioffe-time distributions are basic starting objects for all par-
ton distributions. Hence, the results obtained above may be used 
to calculate the one-loop corrections for quasi-PDFs. In what fol-
lows, we analyze how the z2

3-dependence of the one-loop hard 
part of Mhard(ν, z2

3) is reflected in some specific features of quasi-
PDFs. For the soft part, we will assume the collinear approximation 
Msoft(ν, z2

3) =Msoft(ν, 0).

4.1. Ultraviolet divergent terms

For the UV-singular terms, we have

MUV(ν, z2
3) =	UV(z3,a)Msoft(ν,0) . (4.1)

Combining the definition (2.6) of the quasi-PDFs with the rela-
tion (2.4) between M(ν, 0) and the PDF f (x) we have

Q UV(y, P ) =
1∫

−1

dx RUV(y − x;a) f (x) , (4.2)

where

RUV(y − x;a) = P

2π

∞∫
−∞

dz3 e−i(y−x)P z3 	UV(z3,a) . (4.3)

For the link renormalization correction 	
 , this Fourier trans-
form can be easily done using its original representation (3.3), 
producing

R
(y, x; Pa) = αs

2π
C F

1

Pa

[
e−|y−x|Pa

(y − x)2

− δ(y − x)

∞∫
−∞

dζ

(ζ − x)2
e−|ζ−x|Pa

]
. (4.4)

Note that, due to the exponential suppression factor, the ζ -integral
accompanying the δ(y − x) term converges when ζ → ±∞. As a 
result, R
(y, x; Pa) is given by a mathematically well-defined ex-
pression.

The 1/Pa term in Eq. (4.4) corresponds to the linear UV di-
vergence. Expanding e−|y−x|Pa in a gives the 1/|y − x| term cor-
responding to the logarithmic ln(1 + z2

3/a2) UV divergence in 
Eq. (3.4). As we have seen, the same ln(1 + z2

3/a2) UV contribution 
appears in the vertex corrections. Calculating the Fourier transform 
of ln(1 + z2

3/a2) gives

R V (y, x; Pa) = − αs

2π
C F

[
1

|y − x|e−|y−x|Pa

− δ(y − x)

∞∫
−∞

dζ

|y − ζ |e−|y−ζ |Pa

]
. (4.5)
Now we can represent R
(y, x; Pa) as a sum

R
(y, x; Pa) = αs

2π
C F

[
e−|y−x|Pa

(
1

Pa(y − x)2
+ 1

|y − x|
)

− δ(y − x)

∞∫
−∞

dζ e−|ζ−x|Pa
(

1

Pa(ζ − x)2
+ 1

|ζ − x|
)]

+ R V (y, x; Pa) , (4.6)

of the regularized 1/(y − x)2 singularity corresponding to the lin-
ear divergence and the vertex kernel R V (y, x; Pa) corresponding 
to the logarithmic divergence.

Here we want to emphasize that keeping the UV regulator 
nonzero, we get mathematically well-defined expressions that pro-
duce the contribution Q UV(y, P ) satisfying

∞∫
−∞

dy Q UV(y, P ) =
∞∫

−∞
dy

1∫
−1

dx RUV(y − x;a) f (x) = 0, (4.7)

and thus not violating the quark number conservation. If one 
takes a = 0, the ζ -integrals in Eqs. (4.4) and (4.5) diverge when 
ζ → ±∞, and loose mathematical meaning, just like in expres-
sions given in Ref. [17].

One may argue that the limit a → 0 (or equivalent procedure) 
should be taken to renormalize UV singularities. Our answer is 
that one should simply consider the reduced ITD introduced in 
our paper [2] that does not have the UV divergent terms, so that 
no UV-renormalization is needed, and the a → 0 limit poses no 
problems. Also, the reduced ITD does not produce the problematic 
∼ 1/ζ terms in the plus-prescription integrals.

As we will show below, the evolution contribution remain-
ing in the reduced ITD, has ∼ 1/y2 behavior for large |y|, and 
the relevant plus-prescription integrals are perfectly convergent for 
large |ζ |.

4.2. Evolution-related terms

Let us consider now the hard part given by the evolution loga-
rithms

Mlog(ν, z2
3) = αs

2π
C F L�(z2

3�
2)

1∫
0

du B(u) Msoft(uν,0) . (4.8)

In this case

Q log(y, P ) = C F
αs

2π

1∫
−1

dξ f (ξ)

1∫
0

du B(u) K (y − uξ ;�2/P 2) ,

(4.9)

where the kernel K (y − uξ ; �2/P 2) is given by the Fourier trans-
form of L�(z2

3�
2). If we choose the IR regularization of Eq. (3.21)

leading to the modified Bessel function 2K0(mz3), we have

K (y − x,m2/P 2) = P

π

∞∫
−∞

dz3 e−i(y−x)P z3 K0(m|z3|)

= 1√
(y − x)2 + m2/P 2

. (4.10)

We may also write
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Q log(y, P ) = C F
αs

2π

1∫
−1

dξ

|ξ | R(y/ξ,m2/ξ2 P 2) f (ξ) , (4.11)

where the kernel R(η, m2/P 2) is given by

R(η;m2/P 2) =
1∫

0

du√
(η − u)2 + m2/P 2

[
1 + u2

1 − u

]
+

. (4.12)

The kernel R(y/ξ, m2/ξ2 P 2) in Eq. (4.11) corresponds to a part 
of the matching factor Z used in the quasi-PDF approach [5]. 
Note, that its mass-dependence comes through the combination 
m2/ξ2 P 2. A similar μ2/ξ2 P 2 rescaling was obtained in the recent 
paper [32], where the dimensional regularization was used as an 
IR cut-off.

It is convenient to consider the cases ξ > 0 and ξ < 0 sepa-
rately. Let us take ξ > 0 which corresponds to f (ξ) being nonzero 
for positive ξ only.

4.2.1. Middle part
Simply taking m2/P 2 = 0 results in a factor 1/|η−u|. When 0 ≤

η ≤ 1, it produces a non-integrable singularity for u = η. A more 
accurate statement is that, with respect to integration over the 0 ≤
u ≤ 1 interval, we may represent

1√
(η − u)2 + m2/P 2

∣∣∣∣∣
m2/P 2→0

=
(

1

|η − u|
)

+

+δ(η − u) ln

[
4η(1 − η)

P 2

m2

]
, (4.13)

where the plus-prescription is defined by

(
1

|η − u|
)

+
= 1

|η − u| − δ(η − u)

1∫
0

d�

|η − �| . (4.14)

From the δ(η − u) part we get the evolution term

Rmiddle
1 (η;m2/P 2) = ln

(
4P 2

m2

) [
1 + η2

1 − η
θ(0 ≤ η ≤ 1)

]
+

,

(4.15)

that is present in the 0 ≤ η ≤ 1 region only. The remaining 
∼ lnη(1 − η) term and terms coming from (1/|η − u|)+ are given 
in this region by

Rmiddle
2 (η) = 1 + η2

1 − η
log [η(1 − η)]

+ 3/2

1 − η
+ 4

log(1 − η)

1 − η
− 1 + 2η . (4.16)

4.2.2. Outer parts
For η outside the 0 ≤ η ≤ 1 segment, the m2/P 2 → 0 limit is 

finite and given by

R(η;0)|η>1 =
1∫

0

du

η − u

[
1 + u2

1 − u

]
+

= −
∞∑

n=1

γn

ηn+1 , (4.17)

where γn are the anomalous dimensions of operators with n
derivatives
γn =
1∫

0

du
1 − un

1 − u
(1 + u2) = 2

n+1∑
j=1

1

j
− 3

2
− 1

(n + 1)(n + 2)
.

(4.18)

At first sight, one would expect a ∼ 1/|η| behavior for large |η|. 
However, the 1/|η| term is accompanied by the integral of P (u)

which vanishes because of the plus-prescription. This is also the 
reason why γ0 vanishes causing the series in Eq. (4.17) to start at 
n = 1. In a closed form,3

R(η;0)|η>1 = 1 + η2

η − 1
ln

(
η − 1

η

)
+ 3

2(η − 1)
+ 1 . (4.19)

Similarly, for η < 0

R(η;0)|η<0 =1 + η2

1 − η
ln

(
1 − η

−η

)
+ 3

2(1 − η)
− 1 . (4.20)

One may notice here the ± 3
2 /(1 − η) terms having the evident 

∼ 1/|η| behavior. But these terms exactly cancel the ∼ 1/|η| con-
tributions coming from the remaining terms, thus changing the 
large-η behavior to ∼ 1/η2. We have already seen the ∼ −1/η2

asymptotic behavior for η > 1 in Eq. (4.17). Similarly, for large neg-
ative values, one may use the expansion

R(η;0)|η<−1 =
∞∑

n=1

γn

ηn+1 . (4.21)

Thus, for large |η| we have the asymptotic behavior

R(η;0)||η|�1 = −4

3

sgn(η)

η2
+O(1/η3) . (4.22)

4.3. Quark number conservation

The ∼ 1/y2 result for R(y/ξ ; m2/P 2) may be foreseen if one 
notices that calculating it from the convolution with the AP kernel 
(see Eq. (4.12)), one deals with the difference

1√
(y − uξ)2 + m2/P 2

− 1√
(y − ξ)2 + m2/P 2

, (4.23)

which behaves like 1/y2 for large y. Hence, the integral of 
R(y/ξ ; m2/P 2) over y does not have divergences for large |y|. 
Moreover, since the two terms differ just by a shift in the 
y-variable, the integral vanishes. As a result, we have

∞∫
−∞

dy R(y/ξ ;m2/P 2) = 0 , (4.24)

which leads to
∞∫

−∞
dy Q log(y, P ) = 0 , (4.25)

i.e. the evolution part does not change the number of the valence 
quarks.

3 Comparing our results with those of Ref. [18], one should take into account that 
the evolution-related contributions are combined there with the UV-singular terms 
taken in the limit equivalent to our a → 0.
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Fig. 4. The kernel R(η,m2/P 2) for P/m = 3,10 and 20.

4.4. R-kernel at finite momenta

Results for R(η) correspond to the full function R(η, m2/P 2)

taken in the P 2/m2 → ∞ limit. However, since m should be under-
stood as an IR cut-off provided by the hadron size, it has a rather 
large ∼ 0.5 GeV magnitude. On the other hand, the maximal mo-
menta P reached in actual lattice calculations of the quasi-PDFs 
[33,34] range from 1.3 to about 2.5 GeV. Thus, it is interesting to 
look at the P/m-dependence of R(η, m2/P 2).

In Fig. 4, we show the structure of the kernel R(η; m2/P 2) for 
three values of P/m. In the central segment 0 < η < 1, it has the 
evolution part (4.15) proportional to ln(P 2/m2). This term is the 
main reason for the increase of R with P in this region. A large 
negative peak in the y ∼ 1 region also increases its magnitude as 
ln(P 2/m2). It reflects the δ(1 −η) plus-prescription term in the AP 
kernel.

Note that since the ln P 2/m2 part (4.15) has the plus-
prescription form, its contribution to the integral (4.24) is zero. 
There are, in addition, non-logarithmic parts (4.16), (4.19), (4.20), 
and their combined contribution to the integral (4.24) should also 
vanish. This means that in the P/m → ∞ limit the negative peak 
for η = 1 should contain also a non-logarithmic (in P 2/m2) part 
that provides plus-prescription for each of these contributions. For 
instance, when η > 1, we would have

R(η;0)|η>1 → R(η;0)|η>1 − δ(η − 1)

∞∫
1

dζ R(ζ ;0) , (4.26)

and similarly for the 0 ≤ η ≤ 1 and η ≤ 0 parts. The integral over 
ζ for the η ≥ 1 and 0 ≤ η ≤ 1 parts diverges when ζ → 1, but this 
is what is expected from the plus-prescription construction. For 
ζ → ∞, the integral converges, hence Eq. (4.26) is a mathemati-
cally well-defined expression. For the η ≤ 0 part, the ζ -integral is 
just a number.

For nonzero m/P , we should have, of course, some smoothened 
version of δ(1 − η) for the 0 ≤ η ≤ 1 and η ≥ 1 parts. Looking at 
the curve corresponding to P/m = 3 (the value, realistically cor-
responding to the momentum P ∼ 1.5 GeV), one can see that 
“smoothened” in this case is a strong understatement. This curve 
does not show anything resembling a delta-function near η = 1.
The reason for a big difference between the finite-P curves and 
their P → ∞ limit may be traced to the basic relation (2.6) be-
tween quasi-PDFs and pseudo-PDFs: the y-shape of quasi-PDFs 
Q (y, P ) is strongly distorted by the large-z3 nonperturbative be-
havior of the pseudo-PDFs P(x, z2

3). One needs large momenta P
(and some deconvolution techniques) just to get rid of this con-
taminating large-z3 information.
In a practical aspect, this means that studying quasi-PDFs at 
momenta P accessible at present-day lattices, it is a much better 
approximation to ignore the one-loop corrections rather than to 
take them in the m/P → 0 form.

In contrast, if one does not like to use large z3 values working 
with the pseudo-PDFs, one can simply exclude them from the anal-
ysis. Moreover, since the impact parameter distribution P(x, z2⊥) of 
the TMD studies has the same functional form as the pseudo-PDF 
P(x, z2

3), one can use the large-z3 data to get a direct information 
about the 3-dimensional hadron structure.

5. Summary

In this paper, we have studied the small-z2
3 behavior of the 

Ioffe-time distribution M(ν, z2
3) at one-loop level. The ITD is the 

basic function that may be converted, in a prescribed way, into 
pseudo-PDFs and quasi-PDFs. In its turn, the short-distance struc-
ture of the ITD is determined by that of the underlying bilocal 
operator Oα(0, z) = ψ̄(0)γ α E(0, z; A)ψ(z). Since the corrections 
to Oα(0, z) may be calculated on the operator level, it is an even 
more fundamental object.

In our study, we made an effort to separate two sources of the 
z2

3-dependence at small z2
3. One is related to the UV singularities 

generated by the gauge link E(0, z3; A) connecting the quark fields 
forming the QCD bilocal operator. The logarithmic part of these 
terms has the ln(1 + z2

3/a2) structure, where a is the UV cut-off 
parameter analogous to lattice spacing. Thus, while being singular 
in the a → 0 limit, the ln(1 + z2

3/a2) factor vanishes for z2
3 = 0. 

This is a general property of the link-related UV-singular terms. 
This property is a very important one since it guarantees that such 
corrections do not change the number of valence quarks.

The one-loop UV divergences are eliminated if one considers 
the reduced ITD M(ν, z2

3) given by the ratio M(ν, z2
3)/M(0, z2

3). 
Still, M(ν, z2

3) has a non-trivial short-distance behavior. At one 
loop, it has the ln z2

3�
2 structure, where � is an IR cut-off pa-

rameter. These terms generate perturbative evolution of the parton 
densities. While they are singular in the z2

3 → 0 limit, the evolu-
tion corrections do not change the number of valence quarks. This 
is secured by the fact that the ν-dependence of such corrections is 
governed by factors possessing the plus-prescription property. The 
explicit expression that we give for the z2

3-dependence of the re-
duced ITD at one loop, may (and will) be used in our future work 
on extraction of PDFs from the lattice QCD simulations using the 
pseudo-PDF-based methodology.4

We have also demonstrated that our results may be used for 
a rather straightforward calculation of the one-loop corrections to 
quasi-PDFs, providing new insights concerning their structure. In 
particular, we have demonstrated that keeping a nonzero UV reg-
ulator a, one can obtain mathematically well-defined expressions 
for quasi-PDFs, involving the plus-prescription integrals that do not 
diverge at infinity.

For the UV-finite evolution part, we have demonstrated that 
they produce quasi-PDFs with ∼ 1/y2 behavior that also results in 
convergent plus-prescription integrals. We have also observed that 
the mass-dependence of the matching kernel, that relates quasi-
PDFs with the ordinary collinear PDFs f (ξ), comes through the 
m2/ξ2 P 2 combination.

We have also argued that the IR scale m should be treated as a 
parameter whose size is of an order of the inverse hadron radius 
1/R ∼ 0.5 GeV. As a result, for presently accessible hadron mo-
menta P , the one-loop corrections for quasi-PDFs are much smaller 
than in the formal m/P → 0 limit.

4 These results have been already used for such a study in our recent paper [35].
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As emphasized above, the corrections to the bilocal operator 
Oα(0, z) may be calculated without specifying a matrix element in 
which it is embedded. In particular, changing the 〈p|...|p〉 brackets 
into 〈0|...|p〉, one may use the results of the present paper to get 
one-loop corrections to pseudo- and quasidistribution amplitudes. 
Similarly, taking the 〈p1|...|p2〉 matrix elements, one can get one-
loop results for generalized parton pseudodistributions (“pseudo-
GPDs”). These are natural directions for future studies.
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