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Abstract: For studying small-x gluon saturation in forward dijet production in high-
energy dilute-dense collisions, the improved TMD (ITMD) factorization formula was re-
cently proposed. In the Color Glass Condensate (CGC) framework, it represents the lead-
ing term of an expansion in inverse powers of the hard scale. It contains the leading-twist
TMD factorization formula relevant for small gluon’s transverse momentum kt, but also
incorporates an all-order resummation of kinematical twists, resulting in a proper match-
ing to high-energy factorization at large kt. In this paper, we evaluate the accuracy of the
ITMD formula quantitatively, for the case of quark dijet production in high-energy proton-
proton(p+p) and proton-nucleus (p+A) collisions at LHC energies. We do so by comparing
the quark-antiquark azimuthal angle ∆φ distribution to that obtained with the CGC for-
mula. For a dijet with each quark momentum pt much larger than the target saturation
scale, Qs, the ITMD formula is a good approximation to the CGC formula in a wide range
of azimuthal angle. It becomes less accurate as the jet pt’s are lowered, as expected, due to
the presence of genuine higher-twists contributions in the CGC framework, which represent
multi-body scattering effects absent in the ITMD formula. We find that, as the hard jet
momenta are lowered, the accuracy of ITMD start by deteriorating at small angles, in the
high-energy-factorization regime, while in the TMD regime near ∆φ = π, very low values of
pt are needed to see differences between the CGC and the ITMD formula. In addition, the
genuine twists corrections to ITMD become visible for higher values of pt in p+A collisions,
compared to p+p collisions, signaling that they are enhanced by the target saturation scale.
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1 Introduction

Parton saturation at small Bjorken’s x in hadron wave functions is one of the most salient
and universal features of QCD dynamics [1–3]. Small-x partons are interpreted as short-
lived quantum fluctuations splitting from larger-x partons in a hadron wave function.
Lorentz time-dilation dictates that the higher the collision energy is, the smaller-x par-
tons come to participate in the interaction. The x-evolution of the gluon density has been
formulated as the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)
equation [4–9], or the Balitsky-Kovchegov (BK) equation [10, 11] in a mean-field approx-
imation. The evolution changes from a linear to a non-linear character when the gluon
density becomes so dense that the gluon merging starts to compete with the splitting.
This transition is characterized by the so-called saturation momentum scale, Qs(x) [1–3],
an emergent scale in QCD dynamics. Then, the color-glass-condensate (CGC) frame-
work [12–15], which describes the small-x part of the wave function in the presence of
large-x random color sources, has been realized as a suitable effective theory to calculate
observables in the dense gluon regime with Qs(x)� ΛQCD.

Forward dijet production in proton-proton (p+p) and proton-nucleus (p+A) collisions
at the large hadron collider (LHC) is a unique and valuable observable among others for
the phenomenological study of gluon saturation. In this process a large-x parton from the
projectile, which is dilute and well understood in perturbative QCD, probes the small-x
partons in the dense target, and then produces jets at forward rapidities. This setup is
sometimes called dilute-dense system. In addition to its ever highest collision energy, the
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nuclear target option available at the LHC is very advantageous since gluon saturation, or
its scale Qs(x), is enhanced by the target thickness ∝ A1/3 (A is the nuclear mass number).

In the CGC framework, the dijet production cross-section is expressed in terms of the
Wilson line correlators averaged over external color source distributions. The Wilson-line
correlators with fixed transverse positions are essential components to define the gauge-
invariant matrix elements. Those correlators encode multiple scatterings of the partons
traversing the dense target and satisfy the BK-JIMWLK evolution, provided that leading
logarithms in x are predominant over leading logarithms in Q2. Those multiple scattering
effects are enhanced in the dense regime where the saturation scale Qs increases. It is
demonstrated in refs. [16, 17] that the description of dijet production at the LHC should
simplify thanks to the hard scales involved there.

Indeed, the dijet production contains three characteristic momentum scales: the typical
transverse momentum of a hard jet Pt, the transverse momentum imbalance of the pair
kt, and the saturation scale of the target Qs. Here Pt is always the hardest scale, while
Qs is the softest of the three. The original CGC framework does not assume any ordering
in the three momentum scales. In the Qs � |Pt| ∼ |kt| limit, expanding the Wilson line
correlators in the CGC expression to the second order in the gluon field, one can obtain
the “dilute” result known as high-energy factorization (HEF) or kt-factorization. On the
other hand, in the Qs ∼ |kt| � |Pt| limit, by keeping the leading 1/ |Pt| terms from the
CGC expression, one can accurately reproduce the leading-twist TMD factorization result
at small x which comes with on-shell hard matrix elements.

In the meantime, by introducing the off-shell kt dependence of the small-x gluons in
the hard matrix elements, refs. [16, 17] proposed an improved TMD (ITMD) expression,
which is valid for any |kt| provided Qs � |Pt|, and interpolates the TMD and HEF ex-
pressions. Then it was pointed out in refs. [18, 19] that such off-shell effect results from
the resummation of power corrections in |kt| / |Pt| in the hard scattering parts, known as
kinematic-twists corrections, coupled to leading-twist TMD distributions. Alternatively,
the ITMD framework can also be thought of as an improvement of HEF, from that per-
spective the HEF framework gets supplemented with leading-twist saturation corrections.
The ITMD framework provides a concise and useful approximation to the CGC expres-
sion for Qs � |Pt|, and it is crucial now to assess the quantitative accuracy of the ITMD
formula, compared to the “full” CGC formula, when calculating the spectrum of forward
dijets. This is a practical motivation of this paper.

Gluon saturation affects particle production in hadron collisions through the non-linear
evolution of the gluon density, and through the multiple scattering of the partons with the
dense target. The multiple scattering effects are further categorized into two classes: the
leading-twist ones accounted for in the (I)TMD framework, controlled by the magnitude
of |kt| vs. Qs, and those due to genuine higher-twist effects, controlled by |Pt| vs. Qs.
The CGC formula contains both effects of multiple scatterings, while the ITMD formula is
obtained from the CGC one by getting rid of the genuine higher-twist corrections, which
may be referred to as Wandzura-Wilczeck approximation [20]. The numerical comparison
of the ITMD to the CGC formula will give valuable information about the genuine higher-
twist effects on forward dijets production in high-energy p + A collisions. In order to
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make our ITMD/CGC comparison feasible and clear, we shall restrict our analysis to the
forward quark (qq̄) dijet production, and work within the Gaussian truncation of JIMWLK
evolution and large-Nc limit, for which the CGC expression is less complicated and can be
evaluated directly (indeed, as we will see below, the two expressions then differ only in their
hard factors). In this regard, we note that genuine-twist corrections were also analyzed
recently in the context of dijet production in deep-inelastic scattering [21], using the same
approximation but keeping finite Nc corrections.

The paper is organized as follows; section 2 gives an overview of the ITMD and CGC
frameworks for forward dijet production. In section 3, we present numerical results on the
dijet azimuthal angle correlation in the ITMD and CGC frameworks. In particular, we will
look into the dependence of the genuine-twist corrections on kinematics and system size
there. Section 4 is devoted to summary and concluding remarks.

2 Frameworks

This section runs through some details of the ITMD and CGC frameworks for forward
dijet production in dilute-dense collisions.

2.1 Improved TMD factorization for forward dijet production

We consider the process of inclusive dijet production at forward rapidity in proton-nucleus
collisions

p(pp) +A(pA)→ j1(p1) + j2(p2) +X , (2.1)

where the four-momenta of the projectile and the target are massless and purely longitu-
dinal. In terms of the light cone variables, x± = (x0 ± x3)/

√
2, they take the simple form

pµp =
√
s/2 (1, 0,0t) and pµA =

√
s/2 (0, 1,0t) where s is the squared center of mass energy

(per nucleon-nucleon collisions) of the p+A system. The longitudinal momentum fractions
of the incoming parton from the projectile, x1, and of the gluon from the target, x2, can
be expressed in terms of the rapidities (y1, y2) and transverse momenta (p1t,p2t) of the
produced jets as

x1 = p+
1 + p+

2
p+
p

= 1√
s

(|p1t| ey1 + |p2t| ey2) , x2 = p−1 + p−2
p−A

= 1√
s

(
|p1t| e−y1 + |p2t| e−y2

)
.

(2.2)
By looking at jets produced in the forward direction, we effectively select those fractions to
be x1 ∼ 1 and x2 � 1. Since the target A is probed at low x2, the dominant contributions
come from the subprocesses in which the incoming parton on the target side is a gluon,
meaning there are three possible channels: qg → qg, gg → qq̄, and gg → gg. Figure 1
shows the kinematics for the gg → qq̄ subprocess in p+A collisions.

The asymmetry of the problem, x1 ∼ 1 and x2 � 1, also implies that gluons from the
target have a much bigger average transverse momentum (of the order of Qs(x2)) compared
to that of the partons from the projectile (which is of the order of ΛQCD). Therefore we
shall always neglect the transverse momentum of the high-x1 partons from the projectile
compared to that of the low-x2 gluons from the target. As a result, the parton content of the
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projectile hadron is described by regular collinear parton distributions fa/p(x1, µ
2) (where µ

is the factorization scale) and TMDs are involved only on the target side, with the transverse
momentum of those small-x2 gluons being equal to the transverse momentum of jet pair kt:

kt = p1t + p2t . (2.3)

This simplification is needed to apply the TMD factorization for the dijet process, since for
this final state, there is no such factorization with TMDs for both incoming hadrons [22, 23].

The ITMD factorization formula reads [16]

dσ(p+A→ j1 + j2 +X)
dy1dy2d2p1td2p2t

= α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)

1 + δcd

∑
i

H
(i)
ag∗→cd(Pt,kt)F (i)

ag (x2,kt) ,

(2.4)
where several gluon TMDs F (i)

ag are involved, with different operator definitions, i.e. gauge
link structures, and each is accompanied by a different hard factor H(i)

ag∗→cd. Its validity
domain is Qs(x2)� |Pt|, where Pt is the hard scale of the process, related to the individual
jet momenta:

Pt = p+
2 p1t − p+

1 p2t

p+
1 + p+

2
= (1− z)p1t − zp2t , (2.5)

with z = p+
1 /(p

+
1 + p+

2 ) the longitudinal momentum fraction carried by the jet j1. The
improvement with respect to the TMD factorization formula derived in ref. [24] (in the
large-Nc limit) and in ref. [25] (keeping Nc finite), lies in the fact that the hard factors
H

(i)
ag∗→cd(Pt,kt) are kt-dependent, as opposed to a function of Pt only in the TMD case:

H
(i)
ag→cd(Pt) = H

(i)
ag∗→cd(Pt,0t); their expressions can be found in ref. [16]. On the other

hand, the improvement with respect to the HEF lies in the fact that several gluon distribu-
tions are involved, which differ from one another when non-linear effects become important.
The various operator definitions of the gluon TMDs F (i)

ag (x2,kt) are found in ref. [25].
From now on, we focus solely on a quark dijet pair (qq̄) production, since considering

this subprocess will allow us to make a detailed comparison with the CGC formulation. In
that case, let us write down more explicitly the ITMD formula;1

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

= α2
s

2CF
z(1− z)
p2

1tp
2
2t

x1fg/p(x1, µ
2)Pqg(z)

[
Fgg(x2,kt)−

1
N2
c

FWW (x2,kt)

+2z(1− z)p1t · p2t
P 2
t

Fadj(x2,kt)
]
, (2.6)

where

Pqg(z) = z2 + (1− z)2

2 (2.7)

1Compared to ref. [25], F (1)
gg is simply denoted Fgg, the Weizsäcker-Williams gluon TMD F (3)

gg is denoted
FW W , and Fadj = F (1)

gg −F (2)
gg is the adjoint-dipole gluon TMD [26].
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p1t, y1

p2t, y2

p+p

p−A
x2, kt

X

X

(a) (b)

x1

x1fg/p

Fgg

Hgg∗→qq̄

k1t k2t

Figure 1. Amplitude-level diagrams for forward quark dijet production p(pp) + A(pA)→ q(p1) +
q̄(p2)+X from the point of view of the ITMD framework. (a): squaring the amplitude provides the
qq̄ dijet production cross section in the ITMD framework. (b): diagram yielding so-called genuine-
twists corrections, O(Qs/ |Pt|), neglected in the ITMD formula but included in the CGC framework.

denotes the usual gluon-quark splitting function at leading order in αs. The relevant small-
x gluon TMDs are given by [25]

Fgg(x2,kt) = 4
g2

∫
d2xd2y

(2π)3 e−ikt·(x−y) 1
Nc

〈
Tr
[
(∂iUy)(∂iU †x)

]
Tr
[
UxU

†
y

]〉
x2
,

Fadj(x2,kt) = 2
g2

∫
d2xd2y

(2π)3 e−ikt·(x−y) 1
Nc

〈
Tr
[
(∂iVy)(∂iV †x )

]〉
x2
, (2.8)

FWW (x2,kt) = − 4
g2

∫
d2xd2y

(2π)3 e−ikt·(x−y)
〈

Tr
[
(∂iUx)U †y(∂iUy)U †x

]〉
x2
,

in terms of the Wilson lines

Ux = P exp
[
igs

∫ ∞
−∞

dx+A−a (x+,x)ta
]
, Vx = P exp

[
igs

∫ ∞
−∞

dx+A−a (x+,x)T a
]

(2.9)

with ta and T a denoting the generators of the fundamental and adjoint representation of
SU(Nc), respectively. The process is depicted in figure 1 at the amplitude level, the ITMD
cross-section being the square of figure 1 (a). The soft gluons attaching to the hard parts,
are not shown, those are accounted for by two (fundamental) Wilson lines. A derivative
applied to a Wilson line corresponds to a gluon exchanged in the t-channel, those are
explicitly drawn.

The CGC averages 〈 · 〉x2 represent averages over the configurations of the classical
color field of the hadronic/nuclear target, A−, which describes the dense parton content of
its wave function, at small longitudinal momentum fraction x2. In the leading-logarithmic
approximation, the evolution of the CGC averages with decreasing x2 obeys the JIMWLK
equation,

d

d ln(1/x2) 〈O〉x2
= 〈HJIMWLK O〉x2

(2.10)

where HJIMWLK denotes the JIMWLK Hamiltonian.
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The ITMD formula (2.4) is an interpolation between two limiting cases, Qs � |kt| , |Pt|
and Qs, |kt| � |Pt|, both limits being contained as well in the more general CGC framework
(the details of which are recalled below). The ITMD formula is valid when |Pt| � Qs(x2),
however the value of |kt| can be arbitrary. When |kt| � Qs(x2), the HEF formula (aka
kt-factorization) is recovered: the various gluon TMDs (2.8) collapse into a single function,
known as the unintegrated gluon distribution, which evolves according to the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) evolution equation [27–29]. By contrast, the TMD factor-
ization formula emerges from (2.4) when |kt| ∼ Qs(x2), it is formally obtained by replacing
H

(i)
ag∗→cd(Pt,kt) with H(i)

ag∗→cd(Pt,0t); in that regime, (leading-twist) non-linear effects are
important, and induce significant differences between the gluon TMDs.

Starting from the TMD formula, restoring the off-shellness of the small-x gluons in the
hard factors and hereby obtaining the ITMD formula is equivalent to performing an all-
order resummation of power corrections in |kt| / |Pt|, known as kinematical-twists correc-
tions [18]. Furthermore, the difference between the ITMD formula and the more complete
CGC formulation represents corrections of the genuine-twists kind [19], that should become
important when |Pt| ∼ Qs(x2). Diagrammatically, those genuine-twist corrections come
from figure 1 (b), meaning 3-body and 4-body terms after squaring. At the cross-section
level, all contributions in figure 1 involve 4 Wilson lines (4 fundamental ones in the case of
the qq̄ final state considered here), but the 3- (resp. 4-) body contribution involves 3 (resp.
4) derivatives and 3 (resp. 4) different transverse positions, while the ITMD cross-section
is a two-body contribution which involve 2 derivatives and 2 different transverse positions,
as is explicit in (2.8).

2.2 CGC framework for forward qq̄ pair production

In this subsection, we recall the CGC formalism for qq̄ pair production in dilute-dense col-
lisions. In the amplitude and complex conjugate amplitude, the incoming gluon from the
dilute projectile may split into the qq̄ pair before or after the interaction with the dense tar-
get, as pictured in figure 2. Fundamental Wilson lines describe the interaction for quarks,
and adjoint Wilson lines for gluons. As a result, the cross-section involves four contribu-
tions: a correlator of four fundamental Wilson lines, S(4), corresponding to interactions
happening after the gluon splitting into the qq̄ pair, both in the amplitude and the com-
plex conjugate amplitude; a correlator of two adjoint Wilson lines, S(2), corresponding to
interactions taking place before the gluon splitting, both in the amplitude and the complex
conjugate amplitude; two correlators of three Wilson lines, S(3), for the interference terms.

Denoting p the momentum of the incoming gluon, the cross-section reads [24]:
dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

= αs
2 z(1− z)x1fg/p(x1, µ

2)
∫

d2u

(2π)2
d2u′

(2π)2 e
iPt·(u′−u) (2.11)

× p+∑
λαβ

ϕλ
∗
αβ(p, p+

1 ,u
′)ϕλαβ(p, p+

1 ,u)
∫

d2v

(2π)2
d2v′

(2π)2 e
ikt·(v′−v)

{
S

(4)
qq̄q̄q

(
x, b,x′, b′;x2

)
−S(3)

qgq̄

(
x,v′, b;x2

)
− S(3)

qgq̄

(
b′,v,x′, x2

)
+ S(2)

gg

(
v,v′;x2

)}
,

where
x = v + (1−z)u and x′ = v′ + (1−z)u′ (2.12)
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Figure 2. Quark-pair production amplitude in the CGC formalism, in which the pair is radiated
from the gluon before (left) or after (right) the multiple interactions with the gauge fields in the
target represented by wavy lines. Each propagating parton picks up a Wilson line, implying 2-, 3-,
and 4-point Wilson line correlators after squaring.

denote the transverse positions of the final-state quark in the amplitude and the conjugate
amplitude, respectively, and

b = v − zu and b′ = v′ − zu′ (2.13)

denote the transverse positions of the final-state antiquark in the amplitude and the
conjugate amplitude, respectively. u′ − u is conjugate to the hard momentum Pt =
(1−z)p1t−zp2t, and v′−v is conjugate to the total transverse momentum of the produced
particles kt = p1t + p2t.

The S(i) Wilson line correlators are given by

S
(4)
qq̄q̄q(x, b,x′, b′;x2) = 1

CFNc

〈
Tr
(
U †b t

cUxU
†
x′t

cUb′

)〉
x2
, (2.14)

S
(3)
qgq̄(x,v, b;x2) = 1

CFNc

〈
Tr
(
U †b t

cUxt
d
)
V cd

v

〉
x2
, (2.15)

S(2)
gg (v,v′;x2) = 1

N2
c − 1

〈
Tr
(
Vv V

†
v′

)〉
x2
. (2.16)

The functions ϕλαβ denote the g → qq̄ splitting wave functions. In the limit of massless
quarks, the wave function overlap is simply given by

p+ ∑
λαβ

ϕλ
∗
αβ(p, p+

1 ,u
′)ϕλαβ(p, p+

1 ,u) = 16π2 u · u′

|u|2 |u′|2
Pqg(z) . (2.17)

The three scales Qs, |kt|, and |Pt| are characterizing the kinematics for the dijet production.
It is instructive to consider the two limits Qs � |kt| , |Pt| and Qs, |kt| � |Pt| in the CGC
framework.
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It was shown in ref. [16] that in the Qs � |kt| ∼ |Pt| limit, the formula (2.11) reduces to

p2
1t p

2
2t
dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

= α2
s

2CF
x1fg/p(x1, µ

2)z(1−z)Pqg(z)

×
[

(1−z)2p 2
1t + z2p 2

2t
P 2
t

− 1
N2
c

]
Fdilute
g/A (x2,kt) (2.18)

where

Fdilute
g/A (x2,kt) = 4

∫
d3xd3y

(2π)3 e−ikt·(x−y)
〈

Tr[∂iA−(x+,x)][∂i(A−(y+,y)]
〉
x2
. (2.19)

It corresponds to the BFKL limit of the CGC and is referred to as the HEF formula. It
has been extensively studied in the literature [30–34] (where the gluon TMD is denoted
by Fg/A = πΦg/A due to a different normalization convention).2 Its domain of validity
corresponds to jets produced away from the back-to-back region, where the small-x2 gluon
is hard, and saturation effects are negligible. However, provided that we are dealing with
forward jets, linear small-x effects are still relevant [34].

In the meantime, it was shown in refs. [24, 25] that in the Qs ∼ |kt| � |Pt| limit, the
formula (2.11) becomes

p2
1t p

2
2t
dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

= α2
s

2CF
z(1−z)x1fg/p(x1, µ

2)Pqg(z)
[
Fgg(x2,kt) (2.20)

− 1
N2
c

FWW (x2,kt)− 2z(1−z)Fadj(x2,kt)
]
.

This is a TMD factorization, obtained from the CGC by extracting the leading 1/ |Pt|
power. Its domain of validity corresponds to nearly back-to-back jets production. In our
small-x context (forward jets), saturation effects in Qs/ |kt| must be accounted for here,
without them the TMDs all coincide. We note that the TMD approach has been previously
extensively studied in the literature [22, 23, 36–41] in a broader context than small-x
physics, in which case the process dependence of the TMDs is simply non-perturbative (Qs
is not large enough compared to ΛQCD).

The ITMD factorization formula (2.4) (as well as those for the other two channels)
was built in order to contain both those expressions as its limiting cases, as therefore be
valid regardless of the magnitude of |kt|. In the first case, it is so because in the Qs � |kt|
limit, one has Fgg,Fadj,FWW → Fdilute

g/A (x2,kt) + O(1/k2
t ). In the second case, it occurs

because in the |kt| � |Pt| limit the coefficient in front of Fadj becomes −2z(1 − z). We
note that, any systematic improvements of the HEF or TMD factorization frameworks in
perturbation theory, which may be obtained in the future, could be implemented in the
ITMD factorization formula as well.

Finally, the difference between the CGC formula (2.11) and the ITMD formula (2.6)
was clarified recently [18]. The CGC amplitude pictured in figure 2, whose square leads
to (2.11), can be rewritten in an alternative way using an expansion in the dipole sizes

2As a related topic, ref. [35] clarifies how the BFKL evolution equation appears for forward hadron
production in the hybrid CGC formula with a dilute target.
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conjugate to Pt, which corresponds to a twist expansion. The leading contribution rep-
resented in figure 1 (a) (whose square leads to the ITMD formula (2.6)), is made of the
leading 1/ |Pt| term (the TMD term extracted in [24, 25]) and an all-order resummation
of a sub-set of higher-order terms, the so-called kinematical twists of order O(|kt| / |Pt|)
(whose effect at the cross-section level is to restore the off-shellness of the gluon in the
hard factor while leaving the leading-twist TMD structure unchanged). The remaining
higher-order contributions represented in figure 1 (b), of order O(Qs/ |Pt|), represent the
difference between the CGC and the ITMD formula, they are known as genuine twists
terms. Our goal now is to estimate the magnitude of that difference. To do that, we shall
consider the large-Nc limit, in which case the CGC framework becomes tractable, especially
with the gg → qq̄ channel.

2.3 ITMD/CGC comparison in the large-Nc limit

To enable an ITMD/CGC comparison easily, let us simplify eqs. (2.6) and (2.11). As for
the multi-point correlators in (2.11), in terms of the fundamental Wilson lines, we can write
down those as

S
(4)
qq̄q̄q(x, b,x′, b′;x2) = Nc

2CF

〈
D(x,x′)D(b′, b)− 1

N2
c

Q(x,x′, b′, b)
〉
x2

, (2.21)

S
(3)
qgq̄(x,v, b;x2) = Nc

2CF

〈
D(x,v)D(v, b)− 1

N2
c

D(x, b)
〉
x2

, (2.22)

S(2)
gg (v,v′;x2) = Nc

2CF

〈
D(v,v′)D(v′,v)− 1

N2
c

〉
x2

, (2.23)

where

D(x,y) = 1
Nc

Tr
(
UxU

†
y

)
and Q(x,y,v,w) = 1

Nc
Tr
(
UxU

†
yUvU

†
w

)
. (2.24)

Eqs. (2.21), (2.22), and (2.23) are still complicated for a clear comparison of the two
approaches. To make the multi-point correlators more manageable, we shall utilize the
so-called Gaussian approximation of the CGC [42–48]. The essential point is to assume
that all the color charge correlations in the target stay Gaussian throughout the evolution.
This is found to be a reasonable approximation to the multi-point correlators obtained from
the JIMWLK evolution [46, 48]. On top of the Gaussian approximation, for simplicity, we
shall work in the large-Nc limit. In addition to dropping the explicitly large-Nc suppressed
terms, this allows to write a correlator of a product of traces as the product of single trace
correlators. Thus, the combination inside the brackets

{
·
}
in eq. (2.11) can be cast into

Nc

2CF

{
Sqq̄[v+(1−z)u,v′+(1−z)u′;x2]Sqq̄[v′−zu′,v−zu;x2]+Sqq̄[v,v′;x2]Sqq̄[v′,v;x2]

−Sqq̄[v+(1−z)u,v′;x2]Sqq̄[v′,v−zu;x2]−Sqq̄[v′−zu′,v;x2]Sqq̄[v,v′+(1−z)u′;x2]
}
, (2.25)

in terms of only the two-point function (dipole amplitude) Sqq̄(x,y;x2) = 〈D(x,y)〉x2 . We
will see below that the above treatment for the multi-point correlators helps us capture
differences between the ITMD and CGC framework.
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Then, introducing the dipole amplitude in the momentum space,

F (x2,kt) =
∫

d2r

(2π)2 e−ikt·rSqq̄(b + r/2, b− r/2;x2) , (2.26)

and neglecting the b dependence of F for simplicity, the second and third lines of eq. (2.11)
simplify into

S⊥
Nc

2CF

∫
d2qt
(2π)2F (x2, qt)F (x2, qt − kt)

(
1− ei(qt−zkt)·u

) (
1− e−i(qt−zkt)·u′

)
, (2.27)

where S⊥ represents the transverse area of the target. Finally, with these approximations
the cross section for producing a pair of q at y1 with p1t and q̄ at y2 with p2t in the forward
rapidity region is given by

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

= αsNc

2CF
S⊥
8π2 z(1− z)x1fg/p(x1, µ

2)
∫
d2qtF (x2, qt)F (x2, qt − kt)

× p+∑
λαβ

∣∣∣ϕ̃λαβ(p, p+
1 ,Pt)− ϕ̃λαβ(p, p+

1 ,p1t − qt)
∣∣∣2 (2.28)

with ϕ̃λαβ(p, p+
1 ,Pt) =

∫ d2u
(2π)2 e

−iPt·uϕλαβ(p, p+
1 ,u). In the massless quarks limit, this is

simply given by

p+∑
λαβ

∣∣∣ϕ̃λαβ(p, p+
1 ,Pt)− ϕ̃λαβ(p, p+

1 ,p1t − qt)
∣∣∣2 = 4Pqg(z)

∣∣∣∣Pt

P 2
t

− p1t − qt
(p1t − qt)2

∣∣∣∣2

= 4Pqg(z) (zkt − qt)2

P 2
t (p1t − qt)2 , (2.29)

where we have used the identity:∫
d2u eikt·u u

|u|2
= 2πi kt

|kt|2
. (2.30)

Therefore, provided the large-Nc limit, the CGC formula for forward dijet production reads

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

∣∣∣
CGC

= αsS⊥
2π2 z(1− z)Pqg(z)

x1fg/p(x1, µ
2)

P 2
t

∫
d2qt F (x2, qt)F (x2,kt − qt)

×
[

(1− z)2(kt − qt)2 + z2q2
t − 2z(1− z)qt · (kt − qt)

(qt − p2t)2

]
. (2.31)

We have performed the change of variable qt → kt − qt and then wrote (1 − z)kt − qt =
(1 − z)(kt − qt) − zqt before squaring (this choice for writing (2.31) will make for easier
comparisons with the ITMD formula). Also, we have put Nc/(2CF ) → 1 in the overall
prefactor.

Next, let us examine the ITMD framework by using the same approximations as illus-
trated above. With our approximations, the ITMD framework for forward dijet production
now involves only two gluon TMDs, and from (2.8), they can be written as:

Fgg(x2,kt) = NcS⊥
2π2αs

∫
d2qt q

2
t F (x2, qt) F (x2,kt − qt) , (2.32)

Fadj(x2,kt) = NcS⊥
4π2αs

∫
d2qt k

2
t F (x2, qt) F (x2,kt − qt) , (2.33)
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where we have used Tr
[
VvV

†
v′

]
= N2

c |D(v,v′)|2 − 1. The forward dijet cross section in the
ITMD framework is then given by

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

∣∣∣
ITMD

= αsS⊥
2π2 z(1−z)Pqg(z)

x1fg/p(x1,µ
2)

P 2
t

∫
d2qt F (x2,qt)F (x2,kt−qt)

×
[

(1−z)2

p2
2t

q2
t + z2

p2
1t
q2
t + 2z(1−z)p1t ·p2t

p2
1t p

2
2t

(
k2
t

2 −q
2
t

)]
(2.34)

= αsS⊥
2π2 z(1−z)Pqg(z)

x1fg/p(x1,µ
2)

P 2
t

∫
d2qt F (x2,qt)F (x2,kt−qt)

×
[

(1−z)2

p2
2t

(kt−qt)2 + z2

p2
1t
q2
t + 2z(1−z)p1t ·p2t

p2
1t p

2
2t

qt ·(kt−qt)
]
.

To reach the second line of eq. (2.34), we have used the change of variable qt → kt − qt.
This can now be compared with eq. (2.31).

Let us emphasize the purpose of this paper again. In this section, we have highlighted
the difference between the ITMD and CGC frameworks analytically, using the Gaussian
truncation and the large-Nc limit: the hard scattering part in eq. (2.34) differs from the
one in eq. (2.31). Our interest now is to estimate the genuine twist corrections absent in
the former but present in the latter. In the following section, we shall further examine
that, numerically.

Before, it is worthwhile to give the HEF and TMD limits using the same simplifications,
as we shall numerically evaluate them later as well. In the HEF limit where |kt| � Qs,
S⊥k

2
tF = (2π2αs/Nc)Fdilute

g/A , and from (2.18) we have

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

∣∣∣
HEF

= αsS⊥
2π2 z(1− z)Pqg(z)

x1fg/p(x1, µ
2)

P 2
t

[
(1− z)2

p2
2t

+ z2

p2
1t

]
k2
tF (x2,kt) .

(2.35)
Meanwhile, in the TMD limit, from (2.20) one obtains

dσ(pA→ qq̄X)
dy1dy2d2p1td2p2t

∣∣∣
TMD

= αsS⊥
2π2 z(1− z)Pqg(z)

x1fg/p(x1, µ
2)

p2
1tp

2
2t

×
∫
d2qt F (x2, qt)F (x2,kt − qt)[q2

t − z(1− z)k2
t ] . (2.36)

3 Numerical setup and results

In order to exemplify the accuracy of the ITMD framework, we evaluate the azimuthal
angle correlation in forward qq̄ dijet production with the ITMD formula (2.34) and with
the CGC formula (2.31) in p+ p and p+A collisions and compare these results.

3.1 Setup

Let us first specify the setup for our numerical calculations. We assume that the prefactors
αsS⊥ in the formulas (2.34) and (2.31) are common constants and cancel out when we
take a ratio of these dijet cross-sections. For the collinear gluon distribution fg/p on the
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Figure 3. Gluon TMDs Fgg (solid lines) and Fadj (dashed lines) as a function of transverse
momentum kt = |kt| with fixed x = 10−2 (black), 10−4 (red) and 10−6 (blue). The pre-factor
αs/S⊥ is omitted. The saturation scale Qs(x) is defined here as the peak position of Fadj, indicated
by a dash-dotted arrow for each x.

projectile side, we use the parametrization CTEQ6M [49] with the factorization scale set
to µ = (|p1t|+ |p2t|)/2.

For the small-x gluons F (x2, kt) on the dense target side, we include the x-evolution
effects by adopting a numerical solution to the BK equation [10, 11]:

− dSBK(r⊥;x2)
d ln(1/x2) =

∫
d2r1⊥K(r⊥, r1⊥;αs) [SBK(r⊥;x2)− SBK(r1⊥;x2)SBK(r2⊥;x2)] ,

(3.1)
where Y ≡ ln(1/x2) is the evolution rapidity, r⊥ = r1⊥ + r2⊥ the size of a parent dipole.
In the Gaussian truncation, Sqq̄ = (SBK)1−1/N2

c [43], therefore in the large-Nc we simply
use SBK to obtain the Fourier transform F using (2.26). The possible impact parameter
dependence of the dipole amplitude is neglected here. We employ the kernel K with run-
ning coupling corrections, which was derived in ref. [50], and we adopt the one-loop running

coupling constant in coordinate space αs(r2
⊥) =

[
9

4π ln
(

4C2

r2
⊥Λ′2 + a

)]−1
with C = 1. The pa-

rameter a is a smooth cutoff to make the coupling finite in the large-dipole limit: αs(|r⊥| →
∞) = 0.5 [51, 52]. Our result on dijet production here is insensitive to this particular choice.

For our purpose of ITMD/CGC comparison, we take as the initial condition of the BK
equation the McLerran-Venugopalan (MV) type model [53, 54] of the form:

SBK(r⊥;x = x0) = exp
[
−r

2
⊥Q

2
0

4 ln
( 1
|r⊥|Λ

+ e

)]
, (3.2)
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where x = x0 denotes the start of the small-x evolution, which we take equal to 0.01.
Other parameters are set as Q2

0,p = 0.2GeV2 and Λ = 0.241GeV for the proton target, as
indicated by global fitting analysis of deep inelastic scattering small-x data with the BK
equation [55–57].

Figure 3 displays the gluon TMDs, Fgg(x2,kt) and Fadj(x2,kt), obtained by solving the
BK equation with the MV initial condition. The BK evolution contains two competitive ef-
fects, the gluon branching and merging, which results in the increase (decrease) of the gluon
distributions in high (low) |kt| region with decreasing x2. In the following, we define the
saturation scale Qs(x2) by the peak position of the gluon TMD, Fadj(x2,kt), as a function
of |kt| for fixed x2, which is indicated with vertical dash-dotted arrows in figure 3 (hence
Qs(x0) ' 0.5GeV is slightly different from Q0). The Qs(x2) value increases as x2 decreases
from x2 = 10−2, 10−4 to 10−6. Those results are consistent with previous studies [17, 58].

For a heavy nuclear target, we replace the initial Q0 value at x = x0 by

Q2
0,A = cA1/3Q2

0,p = ĉ Q2
0,p , (3.3)

where we have introduced a parameter c [33]. In ref. [59] it is shown that c ≈ 0.25−0.5 yields
a reasonable fit to the nuclear structure function F2,A(x,Q2) at x = 0.0125 measured by
New Muon Collaboration. Indeed, the CGC model calculation with a smaller value of ĉ ∼ 3
(c ∼ 0.5) has resulted in more reasonable description of forward heavy-flavor production
as well as quarkonium production in p + A collisions [52, 60–63] compared to the early
predictions with ĉ = 4–6 [51, 64]. In this paper, we choose ĉ in the range of 2 ≤ ĉ ≤ 3 for
the initial saturation scale in heavy nuclei, Pb (A = 208) and Au (A = 197).

3.2 Kinematics

The total and relative momenta squared, (2.3) and (2.5), of the quark at y1 with p1t and
the antiquark at y2 with p2t read, respectively,

|kt|2 = |p1t|2 + |p2t|2 + 2 |p1t| |p2t| cosφ ≥ (|p1t| − |p2t|)2 , (3.4)

|Pt|2 = |p2t|2 |p1t|2

(|p1t| ey1 + |p2t| ey2)2

(
e2y1 + e2y2 − 2ey1+y2 cosφ

)
, (3.5)

where φ is the azimuthal angle between p1t and p2t.
For definiteness, we set |p1t| = |p2t| = |pt| and then

|kt|2 = 2 |pt|2 (1 + cosφ) . (3.6)

By changing the azimuthal angle φ, we can scan |kt| values from Qs ∼ |kt| � |pt| to
Qs � |kt| ∼ |pt|. The relative momentum |Pt| depends on the rapidities, y1,2. For the
equal rapidity, y1 = y2 = y > 0, it simplifies to

|Pt|2 = |pt|
2

2 (1− cosφ) , (3.7)

and for the rapidities with a large gap, y2 � y1 > 0, it is approximated by

|Pt|2 ∼ |pt|2
(
1− 2e−(y2−y1)(1 + cosφ)

)
, (3.8)

which is almost independent of φ as e−(y2−y1) � 1.

– 13 –



J
H
E
P
1
2
(
2
0
2
0
)
1
8
1

0.5 0.6 0.7 0.8 0.9 1
10−1

100

101

102

φ/π

(a)
√
s = 7TeV, y = 3

|pt| = 10 GeV

|kt|
|Pt|
Qs = 1.0GeV

0.5 0.6 0.7 0.8 0.9 1
10−1

100

101

102

φ/π

(b)
√
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(c)
√
s = 7TeV, y1 = 1, y2 = 3

|pt| = 10 GeV
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Qs = 0.79GeV
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(d)
√
s = 7TeV, y1 = 1, y2 = 5
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Qs = 0.81GeV

Figure 4. Azimuthal angle dependence of |kt| (dotted) and |Pt| (dashed) with (a): |pt| = 10GeV
and y1 = y2 = 3, (b): |pt| = 40GeV and y1 = y2 = 3, (c): |pt| = 10GeV and y1 = 1 and y2 = 3, and
(d): |pt| = 10GeV and y1 = 1 and y2 = 5. Saturation momentum Qs (dash-dotted) in each plot is
determined as the peak position of the gluon TMD at

√
s = 7TeV.

Figure 4 shows |kt| (dotted) and |Pt| (dashed) as a function of the azimuthal angle φ
with fixed (a) |pt| = 10GeV and (b) 40GeV for the pair at a common rapidity, y = 3, at√
s = 7TeV. In the lower panels of figure 4 shown are the same plots but with rapidity

difference, (c) y1 = 1 and y2 = 3, and (d) y1 = 1 and y2 = 5, with fixed |pt| = 10GeV. The
x2 value is fixed by eq. (2.2), and the corresponding saturation scale Qs(x2) is indicated
with dash-dotted line in each plot. The HEF formula is justified for Qs � |kt| ∼ |Pt|,
i.e., away from the correlation limit. On the other hand, the TMD factorization formula
applies to the kinematical region, |kt| ∼ Qs � |Pt|.

We remark here that the ITMD formula will be less accurate due to genuine higher-
twist corrections in powers of Qs/ |pt| when the separation of the scales |pt| and Qs becomes
marginal by lowering |pt|, while the CGC formula is valid as long as Qs(x2)� ΛQCD.
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Before closing this subsection, we comment on the singularity appearing in the inte-
grand at qt − p2t = 0t in the CGC formula (2.31). It is not present in the ITMD formula
and entirely pertains to the genuine-twists terms of figure 1 (b). It corresponds to the ini-
tial collinear gluon splitting into collinear quark/antiquark, which then independently pick
up their transverse momentum from the two gluons (one with p1 and the other with p2),
which indeed requires a two-body contribution at the amplitude level. In principle, this
logarithmic divergence should be absorbed into a double-parton-distribution contribution
not considered here [65]. For simplicity however, in this work we regularize it by adding a
small mass term in the numerator as 1/((qt−p2t)2+m2) in eq. (2.31), and replace also 1/p2

1t
and 1/p2

2t with 1/(p2
1t+m2) and 1/(p2

2t+m2) in eq. (2.34) for consistency. We examined the
m-dependence of our numerical results by comparing results of m = 1MeV � ΛQCD and
100MeV ∼ ΛQCD. We found no significant change in the ratios of the dijet cross-sections
of the ITMD and CGC formulas at the LHC energy when |pt| ∼ 30 or 40GeV. However,
the change becomes noticeable around φ ∼ 0 at lower |pt| in both RHIC and LHC energies.
In the following calculations, we will take m = 100MeV and study the region φ > π/2.

3.3 ITMD/CGC ratio in p + p

Our focus is on azimuthal angle correlation in forward quark dijet production. We will
compute the dijet yield

dN(pp/pA→ qq̄X)
dy1dy2d |p1t| d |p2t| dφ

≡ 2π |p1t| |p2t|
S⊥

dσ(pp/pA→ qq̄X)
dy1dy2d2p1td2p2t

. (3.9)

The cross-section depends on the relative angle φ, not on individual angles of p1t,2t due to
the rotational symmetry of the dijet production. Note that the qq̄ dijet yield is given by
N = σqq̄/S⊥ with the assumption S⊥ ≈ σinel between the effective transverse area and the
inelastic cross section.

Both the CGC and ITMD formulae contain the TMD and HEF limits within the ap-
propriate kinematics, the difference between them represents genuine higher-twist contri-
butions, present in the CGC results but absent in the ITMD case, where only kinematical-
twist contributions in |kt| / |Pt| are resumed. In terms of the CGC formula, that difference
comes from power corrections in the dipole size expansion.3

In order to quantify the genuine higher-twist effects, we compare results of the ITMD
formula and of the CGC by taking the ratio of the former to the latter. In figure 5, we
show the ratio R as a function of φ for the pair of the common rapidity y1 = y2 = y at
(a) |pt| = 40GeV and (b) 10GeV. The ITMD/CGC ratio R for y = 1 (thick black line) in
figure 5 (a) is consistent with unity over the whole range of φ studied here, and for y = 4 it
lies barely below unity as Qs(x2) becomes larger. Other ratios of TMD/CGC (blue dashed)
and HEF/CGC (red dotted) deviate from unity outside of their respective domain of ap-
plicability, as is expected. Indeed, the dijet production cross-section in the HEF formula
unphysically vanishes dσHEF(kt → 0t) → 0 in the back-to-back limit (see eq. (2.35)). On
the other hand, the TMD formula, which ignores the off-shellness of the partons in the hard
matrix factors, underestimates the cross-section for φ away from the back-to-back region.

3Effects of higher-twists have been studied in quark-pair production in the CGC framework in refs. [42,
66], but with respect to the HEF or kt-factorization formula only.
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Figure 5. Ratios of the ITMD to the CGC result for quark dijet production cross-section
(ITMD/CGC) are shown in solid black line as a function of the azimuthal angle φ between the
jets at (a): |pt| = 40GeV and (b): |pt| = 10GeV in p + p collisions at

√
s = 7TeV. Thick (thin)

line denotes the results at y = 1 (y = 4). Ratios of HEF/CGC and TMD/CGC are also plotted
with red dotted, and blue dashed lines, respectively.
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Figure 6. Ratio of the ITMD/CGC ratios for quark dijet production in p+p collisions at
√
s =

2.76TeV (thick line) and 13TeV (thin line) for (a): |pt| = 40GeV and (b): |pt| = 10GeV with
y = 3 fixed. Other notations are the same in figure 5.

At the lower |pt| = 10GeV (figure 5 (b)), the ITMD/CGC ratio R shifts below unity by
. 5 to . 15% around φ ∼ π/2 as the rapidity y increases from y = 1 to 4. This deviation
can be understood as a result of the increase of the power corrections mentioned earlier. We
stress here that the ITMD formula approximates the CGC result uniformly over the region
of φ with 5–15% accuracy. The genuine higher-twist corrections become more important
outside the back-to-back region, while it is negligible around the back-to-back limit φ = π.
We will investigate the power corrections further in the last subsection below.
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Figure 7. The ratio R of ITMD/CGC (solid black line) for quark dijet production with (y1, y2) =
(1, 5) (thick) and (1, 3) (thin) at (a): |pt| = 40GeV and (b): 10GeV in p+p collisions at

√
s = 7TeV.

Other notations are the same in figure 5.

In figure 6, we study the energy dependence of the ITMD/CGC ratio R by showing
the cases of

√
s = 2.76TeV (thick) and 13TeV (thin) for (a) |pt| = 40GeV and (b) 10GeV.

For the larger |pt| (a), we find that the ITMD approximation is very accurate there, al-
most the same result as in figure 5, which indicates that the corrections in Qs/pt are well
suppressed there. For the lower |pt| (b), the ITMD/CGC ratio deviates from unity and the
depletion becomes more significant with increasing collision energy

√
s = 2.76 to 13TeV

(i.e., increasing Q2
s(x2)).

We also examine dijet production with a rapidity separation in the cases, (y1, y2) =
(1, 3) and (1,5), as shown in thick and thin lines, respectively, in figure 7 for (a) |pt| =
40GeV and (b) 10GeV. From figure 7 (a), we see that the ITMD formula well approximates
the CGC result, and interpolates the results of TMD and HEF formulas uniformly over
the range of π/2 . φ . π. The TMD estimate becomes accurate near the back-to-back
region φ ∼ π, while it is less accurate for φ away from it. For larger y2, this approximation
becomes better. On the other hand, unsurprisingly, the HEF formula fails to reproduce
the CGC result in a wider region of φ around ∼ π irrespective of the y2 value.

At the lower |pt| = 10GeV (figure 7 (b)), the ITMD formula interpolates still smoothly
from the TMD to the HEF results with decreasing φ from the back-to-back limit φ ∼ π.
However, the value of the ITMD/CGC ratio lies significantly below unity in the non-back-
to-back region, which reflects the size of the genuine twist corrections.

3.4 ITMD/CGC ratio in p + A and nuclear modification factor

The saturation scale Q2
sA in a heavy nucleus will be enhanced by a factor of ĉ ∝ A1/3

compared to Q2
sp, as discussed in section 3.1, and therefore it is valuable to analyze the

nuclear dependence of the ITMD/CGC ratio in forward dijet production in p+A collisions.
We plot in figure 8 the ratios R in p + p (ĉ = 1) and p + A (ĉ = 2.5) collisions at

√
s =

5.02TeV for |pt| = 40 and 20GeV ((a) and (b)), and for |pt| = 10 and 5GeV ((c) and (d)).
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Figure 8. The ITMD/CGC ratio R in p + p collisions (left; ĉ = 1) and in p + A collisions (right;
ĉ = 2.5) at y = 3 at

√
s = 5.02TeV. (a): Results for |pt| = 40 (blue solid) and 20GeV (red dashed)

in p + p. (b): The same as in (a) but in p + A. (c): Results for |pt| = 10 (blue solid) and 5GeV
(red dashed) in p+ p. (d): The same as in (c) but in p+A. The Qs value determined by the gluon
TMDs is shown in each panel.

From the comparison of the R ratios in p + p and p + A collisons at |pt| = 40 and
20GeV in figure 8 (a) (b), we find that the deviation of the ratio R from unity becomes
more noticeable in p + A collisions and for the lower |pt| = 20GeV, which indicates the
enhanced power corrections of Qs/ |pt| at lower |pt|. At yet lower values |pt| = 10, 5GeV,
the deviation becomes significant even in p + p case (figure 8 (c)), and is more profound
in p + A case (figure 8 (d)). In these cases, the ITMD is no longer a good approximation
to the CGC. The genuine twist corrections do not vanish even in the correlation limit, so
long as |pt| is a finite value much bigger than Qs.4

Figure 9 shows the results at the RHIC energy,
√
s = 200GeV. Since the dijet pro-

duction formulas, eqs. (2.34) and (2.31) premise that x2 is small, x2 ≤ x0 = 0.01, the jet
momentum |pt| is accordingly limited to the lower values, and here we take y = 2 and

4One can verify analytically that 1−R ∼ Q2
s/p2

t by using the GBW gaussian model for F .
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Qs(|pt| = 5GeV) = 0.53GeV

Qs(|pt| = 3GeV) = 0.57GeV

φ/π

R
(φ
)

ITMD/CGC: |pt| = 5GeV

ITMD/CGC: |pt| = 3GeV

0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4
(b)

√
s = 200GeV, y = 2, ĉ = 2.5
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Figure 9. Comparison of the ITMD/CGC ratio R in (a) p + p collisions and (b) p + A collisions
at y = 2 at

√
s = 200GeV. The results for |pt| = 5 (3)GeV are shown in blue solid (red dashed)

lines. The Qs value determined by TMDs is shown in each panel.

|pt| = 5 and 3GeV. Although Qs becomes smaller at RHIC, the ratios R for |pt| = 5 and
3GeV at

√
s = 200GeV in figure 9 deviate from unity similarly to those for |pt| = 10 and

5GeV at
√
s = 5.02TeV in figures 8 (c) (d). This result shows the dijet production at

the RHIC energy is sensitive to genuine higher-twist corrections in Qs/ |pt|, which are not
included in the ITMD formula.

Next let us discuss the so-called nuclear modification factor RpA, for forward dijet
production (dP.S. = dy1dy2d |p1t| d |p2t| dφ):

RpA ≡
1
A

SA⊥
Sp⊥

dN(pA→qq̄X)
dP.S.

dN(pp→qq̄X)
dP.S.

, (3.10)

where Sp,A⊥ denote the effective transverse areas of the proton and nucleus targets, respec-
tively. A p+A collision should be presumably regarded as a superposition of p+p collisions
for the high momentum limit |pt| → ∞ (at φ 6= π), and then RpA → 1 is expected. To as-
sure this constraint, we normalize the effective transverse area in our model calculations as

1
A

SA⊥
Sp⊥

= 1
ĉ
. (3.11)

A modification of RpA from unity signals the presence of nuclear effects. Figure 10 demon-
strates RpA of the quark dijet production at y = 3 at

√
s = 5.02TeV for jet momentum

|pt| = 40, 20, 10, and 5GeV. Colored bands depict the uncertainty estimated by the change
of the results when the initial saturation scale of the nucleus Q2

s0,A = ĉ Q2
s0,p is varied in

the range of ĉ = 2–3.
At |pt| = 40GeV (figure 10 (a)), the CGC (blue solid), and ITMD (red dashed)

formulas give the same prediction for RpA. The prediction is consistent with unity over
a wide range of φ and is suppressed only in the TMD regime in the vicinity of φ = π,

– 19 –



J
H
E
P
1
2
(
2
0
2
0
)
1
8
1

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
(a)

√
s = 5.02TeV, |pt| = 40GeV, y = 3

Qs(ĉ = 2.5) = 1.15GeV

φ/π

R
p
A
(φ
)

CGC
ITMD

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
(b)

√
s = 5.02TeV, |pt| = 20GeV, y = 3
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Figure 10. Nuclear modification factor as a function of φ for forward dijet production of |pt| =
40GeV (a), 20GeV (b), 10GeV (c), and 5GeV (d) at

√
s = 5.02TeV. Colored bands show the

uncertainty of the initial saturation scale for the target nucleus: ĉ = 2–3. The vertical arrow line
in each plot indicates the deviation δφ = Qs/ |pt| from the correlation limit φ = π.

where the total transverse momentum of the dijet becomes small and comparable to the
saturation scale: |kt| . Qs(x2). The intrinsic transverse momentum of the gluons, which
is of the order of Qs, is larger in the heavy nucleus than in the proton and smears the
azimuthal angle correlation. The region of the suppression should be characterized by
δφ = |π − φ| . QsA/ |pt| which we indicate with a vertical dash-dotted arrow in figure 10
(a). Decreasing the jet momentum |pt| from (a) 40GeV down to (d) 5GeV in figure 10, we
find that the suppression of RpA appears in a wider range of φ on the away side. This is
because, for lower |pt| at fixed y, the relevant x2 is smaller and Qs(x2) is larger accordingly,
and therefore the region of δφ . Qs/ |pt| gets wider.

We also notice that the difference between the ITMD and CGC results increases as
|pt| decreases. In the suppression regime, near φ = π, the differences stay rather small, but
at moderate φ away from φ ∼ π, those differences can get large and in fact, in that regime
the CGC formula exceeds unity while the ITMD one stays suppressed. This qualitative
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√
s = 200GeV. Notation is the same in figure 10.
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Figure 12. (a): RpA obtained in the CGC (blue solid), ITMD (red dense dashed) formulas for qq̄
dijet production with |pt| = 10GeV and y = 3 in p+ A collisions (ĉ = 2.5) at

√
s = 5.02TeV. For

comparion, RpA of the gluon TMDs with ĉ = 2.5 to those with ĉ = 1, devided by ĉ = 2.5, is shown
for Fgg (black dash-dotted) and Fadj (black dotted). (b): the same with |pt| = 5GeV and y = 2 at√
s = 200GeV.

change is caused by the genuine higher-twist corrections (figure 1 (b)) present in the CGC
formula. They contribute significantly to quark dijet production at moderate values of φ
(where the ITMD cross-section is not very large), and contribute even more so in p + A

collisions compared to p+p collisions, due to the bigger saturation scale in the former case.
That creates an enhancement of RpA.

At the RHIC energy
√
s = 200GeV, a similar suppression of RpA is seen in the back-

to-back region around δφ < QsA/ |pt| in figure 11, reflecting the larger intrinsic kt in the
nuclear target. In contrast, at φ away from π, both the CGC and ITMD results show
enhancements of RpA. The larger discrepancy between the ITMD and CGC results in
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Figure 13. Dijet production yield vs. |kt| / |Pt| obtained in the CGC (black solid), ITMD (blue
dotted), and HEF (red dashed) framework at |pt| = 20GeV (a) and 10GeV (b) with y = 3 and√
s = 5.02TeV fixed. Line thickness represents the nuclear dependence: ĉ = 3 (very thick), ĉ = 2

(semi thick), ĉ = 1 (thin).

figure 11 (b) than in (a) is again a manifestation of the larger genuine twist corrections
to dijet production at |pt| = 3GeV compared to |pt| = 5GeV. The enhancement of the
ITMD cross section at φ away from π is not surprising actually; at RHIC energies we are
simply sensitive to our initial conditions: if we plot the ratio of the gluon TMD Fgg(x2,kt)
of the heavy nucleus to that of the proton at x2 ∼ x0, it does show a Cronin-like peak
structure as a function of |kt|. See figure 12. Indeed, figure 12 compares RpA of the quark
dijet production cross-section obtained with the CGC and ITMD formulas, together with
RpA of the gluon TMDs Fgg and Fadj (in order to highlight the higher-twist effects, we
choose the lower values of the jet momentum |pt| = 10 and 5GeV, resp. at the LHC (a) and
RHIC (b) energies). We see that the cross-section ratio obtained with the ITMD formula
is roughly proportional to the ratio of Fgg (and, away from φ = π, to Fadj also, when that
TMD is no more proportional to k2

t , see figure 3).
The contribution of multi-body scattering diagrams in the CGC to higher-twist cor-

rections was also addressed in refs. [42, 66], as kt-factorization breaking effect for quark-
antiquark pair production. In that analysis, what was studied was the difference between
the CGC and HEF formulae, which contains two types of HEF (or kt) factorization breaking
contributions: leading-twist saturation corrections in Qs/ |kt| and genuine-twist saturation
corrections in Qs/ |pt|. In the present work, by employing the ITMD framework, we are
now able to include the former in the baseline, and isolate the latter as the difference be-
tween the CGC and ITMD formulae. To illustrate our findings, figure 13 displays the dijet
production yield at the LHC and RHIC as a function of |kt| / |Pt|. We find that at small
values of |kt| (around |kt| / |Pt| = O(0.1) or smaller), the leading-twist saturation correc-
tions are responsible for the (rather large) difference between the CGC and HEF curves,
as the genuine-twist corrections are negligible (since the ITMD and CGC curves coincide).
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By contrast, the genuine-twist saturation corrections become visible when |kt| / |Pt| & 1,
where the HEF and ITMD cross-sections are equal (implying negligible leading-twist sat-
uration corrections), but both different from the CGC one. The figure shows the maxi-
mal size of the genuine higher-twist effects, which broaden the dijet angular distribution
(|kt| / |Pt| ∼ π − φ) and become more visible with heavy nuclear target (large ĉ).

4 Summary

We have compared quantitatively in detail the result of the ITMD formula to that of the
CGC formula for forward qq̄ dijet production in p + p and p + A collisions. We assumed
that the typical transverse momentum of a hard jet |Pt| is much bigger than the saturation
scale of the target Qs, but considered arbitrary values of |kt|, the transverse momentum
imbalance of the quark-antiquark pair.

First, section 2 has recaptured the differences and similarities between the two frame-
works in describing the forward dijet production cross-section. The ITMD formula (2.6)
contains three kinds of leading-twist small-x gluon TMDs, but two of them, Fgg and Fadj,
are relevant in the large-Nc approximation. At small |kt| (the TMD regime), the differ-
ences between those distributions, see figure 3, is the result of an all-order resummation of
saturation corrections in Qs/ |kt|, while the hard factors incorporate an all-order resum-
mation of kinematical twists in |kt| / |Pt|, resulting in a proper matching to BFKL at large
|kt| (the HEF or kt-factorization regime). The CGC formula (2.11) involves 2-, 3- and
4-point correlators of Wilson lines; it contains the full ITMD formula and on top resums
the genuine higher-twist contributions in Qs/ |Pt|. We should keep in mind that there are
these three distinct features embraced as saturation effects in the CGC framework.

Using the Gaussian truncation, however, one can make the two formulae look rather
similar: both involve convolutions of the qq̄ dipole amplitude in momentum space
(eq. (2.26)) with itself and with hard parts. In the ITMD case (2.34), those convolu-
tions are simply the gluon TMDs (2.33). In the CGC case they are more involved (2.31)
as they include the genuine higher-twist contributions. Those come from multi-body cor-
relators (e.g. (2.21)), but our approximations have allowed us to write them in terms of
the function F . The genuine high-twists are suppressed in high-|pt| dijet production, i.e.,
|Pt| � Qs, in which case the ITMD formula represents a good approximation to the CGC
framework.

In section 3, we have demonstrated the quantitative difference between the two for-
mulas for forward quark dijet production by evaluating the azimuthal dijet correlation in
p+ p and p+A collisions at collider energies. We have confirmed that the ITMD formula,
which interpolates between the TMD and HEF formula, gives the same prediction as the
CGC for the dijets with |pt| ∼ 40GeV at the LHC energy, where the higher-twist genuine
corrections are suppressed. As |pt| is decreased, some difference is seen and amount to
around 5–15% for |pt| ∼ 10GeV at moderate φ away from the back-to-back limit. We can
regard that amount as the highest estimation of the genuine twist effect for the qq̄ dijet
correlation, as well as for the other dijet channels for which those estimations would be
more involved.
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The nuclear modification factor RpA in p+A collisions shows a dip structure around the
back-to-back region of φ in both the frameworks, resulting from leading-twist saturation
effects in nuclear versus proton targets, and reflecting the intrinsic kt of the gluons, which
is of the order of Qs. For |pt| . 10GeV at moderate φ away from the back-to-back limit
at the LHC, the ITMD gives a suppression while the CGC formula yields an enhancement.
We attribute this difference to a nuclear enhancement of the genuine-twist contributions,
i.e., the higher-body multiple scattering effects included in the CGC formula. The effects
are more substantial at lower |pt| and with the denser nuclear target than higher |pt| with
the dilute one.

When the ITMD formula is used to evaluate the forward dijet production cross-section
at moderate |pt| for the study of gluon saturation, one should be aware of the fact that this
framework lacks those genuine twist effects. We note that the studies which are restricted
to the TMD regime near φ = π, e.g. to isolate the contribution of polarized gluons (relevant
when massive quarks are considered [26, 67], for dijets in deep inelastic scattering [68–72]
or for three-particle production [73–75]) or to implement a Sudakov resummation [76, 77],
are rather safe provided the |pt|’s are not too low.

It would also be interesting to examine whether those effects are experimentally mea-
surable, provided that the gluon TMDs could be determined with good accuracy in other
processes. For this purpose, we need to take account of the effects of jet fragmentation and
also other effects in jet identification algorithm and efficiency cuts, and so forth. We leave
those as future work.
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