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We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized
gluon Ioffe-time pseudodistribution in the nucleon. The Ioffe-time pseudodistribution provides a frame-
independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first
principles. We employ a high-statistics computation using a 323 × 64 lattice ensemble characterized by a
358 MeV pion mass and a 0.094 fm lattice spacing. We establish the pseudodistribution approach as a
feasible method to address the proton spin puzzle with successive improvements in statistical and
systematic uncertainties anticipated in the future. Within the statistical precision of our data, we find a good
comparison between the lattice determined polarized gluon Ioffe-time distribution and the corresponding
expectations from the state-of-the-art global analyses. We find a hint for a nonzero gluon spin contribution
to the proton spin from the model-independent extraction of the gluon helicity pseudodistribution over a
range of Ioffe-time, ν≲ 9.
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I. INTRODUCTION

An outstanding question in particle and nuclear physics
is how the spin of the proton arises from its constituents,
quarks and gluons, and their interactions that are governed
by quantum chromodynamics (QCD), the fundamental
theory of strong interactions. The spin sum rules are central
to addressing this question by breaking down the proton
spin into the quark and gluon spin and angular momentum
components. The Jaffe-Manohar decomposition [1] pro-
vides one such spin sum rule,

J ¼ 1

2
ΔΣþ Lq þ LG þ ΔG; ð1Þ

where 1
2
ΔΣ is the quark spin contribution, Lq and LG are

quark and gluon orbital angular momenta, and ΔG is the
gluon spin contribution. Such a decomposition is not
unique, and Ji’s spin decomposition [2] offers a frame-
independent and gauge invariant way to decompose the
proton’s spin into quark spin, quark orbital angular
momentum and gluon angular momentum contributions.
A naive expectation, based on intuition from the quark
model, would be that the quark spin term provides the
dominant contribution to the spin sum rules, but a deep
inelastic scattering (DIS) experiment, conducted by the
European Muon Collaboration, featuring polarized muons
scattering from polarized protons found that the quark
spin contribution to the proton spin is very small
(ΔΣðQ2 ¼ 10 GeV2Þ ¼ 0.060ð47Þð69Þ [3,4]. This surpris-
ing result is the so-called “proton spin crisis,” later
confirmed by modern global analyses of DIS experimental
data that show that quarks contribute roughly 30% [5–7] to
the proton spin. These results lead to the natural question:
how much do gluons contribute to the proton spin budget
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or, equivalently, what are the sign and magnitude of the
gluon helicity ΔG in the nucleon? Experimentally, one can
access ΔGðQ2Þ via the integrated Bjorken-x dependent
polarized gluon distribution, Δgðx;Q2Þ, as

ΔGðQ2Þ ¼
Z

1

0

dxΔgðx;Q2Þ: ð2Þ

An analysis [8] of high-statistics 2009 STAR [9] and
PHENIX [10] data showed evidence of nonzero gluon
helicity in the proton. At the scale Q2 ¼ 10 GeV2, it was
found in [8] that the gluon helicity distribution Δgðx;Q2Þ is
positive and nonzero in the momentum fraction region
0.05 ≤ x ≤ 0.2. However, the distribution has a large
uncertainty in the small x-region. In contrast, in a recent
global analysis [11] that relaxed the positivity constraints
on the quark and gluon helicity parton distribution func-
tions (PDFs), it was found that the existing experimental
data does not imply that the gluon polarization in the
nucleon must be positive. In order to provide high-
precision measurements of the gluon helicity ΔG, several
experiments are being carried out at the Relativistic Heavy
Ion Collider (RHIC) [10,12], HERMES [13], JLab [14],
COMPASS [15] and are planned for the future Electron-Ion
Collider (EIC) [16] to better understand the origin of
proton spin.
Lattice QCD offers a nonperturbative approach to

compute each of the quark and gluon helicity and angular
momentum contributions to the net proton spin.1 However,
direct lattice QCD calculations of ΔG are not straightfor-
ward, because the decomposition is derived in the light-
cone frame with the choice of light-cone gauge, which
cannot be obtained from a local matrix element in a lattice
QCD calculation. To circumvent this problem, it was
proposed in [20] that the matrix element of the equal-time
local operator E⃗ × A⃗phys, where A⃗phys is the gauge invariant
part of the gauge potential Aμ, coincides with the gluon
helicity obtained from the nonlocal operator of the light-
cone gluon helicity distribution in [21]. A lattice QCD
calculation [22] was performed using this formalism and
obtained ΔG ¼ 0.251ð47Þð16Þ. However, the matching
coefficient in the finite piece in the one-loop large
momentum effective theory [23] was found to be quite
large, indicating a possible convergence problem for the
perturbative series. Thus the gluon helicity ΔG obtained in
[22] is not free of a large matching systematic error. For the
status of lattice QCD results related to the nucleon spin
decomposition, we refer readers to a recent review [24] and
the references therein.

The recent proposal to use the pseudo-PDF approach
[25] to access Δgðx;Q2Þ (or equivalently, the correspond-
ing Ioffe-time distribution [26]) offers a gauge-invariant
and frame-independent alternative way to study ΔG. The
pseudo-PDF approach [25] and the associated proper
combination of matrix elements derived in [27] give
access to the polarized gluon Ioffe-time distribution (ITD)
and corresponding gluon helicity parton distribution
function (PDF) in the nucleon. Following the convention
for symbols of matrix elements from Ref. [27], we
calculate the gluon helicity Ioffe-time reduced pseudo-
distribution function (reduced pseudo-ITD), M̃ðν; z2Þ
[25,28,29], where we refer to ν≡ −ðp · zÞ as the Ioffe-
time [30]. The related pseudo-PDF, P̃ðx; z2Þ can be
determined from the Fourier transform of the pseudo-
ITD. The pseudo-PDF and the pseudo-ITD can be
factorized into the PDF and perturbatively calculable
kernels, similar to the factorization framework for exper-
imental cross sections. Our calculation applies the
reduced pseudo-ITD approach [31], in particular the ratio
proposed in [27], for which the multiplicative renormal-
ization factors cancel.
We apply this recently established theoretical framework

for the polarized gluon pseudo-PDF [27] in a numerical
lattice QCD computation. In comparison to the significant
progress in lattice QCD calculations of quark structures of
the nucleon and mesons in recent years [32–56] using
different approaches [23,25,57–62], there have been only a
few attempts to calculate the x-dependent unpolarized
gluon PDFs in the nucleon [63–65], pion [66], and kaon
[67]. There have been no lattice QCD calculations of the
x-dependent gluon helicity distribution in the nucleon. The
current work closes this gap in the literature and provides
the first look into the feasibility and the associated
challenges in addressing Δgðx;Q2Þ and ΔGðQ2Þ from
the pseudo-PDF approach. For more details of the different
methods for calculating x-dependent hadron structure,
and related lattice QCD calculations, see recent reviews
[68–71] and the references therein.
The rest of this paper is organized as follows. In Sec. II,

we first discuss the theoretical framework for the con-
struction of matrix elements and the reduced pseudo-ITD
associated with the polarized gluon parton distribution in
the nucleon. In Sec. III, we briefly describe the lattice QCD
methodologies for the construction of the gluonic currents
needed for the gluon helicity distribution, nucleon two-
point correlators and our lattice setup for this calculation of
gluonic matrix elements. Section IV describes the meth-
odology we implement to calculate the reduced pseudo-
ITD from the nucleon three-point correlators. In Sec. V, we
extract the polarized gluon pseudo-ITD and discuss the
potential of extracting the gluon helicity PDF from the
reduced pseudo-ITD and compare our results with phe-
nomenological distributions. Section VI contains our con-
cluding remarks and outlook.

1We refer the reader to Refs. [17,18] for the most recent
nucleon spin decomposition using the Ji decomposition and
quark orbital angular momentum calculations using both the
Jaffe-Manohar and Ji decompositions in [19].
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II. THEORETICAL BACKGROUND OF
POLARIZED GLUON PSEUDO-DISTRIBUTION

To access the polarized gluon PDF, one needs the matrix
elements of two gluon field strength tensors, Gμν, con-
nected by a Wilson line inserted between nucleon states of
definite helicity. Throughout this paper, we follow the
notation of Ref. [27], in which the authors used the tilde-
symbol to denote the polarized gluonic matrix elements and
associated distributions.
We start with the matrix elements of two spatially

separated gluon fields

m̃μα;λβðz; p; sÞ ¼ hp; sjGμαðzÞW½z; 0�G̃λβð0Þjp; si; ð3Þ

where zμ is the separation between the gluon fields,
pμ is the four-momentum of the nucleon, and sμ≡
ūðp; sÞγμγ5uðp; sÞ, a pseudovector normalized by s2 ¼
−m2

p, is the nucleon polarization vector and mp being
the nucleon mass. Finally, the dual field toGλβ is defined as
G̃λβ ¼ 1

2
ϵλβργGργ, and W½z; 0� is a straight-line Wilson line

in the adjoint representation,

W½x; y� ¼ P exp

�
igs

Z
1

0

dηðx − yÞμÃμðηxþ ð1 − ηÞyÞ
�
;

ð4Þ

for the gauge field Aμ, where P indicates that the integral
is path-ordered. The spin-dependent part of the matrix
element is determined by the linear combination in Eq. (5)
that is odd in the separation zμ. The matrix elements
associated with the polarized gluon distribution are then
written as

M̃μα;λβðz; p; sÞ ¼ m̃μα;λβðz; p; sÞ − m̃μα;λβð−z; p; sÞ: ð5Þ

As shown in [27], using Lorentz invariance and taking into
account the antisymmetric properties of the gluon field
strength tensor with respect to its indices, one can write
these matrix elements as an expansion involving two types
of invariant amplitudes, differing in the contribution of spin
vector sμ to the Lorentz tensor structures. Of these, M̃sp,
M̃ps, M̃sz, M̃zs, M̃pzps, M̃pzsz are accompanied by
tensor structures in which each one of the μ; α; λ; β indices
is carried by the nucleon polarization vector sμ, the nucleon
momentum pμ, the separation zμ, and the metric tensor gμν.
The invariant amplitudes of the second group, M̃pp, M̃zz,
M̃zp, M̃pz, M̃ppzz,M̃gg are accompanied by tensor
structures in which the spin vector enters through the
product s · z [27]. All invariant amplitudes are functions
of the invariant interval z2 and the Lorentz invariant
ðp · zÞ≡ −ν [26] called the Ioffe time due to its relation,
up to a sign and normalization of the target’s mass, with the

original variable from DIS cross section analyses [30].
Ultimately, the invariant amplitudes of interest will be those
that contribute in the contraction gαλM̃μα;λβ with specific
kinematics that define the polarized PDF. All others that
cannot be removed will contribute to systematic errors that
must be modeled or corrected for.
The light-cone polarized gluon distribution ΔgðxÞ is

obtained from

gαβM̃þα;βþðz−; pÞ
¼ −2pþsþ½M̃ðþÞ

ps ðν; 0Þ þ pþz−M̃ppðν; 0Þ�; ð6Þ

where z is taken in the light-cone “minus” direction,
z ¼ z−, pþ is the momentum in the light-cone “plus”

direction, and M̃ðþÞ
ps ¼ ½M̃ps þ M̃sp�. The polarized gluon

PDF can be determined by the Ioffe-time distribution

−iĨpðνÞ≡ M̃ðþÞ
ps ðνÞ − νM̃ppðνÞ; ð7Þ

where

ĨpðνÞ ¼
i
2

Z
1

−1
dx e−ixν xΔgðxÞ: ð8Þ

As noted in [26], with knowledge of the polarized gluon
ITD ĨpðνÞ, one can immediately obtain the gluon helicity
contribution to the nucleon spin

ΔG ¼
Z

∞

0

dν ĨpðνÞ ¼
Z

1

0

dxΔgðxÞ: ð9Þ

The field-strength tensor Gμα is antisymmetric with
respect to its indices and g−− ¼ 0, so the left-hand side
of Eq. (6) reduces to a summation over the transverse
indices i; j ¼ x, y, perpendicular to the direction of
separation between the two gluon fields. The combination
of the matrix elements M̃0i;0i and M̃ij;ij can be written in
terms of invariant amplitudes as

M̃0i;0iðz; pÞ þ M̃ij;ijðz; pÞ ¼ −2pzp0M̃
ðþÞ
sp ðν; z2Þ

þ 2p3
0zM̃ppðν; z2Þ; ð10Þ

where the nucleon boost is along the 3rd (z) direction, p ¼
fp0; 0⊥; pzg [27]. The polarization vector that we use is
s ¼ fpz; 0⊥; p0g, such that the requirement s · p ¼ 0 is
satisfied.
The particular combination in Eq. (10) cancels the

contamination terms coming from invariant amplitudes

other than M̃ðþÞ
sp and M̃pp present in Eq. (7). Still, it

involves a contamination term proportional to M̃pp that, in
fact, can be removed (as we discuss below). Therefore, the
matrix element in Eq. (10), after removal of the ultraviolet
(UV) divergences discussed in the next paragraph, can be

TOWARD THE DETERMINATION OF THE GLUON HELICITY … PHYS. REV. D 106, 094511 (2022)

094511-3



used to extract the invariant amplitude associated with the
matrix elements relevant for the polarized gluon ITD and
corresponding PDF.
The bilocal quark and gluon operators separated by a

spacelike Wilson line [such as the operator in Eq. (3)] have
additional link-related UV divergences that are multiplica-
tively renormalizable (see Refs. [72–74] for the quark
case). In particular, various combinations of spatially
separated gluon operators are shown to be multiplicatively
renormalizable in [27,75–77]. For our calculation of the
matrix elements corresponding to the gluon helicity dis-
tribution, these UV divergences can be canceled by forming
the following ratio proposed in [27]:

M̃ðν; z2Þ≡ i
½M̃00ðz; pzÞ=pzp0�=ZLðz=aLÞ

M00ðz; pz ¼ 0Þ=m2
p

; ð11Þ

where we have defined M̃00ðz; pzÞ ≡ ½M̃0i;0iðz; pzÞ þ
M̃ij;ijðz; pzÞ�, and M00ðz; pzÞ ≡ ½M0i;i0ðz; pzÞ þ
Mji;ijðz; pzÞ� is the spin averaged matrix element corre-
sponding to the unpolarized gluon PDF [65,77]. The factor
1=ZLðz3=aLÞ [z3 ↦ z] determined in [27] cancels the
UV logarithmic vertex anomalous dimension of the M̃00

matrix element. The factor i in (11) is introduced in
accordance with the definition of the ITD − iĨpðνÞ≡
M̃ðþÞ

ps ðνÞ − νM̃ppðνÞ. The ratio in Eq. (11) utilizes the
presence of the same linear UV divergence in M̃00ðz; pzÞ
andM00ðz; pz ¼ 0Þ related to the gluon link self energy and
cancels this common divergent factor. Still, this ratio in
Eq. (11) preserves the logarithmic IR divergence at small
z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF
[78–80]. The ratio in (11) is referred to as the reduced
pseudo-ITD in the rest of the paper.
As mentioned above (and shown in [27]), the reduced

pseudo-ITD (11) contains a contamination term that is not
present in the definition of the light-cone gluon helicity ITD
in (7). Indeed, writing the right-hand side of Eq. (11) in
terms of the invariant amplitudes of Eq. (10) and using
z ¼ ν=pz [which is valid when zμ ¼ ð0; 0; 0; zÞ], we obtain,

M̃ðν; z2Þ ¼ ½M̃ðþÞ
sp ðν; z2Þ − νM̃ppðν; z2Þ�

−
m2

pz2

ν
M̃ppðν; z2Þ; ð12Þ

or, alternatively,

M̃ðν; z2Þ ¼ ½M̃ðþÞ
sp ðν; z2Þ − νM̃ppðν; z2Þ�

−
m2

p

p2
z
νM̃ppðν; z2Þ; ð13Þ

where mp is the nucleon mass.

There are other combinations derived in [27] that also

contain the invariant amplitudes M̃pp and M̃ðþÞ
sp , but these

combinations involve more contamination terms. In this
work, our goal therefore is to calculate the matrix elements
of the combination in Eq. (10), try to eliminate the
Oðm2

p=p2
zÞ contamination term present in Eq. (13), and

extract ½M̃ðþÞ
ps ðν; z2Þ − νM̃ppðν; z2Þ�, necessary for deter-

mining the gluon helicity distribution in the nucleon.
With the removal of the Oðm2

p=p2
zÞ terms present in

Eqs. (12) and (13), the resulting reduced pseudo-ITD
M̃ðν; z2Þ can be related, up to power corrections, to the
light-cone polarized gluon ITD Ĩgðν; μ2Þ and singlet quark
ITD ĨSðν; μ2Þ in the MS scheme through the following
short distance factorization relation [27]:

M̃ðν; z2Þhxgiμ2

¼ Ĩpðν; μ2Þ −
αsNc

2π

Z
1

0

du Ĩpðuν; μ2Þ
�
ln

�
z2μ2

e2γE

4

�

×

��
2u2

ū
þ 4uū

�
þ
−
�
1

2
þ 4

3

hxSiμ2
hxgiμ2

�
δðūÞ

�

þ 4

�
uþ lnð1 − uÞ

ū

�
þ
−
�
1

ū
− ū

�
þ
−
1

2
δðūÞ þ 2ūu

�

−
αsCF

2π

Z
1

0

du ĨSðuν; μ2Þ
�
ln

�
z2μ2

e2γE

4

�
B̃gqðuÞ

þ 2ūu

�
þOðΛ2

QCDz
2Þ; ð14Þ

where z2 provides the hard scale in the one-loop perturba-
tive matching formula [27], ΛQCD is the scale of QCD,
Nc ¼ 3, ū≡ ð1 − uÞ, γE is the Euler-Mascheroni constant,
and the plus-prescription is defined by

Z
1

0

du ½fðuÞ�þgðuÞ ¼
Z

1

0

du fðuÞ½gðuÞ − gð1Þ�: ð15Þ

We note that for a complete implementation of the one-
loop matching, one requires the calculation of the singlet
quark Ioffe-time distribution. In this proof-of-principle
calculation, we exclude this quark singlet contribution.
Even though the perturbative matching formula in
Eq. (14) has been derived up to the next-to-leading
order, we will only perform the analysis at leading order,
which is also consistent with excluding the quark singlet
contribution. This is because the statistical uncertainty
in the lattice QCD matrix elements is quite large, as
we will see in the subsequent sections. Future studies
with improved precision will require both the gluon and
quark singlet OðαsÞ contributions when they become
statistically significant.
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III. COMPUTATIONAL FRAMEWORK

We construct the gluonic operators and compute the
nucleon two- and three-point functions using the same
methodologies and numerical techniques as in our previous
work on the unpolarized gluon distribution. We therefore
refer readers to our previous work in Ref. [65] for a more
detailed description and briefly summarize our procedure in
the following.
We perform our calculation on an isotropic ensemble

with (2þ 1) dynamical flavors of clover Wilson fermions
with stout-link smearing [81] of the gauge fields and a
tree-level tadpole-improved Symanzik gauge action. The
approximate lattice spacing is a ∼ 0.094 fm and the pion
mass is mπ ∼ 358 MeV [82]. We use 64 temporal sources
over 1901 gauge configurations, with each configuration
separated by 10 hybrid Monte Carlo [83] trajectories. We
take the two light quark flavors, u and d, to be degenerate,
the lattice spacing was determined using the w0 scale [84],
and the strange quark mass is tuned by setting the quantity,
ð2m2

Kþ −m2
π0
Þ=m2

Ω− equal to its physical value. We sum-
marize the parameters of the ensemble in Table I.
On the lattice, the gluonic currents are constructed using

the gradient flow [85–87]. The gradient flow exponentially
suppresses theUVgauge field fluctuations, which physically
corresponds to smearing out the original degrees of freedom
in coordinate space, therefore improving the signal-to-noise
ratio for the gluon observables. In this work, we perform the
calculation of the gluonic matrix elements for flow times
τ=a2 ¼ 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8. Below
τ=a2 ¼ 1.0, the calculation is limited by poor signal-to-noise
ratios, and more gauge configurations are essential for the
calculation at lower values of flow time.
We calculate nucleon two-point correlators using the

framework of distillation [88], a low-rank approximation
to the gauge-covariant Jacobi-smearing kernel. Within this
framework, the two-point correlator factorizes into distinct
computational components, the so-called elementals and
perambulators. The elementals have a well-defined momen-
tum and encode the structure of the interpolating operators,
while the perambulators encode the propagation of the
quarks within the distillation space and do not feature an
explicit momentum projection. We use an extended basis of
interpolators to facilitate a high-fidelity isolation of the
nucleon ground state matrix elements, which is achieved
numerically by solving a summed generalized eigenvalue

problem (sGEVP) [89].Within our operator basis we include
interpolators that feature derivatives of first and second-order
to capture the effect of nonzero angularmomenta between the
quarks [90] and the breaking of parity when the nucleon
interpolators are projected to nonzero momenta; combina-
tions corresponding to the commutation of two gauge-
covariant derivatives acting on the same quark field are also
considered. To minimize the computational cost for the
extended set of configurations compared to our previous
work on the unpolarized gluon distribution in [65], we
perform some tests to remove the interpolators that have
minimal contributions to the gluonic matrix elements. We
compare the restricted and full basis of operators in Fig. 11 of
the Appendix A. Figure 11 shows that the restricted basis of
interpolators reproduces the gluonic matrix elements with
similar accuracy and control of excited states over a rangeof z
and pz. To reduce the cost of the construction of the nucleon
two-point correlators, we therefore use the smaller basis of
interpolators. This reduced basis of interpolators found to be
most relevant for this calculation is listed in Table II.
We apply momentum smearing [91] to enhance the

overlap of our nucleon interpolators onto the lowest-lying
states at high momenta. Following the procedure intro-
duced in [92], the momentum smearing algorithm is
realized through computation of a “phased” distillation
space. This modified eigenvector space is obtained by

applying spatially varying phases of the form eiζ⃗·x⃗ onto a
precomputed Laplace eigenvector basis, where we use
phases of the form

ζ⃗ ¼ 2 ·
2π

L
ẑ: ð16Þ

The largest momentum along the z-direction we
access through this procedure is pz ¼ n × 2π

La with n ¼ 6

TABLE II. Nucleon interpolators used in the calculation
classified according to the spectroscopic notation: X2Sþ1LπJP

where X is the nucleon, N; S is the Dirac spin; L ¼ S; P;D;…
is the orbital angular momentum of the continuum interpolator;
π ¼ S;M or A is the permutational symmetry of any derivatives;
J is the total angular momentum; and P is the parity. The
interpolators with an asterisk (*) are hybrid in nature. The sets of
interpolators used in our previous work on the unpolarized gluon
distribution in [65] are given in the middle column, and the sets of
interpolators implemented in this calculation are given in the
rightmost column.

Spatial
momentum Interpolators (Ref. [65])

Interpolators
(this work)

p⃗ ¼ 0⃗ N2SS 1
2
þ; N2SM 1

2
þ; N4DM

1
2
þ, N2SS 1

2
þ; N4P�

M
1
2
þ,

N2PA
1
2
þ; N4P�

M
1
2
þ; N2P�

M
1
2
þ N2P�

M
1
2
þ

p⃗ ≠ 0⃗ N2PM
1
2
−; N2PM

3
2
−; N4PM

1
2
−, N2SS

1
2
þ,

N4PM
3
2
−; N4PM

5
2
−; N2SS 1

2
þ, N4P�

M
1
2
þ,

N2SM
1
2
þ; N2P�

M
1
2
þ; N4P�

M
1
2
þ N2P�

M
1
2
þ

TABLE I. The parameters of the ensemble used in this work.
Here, Ncfg is the number of gauge configurations. The same
number of configurations has been used for the determination of
effective matrix elements associated with all the momenta.

ID a (fm) mπ (MeV) L3 × Nt Ncfg Nsrcs

a094m358 0.094(1) 358(3) 323 × 64 1901 64

TOWARD THE DETERMINATION OF THE GLUON HELICITY … PHYS. REV. D 106, 094511 (2022)

094511-5



(2.46 GeV in physical units). The momentum smearing is
applied for momenta pz > 3 × 2π

La. As in [65], we will
simply use the notation p≡ pz to describe the nucleon
boost along the z-direction in the rest of the paper.
For each momentum, we extract the three lowest-lying

principal correlators, and therefore the energy states of the
nucleon two-point correlators, by performing a variational
analysis using the fitting procedure discussed in [65,93].
We plot the ground state nucleon energies for the accessible
spatial momenta in Fig. 1 and compare with expectations
from the continuum dispersion relation. The resulting
energies as a function of the momentum agree with the
continuum dispersion relation within error, with a slight
deviation at the highest momentum where OððapÞ2Þ errors
are significant.
We construct the nucleon gluonic matrix elements

relevant to the gluon helicity ITD using the combination
of gluonic currents in Eq. (10), and numerically implement
a summed generalized eigenvalue problem (sGEVP)
[89,94] to extract the ground-state matrix elements with
high fidelity from the three-point correlators. In the sGEVP
analysis, the effective matrix elements are calculated for the
value of source-sink separation, t=a ¼ 2 to 14. The t0=a
value is the time slice with respect to which the orthogon-
ality of the generalized eigenvectors is defined so that the
excited-state contributions in the effective matrix elements
would be minimum. We have used different values of t0=a
for each momentum and the chosen values of t0=a are:
t0=a ¼ 8, 9, 6, 7, 7, 7, 6 for momenta pz ¼ 0, 0.41, 0.82,
1.23, 1.64, 2.05, 2.46 GeV, respectively. The solution to the
sGEVP is marked by excited-state contamination that
decays as ½t expð−ΔEtÞ�—a stronger suppression than
the ½expð−ΔEt=2Þ� decay in the GEVP method, where
ΔE is the energy gap between the ground state and the
lowest excited state not removed by the GEVP. In fact, for

ΔEt ≫ 1, the suppression of the excited-state contamina-
tion becomes so significant that the sGEVP requires
approximately half the total temporal separation for the
same size of systematic corrections compared to the GEVP
[89]. As we will see, the nucleon gluonic matrix elements
for this gluon helicity distribution calculation are heavily
influenced by noise as the temporal separation is increased.
For this reason, we are reliant on the fits performed at small
source-sink separations t. Solving the sGEVP where
excited-state contributions decay faster is therefore crucial
for this calculation.
For each flow time and momentum, we calculate the

matrix elements for field separations, z ¼ a to z ¼ 8a,
where a is the lattice spacing. We construct the effective
matrix element, M̃effðt; z; p; τÞ for each flow time, nucleon
momentum, and field separation and perform fits of the
matrix elements using the functional form [89]:

M̃effðtÞ ¼ Aþ B t expð−ΔEtÞ: ð17Þ

Here,ΔE is the energy gap between the ground-state and an
effective excited-state. Before performing a joint and
correlated fit to the gluonic matrix elements at a fixed
value of p≡ pz and τ=a2, we first determine the value of
ΔE from fits to the matrix elements for z ¼ a; 2a, and 3a;
each resulting in almost identical values of ΔE. We adopt
ΔE determined from the fit to the matrix element for
z ¼ 2a and use it as a prior for the joint fit. An alternative
determination of the prior from z ¼ a or 3a matrix
elements does not alter the outcome of the joint fit as
we choose a flexible prior width of 3 × errorðΔEÞ–in other
words, a prior width that is three times larger than the
uncertainty obtained in the ΔE determination from the
z ¼ 2a matrix element fit. Our implicit assumption in our
choice of prior is that for a given momentum and flow time,
the nucleon gluonic matrix elements for all z-separations
have the same excited-state contamination.
We then perform a simultaneous and correlated fit to the

matrix elements for z ∈ ½a; 8a� ¼ ½0.094; 0.752� fm using
the fit-equation:

M̃eff
i ðtÞ ¼ Ai þ Bi t expð−ΔEtÞ; ð18Þ

where i ¼ 1; 2;…8 denoting the z ¼ a; 2a; � � � 8a data being
fit and ΔE is assumed to be z-independent, and thus held
fixed, for matrix elements of a given nucleonmomentum and
flow time. All subsequent fits in this calculation are per-
formed using the fitting package XMBF [95].
In Fig. 2, we show sample fits to the gluonic matrix

elements associated with the unpolarized gluon pseudo-
ITD, needed to calculate the reduced pseudo-ITD (11), for
zero nucleon momentum with z ¼ 2a and z ¼ 8a, and two
values of flow-time τ=a2 ¼ 1.4, 3.0. In Fig. 3, we illustrate
the fits to the matrix elements for τ=a2 ¼ 1.4 (upper row)
and for τ=a2 ¼ 3.0 (bottom row) for momenta 0.82 GeV

FIG. 1. The ground state nucleon dispersion relation on the
ensemble a094m358, the solid line being the continuum
dispersion relation. Energies without phasing are in green and
energies with phasing are in blue.
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(p ¼ 2 × 2π
La), 1.46 GeV (p ¼ 4 × 2π

La), and 2.46 GeV
(p ¼ 6 × 2π

La) and separations z ¼ 2a; 8a. We list the fitted
parameters in Table IV of the Appendix B.
Figure 2 shows that the excited-state contribution to the

unpolarized gluonic matrix elements dies out around
source-sink separations of t=a ¼ 4, demarcated by a
plateau in the effective matrix element signal. This rapid
relaxation of the effective matrix element to one of ground-
state dominance is a testament to our having identified
a variationally-optimized interpolator through solution of

the sGEVP induced by our chosen operator basis. From
the N × N correlation matrix, the variational approach will
create a series of N orthogonal generalized eigenvectors
that overlap significantly with the N lowest energy states
of a particular finite volume irrep, even if states are
nearly degenerate. By using the generalized eigenvector
associated with the ground state, the contributions of the
N − 1 lowest excited states are suppressed by this ortho-
gonality. This has proven successful in previous calcula-
tions of nucleon structure [93,96]. In particular, it was

FIG. 2. Extraction of the zero-momentum gluonic matrix elements associated with unpolarized gluon pseudo-ITD using the sGEVP
method for different flow times 1.4 (left) and 3.0 (right). The bands are the fits described in the text for separations z ¼ 2a and 8a. We
calculate the unpolarized pz ¼ 0 matrix element on 1901 configurations, equal to the number of configurations used in this work to
compute the polarized matrix elements.

FIG. 3. Extraction of the matrix elements associated with polarized gluon pseudo-ITD using the sGEVP method for different flow
times, nucleon momenta and field separations. The top and bottom rows contain the matrix elements for flow time τ=a2 ¼ 1.4 and 3.0,
respectively. In each row, the left, middle and right column illustrate the matrix elements for p ¼ 0.82 GeV, 1.64 GeV, and 2.46 GeV
respectively at separations z ¼ 2a; 8a. The largest source-sink separations used in the fits are indicated by the t=a-axis range of the
effective matrix element plots. Note that pz is written simply as p in all the plots.
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shown in [97] that the optimized interpolators reduce the
excited-state contributions at much earlier source-sink
separations, allowing us to start the fit at significantly
smaller time slices. Similar to other lattice calculations of
gluonic matrix elements, this is critically important for this
calculation, as the matrix elements at large momenta (see
right panel of Fig. 3) lose any meaningful signal around a
source-sink separation t ¼ 6a ¼ 0.564 fm.
Here we point out some interesting features of the fits to

the matrix elements associated with the polarized gluon
pseudo-ITD. From the left-side top and bottom panels in
Fig. 3, we see for pz ¼ 0.82 GeV the matrix elements tend
to fall on a plateau starting from t=a ¼ 4 and the fit bands
describe the lattice data well. However, for some particu-
larly large z-values the fit bands for both τ=a2 have a
broader error band compared to the lattice data point at
t=a ¼ 2. This is caused by the imposed constraint of
fixed ΔE, which is assumed to be the same for matrix
elements at a fixed nucleon momentum and flow time [see
our discussion around Eq. (18)]. This simultaneous and
correlated fit, along with the ΔE constraint for all z ∈
½a; 8a� matrix elements of a fixed nucleon momentum and
flow time, helps to stabilize the fits for the noisier large pz
and z data points. This fit, in particular, is helpful for fitting
the largest p data as shown on the right top and bottom
panel in Fig. 3.
The right top and bottom panel in Fig. 3 show that,

although the lattice data points at earlier time slices become
more precise with increasing τ=a2, the final fit bands for
momenta 2.46 GeV have larger error at τ=a2 ¼ 3.0
compared to those at τ=a2 ¼ 1.4. This is because the
fall-off of the early time-slice data points for z ¼ 2a at
τ=a2 ¼ 3.0 is more prominent within uncertainties and
does not exhibit a plateau before t=a ¼ 6, at which time the
small signal-to-noise ratio limits a robust determination of
the plateau. On the other hand, the z ¼ 8a matrix elements
are seen to reach a plateau around t=a ¼ 4 even at this large
nucleon boost. Since the simultaneous and correlated fits
rely on a constancy constraint for ΔE, the z ¼ 8a matrix
element fits, for example, are in fact advantageous as
the clear plateau limits the flexibility of ΔE and hence
dominates the remaining fits for matrix element at smaller
z-values where there is no clearly observed plateau at a
fixed nucleon momentum and flow time. By simultane-
ously analyzing multiple correlation functions and fixing
the energy gaps to be the same, the matrix element and ΔE
can be more precisely determined.
Compared to the analogous matrix elements of quark

bilinears needed to resolve the quark PDFs, the gluonic
bilinears, especially in the present polarized case, require
considerably higher statistics in order to resolve the
matrix elements at a commensurate level. As this work
represents the first attempt to resolve the x-dependent
gluon helicity distribution from lattice QCD, the number
of measurements we identified was found to be sufficient

to control the extraction of the polarized gluonic matrix
elements for each fpz; zg and hence the polarized gluon
reduced pseudo-ITD. A much larger sample size, with
which matrix element plateaux at larger source-sink
separations and at the largest nucleon momentum should
become manifest, will be required to rigorously estimate
systematic effects present in these matrix element extrac-
tions. This will be the goal of a future calculation with
much larger statistics and inclusion of the singlet quark
distribution. To demonstrate the feasibility of a lattice
calculation to determine the gluon helicity PDF, in the
following sections we use the extracted matrix elements
quoted only with statistical uncertainties and discuss the
construction of the reduced pseudo-ITD.

A. Reduced pseudo-ITD calculation
and extrapolation to zero flow time

With the bare matrix elements, we now calculate the
reduced matrix elements and determine the polarized gluon
reduced pseudo-ITD using the ratio in Eq. (11) for different
flow times, nucleon momenta, and field separations. We
present the reduced matrix elements for each value of τ=a2

used in this work in Fig. 4 (note that pz is written simply as
p in all the plots).
We observe that the data strongly vary with the change of

pz, indicating the importance of the Oðm2
p=p2

zÞ-type con-
tamination. In agreement with Eq. (13), the pz-dependence
of the data is less visible at large pz, because theOðm2

p=p2
zÞ

term is suppressed for large pz at a fixed ν. Alterna-
tively, for small pz the data as functions of ν strongly
change when one changes pz. Note, however, that the
original matrix element, given by Eq. (10), is finite for
pz ¼ 0. When the nucleon is at rest, this matrix element is
dictated entirely by the Oðm2

pÞ contribution and is equal
to 2m3

pzM̃ppðν ¼ 0; z2Þ.
Next, we calculate the reduced pseudo-ITD from the

reduced matrix elements at different flow times by extrapo-
lating these matrix elements to zero flow time. As can be
seen from Fig. 5, the flow-time dependence, at fixed values
of the field separation and nucleon momentum, can be best
described by a linear fit of the form: M̃ðτ=a2Þ ¼ c0 þ c1τ.
Similar to the calculation of the unpolarized gluon dis-
tribution in [65], the addition of a term like c2τ2 turned out
not having any contribution in the fit and we therefore use
the linear fit form to determine the reduced pseudo-ITD
matrix elements in the subsequent analysis. We list the
values of the fitted parameters in Table Vof Appendix C in
a convenient form for reproducible analysis and presenta-
tion of our calculation in the subsequent section. Out
of forty-eight such extrapolations, we demonstrate four
arbitrary examples of such extrapolation in Fig. 5, and note
that for all extrapolations we find χ2=d:o:f: < 1.0. Finally,
we present the reduced pseudo-ITD in the zero flow time
limit in Fig. 6.
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FIG. 4. The reduced matrix elements,fMðν; z2Þ with respect to the Ioffe-time for different flow times. The reduced matrix elements are
shown for increasing τ=a2 ¼ 1.0 to 3.8 traversing from the top-left to lower-right panels.
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IV. ISOLATING THE GLUON HELICITY
IOFFE-TIME PSEUDODISTRIBUTION

In this section, we use two methods to correct for the
Oðm2

p=p2
zÞ term to determine the gluon helicity Ioffe-time

pseudodistribution. As can be seen in Fig. 6, theOðm2
p=p2

zÞ
terms give a substantial contribution to the matrix elements
for the kinematics available to a lattice calculation. In
Sec. IVA, the ν-dependence of ½M̃þ

sp − νM̃pp� and the
correction from the Oðm2

p=p2
zÞ contribution are modeled to

isolate the gluon helicity pseudodistribution. In Sec. IV B, a
rest-frame matrix element is subtracted to correct for the
dominant Oðm2

p=p2
zÞ contamination term.

A. Method-I: Fits using moments

From Eq. (13), we see that at a fixed value of ν and large
pz, we can approximate

M̃ðν; z2Þ ≈ ½M̃þ
spðν; z2Þ − νM̃ppðν; z2Þ�; ð19Þ

and it is the ν-dependence of ½M̃þ
sp − νM̃pp� that governs

the x-dependent gluon helicity distribution. Therefore, our
goal in this section is to estimate the size of the Oðm2

p=p2
zÞ

contamination and try to eliminate the contamination
effects from the matrix elements used to define the reduced
pseudo-ITD.
In Eq. (13), M̃þ

sp is an odd function of ν and M̃pp is an
even function of ν. We therefore write these amplitudes in
terms of odd and even moments that can describe the data
in the accessible Ioffe-time region, and thereby parametrize
the lattice data for the reduced pseudo-ITD in Eq. (11)
using the following fit form:

M̃ðνÞ ¼
X
i¼0

ð−1Þi
ð2iþ 1Þ! aiν

2iþ1 þ ν
m2

p

p2
z

X
j¼0

ð−1Þj
ð2jÞ! bjν

2j;

ð20Þ

where the coefficients ai are the Mellin moments of the
pseudodistribution related to ½M̃þ

spðν; z2Þ − νM̃ppðν; z2Þ�,

FIG. 5. Arbitrary examples of reduced matrix elements fMðτ=a2Þ extrapolated to the τ → 0 limit for different nucleon momenta and

field separations. The functional form used to fit the reduced matrix elements is fMðτ=a2Þ ¼ c0 þ c1τ. The top-left panel shows the fit
for p ¼ 1 × 2π

aL ¼ 0.41 GeV and z ¼ 3a. The top-right panel shows the fit for p ¼ 3 × 2π
aL ¼ 1.23 GeV and z ¼ 8a. The bottom-left

panel shows the fit for p ¼ 5 × 2π
aL ¼ 2.05 GeV and z ¼ 4a. The bottom-right panel shows the fit for p ¼ 6 × 2π

aL ¼ 2.46 GeV
and z ¼ 8a.
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which can be related to the moments of the PDF [98], while
the bi are those for M̃ppðν; z2Þ.
We only have lattice data in a limited ν-domain, so it is

only possible to determine the first few moments with
good accuracy in the fit of Eq. (20). We perform two fits
labeled by “Fit-1” and “Fit-2,” and obtain the fit
parameters listed in Table III. First, we fit the reduced
pseudo-ITD lattice data for all the available z and pz
using i ¼ 0, 1 and j ¼ 0 in the parametrization Eq. (20)
and call this fit Fit-1. Table III demonstrates that the
coefficient b0 is much larger than a0. In this sense, the
data are dominated by the Oðm2

p=p2
zÞ contamination

term. The relative smallness of a0 also means that
½M̃þ

sp − νM̃pp� is a small difference, determined by
the subtraction of much larger functions M̃þ

sp and
νM̃pp, within the range of ν spanned by our data.
Next, we try to incorporate another moment b1 in the fit

using j ¼ 0, 1, and find that the second moment does not
result in any significant value within error. We therefore
use the fit parameters a0, a1, b0 as the prior for the Fit-2
and obtain the fit results listed in Table III. The smaller
domain of Ioffe time data within the fixed z-range and in
particular, smaller pz-values are not sufficient to constrain
higher moments in the fits without other prior informa-
tion. We compare the results of these two fits to the lattice
data in the top panel of Fig. 7 with χ2=d:o:f: shown. These
two fits are consistent within uncertainty and reproduce
the lattice data. We have excluded z ¼ a and 8a data from
the fits to get a smaller χ2=d:o:f:. The z ¼ a matrix

element potentially has significant discretization errors
OðazÞ while the z ¼ 8a matrix elements could have
significant higher twist contamination Oðz2Λ2

QCDÞ. The
improved χ2=d:o:f: when these data are neglected support
these possibilities. In future studies with increased pre-
cision and range of ν, these systematic errors could be
modeled as well. For this proof of principle study, the
previously mentioned cuts on the data are made. The
bottom panel of the figure shows the extrapolation of
the lattice data in the limit of zero Oðm2

p=p2
zÞ contami-

nation term contribution within the fit parametrization.
This is simply the fit band constructed using

M̃ðνÞ ¼
X
i¼0

ð−1Þi
ð2iþ 1Þ! aiν

2iþ1 ð21Þ

from the above fits. From both of the fits, it is seen that the
Oðm2

p=p2
zÞ term is dominated by the first moment b0 of

M̃pp. While this might be a consequence of our inability
to constrain higher moments and choice of the fit forms,
this outcome will indeed become clearer in the following
subsection, where we correct for the target mass correc-
tion in a model-independent manner. From both of these
methods, one might argue that within the Ioffe-time region
ν ≈ ½0; 9�, the fit bands in the bottom panel of Fig. 7
are good representations of the gluon helicity reduced
pseudo-ITD. We note that to determine the normalization
of the gluon PDF according to Eq. (14), we need to
normalize the results by the gluon momentum fraction.
The calculation of the gluon momentum fraction at finite
flow time, however, must be matched to the MS-scheme.
The flow time both controls the signal-to-noise ratio and
characterizes the energy scale of the matrix elements.
To control the noise-to-signal ratio, we use a flow time
that corresponds to a nonperturbative scale. The gluon
momentum fraction, evaluated at this scale, would require
nonperturbative evolution to higher scales before it can be
matched to the MS-scheme. This nonperturbative evolu-
tion is currently unknown and is a subject of future
investigation. Therefore, we did not calculate the gluon
momentum fraction on this particular ensemble in our
previous work [65]. For the overall normalization of
the reduced pseudo-ITD, we take the result from [17],
which is hxig ¼ 0.427ð92Þ, and apply this normalization
to the Oðm2

p=p2
zÞ contamination-corrected gluon helicity

pseudo-ITD in Fig. 7.

FIG. 6. The reduced Ioffe-time pseudo-distribution M̃ðν; z2Þ in
the zero flow-time limit.

TABLE III. Fitted parameters from the fits to the reduced pseudo-ITD through fits (20) using moments. The covariance among
different fit parameters are listed as cov½ai; bj�. The two different fits are labeled by Fit-1 and Fit-2 as described in the text.

Fit a0 a1 b0 b1 cov½a0; a1� cov½a0; b0� cov½a0; b1� cov½a1; b0� cov½a1; b1�
Fit-1 0.051(13) 0.0058(11) 0.362(22) � � � 7.34 × 10−6 0.00019 � � � 4.484231574 � � �
Fit-2 0.061(14) 0.0043(20) 0.371(31) 0.0066(33) 5.50 × 10−6 −0.00032 4.41 × 10−6 −1.72 × 10−5 −5.44 × 10−6
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B. Method-II: Subtraction using pz = 0
matrix element

As discussed, the Oðm2
p=p2

zÞ contamination term domi-
nates the original matrix element for modest values of
momenta accessible in this calculation. A natural consid-
eration would be to eliminate this contamination, which
would be possible if we could perform a separate measure-
ment of theM̃ppðν; z2Þ invariant amplitude.Whilewe cannot
do this, Eq. (10) allows access to ν ¼ 0 value of M̃ppðν; z2Þ,
i.e., to the first term in the Taylor expansion of M̃ppðν; z2Þ
over ν. Indeed, taking pz ¼ 0 in Eq. (10), it follows

½M̃0i;0i þ M̃ij;ij�ðz; pz ¼ 0Þ ¼ 2m3
pzM̃ppðν ¼ 0; z2Þ: ð22Þ

Now, we define a “subtracted” matrix element

½M̃0i;0i þ M̃ij;ij�subðz; pÞ
≡ ½M̃0i;0i þ M̃ij;ij�ðz; pÞ −

p0

mp
½M̃0i;0i þ M̃ij;ij�ðz; 0Þ; ð23Þ

which vanishes for pz ¼ 0. Dividing the subtracted matrix
element by ð−2pzp0Þ and introducing

M̃subðz; pÞ≡ ð−2p0pzÞ−1½M̃0i;0i þ M̃ij;ij�subðz; pÞ; ð24Þ

we derive the representation

M̃subðz; pzÞ ¼ M̃ðþÞ
sp ðν; z2Þ − νM̃ppðν; z2Þ

− ν
m2

p

p2
z
½M̃ppðν; z2Þ − M̃ppðν ¼ 0; z2Þ�:

ð25Þ

Although the subtracted representation still contains an
Oðm2

p=p2
zÞ contamination term, it now contains Mpp in a

subtracted ½M̃ppðν; z2Þ − M̃ppðν ¼ 0; z2Þ� form, the Taylor
expansion (in ν) ofwhich startswith ν2 and is accompaniedby
the coefficient b1. As Fit-2 suggests that this coefficient is
very small, we expect that the contamination term forM̃sub to
be even smaller than that for M̃.

FIG. 7. Simultaneous fit to the gluonic matrix elements at all momenta used in this calculation. The lattice data points in the upper
panel are the reduced pseudo-ITD in the zero flow time limit and the fitted bands that describe the lattice data points are generated using
the fit parameters listed in Table III. After correcting for the Oðm2

p=p2
zÞ contamination term in the matrix element, the desired reduced

pseudo-ITDs associated with the gluon helicity distribution from both fits are shown in the lower panel. For an appropriate comparison
of the magnitude of these extrapolations, the fitted pseudo-ITD bands in the bottom panel are normalized by the gluon momentum
fraction, hxig from [17].
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FIG. 8. The reduced matrix elements, M̃subðν; z2Þ with respect to the Ioffe-time for different flow times. Starting from the top-left to
bottom-right panels, the reduced matrix elements are shown for τ=a2 ¼ 1.0 to 3.8.
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Using the above prescription, we calculate M̃subðz; pzÞ
for each z and pz for a given flow time and calculate
the reduced pseudo-ITD using Eq. (11). The results for
M̃subðz; pzÞ are shown as a function of flow-time in Fig. 8.
In a manner similar to the procedure described in

Sec. III A, we determine M̃subðν; z2Þ in the zero flow-
time limit and illustrate the results in the left and the right
panels of Fig. 9. Figure 9 shows that the data for
M̃subðν; z2Þ at the lowest momenta have a factor of
ten reduction compared to those for M̃ðν; z2Þ. This means
that the proposed subtraction has strongly decreased the
magnitude of the contamination term. We note the
resulting statistical error at the smallest momentum is
larger than at the higher momenta due to the factor of
ðpzÞ−1 in the definition in Eq (24). In the left panel of
Fig. 9, we compare the lattice data with the pseudo-ITD
obtained by fits as we discussed previously in the bottom
panel of Fig. 7. We can clearly see that the expectation
for the ITD based on method-1 agrees quite well with the
data for ITD obtained via method-2, thus serving as a
cross-check of the two methods. In the right panel of
Fig. 9, we show the result of fits to M̃subðν; z2Þ, using the
functional form in Eq. (20) with the parameter b0 ¼ 0
and a0, a1 and b1 left to be fit. Figure 9 shows that the
effect of the residual correction after subtraction, as given
by the b1ν3 term, is rather minimal, thus explaining why
the subtracted data has an improved universal behavior
with respect to ν.
For a comparison between the two different methods of

treating the Oðm2
p=p2

zÞ contamination term and determi-
nation of the gluon helicity Ioffe-time pseudo-distribution,
we plot the fit bands, Fit-1 and Fit-2 from the analyses in
Sec. IVA, referred to as Method-I in Fig. 9. The agreement
between the two methods to correct for the Oðm2

p=p2
zÞ

contamination demonstrates the consistency between

fitting using moments and the subtraction of the rest-frame
M̃ppðz; ν ¼ 0Þ contribution, bolstering confidence in our
determination of the gluon helicity pseudo Ioffe-time
distribution. Again, we must normalize the matrix element
by the gluon momentum fraction from [17] and we apply
this normalization to the contamination-corrected gluon
helicity pseudo-ITD in Fig. 9.

V. COMPARISON WITH PHENOMENOLOGICAL
DISTRIBUTION AND PROSPECTS FOR

DETERMINING THE GLUON HELICITY PDF
FROM LATTICE QCD

In general, determining PDFs from lattice calculations
requires the extraction of a continuous distribution from
discrete lattice data. This challenge is compounded by the
finite range of Ioffe times accessible to lattice calculations,
which limits the number of data points available. Several
numerical techniques for the extraction of x-dependent
distribution functions from lattice data have been studied,
including discrete Fourier transforms, the Backus-Gilbert
method [34,41,99,100], the Bayes-Gauss-Fourier transform
[41], adapting phenomenologically-motivated functional
forms for fitting lattice data [37,40,56,66,101], parametri-
zation of the reduced pseudo-ITD using Jacobi polynomials
[35,102], and finally the application of neural networks
[103,104].
Our results for the corrected matrix elements, determined

in Sec. IV B, have significant statistical uncertainties,
because of the subtraction of lattice data of similar
magnitudes required to remove the Oðm2

p=p2
zÞ contamina-

tion. The current precision of the lattice data does not allow
us to handle the inverse problem effectively using any
of these methods to extract the gluon helicity PDF and
gluon spin content in the nucleon. Most importantly, the
current statistical precision prevents us from completely

FIG. 9. The lattice data points represent the reduced Ioffe-time pseudodistribution, M̃ðν; z2Þ in the zero flow-time limit obtained
through the subtraction method using p ¼ 0 matrix elements. The lattice data points and the fit bands are normalized using the gluon
momentum fraction, hxig from [17]. Left panel: the red and cyan bands represent the target mass corrected reduced Ioffe-time
pseudodistribution using the fit of moments in Sec. IVA. Right panel: the blue band is a fit to the subtracted pseudo-ITD using the
functional form in Eq. (20) with a0, a1, b1 as fit parameters and b0 ¼ 0 fixed by construction.
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eliminating the contamination term from the lattice data in a
model independent way. There are additional systematic
uncertainties related to the truncation of fit parameters and
model dependence in our extrapolated reduced ITD that we
are unable to estimate with the current precision. Figure 9
shows that we cannot observe any z2-dependence in the
lattice data, due to substantially larger uncertainties in the
M̃subðν; z2Þ data. Taking these considerations into account,
we refrain from implementing the perturbative matching
kernel in Eq. (14) on the lattice reduced pseudo-ITD data.
Yet for demonstration purposes, we present the effect of
such incomplete matching in the Appendix D. At tree-level
hxigM̃ðνÞ can be associated with the gluon helicity ITD
˜IpðνÞ [see Eq. (14)]. We also neglect the contributions of
the iso-scalar quark distribution.
In spite of these limitations, qualitative comparison of

our results with those from global fits provide useful
information and a sense of the future prospects for lattice
QCD contributions to determinations of the gluon helicity.
Our results for the gluon helicity pseudo-ITD, shown in
Fig. 10, are consistent with the gluon helicity ITDs
extracted from global fits by the NNPDF and JAM
collaborations in the 0 ≤ ν ≤ 9.42 region. Moreover, our
model-independent extraction of the gluon helicity pseudo-
distribution over a range of Ioffe-time ν≲ 9 hints at a
nonzero gluon spin contribution to the proton spin, as
illustrated in Fig. 10.
Reference [105] demonstrated that it is possible to

reconstruct PDFs using the lowest few moments, but the
two extracted moments determined in this calculation (listed
in Table III) feature large uncertainties. These uncertainties

prohibit a proper reconstruction of the gluon helicity PDF.
Nevertheless, this calculation provides the first lattice QCD
estimates of the first two nonzero moments a0 and a1 of the
gluon helicity PDF, shown in Table III.
In their most recent global fit of the gluon helicity

distribution [11], the JAM collaboration showed that with-
out the assumption of positivity constraints on the quark
and gluon helicity PDFs, the magnitude or sign of the gluon
polarization in the nucleon cannot be properly constrained.
In other words, the ITD extracted from the JAM global fit

(labeled by JAM Ĩ ðþ=−Þ
p in Fig. 10) may have a similar or

even larger magnitude of uncertainty than our lattice QCD
calculation. We show a comparison of the polarized gluon
ITDs obtained from global fits and our lattice calculation in
Fig. 10. Most importantly, Fig. 10 shows that the ITD data
in the ν≲ 6 region is primarily controlled by whether the
gluon polarization in the nucleon is positive or negative,
according to the JAM analysis.
The positivity constraint on the gluon distributions,

namely helicity-aligned and helicity-antialigned both being
non-negative, in the analysis of experimental data in [11]
leads to a substantial reduction of the variance of xΔgðxÞ in
the large-x region, as seen in Fig. 6 of [11]. Specifically,
the PDFs without the positivity assumption were organized
into a band of solutions with a negative PDF and a band of
solutions with a positive PDF. We compare the ITDs
resulting from the two bands with positive and negative
xΔgðxÞ to our results in the right panel of Fig. 10. The cur-
rent matrix elements, albeit with an unphysical pion mass
and finite lattice spacing, are inconsistent within statistical
uncertainties with the negative PDF branch. We note,
however, that the large ν behavior of the lattice-calculated

FIG. 10. A comparison between the lattice reduced Ioffe-time pseudodistribution M̃ðν; z2Þ in the zero flow-time limit obtained
through the subtraction method using the p ¼ 0 matrix elements, and the gluon helicity ITD constructed from global fits of PDFs. The
lattice data points are the same as in Fig. 9, plotted on a smaller vertical scale for better comparison with the phenomenological ITD
bands. In the left plot, the red band denotes the ITD constructed from the gluon helicity distribution by the NNPDF collaboration. The

green band labeled by Ĩ ðþÞ
p and the cyan band labeled by Ĩ ðþ=−Þ

p represent the gluon helicity ITD determined by the JAM collaboration
with and without the positivity constraint on the gluon helicity PDF, respectively. On the right plot, the gluon helicity ITDs for positive

and negative helicity PDFs are compared with the lattice data. The green band labeled by Ĩ ðþÞ
p and the maroon band labeled by Ĩ ð−Þ

p

represent the gluon helicity ITD determined by the JAM collaboration associated with the positive and negative gluon helicity PDF
solutions, respectively.
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ITD, beyond the range currently accessible, could turn
negative and compensate for the positive trend observed
in Fig. 10.
By performing a simultaneous phenomenological fit to

the NNPDF unpolarized and polarized gluon PDFs from
[106], it was found in [107] that the magnitude of the gluon
helicity ITD in the small ν ≤ 6 region can benchmark
the gluonic contribution to the nucleon spin budget to be
between roughly 40% and 80%. In conjunction with the
findings of the JAM analysis, these observations indicate
that the ITD data in the ν≲ 6-region are of tremendous
importance in quantifying the gluonic contribution to the
proton spin and the gluon helicity distribution as a whole.
The small-ν region is most readily accessible with current
leadership-class computing capabilities, so these observa-
tions signal the possibility of a timely constraint on the
gluon contribution to the proton spin and its x-dependent
helicity distribution from lattice QCD. Future lattice data,
when combined with experimental data and incorporated
into a global analysis, as in Refs. in [108–112], have the
potential to provide a strong constraint on the gluon helicity
distribution in the nucleon.

VI. CONCLUSION AND OUTLOOK

This work demonstrates the possibility of determining
the x-dependent gluon helicity distribution from lattice
QCD, by calculating the polarized gluon Ioffe-time dis-
tribution using the pseudo-PDF approach. We employed a
combination of numerical techniques to facilitate this
calculation, including: distillation for the nucleon interpo-
lators, gradient flow for the gauge fields, and the solution of
a summed generalized eigenvalue problem for the analysis
of the gluonic matrix elements. Our exploratory calculation
demonstrates the significant challenge posed by the large
statistical uncertainties in the gluonic matrix elements,
especially those evaluated at large nucleon momenta.
These uncertainties limit our ability to properly estimate
the systematic uncertainties associated with the determi-
nation of the relevant gluonic matrix elements.
The gluon helicity contribution to the proton spin can

simply be written in a frame-independent and gauge-
invariant manner as an integral of the gluon-ITD over
Ioffe-time. We have shown that the Ioffe-time distribution
in the low ν≲ 6 region is mostly controlled by the sign and
magnitude of the gluon helicity distribution determined
from the existing experimental data in global analyses.
Within the present statistical precision and through a
qualitative comparison with global analyses of the gluon
helicity distribution, our result hints at a positive gluon
polarization contribution to the nucleon spin budget.
In the pseudodistribution approach, the leading order

matrix element that defines the gluon helicity dis-
tribution cannot be calculated directly. To relate our
numerical results to the gluon helicity distribution, a
large Oðm2

p=p2
zÞ contamination term must be removed.

We developed two practical methods to remove this
contamination. In the future, including more precise data-
sets at higher momenta to suppress such Oðm2

p=p2
zÞ-

contamination, in combination with more robust methods
for removing higher order corrections, should lead to a
reliable computation of the gluon helicity distribution in the
proton. We note, however, that it was important for us to
use our data at all momenta to estimate such Oðm2

p=p2
zÞ

corrections. The largest momentum dataset still contains a
significant contribution Oðm2

p=p2
zÞ that needs removal.

Furthermore, it is unlikely to be practical to perform lattice
QCD calculations at such large momentum that the
contamination term is negligible for the entire range of
accessible Ioffe time.
We emphasize that the Ioffe-time distribution in the

ν≲ 6-domain, which is the most accessible region for a
lattice QCD calculation, has the potential to distinguish
between positive and negative solutions of the gluon
helicity PDFs determined in global fits of experimental
data. Our work demonstrates that, with improved statistical
precision and precise data over a wider range of Ioffe times,
a controlled determination of the gluon contribution to the
proton spin from lattice QCD is possible.
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APPENDIX A: CHOICE OF BASIS
OF INTERPOLATORS

The comparison plots in Fig. 11 illustrate the case for
p ¼ 0.41 GeV and the first momentum with the momen-
tum smearing, p ¼ 1.64 GeV at the smallest and largest
flow times τ=a2 ¼ 1.0 and 3.8 used in this work.

APPENDIX B: EXAMPLE FIT RESULTS
FOR UNPOLARIZED AND POLARIZED

GLUONIC MATRIX ELEMENTS

From Fig. 3 and the corresponding fit parameters in
Table IV we see that the lattice data are described well by
our fit procedure. The χ2=d:o:f: shows that the choice
of prior-width for ΔE at z > 0 is an appropriate one.
We notice from Fig. 3 that the matrix elements for
z ¼ 6a ¼ 0.564 fm, have a flat behavior as a function of
the source-sink separations. This can also be understood
from the smallness of B-parameters listed in Table IV, with
relatively larger uncertainties.

FIG. 11. Comparison plots of a few polarized gluon matrix elements M̃effðtÞ between 3 and 9 different number of interpolators as
illustrated in Table II. The smaller basis of interpolators is used in this work based on the observation that the smaller basis of
interpolators reproduces the matrix elements constructed with the larger basis of interpolators through the sGEVP analysis.

TOWARD THE DETERMINATION OF THE GLUON HELICITY … PHYS. REV. D 106, 094511 (2022)

094511-17



APPENDIX C: ZERO FLOW TIME
EXTRAPOLATED REDUCED

MATRIX ELEMENTS

For each nucleon momentum and each field separation,
the flowed reduced matrix elements for different flow times
are fit to a linear expression: M̃ðτÞ ¼ c0 þ c1τ, where the
fit parameter, c0 gives the reduced pseudo-ITD at zero flow
time limit. The fit parameters, c0 and c1 and the covariance
between are tabulated in Table V.

APPENDIX D: EFFECT OF PERTURBATIVE
MATCHING KERNEL ON THE LATTICE

REDUCED PSEUDO-ITD DATA

We choose the result from the 4-parameters fit (labeled
as “Fit-2” in Fig. 7) and investigate the effect of matching
for two different values of z ¼ a and 2a in the MS
renormalization scheme at μ ¼ 2 GeV and show the results
in Fig. 12. We have ignored the fraction of the hadron
momentum carried by the singlet quarks and also the

TABLE IV. The fitted parameters and the goodness of the fits for the matrix elements M̃effðtÞ shown in Fig. 3. For
a particular flow time and nucleon momentum, we first fit the matrix elements at z ¼ 2a; the information regarding
the fit parameter ΔE from this fit is used to set the prior for ΔE in a simultaneous correlated fit for the matrix
elements of all the nonzero separations.

τ=a2 p (GeV) zðaÞ ν A B ΔE χ2=d:o:f:

1.4 0.82 2 0.79 −0.261ð21Þ 0.484(256) 1.18(13) 0.66(23)
1.4 0.82 8 3.14 −0.097ð19Þ 0.204(97) 1.18(13) 0.66(23)
1.4 1.64 2 1.57 −0.409ð38Þ 3.92(60) 1.40(13) 0.37(18)
1.4 1.64 8 6.28 −0.155ð14Þ 2.15(55) 2.14(15) 0.37(18)
1.4 2.46 2 2.36 −0.62ð14Þ 1.31(83) 1.27(20) 0.18(14)
1.4 2.46 8 9.42 −0.197ð48Þ 0.46(25) 1.27(20) 0.18(14)
3.0 0.82 2 0.79 −0.216ð17Þ 0.474(28) 1.24(6) 0.60(23)
3.0 0.82 8 3.14 −0.151ð11Þ 0.618(74) 1.24(6) 0.60(23)
3.0 1.64 2 1.57 −0.288ð30Þ 1.62(81) 1.66(20) 0.60(28)
3.0 1.64 8 6.28 −0.200ð15Þ 1.42(50) 1.66(20) 0.60(28)
3.0 2.46 2 2.36 −0.56ð17Þ 0.97(17) 0.89(20) 0.23(18)
3.0 2.46 8 9.42 −0.35ð10Þ 0.44(25) 0.89(20) 0.23(18)

TABLE V. Reduced matrix elements extrapolated to zero flow time. The flowed reduced matrix elements are fitted
using a linear form: M̃ðτÞ ¼ c0 þ c1τ, where c0 is the reduced matrix elements at the zero flow-time limit. All the
χ2=d:o:f: are smaller than 1. The fitted parameters and the covariances between them are listed in the final column of
the table.

p (GeV) zðaÞ ν c0 c1 cov½c0; c1�
0.41 1 0.20 0.697(67) −0.091ð19Þ −0.00116
0.41 2 0.39 1.294(122) −0.174ð33Þ −0.00373
0.41 3 0.59 1.859(165) −0.249ð44Þ −0.00690
0.41 4 0.79 2.348(244) −0.315ð68Þ −0.01554
0.41 5 0.98 2.682(345) −0.314ð96Þ −0.03155
0.41 6 1.18 2.783(414) −0.275ð120Þ −0.04657
0.41 7 1.37 2.891(504) −0.255ð135Þ −0.06358
0.41 8 1.57 3.209(591) −0.325ð136Þ −0.07627
0.82 1 0.39 0.386(39) −0.057ð12Þ −0.00042
0.82 2 0.79 0.672(61) −0.094ð17Þ −0.00096
0.82 3 1.18 1.0(1) −0.143ð26Þ −0.00233
0.82 4 1.57 1.147(119) −0.138ð33Þ −0.0036
0.82 5 1.96 1.445(185) −0.191ð52Þ −0.0091
0.82 6 2.36 1.335(219) −0.119ð66Þ −0.0134
0.82 7 2.75 1.470(258) −0.143ð74Þ −0.0177
0.82 8 3.14 1.501(271) −0.139ð64Þ −0.0161
1.23 1 0.59 0.272(29) −0.040ð9Þ −0.00025
1.23 2 1.18 0.473(50) −0.067ð15Þ −0.00066

(Table continued)
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mixing with the quark singlet sector in the matching
relation (14). As we can see, the effect of matching is
smaller compared to the significantly larger uncertainty in

our data while the systematic uncertainties associated with
the removal of the contamination term are unknown and
can be much larger.

APPENDIX E: AUTOCORRELATION
OF THE BARE MATRIX ELEMENTS

To check whether the bare matrix elements extracted
from the different gauge configurations are correlated or
not, the associated integrated autocorrelation time, τint is
calculated for each source-sink separation of the nucleon
two-point correlators. The integrated autocorrelation time is
a measure of how efficiently the Monte Carlo algorithm can
be implemented to calculate the desired quantity. In this
calculation, each gauge configuration is separated from the
next gauge configuration by 10 hybrid Monte Carlo
trajectories. Calculation of τint for a given quantity will
indicate whether this separation of 10 hybrid Monte Carlo
trajectories is sufficient to remove the autocorrelation
between the gauge configurations for that quantity. The
method of the calculation follows the procedure described
in [120]. According to this method, for the autocorrelation
to vanish, τint needs to be 0.5.

TABLE V. (Continued)

p (GeV) zðaÞ ν c0 c1 cov½c0; c1�
1.23 3 1.77 0.644(59) −0.084ð17Þ −0.00090
1.23 4 2.36 0.744(87) −0.087ð27Þ −0.00216
1.23 5 2.95 0.936(121) −0.108ð37Þ −0.00414
1.23 6 3.53 0.953(154) −0.099ð47Þ −0.00669
1.23 7 4.12 0.984(185) −0.086ð52Þ −0.00893
1.23 8 4.71 0.977(213) −0.082ð53Þ −0.01058
1.64 1 0.79 0.215(22) −0.035ð8Þ −0.00015
1.64 2 1.57 0.389(40) −0.064ð12Þ −0.00044
1.64 3 2.36 0.512(58) −0.078ð19Þ −0.00102
1.64 4 3.14 0.635(76) −0.097ð23Þ −0.00167
1.64 5 3.93 0.685(109) −0.085ð32Þ −0.00336
1.64 6 4.71 0.760(123) −0.096ð40Þ −0.00468
1.64 7 5.50 0.798(161) −0.097ð45Þ −0.00691
1.64 8 6.28 0.740(159) −0.071ð42Þ −0.00631
2.05 1 0.98 0.188(28) −0.029ð9Þ −0.00024
2.05 2 1.96 0.315(45) −0.044ð14Þ −0.00057
2.05 3 2.95 0.456(62) −0.064ð20Þ −0.00110
2.05 4 3.93 0.539(79) −0.074ð25Þ −0.00187
2.05 5 4.91 0.646(116) −0.079ð32Þ −0.00349
2.05 6 5.89 0.649(140) −0.068ð49Þ −0.00624
2.05 7 6.87 0.817(213) −0.104ð65Þ −0.01314
2.05 8 7.85 0.852(208) −0.105ð45Þ −0.00888
2.46 1 1.18 0.175(23) −0.031ð9Þ −0.00018
2.46 2 2.36 0.279(46) −0.039ð18Þ −0.00064
2.46 3 3.53 0.419(62) −0.065ð27Þ −0.00131
2.46 4 4.71 0.463(81) −0.070ð29Þ −0.00195
2.46 5 5.89 0.549(106) −0.082ð38Þ −0.00328
2.46 6 7.07 0.424(105) −0.035ð42Þ −0.00352
2.46 7 8.25 0.560(134) −0.073ð49Þ −0.00532
2.46 8 9.42 0.454(133) −0.055ð41Þ −0.00458

FIG. 12. Ioffe-time distributions after the implementation of the
perturbative matching kernel on the lattice reduced pseudo-ITD
data in the MS renormalization scheme at 2 GeV. For the overall
normalization of the ITDs, we take hxig ¼ 0.427ð92Þ from [17] in
the MS scheme at renormalization scale μ ¼ 2 GeV.
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In Fig. 13, the integrated autocorrelation times of the
gluonic bare matrix elements for the nucleon momen-
tum, p ¼ 2π

aL ¼ 0.41 GeV, the field separation, z ¼ 2a ¼
0.188 fm, at the flow time, τ=a2 ¼ 3.8, and for the
nucleon momentum, p ¼ 4 × 2π

aL ¼ 1.64 GeV, the field
separation, z ¼ 6a ¼ 0.564 fm, at the flow time, τ=a2 ¼
1.4 are shown. It can be seen that τint stays close to

the value of 0.5 for all the source-sink separations
indicating that the autocorrelation among the gluonic
bare matrix elements calculated on the gauge configu-
rations separated from the next configuration by 10
hybrid Monte Carlo trajectories is negligible. Similar
values of τint are found for the gluonic bare matrix
elements with other nucleon momenta, field separations
and flow times.
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