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We perform perturbative computations in a lattice gauge theory with a conformal measure that is
quadratic in a noncompact Abelian gauge field and is nonlocal, as inspired by the induced gauge action in
massless QED3. In a previous work, we showed that coupling fermion sources to the gauge model led to
nontrivial conformal data in the correlation functions of fermion bilinears that are functions of charge q of
the fermion. In this paper, we compute such gauge invariant fermionic observables to order q2 in lattice
perturbation theory with the same conformal measure. We reproduce the expectations for scalar anomalous
dimension from previous estimates in dimensional regularization. We address the issue of the lattice
regulator dependence of the amplitudes of correlation functions.
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I. INTRODUCTION

Quantum electrodynamics (QED) in three dimensions
has been studied using various non-perturbative techniques
ranging from Schwinger-Dyson equations [1–5] to lattice
field theoretic computations [6–12]. More recently, this
theory has also been studied using numerical conformal
bootstrap [13,14]. The current status of lattice numerical
simulations is that parity invariant QED with massless
fermions and without monopoles is a scale-invariant theory
for all even number (2Nf) of two-component fermions. All
gauge invariant correlation functions should exhibit power
law behavior in the infrared and power law behavior of
two points functions of gauge invariant operators should
provide the anomalous dimensions of the corresponding
operators. Operators of particular relevance are local
fermion bilinears that are scalar or vector under the rotation
group. There correlation functions along with higher point
functions of these operators contain information about the
underlying conformal structure. In analogy with QCD, we
will refer to the local fermion bilinears made up of one
fermion and one antifermion as mesons. Scalar and vector

mesons will denote the transformation properties under the
rotation group.
Motivated by the recent numerical results in [10–12] and

pioneering studies in perturbative QED that shows the
presence of an infrared fixed point [2–5] in the large-Nf
limit, a lattice gauge model was studied in [15] which was
expected and numerically shown to be conformal at length
scales much larger in units of lattice spacing. The gauge
measure on an infinite lattice is given by

½dA�e−S; S ¼ 1

2

X
x

X3
j;k¼1

FjkðxÞ
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□
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FjkðxÞ ¼ ð∂jAkÞðxÞ − ð∂kAjÞðxÞ; □ ¼ ∂
†
k∂k;

ð1Þ

where ∂k is the lattice forward derivative. The lattice action
is apparently nonlocal, but the rationale behind studying
such an action was the possibility to mimic the most
dominant piece of the gauge-action that is induced by the
massless fermion determinant in QED3. The noncompact
gauge field, AjðxÞ ∈ R, is on the link connecting x and
xþ ĵ. To make the theory to be a Uð1Þ gauge theory, only
observables constructed out of the Uð1Þ valued gauge links
given by

UjðxÞ ¼ eiqAjðxÞ; ð2Þ

were measured. In the above equation, q is an arbitrary real-
valued charge. At Oðq2Þ, the charge can be identified with
16=Nf in the large-Nf limit of QED3, [15,16] and such an
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identification breaks down at higher orders of q but the
lattice model is well-defined nevertheless. Using such
gauge links, one can define the so-called pure gauge
observables such as Wilson loops and their correlators.
For example, the expression for a planar rectangular Wilson
loop of size l × t; l; t ∈ I, is

q2Wðl; tÞ ¼ − ln

�
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�
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X
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��

¼ q2

2π3

Z
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The asymptotic conformal behavior (that only depends
linearly on the aspect ratio of the Wilson loop) after
eliminating a perimeter term is given by

Wðl; tÞ −W
�
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2

;
lþ t
2

�
∼ −0.0820

�
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�
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l
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t
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and the constant obtained by numerically evaluating the
integral is universal.
In addition to the pure-gauge observables, the con-

formal behavior of fermionic observables was found to
have nontrivial dependencies on q. In order to define such
fermionic observables and n-point functions, the partition
function of the lattice gauge model coupled to massless
fermion sources ψ� in a parity-invariant manner was
given by,

Zðψ̄�;ψ�Þ ¼
Z

½dA�e−SðAÞþψ̄þGψþþψ̄−G†ψ−
; ð5Þ

where G is the lattice massless fermion propagator coupled
to charge-q gauge links. From this, the flavor triplet scalar
(Γ ¼ 1) and vector (Γ ¼ σk) operators can be defined as
differential operators acting on Z:

O�
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∂ψ̄�ðxÞΓ
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ΓðxÞ≡ 1ffiffiffi
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Given a lattice Dirac operator, one can compute correla-
tions functions of scalar and vector operators,

Sðq; xÞ ¼ hOþ
1 ð0ÞO−

1 ðxÞi; Vijðq; xÞ ¼ hOþ
σið0ÞO−

σjðxÞi
ð7Þ

respectively, as examples of gauge invariant correlators.
The separation x will be integer valued and for jxj ≫ 1 on
an infinite lattice, the correlators will be given by

Sðq;xÞ∼ CSðqÞ
jxj4−2γSðqÞ ; Vijðq;xÞ∼

CVðqÞðδij−2xixj

x2 Þ
jxj4 : ð8Þ

The vector correlators do not acquire an anomalous
scaling dimension since the operators are the conserved
currents corresponding to the flavor symmetry in the
theory. Numerical analysis of the lattice conformal model
[15] studied over a range of q resulted in fits of the form

γSðqÞ ¼ 0.076ð11Þq2 þ 0.0117ð15Þq4 þOðq6Þ;
CVðqÞ
CVð0Þ

¼ 1 − 0.0478ð7Þq2 þ 0.0011ð2Þq4 þOðq6Þ: ð9Þ

The coefficient of the leading term in γSðqÞ from the
lattice regularized method is consistent with 2

3π2
obtained

in [14] using continuum perturbation theory with a
dimensional regularization based ultraviolet cutoff. On
the other hand the coefficient of the leading correction to
CVðqÞ is not consistent with a computation in continuum
perturbation theory using dimensional regularization [16],

namely, Cd
VðqÞ

Cd
Vð0Þ

¼ 1þ ð 23
9π2

− 1
4
Þq2 þ � � �. In addition to cor-

relators, the L−1−γS type finite size scaling of the low-lying
eigenvalues Λi of the Hermitian operator, −iG, on large
enough L3 boxes also give information on the scalar
scaling dimension γS.
This paper is a follow-up to the numerical work in [15]

that we summarized above. The aim of this work is two-
fold. Namely, (a) the observation that the nonperturbative
lattice results for various quantities were empirically found
to be power expandable as a series in q that is rapidly
convergent motivated us to develop a perturbative frame-
work for the lattice regulated model to avoid Monte Carlo
methods. This work develops the perturbative setup at
Oðq2Þ. The method presented can be developed further
for higher-orders in q and thereby with a possibility of
performing interesting computations such as of the three-
point function conformal data in the model at larger lattice
sizes than practically possible in a Monte Carlo computa-
tion. (b) Unlike a typical lattice QFT with a well-defined
free-field-like UV continuum limit that removes any lattice
regulator dependencies (and with a possible conformality at
long distances), the behavior of the present lattice model is
different. As noted above, the conformality in the lattice
regulated model automatically emerges in the long-distance
limits of correlation functions and finite size scaling of
eigenvalues. However, due to the absence of a UV con-
tinuum limit, it is not immediately clear which of the
conformal data are universal with respect to the lattice
regulator (e.g., type and parameters of lattice Dirac
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operator). In this work, within the perturbative framework,
we address this question.

II. LATTICE PERTURBATION THEORY

The perturbation theory computation will be on a L3

lattice. The gauge field will obey periodic boundary
conditions and the gauge fixed action with a source term
for the gauge fields is

S ¼ 1

L3

X0

p

X
jk

Ã�
jðpÞ

□
2ðpÞδjk þ ð1ξ − 1ÞhjðpÞh�kðpÞ

g2ð1−nÞ□nðpÞ AkðpÞ

þ
X
x;k

JkðxÞAkðxÞ; ð10Þ

where the prime over the sum implies that p ¼ 0 is
excluded; the Fourier transforms are defined by

ÃjðpÞ ¼
X
x

AjðxÞei
2πx·p
L ; Ãjðpþ LÞ ¼ ÃjðpÞ;

Ãjð0Þ ¼ 0;A�
jðpÞ ¼ Ajð−pÞ; pk ∈ ½0; L − 1�;

k ¼ 1; 2; 3; ð11Þ

and

hkðpÞ ¼ e−i
2πpk
L − 1; □ðpÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

sin2
πpk

L

s
: ð12Þ

The lattice model is conformal when n ¼ 1; the usual
Maxwell action when n ¼ 0 and a gauge action for a
Thirring model when n ¼ 2. The gauge fixing term main-
tains the conformal nature when n ¼ 1. The generating
functional for computing gauge field correlations is

ZðJÞ ¼ exp

�
1

2

X
x;y

X
jk

JjðxÞGjkðx − yÞJkðyÞ
�
;

GjkðxÞ ¼
1

L3

X
p

G̃jkðpÞe−i
2πx·p
L ;

G̃jkðpÞ ¼
□

2ðpÞδjk − ð1 − ξÞhjðpÞh�kðpÞ
2g2ðn−1Þ□4−nðpÞ : ð13Þ

It is sufficient to perform the perturbation theory with
overlap fermion [11] to compare with Eq. (9). To this end,
we provide the pertinent details for the Wilson fermion
kernel followed by details for overlap fermion in the next
two subsections.

A. Wilson fermion kernel

Fermions will obey anti-periodic boundary conditions
and the Wilson fermion operator, D, is defined as

Dðx1; x2Þ ¼ 3δx2;x1 −
X
i

½piþeiqAiðx1Þδx2;x1þî þ pi−e−iqAiðx2Þδx2;x1−î�; pi� ¼ 1 ∓ σi
2

: ð14Þ

In order to perform perturbation theory, we write

Dðx1; x2Þ ¼ D0ðx1; x2Þ þDIðx1; x2Þ; ð15Þ

where

D0ðx1; x2Þ ¼ 3δx2;x1 −
X
i

½piþδx2;x1þî þ pi−δx2;x1−î�;

DIðx1; x2Þ ¼
X
i

½piþtiþðx1Þδx2;x1þî þ pi−ti−ðx2Þδx2;x1−î�; ti�ðxÞ ¼ ½1 − e�iqAiðxÞ�: ð16Þ

We will set up the perturbation theory computation in momentum space and use the unitary transformation

Uðx; pÞ ¼ 1

L
3
2

e−i½
2πx·p
L þπx·a

L �; a ¼ ð1; 1; 1Þ ð17Þ

to go between coordinate and momentum space. The free fermion operator is

D̃0ðp1; p2Þ ¼ D̃0ðp1Þδðp1 − p2Þ; D̃0ðpÞ ¼ 2
X
k

sin2
�
πpk

L
þ π

2L

�
− i

X
k

σk sin

�
2πpk

L
þ π

L

�
: ð18Þ
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We write the interaction term as

D̃Iðp1; p2Þ ¼ −qD̃1ðp1; p2Þ −
q2

2
D̃2ðp1; p2Þ; ð19Þ

where

D̃1ðp1; p2Þ ¼
i
L3

X
j

W1jðp1; p2ÞÃs
jðp1 − p2Þ;

W1jðp1; p2Þ ¼ pjþrjðp2Þ − pj−r�jðp1Þ;

D̃2ðp1; p2Þ ¼
1

L3

X
j

W2jðp1; p2ÞÃc
jðp1 − p2Þ;

W2jðp1; p2Þ ¼ pjþrjðp2Þ þ pj−r�jðp1Þ; ð20Þ

and

Ãs
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1

q

X
x

sin½qAjðxÞ�ei
2πx·p
L ;

Ãc
jðpÞ ¼

2

q2
X
x

ðcos½qAjðxÞ� − 1Þei2πx·pL ;

rjðpÞ ¼ e−i½
2πpj
L þπ

L�: ð21Þ

B. Overlap fermion

Perturbation theory has been developed in the past for
overlap fermion [17,18]. Since it is not as well known as the
one for Wilson fermions, we provide some technical details
in this subsection. The massless overlap Dirac operator is
defined by [11]

Do ¼
1þ V
2

V ¼ X
1ffiffiffiffiffiffiffiffiffi
X†X

p ; VV† ¼ 1;

X ¼ D −mw; mw ∈ ð0; 2Þ: ð22Þ

The propagator is given by

Go ¼
1 − V
1þ V

; G†
o ¼ −Go: ð23Þ

We start by writing

X ¼ X0 − qD1 −
q2

2
D2; X0 ¼ D0 −mw;

1ffiffiffiffiffiffiffiffiffi
X†X

p ¼ Q0 þ qQ1 þ q2Q2 þ � � � ð24Þ
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1ffiffiffiffiffiffiffiffiffiffiffi
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1
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1
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1
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1
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2X0 − 2D†
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ð25Þ

If we write

V ¼ V0 − 2qV1 − 2q2V2 þ � � � ; ð26Þ

we can use Eq. (22) and obtain

V0 ¼ X0Q0; V1 ¼
D1Q0 − X0Q1

2
;

V2 ¼
D2Q0 þ 2D1Q1 − 2X0Q2

4
; � � � : ð27Þ

The resulting perturbative expansion for the overlap propa-
gator in Eq. (23) is

Go ¼ Ge þ qGiV1Gi þ q2GiV2Gi þ q2GiV1GiV1Gi þ � � � ;
ð28Þ

where

Ge ¼
1 − V0

1þ V0

; Gi ¼ 1þ Ge ¼
2

1þ V0

;

G†
i ¼ V0Gi ¼ GiV0: ð29Þ

Upon going to momentum space,

Ṽ0ðq1; q2Þ ¼ Ṽ0ðq1Þδðq1 − q2Þ; Ṽ0ðqÞ ¼
X̃0ðqÞ
SwðqÞ

;

X̃0ðqÞ ¼ βðqÞ − i
X
k

�
σk sin

�
2πqk
L

þ π

L

��
; ð30Þ

where

βðqÞ ¼ 2
X
k

sin2
�
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L
þ π

2L

�
−mw;

S2wðqÞ ¼ β2ðqÞ þ
X
k
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�
2πqk
L

þ π

L

�
: ð31Þ

The external and internal free propagators are
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G̃eðqÞ ¼
i
P

kðσk sin ½2πqkL þ π
L�Þ

SwðqÞ þ βðqÞ ;

G̃iðqÞ ¼
SwðqÞ þ βðqÞ þ i

P
kðσk sin ½2πqkL þ π

L�Þ
SwðqÞ þ βðqÞ ; ð32Þ

respectively. The expression for V1 in momentum space is
given by

Ṽ1ðq1; q2Þ ¼
i

2L3

X
j

V1jðq1; q2ÞÃs
jðq1 − q2Þ

V1jðq1; q2Þ ¼
W1jðq1; q2Þ þ Ṽ0ðq1ÞW†

1jðq2; q1ÞṼ0ðq2Þ
½Swðq1Þ þ Swðq2Þ�

:

ð33Þ

The expression for V2 in momentum space is given by

Ṽ2ðq1; q2Þ ¼
1

2L3

�X
j

f−V2jðq1; q2ÞÃc
jðq1 − q2Þg þ

1

L3

X
q3;j;k

fV2jkðq1; q2; q3ÞÃs
jðq1 − q3ÞÃs

kðq3 − q2Þg
�

V2jðq1; q2Þ ¼
−W2jðq1; q2Þ þ Ṽ0ðq1ÞW†

2jðq2; q1ÞṼ0ðq2Þ
2½Swðq1Þ þ Swðq2Þ�

V2jkðq1; q2; q3Þ ¼
½X̃0ðq1ÞW†

1jðq3; q1Þ −W1jðq1; q3ÞX̃†
0ðq3Þ�X̃0ðq3Þ½X†

0ðq3ÞW1kðq3; q2Þ −W†
1kðq2; q3ÞX0ðq2Þ�

S2wðq3Þ½Swðq1Þ þ Swðq2Þ�½Swðq1Þ þ Swðq3Þ�½Swðq3Þ þ Swðq2Þ�

þ Ṽ0ðq1ÞW†
1jðq3; q1ÞṼ0ðq3ÞW†

1kðq2; q3ÞṼ0ðq2Þ
Swðq3Þ½Swðq1Þ þ Swðq2Þ�

. ð34Þ

C. Gauge correlation functions

We will need to compute correlation functions that
involve Ãs

jðpÞ and Ãc
jðpÞ. Noting that Ãs

jðpÞ is odd in
the gauge field and Ãc

jðpÞ is even in the gauge field, even
powers of Ãs

jðpÞ with any power of Ãc
jðpÞ will result in

nonzero correlation functions. All of them will have a
power series in q2. For our purpose, we only need

hÃc
jðpÞi ¼ −L3Gcð0ÞδðpÞ; Gcð0Þ ¼ 2L3

q2
½1 − e−

q2

2
gð0Þ�;

gð0Þ ¼ 2þ ξ

3L3g2ðn−1Þ
X0

p

1

□
2−nðpÞ ; ð35Þ

and

hÃs
j1ðp1ÞÃs

j2ðp2Þi ¼ L3G̃s
j1j2ðp1Þδðp1 þ p2Þ;

G̃s
jkðpÞ ¼

1

q2
e−q

2gð0ÞX
x

sinh½q2GjkðxÞ�ei
2πx·p
L :

ð36Þ

Note that

G̃s
jkð−pÞ ¼ G̃s

kjðpÞ ¼ ½Gs
jkðpÞ��: ð37Þ

The compactness of the gauge field coupled to fermions
have been maintained in obtaining the above correlation
functions. Since gauge invariance in perturbation theory is

only valid order by order in q2, the above correlation
functions have be expanded in q2 to extract gauge invariant
coefficients.

III. MESON CORRELATION FUNCTION

The fermion operator discussed in Sec. II B acts on two
component fermions. We will assume that we have two
copies of two component fermions, with the associated
operators, Do and D†

o. We will be interested in meson
correlation functions. With this mind let us associate two
component fermions, ψ ; ψ̄ ; with the operator Do and
another set of two component fermions, χ; χ̄; with the
operator D†

o. Let us denote the propagators by

hψðx1Þψ̄ðx2Þi ¼ Goðx1; x2Þ;
hχðx1Þχ̄ðx2Þi ¼ −Goðx2; x1Þ; ð38Þ

and we have used Eq. (23). Type of mesons wewill consider
are

OiðxÞ ¼ ψ̄ðxÞΓiχðxÞ; ŌiðxÞ ¼ χ̄ðxÞΓiψðxÞ; ð39Þ

where Γi ¼ 1; σi. To be clear, as the theory does not have
dynamical fermions per se, the above equation in terms of
fermion operators is actually made rigorous in terms of
fermion sources as discussed in Eq. (6). The correlation
functions are
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Mijðx1; x2Þ ¼ hŌiðx1ÞOjðx2Þi
¼ hχ̄ðx1ÞΓiψðx1Þψ̄ðx2ÞΓjχðx2Þi
¼ tr½ΓiGoðx1; x2ÞΓjGoðx1; x2Þ�; ð40Þ

where the trace is only on the spin indices. A transformation
to momentum space yields

M̃ijðp1;p2Þ¼
1

L3

X
q1;q2

tr½ΓiG̃oðq1;q2ÞΓjG̃oðq1−p1;q2−p2Þ�:

ð41Þ

Integrating over the gauge fields results in

M̃ijðp1; p2Þ ¼ M̃ijðpÞδðp1; p2Þ; ð42Þ

where

M̃ijðpÞ ¼ M̃ij
0 ðpÞ þ q2½M̃ij

1tðpÞ þ M̃ij
1dðpÞ þ M̃ij

1cðpÞ�
þOðq4Þ; ð43Þ

where M̃ij
1tðpÞ is the tadpole term, M̃ij

1dðpÞ is the discon-
nected term and M̃ij

1cðpÞ is the connected term. The leading
term is

M̃ij
0 ðpÞ ¼

1

L3

X
q

tr½ΓiG̃eðqÞΓjG̃eðq − pÞ�. ð44Þ

In order to compute the tadpole term we note that upon
gauge averaging

hV2ðq1; q2Þi ¼ O2ðq1Þδðq1 − q2Þ;

O2ðqÞ ¼
Gcð0Þ
2

X
j

V2jðq; qÞ

þ 1

2L3

X
r;j;k

ðV2jkðq; q; rÞG̃s
jkðq − rÞÞ; ð45Þ

and this leads to

M̃1tðpÞ ¼
1

L3

X
q

tr½G̃iðqÞO2ðqÞG̃iðqÞðΓjG̃eðq − pÞΓi þ ΓiG̃eðqþ pÞΓjÞ�: ð46Þ

In order to compute the disconnected term, we note that upon gauge averaging

X
q3

hṼ1ðq1; q3ÞG̃iðq3ÞṼ1ðq3; q2Þi ¼ −
�

1

4L3

X
q3;i1;i2

V1i1ðq1; q3ÞG̃iðq3ÞV1i2ðq3; q2ÞG̃s
i1;i2ðq1 − q3Þ

�
δðq1 − q2Þ

≡ −f̃oðq1Þδðq1 − q2Þ; ð47Þ

and this leads to

M̃1dðpÞ ¼ −
1

L3

X
q

tr½G̃iðqÞf̃oðqÞG̃iðqÞðΓjG̃eðq − pÞΓi þ ΓiG̃eðqþ pÞΓjÞ�: ð48Þ

The connected term is

M̃1cðpÞ ¼ −
1

4L6

X
q1;q2;i1;i2

tr½ΓiG̃iðq1ÞV1i1ðq1; q2ÞG̃iðq2ÞΓjG̃iðq2 −pÞV1i2ðq2 −p;q1 −pÞG̃iðq1 −pÞ�Gs
i1;i2

ðq1 − q2Þ: ð49Þ

A. Scaling of the numerical sums

The dependence on q2 of the gauge propagators in
Sec. II C appear in the exponents. Gauge invariance
on the lattice is only assured order by order in q2 for
the meson propagators. In fact, we use this as a check
of our code—ξ is a free parameter in our code and we
ensure all our results are gauge invariant at the order
computed here. We expand Gcð0Þ and G̃s

j1j2ðpÞ to the
leading order given by

Gcð0Þ ¼ L3gð0Þ þOðq2Þ; G̃s
jkðpÞ ¼ G̃jkðpÞ: ð50Þ

We store the fermion and gauge propagators in momen-
tum space for a fixed L and this computation scales like
L3. Both the computation of M̃ij

0 ðpÞ for all p and its
Fourier transform toMij

0 ðxÞ for all x scale like L6. The full
computations of Õ2ðqÞ, f̃oðpÞ, M̃ij

1tðpÞ, M̃ij
1dðpÞ, M̃ij

1tðxÞ
and M̃ij

1dðxÞ scale like L6.
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The computation of M̃ij
1cðpÞ for all p scales like L9 and

this dominates the computational time. To reduce this
computational time, we consider two types of meson
propagators in coordinate space, namely,

Mij
z ðxÞ ¼ 1

L

X
p

M̃ijð0; 0; pÞe−i2πxpL and

Mij
p ðxÞ ¼ Mijð0; 0; xÞ: ð51Þ

These two correlators will be sufficient to study the
asymptotic behavior of relevance. Since M̃ij

1cð0; 0; pÞ will
scale like L7 our computation has been significantly
reduced. Focussing on the expression for M̃1cðpÞ in
Eq. (49), we note that

M1cðxÞ ¼ −
1

4L6

X
q1;q2;i1;i2

tr
h
ΓiG̃iðq1ÞV1i1ðq1; q2ÞG̃iðq2Þ

× Γje−i
2πx·q2

L hi2ðq1 − q2; xÞ
i
Gi1;i2ðq1 − q2Þ; ð52Þ

where

hjðq; xÞ ¼
1

L3

X
r

ei
2πx·r
L G̃iðrÞV1jðr; qþ rÞG̃iðqþ rÞ: ð53Þ

With the separation in coordinate space restricted to
ð0; 0; xÞ, we note that both the computations of hi2ðq; xÞ
and M̃1cðxÞ scales like L7.

IV. RESULTS FROM LATTICE
PERTURBATION THEORY

Our aim is to extract the Oðq2Þ corrections to the
anomalous dimensions and the two point function ampli-
tudes, which are γ1S, C

1
S and C

1
V . To minimize computations,

we will consider two correlators. In the first case, we will
set the separation to an on-lattice-axis value x ¼ ðx1; 0; 0Þ,
which we denote using a subscript z as

Szðq; x1Þ ¼
CsðqÞ

jx1j4−2γSðqÞ
;

Vzðq; x1Þ ¼
X3
i¼1

Viiðq; x1Þ ¼
CVðqÞ
jx1j4

: ð54Þ

Note that we have summed over all directions for the
vector correlator above. Assuming the scaling of correla-
tors to be valid for all x ¼ ðx1; x2; x3Þ, we will also
consider correlators at zero spatial momentum, denoted
by a subscript p as,

Spðq;x1Þ ¼
Z

∞

−∞
dx2dx3Szðq;xÞ ¼

πCSðqÞ
ð1− γSðqÞÞjx1j2−2γSðqÞ

;

Vpðq;x1Þ ¼
Z

∞

−∞
dx2dx3Vzðq;xÞ ¼

πCVðqÞ
jx1j2

: ð55Þ

Writing the anomalous dimension and the amplitudes
order by order,

γSðqÞ ¼ γ1Sq
2 þ � � � ; CSðqÞ ¼ C0

S þ C1
Sq

2;

CVðqÞ ¼ C0
V þ C1

Vq
2 þ � � � ; ð56Þ

we have for ratios of correlators at nonzero q with respect
to that in free field as

Szðq; x1Þ
Szð0; x1Þ

¼ 1þ
�
C1
S

C0
S

þ 2γ1S ln jx1j
�
q2 ≡ 1þ q2Rz

S;

Spðq; x1Þ
Spð0; x1Þ

¼ 1þ
�
C1
S

C0
S

þ γ1S þ 2γ1S ln jx1j
�
q2 ≡ 1þ q2Rp

S ;

Vzðq; x1Þ
Vzð0; x1Þ

¼ 1þ C1
V

C0
V
q2 ≡ 1þ q2Rz

V ;

Vpðq; x1Þ
Vpð0; x1Þ

¼ 1þ C1
V

C0
V
q2 ≡ 1þ q2Rp

V; ð57Þ

with the equalities above valid only up to Oðq2Þ. On a
finite lattice of size L3, all the quantities above have an
implicit dependence on L and one needs to perform L →
∞ extrapolation at fixed jxj. We will perform the following
limits for the ratios above as

Rz;p
S ðx1Þ ¼ lim

L→∞
Rz;p
S ðx1;LÞ; Rz;p

V ðx1Þ ¼ lim
L→∞

Rz;p
V ðx1;LÞ:

ð58Þ

using expansions in x=L as

Rz;pðx; LÞ ¼ Rz;pN
S ðxÞ þ

XN
n¼1

aNn ðxÞ
�
x
L

�
2n
: ð59Þ

Since the fit is at a fixed x, grouping in powers of x=L is
just for convenience and a fit in even powers of L is based
on empirical observation. We will use two consecutive
values of N to establish the stability of the leading term,
Rz;pNðxÞ and the choice of these two values of N will
depend on the quantity being studied and the stability of
the fits. We computed the momentum sums on even lattices
in the range L ∈ ½4; 50�. Keeping all L > 2jxj, we extracted
the ratios at L → ∞ for x1 ∈ ½1; 16�. For sake of brevity,
henceforth, we will denote the x-coordinate x1 simply as x,
and should not to be confused with the vector x ¼
ðx1; x2; x3Þ as in the discussion above.
All our fits of the data use GNUPLOT. Since the data has

no errors, the coefficients of the fits have no inherent errors
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and the estimates of the coefficients can only change if we
change N. Therefore, we do not quote any errors in our fits
except in the tables where we cover for the difference in the
estimates from choosing two consecutive values of N.

A. Scaling dimensions

The scaling dimensions of scalar and the vector within
the lattice perturbation theory at Oðq2Þ can be obtained
from RS and RV is the above equations. For the isotriplet
vector, one expects there to be no corrections from
interactions to its free field scaling dimension since the
operator corresponds to a conserved current in QED. The
combinations,

Rp
SðxÞ − Rz

SðxÞ ∼ γ1Sq
2; Rp

VðxÞ − Rz
VðxÞ ∼ 0; ð60Þ

for jxj ≫ 1, can be seen to be good observables to extract
the Oðq2Þ corrections to the scaling dimensions.
We study the above quantity for the scalar correlator

using overlap fermion with mw ¼ 1.0 in Fig. 1. From the
dimensional regularization computation, it is known that
γ1S ¼ 2

3π2
[14]. Therefore, we consider the combination

Rp
Sðx; LÞ − Rz

Sðx; LÞ − 2
3π2

. The left panel shows its behav-
ior as a function of ðxLÞ2 for a sample case of x ¼ 8. The
infinite volume limits at each fixed x were obtained using
the Ansatz of the type in Eq. (59). Such infinite volume
extrapolated values at each x with N ¼ 7; 8 are plotted in
the right panel as a function of x. It can be seen that the limit
x → ∞ is consistent with zero and a single exponential fit,
c1e−c2x, matches the data reasonably well. Thus, we have
shown that the result of γ1S for the lattice model agrees with
the expectation from dimensional regularization in the
continuum at Oðq2Þ. In addition to such a universality
between continuum and lattice regulators, we also checked

that the results for γ1S from different mw in overlap
fermion agree.
For the vector operator, we expect its scaling dimension

to be uncorrected from the free field value to all orders in
q2. We demonstrate this using a similar strategy as for the
scalar as shown in Fig. 2. The left panel shows the behavior
of Rp

Vðx; LÞ − Rz
Vðx; LÞ as a function of ðxLÞ2 for x ¼ 8. The

infinite volume extrapolated values at each x with N ¼ 7; 8
are plotted in the right panel as a function of x. Again, we
find the limit x → ∞ is consistent with zero and a single
exponential fit matches the data reasonably well. The
estimated value at x ¼ 14 from N ¼ 7 and N ¼ 8 fall
on either side of zero. This implies that Eq. (60) for the
vector is reproduced without any regulator dependence.

B. Two point function amplitudes

1. Regulator dependence

We start our analysis by focusing on overlap fermion
with mw ¼ 0.5. The details are shown in Fig. 3. The left
panel shows the data for Rp

Sðx; LÞ for overlap fermion with
mw ¼ 0.5. The data is plotted as a function of ðxLÞ2 for a
sample case of x ¼ 6. The extrapolated values at L ¼ ∞
are Rp7

S ð6Þ ¼ −0.66913 and Rp8
S ð6Þ ¼ −0.66903 and there

is only a small systematic change in the fit values when one
goes from N ¼ 7 to N ¼ 8. Assuming that γ1S ¼ 2

3π2
, we

plot Rp
SðxÞ − 4

3π2
ln x in the right panel for N ¼ 7; 8 using

the infinite volume extrapolated values at different x. We
see that the limit as x → ∞ is finite and nonzero. A fit with
a constant and single exponential fits the data well and we
find that

C1
S

C0
S

				
mw¼0.5

¼ −0.9885ð6Þ; ð61Þ

FIG. 1. Analysis details to study scaling dimension of the scalar using the difference between the zero spatial momentum correlator
and the point-to-point correlator of the scalar meson using overlap fermion with mw ¼ 1.0. The left panel shows sample behavior of
Rp
Sðx; LÞ − Rz

Sðx; LÞ − 2
3π2

as a function of ðxLÞ2 and the associated two different fits. The value of Rp
SðxÞ − Rz

SðxÞ − 2
3π2

that is extracted
for all values of x ∈ ½6; 15� are shown along with the extrapolation errors in the right panel. The limit as x → ∞, using single exponential
fits of the type c1e−c2x shown as curves in the right panel, is consistent with zero.
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by comparing with Eq. (57). The error in the numerical
value on the right-hand side of the above equation comes
from the difference in the N ¼ 7 and N ¼ 8 values.
Next, we investigate the regulator dependence of the

amplitude. To this end, we vary the Wilson mass parameter,
mw, within overlap fermion. If the result is independent of
the regulator, the difference in the results for two different
choices of mw should go to zero as x → ∞. Let,

ΔRp
Sðx; LÞ ¼ Rp

Sðx; L;mwÞ − Rp
Sðx; L;mw ¼ 0.5Þ; ð62Þ

denote the difference between two different regulators.
Comparison of overlap fermion with mw ¼ 1.0 to overlap
fermion withmw ¼ 0.5 is analyzed in Fig. 4. The left panel
shows the data for ΔRp

Sðx; LÞ where the difference is
obtained by subtracting the ratio for overlap fermion with
mw ¼ 0.5 from overlap fermion withmw ¼ 1.0. The data is

plotted as a function of ðxLÞ2 for x ¼ 5. A fit of the form in
Eq. (59) with N ¼ 4 and N ¼ 5 are also shown. The
extrapolated values at L ¼ ∞ are ΔRp4

S ð5Þ ¼ 0.651420

and ΔRp5
S ð5Þ ¼ 0.651440, thereby showing only a small

systematic dependence on the extrapolation ansatz. The
systematic change in the fit values between the two choices
of extrapolations is small. The extrapolated values,
ΔRp4

S ðxÞ and ΔRp5
S ðxÞ, are plotted as a function of x ∈

½2; 12� in the right panel. The x → ∞ limit is approached
exponentially and the data is fit using a constant and a
single exponential. The limits are nonzero and finite,
which clearly shows that the amplitude depends on the
regulator parameter. The dependence of the amplitude on
mw are shown in the second column of Table I. The errors
in the results cover the difference in the estimates from the
two different values of N.

FIG. 2. Analysis details to study the absence of perturbative corrections to the scaling dimension of the vector using the difference of
the zero spatial momentum correlator and the point-to-point correlator of the vector meson obtained using overlap fermion with
mw ¼ 1.0. The left panel shows a sample behavior of Rp

Vðx; LÞ − Rz
Vðx; LÞ as a function of ðxLÞ2 at x ¼ 8 and the associated fits with two

different orders N. The value of Rp
SðxÞ − Rz

SðxÞ so extracted for all values of x ∈ ½8; 14� are shown along with the extrapolation errors in
the right panel. The limit as x → ∞ using single exponential fit, as for the scalar case above, is consistent with zero.

FIG. 3. Analysis details to obtain the scalar two point function amplitude using overlap fermion with mw ¼ 0.5. The left panel shows
sample behavior of Rp

Sðx; LÞ as a function of ðxLÞ2 and the associated two different fits of the type in Eq. (59) withN ¼ 7 and 8. The value
of Rp

SðxÞ − 4
3π2

ln ðxÞ so extracted for all values of x ∈ ½4; 13� are shown along with the extrapolation errors in the right panel. The single
exponential fits to extract the amplitude in x → ∞ limit are also shown as the curves.
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Our analysis of vector mesons mirrors the one for scalar
mesons. We start our analysis by focusing on overlap
fermion withmw ¼ 0.5 to extract the amplitude. The details
are shown in Fig. 5. The left panel shows the data for
Rp
Vðx; LÞ for overlap fermion with mw ¼ 0.5. The data is

plotted as a function of ðxLÞ2 for x ¼ 6. We needed to use
N ¼ 7 and N ¼ 8 in Eq. (59) (the form of fit is same for
vector and scalar mesons) to best fit the data and these
are also shown. The extrapolated values at L ¼ ∞ are
Rp7
V ð6Þ ¼ −0.910487 and Rp8

V ð6Þ ¼ −0.910450. We plot
Rp
VðxÞ in the right panel for N ¼ 7, 8. We see that the limit

as x → ∞ is finite and nonzero. A fit with a constant and
single exponential fits the data well and we find that

C1
V

C0
V

				
mw¼0.5

¼ −0.92254ð13Þ: ð63Þ

Like in the case of scalar mesons, we investigate the
regulator dependence of the amplitude by varying the
Wilson mass parameter, mw, within overlap fermion.
Comparison of overlap fermion with mw ¼ 1.0 to overlap
fermion with mw ¼ 0.5 is analyzed in Fig. 6. The right

panel shows the data for ΔRp
Vðx; LÞ where the difference is

obtained by subtracting the ratio for overlap fermion with
mw ¼ 0.5 from overlap fermion withmw ¼ 1.0. The data is
plotted as a function of ðxLÞ2 for x ¼ 5. A fit of the form in
Eq. (59) with N ¼ 4 and N ¼ 5 are also shown. The
extrapolated values at L ¼ ∞ areΔRp4

V ð5Þ ¼ 0.608857 and

ΔRp5
V ð5Þ ¼ 0.608873. We see only a small systematic

change in the fit values when one goes from N ¼ 4 to
N ¼ 5. The extrapolated values,ΔRp4

V ðxÞ and ΔRp5
V ðxÞ, are

plotted as a function of x ∈ ½2; 13� in the right panel. The
x → ∞ limit is approached exponentially and the data is fit
using a constant and a single exponential. The limits are
nonzero and finite clearly showing that the amplitude of
vector two point function also depends on the regulator
parameter. The dependence of the amplitude on mw are
shown in the second column of Table II. The errors in the
results cover the difference in the estimates from the two
different values of N.

2. Partial restoration of universality
with tadpole improvement

The regulator dependence of the two point functions
seen in Tables I and II in the lattice model is a curious
aspect of this lattice gauge model, which approaches the
continuum behavior simply at distance scales much larger
than one lattice unit without any fine tuning. The regulator
dependence of amplitudes is to be understood by the fact
that the plaquette value in this model never approaches 1
due to the absence of the traditional continuum limit at a
field fixed point. Thus, we wanted to check whether by
“improving” the Dirac operator by using gauge links that
are closer to unity subdues the regulator dependence of the
amplitudes. A well-known method to achieve this is via
tadpole improvement [19] namely, the replacement of the
massless free Wilson-Dirac operator in Eq. (16) by

TABLE I. Table showing the dependence of the scalar meson
amplitude ratio on the regulator for overlap fermion. The second
column is using the unimproved gauge links, and the third
column is using tadpole improved gauge links (see text).

mw

C1
S

C0
S

			
mw

− C1
S

C0
S

			
0.5 Tadpole corrected result

0.25 −1.3328ð37Þ −0.1390ð37Þ
0.75 0.44590(10) 0.04797(10)
1.0 0.66976(6) 0.07286(6)
1.25 0.80593(9) 0.08965(9)
1.5 0.89843(43) 0.10256(43)
1.75 0.9678(18) 0.1151(18)

FIG. 4. A comparison of the results for overlap fermion with mw ¼ 0.5 and mw ¼ 1.0. The left panel shows a sample behavior of
ΔRp

Sðx; LÞ as a function of ðxLÞ2 and the associated two different fits. The value of ΔRp
S ðxÞ so extracted for all values of x ∈ ½2; 12� are

shown along with the errors in the right panel. The limit as x → ∞ is not zero and finite showing that the amplitude of the two point
function depends on the regulator parameter.
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D0ðx1;x2Þ¼ 3δx2;x1 −uo
X
i

½piþδx2;x1þîþpi−δx2;x1−î�; ð64Þ

where u40 is the expectation value of the compact plaquette
with charge q. A simple computation yields,

u0 ¼ exp

�
−

q2

24L3

X0

p

□ðpÞ
�
¼ e−αq

2

; α¼ 0.0994834:

ð65Þ

This amounts to a change in the Wilson mass parameter by

mw →
mw − 3ð1 − u0Þ

u0
: ð66Þ

Since the free massless overlap propagator behaves as

G̃eðqÞ ¼ 2mw
iσkpk

p2
; pk ¼

2πqk
L

→ 0 ð67Þ

the induced wavefunction normalization is 1
2mw

for each
fermion propagator. Since mw has a tadpole correction
given by Eq. (66), we conclude that all ratios defined in
Eq. (57) should be multiplied by

FIG. 6. A comparison of the results for overlap fermion with mw ¼ 0.5 and mw ¼ 1.0. The left panel shows a sample behavior of
ΔRp

Vðx; LÞ as a function of ðxLÞ2 and the associated two different fits. The value of ΔRp
VðxÞ so extracted for all values of x ∈ ½2; 12� are

shown along with the errors in the right panel. The limit as x → ∞ is not zero and finite showing that the amplitude of the two point
function depends on the regulator parameter.

FIG. 5. Analysis details for the zero spatial momentum projected vector correlator using overlap fermion with mw ¼ 0.5. The left
panel shows sample behavior of Rp

Vðx; LÞ as a function of ðxLÞ2 at a sample x ¼ 5, and the associated two different infinite volume
extrapolation fits. The value of Rp

VðxÞ so extracted for all values of x ∈ ½4; 13� are shown along with the errors in the right panel. The fits
to extract the leading correction to the amplitude are also shown.

TABLE II. Table showing the dependence of the vector meson
amplitude ratio on the regulator for overlap fermion. The second
column is using the unimproved gauge links, and the third
column is using tadpole improved gauge links (see text).

mw

C1
V

C0
V

			
mw

− C1
V

C0
V

			
0.5 Tadpole corrected result

0.25 −1.3072ð44Þ −0.1134ð44Þ
0.75 0.42461(7) 0.02668(7)
1.0 0.630541(7) 0.033641(6)
1.25 0.75052(7) 0.03424(7)
1.5 0.8276(6) 0.0317(6)
1.75 0.8824(18) 0.0297(18)
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�
u0

1 − 3ð1−u0Þ
mw

�
2

¼
�
1þ 2ð3 −mwÞα

mw
q2 þ � � �

�
: ð68Þ

This amounts to

C1
S;V

C0
S;V

→
C1
S;V

C0
S;V

þ 2ð3 −mwÞα
mw

ð69Þ

resulting in

C1
S

C0
S

				
mw¼0.5

þ 10α ¼ 0.0063ð6Þ; ð70Þ

as the tadpole corrected amplitude ratio at mw ¼ 0.5 and

C1
S

C0
S

				
mw

−
C1
S

C0
S

				
mw¼0.5

þ 6ð1 − 2mwÞα
mw

; ð71Þ

as the tadpole corrected difference of the amplitude ratio.
These are shown in the third column of Table I. Since the
logic of the tadpole correction carries over to vector
mesons, we can use Eq. (71) to include a tadpole correction
resulting in

C1
V

C0
V

				
mw¼0.5

þ 10α ¼ 0.07229ð13Þ; ð72Þ

and the third column in Table II. In both the scalar and
vector cases, the regulator dependence in the tadpole
improved case is indeed weaker.

V. CONCLUSIONS

It is useful to compute corrections to conformal corre-
lation functions in a perturbation theory that maintains
conformal invariance [14,16], with the possibility of per-
forming N-point functions beyond N ¼ 2 on larger lattices
without a Monte Carlo effort. Naively, only the anomalous
scaling dimensions of operators and amplitudes of three
point functions and higher (with the amplitudes of 2-point
function set to unity as the normalization condition) are
physical. There are situations that involve conserved oper-
ators where the amplitude of two point functions become
physical. One such quantity is the vector current in
conformal three dimensional QED. A lattice model to

reproduce results in conformal three dimensional QED
was proposed in [15]. We studied this model using lattice
perturbation theory in this paper. We computed corrections
to the scalar and vector two point functions. We showed that
the scalar anomalous dimension is correctly reproduced and
is independent of the regulator, thereby validating further
future efforts within a lattice perturbation theory setup. On
the other hand, we showed that the corrections to the
amplitude of the scalar and vector two point function
depends on the lattice regulator. In particular, we found
that the amplitude of the vector correlator depends on the
lattice regulator. This observation demands one to numeri-
cally revisit the verification [15] of the conjectured self-
duality of three dimensional QED with four flavors of two
component fermions [20–22] within the framework of the
lattice conformal model via the degeneracy of flavor current
and topological current correlators; in the work [15], the
regulator dependence was not explored. Since such a
degeneracy between the correlators was also seen to arise
within statistical errors in a conventional simulation of three
dimensional QED [12] with a well-defined continuum limit,
we suspect that the value of q in the lattice model where the
flavor and vector currents coincide might turn out to be a
universal value independent of the regulator. For this, one
might need to use the induced Chern-Simons terms from
massive fermions to compute the topological current corre-
lator, wherein similar regulator dependence could be
induced in the correlators of the fermion-based definition
of the topological currents as well. Such a scenario con-
jectured by us needs to be studied further. In the future, it
would also be interesting to use the model to study scaling
dimensions of monopoles by coupling the lattice model to
the gauge field qAþAQ, with A being the dynamical gauge
field and AQ being the background gauge field for a flux Q
monopole-antimonopole pair as studied in [23,24], and ask
if they match the values found in different Nf flavor QED3.
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