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Generalized parton distributions (GPDs) are important nonperturbative functions that provide tomo-
graphic images of partonic structures of hadrons. We introduce a type of exclusive processes, to be referred
to as single diffractive hard exclusive processes (SDHEPs). We discuss the necessary and sufficient
conditions for SDHEPs to be factorized into GPDs. We demonstrate that the SDHEP is not only sufficiently
generic to cover all known processes for extracting GPDs, but is also well motivated for the search of new
processes for the study of GPDs. We examine the sensitivity of the SDHEP to the parton momentum
fraction x dependence of GPDs.

DOI: 10.1103/PhysRevD.107.014007

I. INTRODUCTION

The parton distribution function (PDF), fi=hðxÞ, is a
well-studied nonperturbative quantum correlation function
in quantum chromodynamics (QCD) that describes the
distribution of the momentum fraction x of an active parton
of flavor i inside a colliding hadron h. The knowledge of
PDFs, in particular, their x-dependence, as well as the
suppressed factorization scale dependence, is crucial for
understanding all phenomena in high energy hadronic
collisions, including the Large Hadron Collider, where
the colliding hadrons are broken. The generalized parton
distribution functions (GPDs), Fi=hðx; ξ; tÞ, encode rich
information on the spatial distributions of the partons inside
a bound hadron, and can be extracted from hard exclusive
processes off a diffractive hadron while it is kept intact.
With two additional variables, ξ and t, GPDs cover much
richer nonperturbative information of the confined partonic
dynamics in a hadron, and have been of both theoretical and
experimental interest since they were first introduced in
1996 [1]. On the one hand, as a combination of the hadronic
form factor and PDF, the x moments of GPDs lead to some
important sum rules [2] and can be related to different form
factors of the QCD energy-momentum tensor, providing
valuable information on the fundamental properties of

hadrons, such as the partonic contribution to the hadron
spin [2], the hadron mass [3–6], the pressure and shear
force inside a hadron [7,8]. On the other hand, with the
additional scale t, the Fourier transform of Fi=hðx; 0; tÞwith
respect to the transverse component of t gives a (2þ 1)-
dimensional density distribution, fi=hðx; bTÞ, of the partons
inside a confined hadron [9,10], which provides the
hadron’s three-dimensional (3D) tomography, entailing a
great amount of information on how QCD holds quarks and
gluons together to form a bound hadron. For reviews, see
Refs. [11–14].
Alongwith the introduction of the deeply virtual Compton

scattering (DVCS) [15,16], a number of processes have been
proposed for extracting the GPDs from experimental observ-
ables [17–24]. It is the QCD factorization theorem that
expresses the physical observables in terms of the convolu-
tion of nonperturbative but process-independent GPDs and
perturbatively calculable hard coefficients, Fi=hðx; ξ; tÞ ⊗
Ciðx; ξ; QÞ, with process-dependent corrections suppressed
by powers of the large momentum transfer of the scattering
processes. Different processes give different hard coeffi-
cients, which act as probes to project out different informa-
tion of GPDs. The knowledge and understanding of GPDs
are obtainedwhenmultiple processes are combined in global
analyses. Among the existing processes in the literature,
nevertheless, only a few have been strictly proved to be
factorizable [25,26]. Factorization formalism has been
extrapolated to describe other processes while waiting for
its formal proof.
Among the three variables ðx; ξ; tÞ of the GPD, both the

ξ- and t-dependence are related to the kinematics of the
diffracted hadron, and only the x-dependence is probed by
the hard partonic scattering, like the x-dependence of
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PDFs. However, it is the x-dependence of the GPD that is
the most difficult to extract from experimental data. Firstly,
due to the amplitude nature of GPDs, the related factori-
zation happens at the amplitude level for exclusive proc-
esses, and the convolution variable x is the parton loop
momentum, flowing through the active parton pair defining
the GPDs, whose integration is always from −1 to 1, and is
never pinned down to a particular value. This is in contrast
to the factorization of inclusive processes like the deeply
inelastic scattering (DIS), which happens at the cross
section level. At the leading perturbative order, the parton
momentum fraction x is equal to the Bjorken-xB, which is a
direct experimental observable. Secondly, the GPD-related
physical processes rely on an exchange of a color-singlet
two-parton state (qq̄ or gg) between the diffracted hadron
we want to study and the “hard probe,” but the same
processes could also happen via the exchange of a virtual
photon if its quantum state is allowed. This channel of single
photon exchange could dominate the contribution to the total
amplitude and interfere with the GPD-sensitive channels,
causing a large background for extracting the GPDs. Thirdly,
for most of the GPD-related processes, the convolutions of
the hard coefficients with GPDs only give “moment-type”
information, like the integral

R
1
−1 dxFðx; ξ; tÞ=ðx� ξ ∓ iεÞ

probed by the DVCS.
In a recent paper [27], we demonstrated that the last two

sources of difficulties for extracting GPDs could be
improved by identifying GPD-related physical processes
with new types of hard probes. By considering the
exclusive diphoton production process in a diffractive
pion-nucleon collision, and requiring the final-state pho-
ton’s transverse momentum qT ≫

ffiffiffiffiffijtjp
, it was shown that

the scattering amplitude can be factorized into a nucleon
transition GPD, without the interference with a single
photon exchange channel, while the variation of qT
provides an extra handle to the x-dependence of the
GPD. By measuring the distribution of qT in such GPD-
related exclusive process, we can obtain enhanced sensi-
tivity to the x-dependence of GPDs.
As indicated in Ref. [27], the diphoton process can be

generalized to, as illustrated in Fig. 1(a), a generic 2 → 3
single diffractive hard exclusive process (SDHEP),

hðpÞ þ Bðp2Þ → h0ðp0Þ þ Cðq1Þ þDðq2Þ; ð1Þ

where h of momentum p is a hadron we would like to
study, B of momentum p2 is a colliding lepton, photon or
meson, and C and D of momentum q1 and q2, respectively,
are two final-state particles, which can be a lepton, photon,
or meson, with large transverse momenta,

q1T ∼ q2T ≫
ffiffiffiffiffi
jtj

p
; ð2Þ

with t≡ ðp − p0Þ2. The SDHEP can be thought of as a two-
stage process, being a combination of a diffractive pro-
duction of a single long-lived state A�ðp1Þ,

hðpÞ → A�ðp1Þ þ h0ðp0Þ; with p1 ¼ p − p0; ð3Þ

and a hard exclusive 2 → 2 scattering between the two
nearly head-on states A�ðp1Þ and Bðp2Þ,

A�ðp1Þ þ Bðp2Þ → Cðq1Þ þDðq2Þ: ð4Þ

In the c.m. frame of A� and B, as a necessary condition for
the factorization, the transverse momentum qT of C or D is
required to be much greater than the invariant mass of A�
or B.
In this paper, we will show that the condition in Eq. (2) is

not only necessary, but also sufficient for the SDHEP to be
factorized into hadron GPDs associated with the h → h0
transition, convoluted with perturbatively calculable coef-
ficient functions from the hard 2 → 2 exclusive scattering,
if the final-state particles C andD are produced via a single
hard interaction. We will also demonstrate that the SDHEP
is not only sufficiently generic to cover all known processes
for extracting GPDs in the literature, but also well-
motivated for the search of new processes for the study of
GPDs.
The rest of this paper is organized in the following way.

We begin with a general discussion of the features of the
SDHEP and the factorization structure in Sec. II. We then
provide the detailed arguments for QCD factorization of
SDHEPs, initiated by a lepton, a photon, and a meson
beam, respectively, in Secs. III–V. In Sec. VI, we will
provide an extended discussion on the factorization proper-
ties, the limitation of extracting the x-dependence of GPDs
from some SDHEPs, the strategy to identify SDHEPs that
can provide better sensitivity to the x-dependence, and

FIG. 1. (a) The illustration of the SDHEP as a two-stage
reaction. (b) The SDHEP with soft gluon connections in a
general case when B, C and D are hadrons.

JIAN-WEI QIU and ZHITE YU PHYS. REV. D 107, 014007 (2023)

014007-2



additional opportunities for extracting various types of
GPDs from SDHEPs. Finally, we provide our summary and
outlook in Sec. VII.

II. SINGLE-DIFFRACTIVE HARD EXCLUSIVE
SCATTERING PROCESS

The two-stage paradigm of SDHEP, as illustrated in
Fig. 1(a), is necessary to separate the dynamics taking place
at two distinct scalesQð∼q1T ∼ q2TÞ and t. WithQ ≫

ffiffiffiffiffijtjp
,

the lifetime of the exchanged stateA�ðp1Þ atOð1= ffiffiffiffiffijtjp Þ is so
much longer than the timescale 1=Q of the “hard probe” (the
2 → 2 hard exclusive subprocess) that the quantum inter-
ference mediated by soft gluons between the diffractive
hadron and the hard probe, as illustrated in Fig. 1(b), is
expected to be strongly suppressed by the power of

ffiffiffiffiffijtjp
=Q,

so that the hard probe is unlikely to alter the internal structure
of the hadron that we would like to study.
The 2 → 2 hard exclusive processH in Fig. 1 takes place

at a short distance 1=Q ≪ 1=ΛQCD ∼ 1 fm and is sensitive
to the partonic structure of the exchanged state A�ðp1Þ. The
scattering amplitude of the SDHEP should include a sum of
all possible partonic states, as illustrated in Fig. 2, which
can be schematically described as

MhB→h0CD ¼
X∞
n¼1

X
f

Ffn
h→h0 ðp; p0Þ ⊗ CfnB→CD; ð5Þ

wheren andf represent the number and flavor of particles in-
cluded in the exchanged state A�, respectively, Ffn

h→h0 ðp; p0Þ
is a “form factor” responsible for the h → h0 transition, and
CfnB→CD represents the scattering amplitude of the hard part

H, along with the sum running over all possible exchanged
states characterized by n and f. For the discussion in this
paper, we keep the scattering amplitude CfnB→CD at the
lowest order in the QED coupling constant for given
exchanged state fn and particle types of B, C, and D, while
we explore contributions from QCD at all orders in its
coupling constant.
For n ¼ 1, the only possible case is a virtual photon

exchange, i.e., f1 ¼ γ�, which is like the Bethe-Heitler
process for the DVCS (see Ref. [15] for example). Instead
of probing the partonic structure of h, this channel only
gives an access to the electromagnetic form factor of h
evaluated at a relatively soft scale t. As discussed below, the
γ�-mediated subprocess gives the “superleading power”
background for the n ≥ 2 channels, and should not be
excluded even if they are suppressed by higher orders of
QED coupling, unless it is forbidden by the symmetry. The
scattering amplitude of the SDHEP should be expanded in
inverse powers of the hard scale, and then followed by a
perturbative factorization for the leading power contribu-
tion (and subleading power contribution if needed, see, e.g.,
Ref. [28]). If the n ¼ 1 subprocess is forbidden (as
discussed below), then the scattering amplitude of the
SDHEP starts with n ¼ 2 subprocesses.
For n ¼ 2, we can have QCD subprocesses with f2 ¼

½qq̄0� or ½gg�. This gives the leading-power contribution that,
as shown in the next section, can be factorized into GPDs
with corresponding hard coefficients. The channels with
n ≥ 3 belong to high-twist subprocesses that are suppressed
by powers of

ffiffiffiffiffijtjp
=Q and will be neglected in the following

analysis.
The SDHEP in Eq. (1) is a generalization of the diphoton

production process that we considered in Ref. [27], but it is

FIG. 2. The representation of the SDHEP in terms of all possible exchanged channels of the virtual state A�ðp1Þ between the single
diffractive h → h0 transition and the 2 → 2 hard exclusive process. The two gluons in gg channel have physical polarizations. The qq̄
and gg channels can be accompanied by arbitrary numbers of collinear longitudinally polarized gluons. The “� � �” refers to the channels
with more than two physically polarized partons, which are power suppressed compared to the two-parton case.
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actually general enough to cover all the processes that exist
in the literature for extracting GPDs. For example, the
DVCS corresponds to B ¼ C ¼ e and D ¼ γ with n ¼ 2
hard scattering process, ½qq̄�ðp1Þþeðp2Þ→ eðq1Þþ γðq2Þ,
as shown in Fig. 3. The large transverse momentum of the
scattered electron q1T (or the q2T of the produced photon)
provides the hard scaleQ. Here we changed the perspective
by working in the c.m. frame of the colliding electron and
proton, instead of the Breit frame of the virtual photon and
colliding proton in the conventional discussion. By includ-
ing the scattered electron into the discussion of factoriza-
tion, which fits into the general SDHEP, it makes more
natural to include the Bethe-Heitler process into the
observed cross section. Similarly, the deeply virtual meson
production (DVMP) [17,18] process can be obtained by
changing D to a meson. The timelike Compton scattering
(TCS) [19] corresponds to B ¼ γ and C;D ¼ l−; lþ, for
which the hard qT of the leptons provides a hard virtuality
Q ∼ qT for the virtual photon which directly couples to the
hard interaction, setting the hard scale. The exclusive Drell-
Yan process [20] is similar by having B ¼ π�. The
diphoton photoproduction process [23,29,30] corresponds
to setting B ¼ C ¼ D ¼ γ, for which the hard qT of the
final-state photons provides the hard scale. Similarly, the
diphoton production in the diffractive pion-nucleon scatter-
ing [27] corresponds to B ¼ π� and C ¼ D ¼ γ. The
crossing process of photoproduction of a photon-meson
pair [22,24] corresponds to B ¼ D ¼ γ and C ¼ meson.

A. General discussion of the γ�-mediated channel

Before providing the detailed arguments for QCD fac-
torization of SDHEPs, initiated by a lepton, photon, ormeson
beam, respectively, in next three sections, we give a general
discussion for the γ�-mediated hard subprocesses, corre-
sponding to the n ¼ 1 channel in Eq. (5), independent of the
particle types of B, C, and D. More detailed discussion for
specific processes will be given in later sections.
One difference between the n ¼ 1 and n ≥ 2 subpro-

cesses is that the virtual photon momentum is fully
determined by the diffraction of the hadron h. The
amplitude of the γ�-mediated subprocess can be trivially
factorized into the electromagnetic form factor of the
hadron h,

Mð1Þ ¼ ie2

t
hh0ðp0ÞjJμð0ÞjhðpÞihCðq1ÞDðq2ÞjJμð0ÞjBðp2Þi

≡ ie2

t
Fμðp;p0ÞHμðp1;p2;q1;q2Þ; ð6Þ

where the superscript “(1)” refers to the contribution to the
SDHEP amplitude from the n ¼ 1 channel, and Jμ ¼P

i∈q Qiψ̄ iγ
μψ i is the electromagnetic current of quarks,

summing over flavor “i” and weighted by their fractional
charges Qi. We defined the form factor,

Fμðp;p0Þ ¼ hh0ðp0ÞjJμð0ÞjhðpÞi

¼Fh
1ðtÞūðp0ÞγμuðpÞþFh

2ðtÞūðp0Þiσ
μνp1ν

2mh
uðpÞ;

ð7Þ

which has the leading component Fþ ∼OðQÞ as the h-h0
system is highly boosted along ẑ direction.1 However, when
this component is contracted with Hμ, which scales as
OðQ0Þ for each component, we have

FþH− ¼ 1

pþ
1

Fþðpþ
1 H

−Þ

¼ 1

pþ
1

Fþðp1 ·Hþ p1T ·HT − p−
1H

þÞ; ð8Þ

where, in the bracket, the first term vanishes by the Ward
identity of QED, and the other two scale as

ffiffiffiffiffijtjp
and t=pþ

1 ,
respectively. So the leading power of F ·H scales as

ffiffiffiffiffijtjp
and is given by the transverse polarization of the virtual
photon. Therefore, the power counting of Mð1Þ is of the
order 1=

ffiffiffiffiffijtjp
, which is higher than the n ¼ 2 channel by

one power of Q=
ffiffiffiffiffijtjp
.

One caution should be noted that it is not appropriate to
only keep pþ

1 in the amplitude Hμðp1; p2; q1; q2Þ because
the approximation introduces an error of order

ffiffiffiffiffijtjp
=Q.

While this is power suppressed comparing to the leading
contribution from the n ¼ 1 channel, it could scale at the
same order as the contribution from the n ¼ 2 channel
since both of them have the power counting 1=Q. By
neglecting all the n ≥ 3 channels, our approximation to the
full SDHEP amplitude is up to the error at Oð ffiffiffiffiffijtjp

=Q2Þ, so
that the 1=Q part should be kept as exact when evaluating
the contribution from the n ¼ 1 channel.
We note one further subtlety of the case when the

γ�-mediated subprocess involves light mesons in H. The
conventional practice is to factorize it into meson distri-
bution amplitudes (DAs). While this is true to the leading

FIG. 3. The leading-order diagrams to the hard exclusive
subprocess of the DVCS, initialized by the state f2 ¼ ½qq̄�.
The red thick lines indicate the propagators with high virtualities
and thus belong to the hard part.

1We define the light-front components of a vector Vμ ¼
ðVþ; V−;VTÞ as V� ¼ ðV0 � V3Þ= ffiffiffi

2
p

and VT ¼ ðV1; V2Þ.

JIAN-WEI QIU and ZHITE YU PHYS. REV. D 107, 014007 (2023)

014007-4



power at Oð1= ffiffiffiffiffijtjp Þ, it neglects the power correction of
OðΛQCD=QÞ ·Oð1= ffiffiffiffiffijtjp Þ ¼ Oð1=QÞ, which is of the same
order as the n ¼ 2 channels, i.e., the GPD channels.
Keeping the exact 1=Q contribution thus requires the
subleading-power (or, twist-3) factorization for the
γ�-mediated subprocess that involves any mesons, which
is beyond the scope of this paper.
There are two cases in which the γ�-channel is forbidden.

The first is for a flavor-changing channel with h ≠ h0 that
cannot be achieved by the electromagnetic interaction, like
the pion-nucleon scattering processes in Refs. [20,27]
which can involve the proton-neutron transition. The
second case is for particular combinations of the particle
types of B, C, andD that requireHμðp1; p2; q1; q2Þ ¼ 0 by
some symmetries. Apart from these two cases, we should
generally include the γ�-mediated subprocess.
For example, for the photoproduction of diphoton

process considered in Ref. [23], one should include the
γ�-channel that involves photon-photon scattering in Hμ.
Even though this is suppressed by αem compared to the
GPD subprocess that corresponds to the n ¼ 2 channel, the
γ�-channel at n ¼ 1 is power enhanced by Q=

ffiffiffiffiffijtjp
. In such

cases, we need to carefully compare the contributions from
these two channels, and to develop an experimental
approach to remove the background due to the γ�-channel
in order to extract GPDs from the experimental data. One
common approach by using azimuthal correlations will be
briefly discussed in Sec. VI E.

III. SDHEP WITH A LEPTON BEAM

For single diffractive hard exclusive electroproduction
processes, we have B ¼ C ¼ e. The other particleD can be
a photon γ or a light meson MD. Both of these two
processes allow the γ�-initialized channel with n ¼ 1. For
the n ¼ 2 channel, the D ¼ γ case leads to the DVCS
process, and the case for D ¼ light meson corresponds to
the DVMP process. Both of these two processes have been
proved to be factorized into GPDs [25,26]. Here, we will
switch the theoretical perspective from Refs. [25,26] by
fitting them into the general SDHEP type of processes.
The proof follows the two-stage paradigm depicted in
Eqs. (3)–(5). This approach incorporates the γ�-initialized
n ¼ 1 channel naturally, and for the n ¼ 2 channel, it leads
to a direct analogy to the exclusive meson annihilation
process in Eq. (4) by having A� being some meson state
carrying the quantum number of the ½qq̄0� or ½gg� state. Our
strategy for the proof follows a two-step process introduced
in Ref. [27]: (1) justify the factorization for a simpler 2 → 2
hard exclusive process in Eq. (4), and (2) extend the
factorization to the full SDHEP in Eq. (1) by addressing
extra complications, including the difficulty from Glauber
gluons. As expected, we will reproduce the proofs in
Refs. [25,26].

A. Real photon production: D= γ

For n ¼ 1, this gives the Bethe-Heitler process, and the
amplitude Hμ in Eq. (6) is the scattering amplitude of
γ�ðp1Þ þ eðp2Þ → eðq1Þ þ γðq2Þ with q21T ≫ jp2

1j ¼ jtj.
For n ¼ 2, the state A� can be either a collinear qq̄ or gg

pair, which interacts with the electron beam by exchanging
a virtual photon γ�ee with momentum q ¼ p2 − q1, as
shown in Fig. 4. The ½qq̄� and ½gg� state can be accompanied
by an arbitrary number of longitudinally polarized collinear
gluons. The traditional treatments all work in the Breit
frame of the virtual photon γ�ee and hadron beam h [25,26].
Here, we follow the kinematic setup of the SDHEP in
Eq. (1) to work in the c.m. frame of the initial-state hadron
and electron with the hadron along the z axis. The
requirement of a high virtuality Q2 ¼ −q2 for the γ�ee is
equivalent to the requirement of hard transverse momenta
qT for the final-state electron and photon in this frame,
since Q2 ∝ q2T . Hence, the virtual photon γ�ee has a short
lifetime and belongs to the hard part, and therefore we have
the leading-region diagrams as in Fig. 5, where two leading
regions, associated with the ERBL and DGLAP regions,
respectively, were identified. The ERBL region of GPDs
corresponds to the region where jxj < jξj and GPDs evolve
like the evolution of meson DAs [31,32], and the DGLAP
region is for jxj > jξj where the evolution of GPDs is
similar to the DGLAP evolution of PDFs [33–36].

1. The 2 → 2 hard exclusive scattering of SDHEP

The 2 → 2 hard exclusive scattering of the SDHEP with
a lepton beam is effectively the exclusive scattering of an
electron and a meson into an electron and a photon,

FIG. 4. Leading-order sample diagram for the DVCS, which
occurs by exchanging the virtual state A� ¼ ½qq̄� between the
diffractive hadron h and the electron beam.

FIG. 5. Leading-region graphs of the DVCS for the (a) ERBL
region and (b) DGLAP region of the GPD, where the two quark
lines can be replaced by two transverse gluon lines.
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MAðp1Þ þ eðp2Þ → eðq1Þ þ γðq2Þ: ð9Þ

In the c.m. frame with the meson going along ẑ direction,
the final-state electron and photon are required to have high
transverse momenta. One leading-order diagram has been
shown in Fig. 4, where the red thick lines carry the hard qT
flow and so have high virtualities and belong to the hard
part. The general leading-region diagram is in Fig. 6, where
the meson-collinear qq̄ lines can also be replaced by a pair
of transversely polarized gluon lines, both of which can be
accompanied by an arbitrary number of collinear gluons
whose polarizations are proportional to their momenta.
Perturbatively, factorization is to organize the loop

momentum integrals to factorize the pinch singularities
from all partonic scattering diagrams into universal had-
ronic functions, leaving the remaining partonic scattering
contribution to be infrared-safe hard coefficient functions.
In the simple case in Fig. 6, pinch singularity occurs for
each parton momentum ki at small k−i as λ ¼

ffiffiffiffiffi
p2
1

p
=Q → 0,

where Q ∼ qT ∼ pþ
1 . In QCD with confinement at low

energy scale, the perturbative pinch singularity factorized
from partonic scattering diagrams is effectively removed by
nonperturbative QCD effects once absorbed into the
universal hadronic functions. Therefore, factorization is
to consistently separate the infrared-sensitive nonperturba-
tive physics from the short-distance hard dynamics, which
is free from low energy scale dependence and is purely
perturbative.
The factorization of the leading region in Fig. 6 can be

carried out straightforwardly, following the same argument
as Ref. [27]. In the region around the pinched poles, each of
the parton momenta scales as

kμi ¼ ðkþi ; k−i ; kiTÞ ∼ ð1; λ2; λÞQ: ð10Þ

Then we can do the following approximations up to the
error of OðλÞ:
(1) keep only the plus components for the collinear

momenta flowing into H,
(2) insert spinor or Lorentz projectors to the collinear

quark lines or transversely polarized gluon lines, and

(3) keep only the leading Lorentz components for the
longitudinally polarized gluons coupling to H.

This factorizes the collinear subgraph A from the hard part
H. Especially, the approximation (3) allows the use of Ward
identity to decouple all the longitudinally polarized gluons
from the hard part and attach them to two gauge links, one
for each of the q and q̄ or each of the two transversely
polarized gluon lines, for the ½qq̄� or ½gg� case, respectively.
As a result, the subgraph A becomes a standardly defined
meson DA and only convolutes with H via a plus
momentum flow kþ ¼ zpþ

1 , and the exclusive scattering
amplitude takes a factorized form

MMAe→eγ ¼
X
i

Z
1

0

dzϕi=AðzÞCie→eγðz; qTÞ; ð11Þ

which is valid up to an error ofOðλÞ. In Eq. (11), ϕi=AðzÞ is
the meson DA, the sum over i runs over the parton flavors,
½qq̄� and ½gg�, as well as their spin structures, and the hard
coefficient Cie→eγ is the scattering between the electron and
an on-shell, color-neutral, and collinear qq̄ or gg pair. We
refer to Ref. [27] for more details of the derivation.
It is worth emphasizing that the above approximation is

true only for the scaling in Eq. (10), which corresponds to
the pinch surface whose surrounding region gives the
leading-power contribution to the amplitude. In principle,
one should keep the scaling kþi ∼OðQÞ throughout the
factorization analysis. Nevertheless, in the result of fac-
torization, Eq. (11), the variable z is integrated from 0 to 1,
which means that we have to include the region where
one of the active partons has momentum kþi ≪ Q.
Perturbatively, this does not lead to a pinch, so we should
have deformed the contour of kþi by OðQÞ to make the
associated propagator in the hard subgraph to have high
virtuality. For example, the leading-order hard coefficient
contains a term that is proportional to 1=ðz − iεÞQ2, which
becomes soft as z → 0, and we should deform the contour
of z to the lower half complex plane to make Imz ∼Oð1Þ.
Similar issue arises as z → 1. However, since the DA only
has support in z ∈ ½0; 1�, such deformation is forbidden by
the end points of the z integration. Therefore, the validity of
the DA factorization in Eq. (11) needs to be supplemented
with an additional assumption that the end point region
should be strongly suppressed by the DA, which we refer to
as the soft-end suppression. This situation could be
improved by the Sudakov suppression factor introduced
in Ref. [37]. We hope to come back to this issue in the
future.

2. DVCS from SDHEP with a lepton beam

Going from the 2 → 2 hard exclusive electron-meson
scattering to the full SDHEP with a lepton beam introduces
the complication that we have two kinds of leading regions,
as shown in Fig. 5, with Fig. 5(a) corresponding to the

FIG. 6. Leading-region graphs for the 2 → 2 hard exclusive
scattering of real photon electroproduction, which is the hard
probe part of the SDHEP with a lepton beam, where the two
quark lines from ½qq̄�ðp1Þ can be replaced by two transversely
polarized gluon lines for the case when A� ¼ ½gg�.
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ERBL region of the GPD that has all the collinear parton
lines going from the hadron into the hard interaction, and
Fig. 5(b) corresponding to the DGLAP region of the GPD
that has some parton lines coming out of the hard
interaction to combine with the spectator lines in the beam
to form the diffracted hadron h0. The extra DGLAP region
is the key difference for factorization between the electron-
meson scattering and the full SDHEP.
In the presence of another collinear region, soft gluons

exchanged between the spectators of the DGLAP region and
the lines from other collinear subgraphs are partially pinched
in the Glauber region, for which extra treatment is needed
[25,27]. However, the DVCS only has one collinear sub-
graph, and hence its factorization does not have much
difference from the electron-meson scattering discussed
above.
For both the ERBL and DGLAP regions, the collinear

momenta kμi are pinched for their minus components ifffiffiffiffiffijtjp
≪ pþ

1 ∼ qT . Introducing the new scaling variable
λ ¼ ffiffiffiffiffijtjp

=qT ≪ 1, the collinear momentum scaling is the
same as in Eq. (10). And then the same approximations can
be made to factorize the collinear subgraph from the hard
subgraph, and lead to a factorization formula for the DVCS
amplitude

Mð2Þ
he→h0eγ ¼

X
i

Z
1

−1
dxFh

i ðx; ξ; tÞCie→eγðx; ξ; qTÞ; ð12Þ

up to terms suppressed by powers of λ, where the super-
script “(2)” refers to the contribution to the SDHEP
amplitude from the n ¼ 2 channel, Fh

i denotes the flavor-
diagonal GPD of the hadron h, with h0 ¼ h, Cie→eγ is the
corresponding hard coefficient and i denotes different
parton flavors as well as different spin structures. From
the fact that the DVCS amplitude should not depend on
how we factorize it, renormalization group improvement
for the factorization formula in Eq. (12) leads to the
evolution equations of GPDs with respect to factorization
scale μ and the corresponding μ dependence in the
perturbatively calculated hard coefficient functions, which
has been suppressed in Eq. (12). Equation (12) is diagram-
matically shown in Fig. 7, in which the GPD variables x
and ξ are defined as

x ¼ ðkþ k0Þþ
ðpþ p0Þþ ; ξ ¼ ðp − p0Þþ

ðpþ p0Þþ ; ð13Þ

where k and k0 are the parton momenta entering and
leaving the hard part, respectively. With the conventional
definitions,

P ¼ ðpþ p0Þ=2; Δ ¼ p − p0; ð14Þ

we have kþ ¼ ðxþ ξÞPþ and k0þ ¼ ðx − ξÞPþ.
The soft parton issue can also arise here, similar to the

electron-meson process discussed at the end of Sec. III A 1,
i.e., some of the parton momenta may have kþi ≪ Q, which
violates the scaling in Eq. (10), and thus the corresponding
approximations. This is termed the “breakpoint” issue in
Ref. [25]. However, since the region kþi ∼ 0 ≪ Q is not
pinched, we can deform the contour of kþ integration by
kþ ↦ kþ � iOðQÞ [25]. Because the breakpoint only lies
on the boundary between the ERBL and DGLAP regions,
but not at the GPD end points, this deformation is allowed.
Perturbatively, the soft parton singularity appears in
Eq. (12) at x ¼ �ξ. For example, the leading-order
DVCS hard coefficient contains a term that is proportional
to 1=ðx� ξ ∓ iεÞ, and we can deform the x contour to
avoid the poles at ∓ ξ; in practical calculations, this is
achieved by

1

x� ξ ∓ iε
¼ P

1

x� ξ
� iπδðx� ξÞ; ð15Þ

where P denotes principal-value integration.

B. Light meson production: D=meson

For the production of a light meson, we have
D ¼ meson, with its mass mD being much smaller than
qT . Then the meson is attached to the hard part by a few
collinear parton lines, whose momenta are pinched at low
virtuality.
The n ¼ 1 subprocess is shown in Fig. 8(a), and the

amplitude Hμ in Eq. (6) is the scattering amplitude of
γ�ðp1Þ þ eðp2Þ → eðq1Þ þMDðq2Þ, which can be further
factorized into the DA of the meson, up to corrections of

FIG. 7. Factorization of the DVCS amplitude.

FIG. 8. Examples of leading-order diagrams for the light meson
production in the SDHEP with an electron beam, for (a) the n ¼ 1
channel and (b) the n ¼ 2 channel for ½qq̄0� case, where the red
thick lines indicate those with hard qT flow and high virtualities.
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ordermD=qT. Alternatively, one may choose to parametrize
the amplitude by the γ�γ�ee → MD form factor. The n ¼ 1
channel would be forbidden for the production of a charged
meson like π�, or of a neutral meson with odd C parity,
such as ρ and J=ψ .
The n ¼ 2 subprocess corresponds to the DVMP process

[17,18]. The hard interaction happens between a ½qq̄0� or
½gg� pair and the colliding electron by exchanging a virtual
photon γ�ee and producing a light meson. Similar to the
DVCS, we work in the h − e c.m. frame, and the virtual
photon γ�ee belongs to the hard part. One leading-order
diagram is shown in Fig. 8(b) for A� ¼ ½qq̄0� channel. Most
part of the factorization follows the same line as for DVCS,
and we will only focus on the difference.

1. The 2 → 2 hard exclusive scattering of SDHEP

The 2 → 2 hard exclusive scattering for producing a light
meson from SDHEP with a lepton beam is given by

MAðp1Þ þ eðp2Þ → eðq1Þ þMDðq2Þ; ð16Þ

whereMA is a meson state capturing the quantum number of
the state A�, which is ½qq̄0� or ½gg�. In the c.m. frame, the
initial-state MA and e are along �ẑ directions, respectively,
and the final state e and MD are back to back, with a
transverse momentum much greater than their mass,
qT ≫ mA;mD. By the same power counting as in
Ref. [27], the leading region of the amplitude is shown
in Fig. 9.
The differences from the real photon production process

discussed in Sec. III A 1 are that
(1) there are two collinear subgraphs now, which are

connected by a soft subgraph, and
(2) there are two kinds of leading regions, shown in

Figs. 9(a) and 9(b), which we denote as region (a)
and region (b). For region (b), only one active parton
enters the hard interaction, and the other one is soft
and only transmits the needed quantum number.

Region (b) raises some theoretical difficulty. It is rendered
power suppressed in Ref. [25] by considering the scaling
ks ∼ ðλ; λ; λÞQ to be the genuine soft momentum. In our

case, we simply note that in region (b), the outgoing meson
D only has one active parton carrying all of the light cone
momentum, which we assume to be highly suppressed
when the meson moves fast (qT ≫ ΛQCD) [27]; this
assumption is the same as the soft-end suppression
assumption made in Eq. (11) as discussed at the end of
Sec. III A 1.2 This brings the leading regions down to the
one in Fig. 9(a).
To simplify the following discussion, we note that by

virtue of the large qT , one can always boost to the frame
where the initial-state meson Að�Þ is moving along þẑ
direction and the final-state meson D is moving along −ẑ
direction, as was done in Refs. [39,40]. This can also be
done in a covariant way by defining two sets of light cone
vectors

wμ
A ¼ 1ffiffiffi

2
p ð1; ẑÞ; w̄μ

A ¼ 1ffiffiffi
2

p ð1;−ẑÞ;

wμ
D ¼ 1ffiffiffi

2
p ð1; n̂Þ; w̄μ

D ¼ 1ffiffiffi
2

p ð1;−n̂Þ; ð17Þ

where ẑ and n̂ are normalized three-vectors along the
directions of the initial-state meson MA and final-state
meson MD. Then any momentum four-vector r can be
expanded in the wA − wD frame as

rμ ¼ rþwμ
A þ r−wμ

D þ rμT; ð18Þ

where r� ¼ ðr · wD;AÞ=ðwA · wDÞ are the longitudinal com-
ponents, and wA · wD ∼Oð1Þ does not affect the power
counting. Under this notation, we have

r2 ¼ 2rþr−wA · wD − r2T; ð19Þ

where r2T ¼ −gμνr
μ
Tr

ν
T . The A-collinear momentum kA and

D-collinear momentum kD have dominant components
along wA and wD, respectively,

kμA ¼ ðkþA ; k−A; kA;TÞA−D ∼ ð1; λ2; λÞQ;

kμD ¼ ðkþD; k−D; kD;TÞA−D ∼ ðλ2; 1; λÞQ; ð20Þ

where the subscript “A −D” refers to light-front coordi-
nates in the wA − wD frame. In the following discussion of
this subsection, we will stay in this frame and omit the
subscripts “A −D.”
Collinear factorization means that only the longitudinal

parton momentum components are seen by the rest of the
scattering system. From the point of view of the soft gluons,
they only see the large light cone momenta of the collinear

FIG. 9. Leading-region graphs for the 2 → 2 hard exclusive
electroproduction of a light meson. Depending on the quantum
numbers, the quark lines may be replaced by transversely
polarized gluon lines.

2This assumption only holds for the meson side, but not for the
diffractive hadron side, and thus does not apply to the backward
scattering processes considered in Ref. [38], for which more
theoretical efforts are needed to deal with the region (b).
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partons but not their transverse momenta. This is true for
the soft momentum of a uniform scaling

ks ∼ ðλs; λs; λsÞQ; ð21Þ

with λs varying between λ2 and λ, but not for the Glauber
scaling that is dominated by the transverse component,

kGlaubers ∼ ðλ2; λ2; λÞQ; ð22Þ

which is also part of the soft momentum region and gives a
leading-power contribution. However, since all the collin-
ear parton lines connecting A to H move from the past into
H with positive plus momenta, and all the collinear parton
lines connecting D to H move from H to the future into D
with positive minus momenta, the only soft poles for kþs
(k−s ) come from the D- (A-) collinear lines, which all lie on
the same side of the integration contour in the complex
plane, so that the Glauber poles are not pinched. For a
Glauber gluon momentum ks flowing from A into S, we
deform the k−s contour by k−s ↦ k−s − iOðλQÞ, and for a
Glauber gluon momentum ks flowing from D into S, we
deform the kþs contour by kþs ↦ kþs þ iOðλQÞ. This leads
the ks contour out of Glauber region and brings k�s to the
same order of ksT , after which one may keep only the minus
(plus) component of a soft gluon momentum flowing along
the A- (D-)collinear lines.
After the deformation of soft gluons out of the Glauber

region, one can perform suitable approximations for the
factorization argument [27], especially for the use of Ward
identities. The approximations should not introduce extra
poles that forbid the above deformations, so if we are
looking at a soft gluon of momentum ksA flowing from A
into S, we should have 1=ðk−sA − iεÞ if the approximator has
k−sA in the denominator. Similarly, for a soft gluon ksD
flowing from D into S, we should have 1=ðkþsD þ iεÞ. The
result is that the soft gluons are captured by two sets of
Wilson lines, one along the A-collinear direction from
infinite past to now, and the other along the D-collinear
direction from now to infinite future. Also, when we make
approximations for a collinear gluon, the same gluon
momentum kc can also reach into the soft region (which
needs to be subtracted to avoid double counting), so the
approximation should not introduce any additional pole at
kc ¼ 0. Therefore, for the collinear momentum kA to flow
from A into H, we should have 1=ðkþA − iεÞ if the
approximator has kþA in the denominator. Similarly, for a
collinear momentum kD to flow from H into D, we should
have 1=ðk−D − iεÞ. The result is that the collinear-to-A
gluons are collected by twoWilson lines along w̄1, pointing
to the future, and the collinear-to-D gluons are collected by
two Wilson lines along w̄D, pointing to the past.
The above deformation to get ks contour out of the

Glauber region is symmetric with kþs and k−s , as was
employed in Ref. [27]. This is, nevertheless, not the unique

choice [41], as it is sufficient to get rid of the Glauber
region as long as jkþs k−s j≳ jk2sT j. By examining the contour
of kþs , we note that while all the kþs poles from the
D-collinear lines are of Oðλ2QÞ and lie on the same half
plane, it also has poles from the A-collinear lines and soft
lines, which are of order Q for Glauber gluons. Hence one
may choose to only deform the contour of kþs , but now by a
magnitude of OðQÞ,

kþs ↦ kþs þ iOðQÞ; ð23Þ

when ks flows fromD into S. This deforms a Glauber gluon
momentum into the A-collinear region with the scaling
ð1; λ2; λÞQ, and then one can perform usual approximations
and apply Ward identities for the rest of the soft gluon
momenta. The soft gluons factorized fromD are attached to
two Wilson lines along wD, and the A-collinear longitu-
dinally polarized gluons are collected by two Wilson lines
along w̄A; both of the two sets of Wilson lines point to the
future. Since we do not deform the contour of k−s , it does
not matter what iε prescription we assign to the approx-
imator 1=k−s ; the þiε choice leads to same result3 as the
symmetric deformation in the above, with soft Wilson lines
along wA and collinear Wilson lines along w̄D both pointing
from/to the past, but the −iε choice would have both point
to the future.
Similarly, one may also choose to only deform k−s as

k−s ↦ k−s − iOðQÞ when it flows out of A-collinear lines
into S, and then the iε prescription for kþ is not important
as long as every k−s is associated with the same prescription
as in 1=ðk−s þ iεÞ.
This gives some freedom in choosing the suitable iε

prescriptions to achieve universal definitions for the soft
factor and collinear factors when compared with other
processes [41]. Within collinear factorization framework,
the soft factor cancels no matter what prescription is used,
and the Wilson lines associated with the collinear factors
also become straight lines on the light cone due to unitarity
of the Wilson lines, so that universality is a trivial property
in the collinear factorization for exclusive processes.
However, such freedom as in Eq. (23) is necessary for
the factorization of diffractive processes, as we will dis-
cuss later.
The factorization and cancellation of the soft gluons

follow the same procedure as detailed in Ref. [27] and will
not be reproduced here. Physically speaking, with only kþs
or k−s kept in the collinear subgraphs, the soft gluons only
see the directions of the collinear lines and not their interior
transverse structures. Along each collinear direction
defined by the high-momentum hadrons, the collinear
parton lines altogether form a color singlet state, so the
soft gluons are effectively attached to a color-neutral object,

3Here ks is the same as in Eq. (23), flowing from D to S and
then to A.
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and hence must cancel. This is the special feature of
exclusive processes, and is different from the inclusive
processes where the soft interaction effectively sums to
unity as a consequence of unitarity [39,42].
After the cancellation of soft gluons, different collinear

subgraphs are dynamically independent, and the collinear
lines can be factorized into universal meson DAs following
the same method as for the photon production case in
Sec. III A 1, leading to a factorized form for the amplitude
of the 2 → 2 scattering in Eq. (16),

MMAe→eMD
¼

X
i;j

Z
1

0

dzAdzDϕi=AðzAÞ

× Cie→ejðzA; zD; qTÞϕj=DðzDÞ; ð24Þ

where ϕi=AðzAÞ and ϕj=DðzDÞ are the DAs associated with
the initial-stateMA and final-stateMD, respectively, i and j
run over all possible parton channels, ½qq̄0� or ½gg�, and their
spin structures, and the hard coefficient Cie→ej is the
scattering between an electron and parton pair i into an
electron and parton pair j.

2. DVMP from SDHEP with a lepton beam

Extending the factorization of 2 → 2 hard exclusive
meson scattering, discussed in Sec. III B 1, to the same
meson production from the full SDHEP with a lepton beam
introduces complications from the DGLAP region of GPDs,
as explained at the beginning of Sec. III A 2. Factorization
works in the limit λ ¼ ffiffiffiffiffijtjp

=qT ∼mD=qT ≪ 1. The loop
momentum regions contributing to the leading power of λ are
shown in Fig. 10, where the region (b) is rendered power
suppressed by the soft-end suppression assumption from the
meson wave function, in the same way as for the 2 → 2
meson scattering discussed in Sec. III B 1.
While the DGLAP region does not cause much differ-

ence for the DVCS, it does lead to a complication in the
Glauber region here. This is illustrated in a simple model
theory in Fig. 11, where we have indicated the chosen soft

momentum flows by the thin curved arrowed lines. We
make the following observations:
(1) DGLAP region has active collinear parton lines both

before and after the hard interactions, and the soft
gluons can attach to both, as shown in Figs. 11(a)
and 11(b). With the soft momentum flows as indi-
cated, attaching to the initial-state collinear parton
gives a pole of k−s atOðλ2ÞQ − iε, while the final-state
one gives a pole of k−s at Oðλ2ÞQþ iε;

(2) DGLAP region also has some spectator partons going
in the forward direction.When the soft gluon attaches
to the spectator lines, as shown in Fig. 11(c), it flows
both in the same and opposite directions as the target-
collinear lines, so that one single diagram gives both
Oðλ2ÞQ� iε poles for k−s contour.4

Diagrams like Fig. 11(c) pinch the k−s contour at small
values, such that for a Glauber gluon with the momentum
scaling as in Eq. (22), one cannot deform the k−s contour to
get out of the Glauber region, as was allowed by the
corresponding 2 → 2 scattering. However, all the soft kþs
poles come from the D-collinear lines, and lie on the lower
half plane when ks flows from D into S. One may thus
deform kþs as kþs ↦ kþs þ iOðQÞ while keeping k−s contour
unchanged, as was done in Eq. (23). While it is a free
choice for the 2 → 2 hard exclusive scattering, this defor-
mation is necessary here due to the pinch in the DGLAP
region of the diffractive process, and it moves all Glauber
gluon momenta to the A-collinear region. For the same
reason as discussed around Eq. (23), the iε prescription for
k− does not matter so it can be chosen in an arbitrary but
consistent way.
Our treatment here follows the method in Ref. [27]. After

deforming the contour of kþ to get rid of the Glauber
region, one can apply collinear approximations for D and
soft approximations for the gluons coupling S to D. This
step decouples soft gluons from D and D-collinear lines
from H, the details of which are referred to Ref. [27]. After
cancellation of the soft gluons attached to D, the rest of the
soft gluons only couple to the A subgraph, as shown in
Fig. 12, which are not pinched [26] and can be deformed
into the A-collinear region. By using the same collinear
approximations, we can factorize the A-subgraph into
universal GPDs, and arrive at a factorized amplitude,

Mð2Þ
he→h0eMD

¼
X
i;j

Z
1

−1
dx

Z
1

0

dzD

× Fhh0
i ðx; ξ; tÞCie→ejðx; ξ; zD; qTÞϕj=DðzDÞ;

ð25Þ
up to 1=qT power suppressed terms. In Eq. (25), the
notations are the same as in Eq. (24), and Fhh0

i is the

FIG. 10. Leading-region graphs for producing a light meson
from the SDHEP with a lepton beam. Depending on the quantum
numbers, the quark lines may be replaced by transversely
polarized gluon lines.

4Rerouting the soft momentum flow can change the situation
(1) such that it also flows through the spectators and leads to both
kinds of poles.
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GPD associated with the h → h0 transition. The hard
coefficient Cie→ejðx; ξ; zD; qTÞ can be calculated in the
same way as that in Eq. (24), just with a proper variable
change zA → zAðx; ξÞ ¼ ðxþ ξÞ=ð2ξÞ, which was made in
Ref. [27]. Eq. (25) is diagrammatically shown in Fig. 13.

C. Virtual photon or heavy quarkonium production

The DVCS and DVMP differ in how the observed
particle couples to the hard interaction: the photon of the
DVCS couples directly to the hard collision while the light
meson of DVMP couples to the hard collision via two
collinear partons. The factorization proof for the DVCS
should apply equally to the case of producing a virtual
photon γ�f with high qT and low virtuality Q02 that decays
into a pair of charged leptons. Even if qT ≫ Q0, there is no

large logarithm of qT=Q0 that spoils perturbation theory,
contrary to the inclusive process [43], because such
logarithms are associated with diagrams’ collinear sensi-
tivity, which require two collinear parton lines to connect
the low mass virtual photon to the hard part, which is
suppressed by one power of Q0=qT compared to the direct
photon attachment. In contrast, the DVMP amplitude has
large logarithms of qT=mD, due to the long-distance
evolution of the collinear parton lines. Such logarithms
are incorporated by the evolution equation associated with
the factorization formula in Eqs. (24) and (25).
For a virtual photon γ�f with its virtuality Q0 of the same

order as qT (but, sufficiently away from masses of heavy
quarkonia), it should belong to the short-distance hard part,
and the whole process becomes e− þ h → h0 þ 2e− þ eþ.
This is no longer a 2 → 3 SDHEP-type process, but we can
still relate it to the SDHEP type by considering the
kinematic regime where one of the final-state electrons
has a high transverse momentum qT , balanced by the other
eþe− pair, which also has a large invariant mass Q0 ∼ qT .
First of all, the γ�-mediated channel at n ¼ 1 is allowed,

with the hard scattering e− þ γ� → 2e− þ eþ. Second, the
n ¼ 2 channel does not unambiguously lead to the double
DVCS (DDVCS) process [21] because it is not possible to
distinguish which of the final-state electrons comes from
the scattering of the initial-state electron. By labeling the
final-state electrons and positron as ðe−1 ; e−2 ; eþÞ, we find
that a single configuration of ðe−1 ; e−2 ; eþÞ could correspond
to both high-Q0 and low-Q0 processes. Specifically, let us
consider the following three kinematic cases:
(1) All the ðe−1 ; e−2 ; eþÞ have high transverse momenta,

of order qT ≫
ffiffiffiffiffijtjp
, and the two invariant masses

ðme−
1
eþ ; me−

2
eþÞ are large, of the same order of qT .

This case leads unambiguously to DDVCS, and the
factorization of DVCS can be trivially generalized
here. But one needs to consider both diagrams with
either e−1 or e−2 coming from the decay of the virtual
photon γ�f.

(2) All the ðe−1 ; e−2 ; eþÞ have high transverse momenta,
of order qT ≫

ffiffiffiffiffijtjp
, but one of the invariant lepton-

pair masses, say me−
1
eþ, is much less than qT , and

FIG. 11. Three example diagrams illustrating the soft gluon exchange between the collinear subgraphs along the diffractive hadron and
the final-state meson, for the DGLAP region of the GPD in a simple model theory. The green thin curved lines indicate the soft
momentum flows.

FIG. 12. Factorization of soft gluons from the final-state meson
for the meson production in the SDHEP with an electron beam.

FIG. 13. Factorization for the meson production in the SDHEP
with an electron beam.
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the other pair has a large invariant mass, i.e.,
qT ∼me−

2
eþ ≫ me−

1
eþ . In this case, one can have

(a) ðe−1 ; eþÞ comes from the decay of a low-virtuality
γ�f, and (b) ðe−2 ; eþÞ comes from the decay of a high-
virtuality γ�f. While both correspond to the DDVCS
processes, it is the case (a) with a low-mass electron
pair that contributes at a leading power.

(3) ðe−2 ; eþÞ have high transverse momenta, of order
qT ≫

ffiffiffiffiffijtjp
, and e−1 has a low transverse momentum,

much less than qT . Automatically, we have both
ðme−

1
eþ ; me−

2
eþÞ to be large. This gives two different

cases: (a) e−1 comes from the diffraction of the initial-
state electron, which gives out a quasireal photon γ�ee
that scatters with the diffractive hadron h and
produces a highly virtual photon γ�f that decays into
the ðe−2 ; eþÞ pair; (b) e−2 comes from the hard
scattering of the initial-state electron, whose inter-
action with the diffractive hadron h produces a
highly virtual photon γ�f with a high transverse
momentum, which decays into the ðe−1 ; eþÞ pair.
Now only the case (b) corresponds to the DDVCS
process, and case (a) gives a subprocess of (quasi)
real photon scattering with the hadron, whose
factorization will be proved later in Sec. IVA. While
both subprocesses are factorizable, it is the sub-
process (a) that gives the leading power contribution.

Of course, if the virtual photon γ�f decays into a lepton pair
of other flavors, like a μþμ− pair, then it unambiguously
leads to the DDVCS process and can be factorized in the
same way as the DVCS.
When the γ�f virtualityQ

0 becomes much greater than qT ,
one starts entering the two-scale regime. Whether there will
be large logarithms of Q0=qT that requires a new factori-
zation theorem to be developed is not a trivial problem
based on our analysis so far. We leave that discussion to the
future.
For a heavy quarkonium production, unfortunately, it is

not obvious that the factorization in Sec. III B can be easily
generalized. The key points to the factorization are

(i) there is a pinch singularity that forces a collinear
momentum to have the scaling in Eq. (10), with a
leading component and two smaller components;

(ii) soft gluons can be factorized from the collinear lines.
The exclusive production of a heavy quarkonium naturally
has the most contribution from producing a heavy quark
pair with an invariant massMH ∼ 2mQ, wheremQ ≫ ΛQCD
is the heavy quark mass. Since the corresponding heavy
quark GPD in h − h0 transition is suppressed, we do not
suffer from the extra region like Fig. 10(b). When the
transverse momentum qT of the heavy quarkonium is much
greater than mQ, the heavy quark can be thought of as the
active parton line associated with the observed particleD in
Fig. 10(a), and the heavy quarkonium is attached to the

hard part by a pair of nearly collinear heavy quark lines,
whose momenta scale as

kQ ∼ ðλ2Q; 1; λQÞqT; with λQ ¼ mQ=qT; ð26Þ

when the heavy quarkonium moves along the minus
direction. This pinches the plus momentum components
to be small, and for a soft gluon ks attached to such heavy
quark lines, one may keep only the kþs component, which
allows us to factorize the soft gluon out of the collinear
lines. Hence, for qT ≫ mQ ≫ ΛQCD, one can still factorize
the heavy quarkonium production amplitude into the heavy
quarkonium DA, up to the error of OðmQ=qTÞ. See
Ref. [28] for a similar discussion of the inclusive produc-
tion of a heavy quarkonium.
When mQ ∼ qT ≫ ΛQCD, the error estimated above

becomesOð1Þ, which invalidates the factorization into heavy
quarkonium DA. However, ifMH=2 −mQ ≪ mQ ∼ qT , the
formation of the heavy quarkonium from the produced heavy
quark pairmight be treated in terms of the color singletmodel
[44–46] or the velocity expansion of nonrelativistic QCD
with color singlet long-distance matrix elements [47]. For
this exclusive production, the soft gluon interaction from the
diffractive hadron with the heavy quark pair at qT ∼mQ ≫
ΛQCD is expected to be suppressedbypowers ofmQv=qT ∼ v
with v being the heavy quark velocity in the quarkonium’s
rest frame. More detailed study for the heavy quarkonium
production when qT ≲mQ will be presented in a future
publication.

D. Sensitivity to the x-dependence of GPDs

As explained in the Introduction, the x-dependence of
the GPD is very important while it is generally hard to
extract for the following three reasons:
(1) The factorization formalism is at amplitude level,

and x is the parton loop momentum, whose inte-
gration is always from −1 to 1, and is never pinned
down to a particular value. For example, it is the
integral

IDVCS ¼
Z

1

−1
dx

Fðx; ξ; tÞ
x� ξ ∓ iε

ð27Þ

to be evaluated when we compute the tree-level
contribution to the DVCS scattering amplitude.

(2) The single-photon-mediated n ¼ 1 channel is gen-
erally allowed and its contribution could be more
important than the GPD-sensitive n ¼ 2 subpro-
cesses since the ratio of n ¼ 1 to n ¼ 2 channels
is Q=

ffiffiffiffiffijtjp
power enhanced, even though the former

might be suppressed by more powers of QED
coupling constant. In addition, these two channels
interfere with each other to make the extraction of
GPDs harder.
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(3) For most of the GPD-related processes, the hard
coefficients only depend on x and ξ independently
from the external observables, such that their con-
volution with the GPD only gives “moment-type”
information like Eq. (27).

The last two situations could be improved by identifying
scattering processes that are more sensitive to the
x-dependence of GPDs, whereas nothing can be done to
alter the first dilemma.
For the DVCS or DDVCS, the qT flow between the

observed electron and final-state photon γðq2Þ (or virtual
photon γ�fðq2Þ in the case of DDVCS) goes through the
γ�eeðqÞ and the quark line of momentum q̃ (in red) in Fig. 4
at the leading order. From the invariant mass of the final-
state photon (or the virtual photon),

q22 ¼ ð2ξPþ qÞ2 ¼ ð2ξÞ2P · q −Q2 þOðjtjÞ; ð28Þ

with terms of Oðjtj=Q2Þ neglected, we can express the
invariant mass of the exchanged quark line of momentum q̃
in Fig. 4 as

q̃2 ¼ ððxþ ξÞPþ qÞ2

¼ Q2 þ q22
2ξ

�
x − ξ

�
1 − q22=Q

2

1þ q22=Q
2

��
; ð29Þ

which is proportional to x − ξ when q22 → 0, leading to the
well-known 1=ðx − ξþ iεÞ structure for the leading-order
hard coefficient of DVCS. On the other hand, the leading-
order hard coefficient for DDVCS with q22 ≠ 0 provides a
direct link between the loop momentum fraction x and the
invariant mass of the observed lepton pair q22, as shown in
Eq. (29). It is this connection between x and the externally
measured observable q22 that provides the enhanced sensi-
tivity to the x-dependence of GPDs beyond the moment
type [21].
For the DVMP, the qT flow between the final-state

meson MD and scattered electron goes through the γ�ee as
well as the parton lines, as shown in Fig. 8(b). The hard
coefficient is similar to that of the pion electromagnetic
form factor and only provides a moment-type sensitivity.
In addition, the n ¼ 1 virtual photon γ�-mediated sub-

processes are allowed for DVCS and DDVCS, and they are
at the same perturbative order as the leading n ¼ 2 GPD-
induced channels. For DVMP, only the production of
charge-neutral C-even mesons allows the γ�-mediated
n ¼ 1 channel, which is of higher order in QED coupling
constant comparing to those GPD-sensitive n ¼ 2 chan-
nels. The γ�-mediated channels at the amplitude level
interfere with the GPD-sensitive channels and need to be
carefully treated for extracting the x-dependence of GPDs.

IV. SDHEP WITH A REAL PHOTON BEAM

For single diffractive hard exclusive photoproduction
processes, we have B ¼ γ. The other particles C and D can
be two elementary particles, one elementary particle and
one light meson, or two light mesons. So we consider the
three cases: (1) massive dilepton ðCDÞ ¼ ðlþl−Þ [19,48] or
diphoton ðγγÞ production [23,29,30], (2) real photon and
light meson pair ðCDÞ ¼ ðγMDÞ production [22,24], and
(3) light meson pair ðCDÞ ¼ ðMCMDÞ production [49]. In
this section, we provide the factorization arguments for all
these processes by following the same strategy used for
factorization of the SDHEP with a lepton beam in terms of
the two-stage paradigm, presented in Eqs. (3)–(5).

A. Massive dilepton or diphoton production:
ðCDÞ = ðl + l − Þ or ðγγÞ

Both production processes allow the γ�-mediated n ¼ 1
subprocesses. For the dilepton production, we have the
partonic process γγ� → lþl−, starting at Oðe2Þ in terms of
the QED coupling e, while we have γγ� → γγ for the
diphoton production, starting at Oðe4Þ. Since this γ�-
mediated n ¼ 1 channel has a power enhancement of
OðqT=

ffiffiffiffiffijtjp Þ compared to the n ¼ 2 channel, it cannot
be simply neglected even though its scattering amplitude
might require a higher power in QED coupling. A careful
quantitive comparison in size between γ�-mediated n ¼ 1
and GPD-sensitive n ¼ 2 subprocesses is needed in prac-
tical evaluation.
For n ¼ 2 channel, these two processes share the same

feature as the DVCS, as well as the same leading-region
graphs in Fig. 5 with a proper change of the external lines,
because B, C, and D are all elementary colorless particles.
The argument for factorization into GPDs works in the
same way as for the DVCS in Sec. III A and will not be
repeated here. The process with ðCDÞ ¼ ðlþl−Þ happens by
producing a timelike photon γ0� in the exclusive γh → γ0�h0
process followed by the decay γ0� → lþl−, which is the TCS
process, as shown in Fig. 14(a). For the process with
ðCDÞ ¼ ðγγÞ, all the three photons couple to the quark
lines, as illustrated in Fig. 14(b). In both processes, it is the
high qT that provides the hard scale for factorizability, by
creating high virtualities through the invariant mass of the

FIG. 14. Examples of leading-order diagrams in the GPD
channel for the single diffractive hard exclusive photoproduction
of massive (a) dilepton and (b) diphoton processes.
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virtual photon in the dilepton case or having the qT flow
through the quark lines in the diphoton case.
It is important to note that in general, the requirement of

a high invariant mass for the pair of particles ðCDÞ is not
the same as requiring a hard qT . For the TCS, it is the
invariant mass of the lepton pair mll that provides the hard
scale for the partonic collision, and hence keepingmll large
is sufficient for TCS to be factorized into GPD, indepen-
dent of the magnitude of qT of the observed lepton.
However, a hard qT is needed to guarantee the γ�-mediated
n ¼ 1 subprocess γγ� → lþl− to be a hard scattering
process, as illustrated in Fig. 15(a). If qT is too low, then
this amplitude introduces another enhancement factor of
Oðmll=qTÞ, in addition to themll=

ffiffiffiffiffijtjp
enhancement of the

n ¼ 1 channel, as correctly pointed out in Ref. [19]. Then,
this could allow other subprocesses to happen that may
compete with the TCS subprocess in magnitude. For
example, one may have an n ¼ 2 channel mediated by
f2 ¼ ½γγ�, as shown in Fig. 15(b), which is suppressed by
e2 and one power of

ffiffiffiffiffijtjp
=mll compared to the n ¼ 1

channel, but is still one power Oðmll=qTÞ higher than the
TCS channel. The relative order comparison is then too
complicated to be obvious, and the extraction of GPDs
from the TCS amplitude becomes even harder.
On the other hand, if qT is too low in the diphoton

production process, some quark lines could have low
virtualities of order qT, as the photons could be radiated
from the quark lines (see Fig. 16) almost collinearly,
introducing the long-distance physics into the “hard probe,”
which invalidates our factorization arguments.

B. Real photon and light meson pair production:
ðCDÞ= ðγMDÞ

For ðCDÞ ¼ ðγMDÞ with MD being a light meson, the
n ¼ 1 channel corresponds to the subprocess γ�γ → γMD.
This is forbidden for a charged meson like π�, as
considered in Ref. [24], or for a neutral meson with even
C-parity, like π0, η, etc. In the high-qT scattering, the n ¼ 1
amplitude can be factorized into the DA of MD.

The n ¼ 2 channel has the same color structure as the
DVMP process in Sec. III B, and the leading region is also
as in Fig. 10 just with the proper change of the external
electron lines by photon lines. The argument for factori-
zation then works in the same way as for the DVMP, and is
not to be repeated here. For the same reason as the diphoton
production process in the previous subsection, we empha-
size the necessity of the hard transverse momentum qT ,
which is not equivalent to requiring a large invariant mass
of the γMD pair.

C. Light meson pair production: ðCDÞ= ðMCMDÞ
The single diffractive photoproduction with ðCDÞ ¼

ðMCMDÞ differs from the electroproduction of a light
meson in Sec. III B by having one more hadron in the
final state. This leads to one more collinear subgraph in
another direction but does not make the factorization proof
very different. By focusing on the difference, we will
present the factorization proof as a generalization of that for
the DVMP in Sec. III B, and especially we will make
essential use of the asymmetric contour deformation as
explained there.
The n ¼ 1 channel is given by the subprocess

γ�γ → MCMD, which may or may not happen depending
on the quantum numbers of MC and MD. This was
considered first in Ref. [50] and the time-reversed process
was also studied in Ref. [27]. The amplitude can be
factorized into the DAs of MC and MD, whose discussion
we refer to Ref. [50].
For the n ¼ 2 channel, the leading regions are shown in

Fig. 17 for the 2 → 2 hard exclusive scattering of the
SDHEP in (a) and the full SDHEP in (b), where we
assumed that all lines in the hard part “H” are off shell by
order of the hard scaleQ ∼ qT , which effectively makes the
contribution from attaching soft gluons to H power sup-
pressed. There could be additional leading regions in which
one or more of the collinear subgraph is connected to the
soft subgraph by one quark or transversely polarized gluon
line, while connecting to the hard subgraph by the other
quark or transversely polarized gluon line. Following the
same assumption that such soft end point region is strongly
suppressed by the nonperturbative QCD dynamics from the
meson distribution amplitude, we neglect them and con-
sider only the leading regions in Fig. 17.

FIG. 16. A sample diagram for the photoproduction of diphoton
process at low qT, where the photon q1 is radiated collinearly by
the incoming quark.FIG. 15. (a) The sample diagram for the γ�-mediated channel of

the photoproduction of a massive lepton pair, where the internal
lepton propagator (in red) has a hard virtuality only when qT is
large. (b) At large mll but small qT , the forward scattering
diagrams with two photon exchanges between the diffractive
hadron and the quasireal lepton can become important and
compete with the TCS mechanism in Fig. 14(a).
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1. The 2 → 2 hard exclusive scattering of SDHEP

First, we examine the 2 → 2 hard exclusive scattering of
the SDHEP with a photon beam,

MAðp1Þ þ γðp2Þ → MCðq1Þ þMDðq2Þ; ð30Þ

in the c.m. frame. By generalizing Eq. (17), we introduce
three sets of light-cone vectors,

wμ
A ¼ 1ffiffiffi

2
p ð1; ẑÞ; w̄μ

A ¼ 1ffiffiffi
2

p ð1;−ẑÞ;

wμ
C ¼ 1ffiffiffi

2
p ð1; n̂Þ ¼ w̄μ

D; w̄μ
C ¼ 1ffiffiffi

2
p ð1;−n̂Þ ¼ wμ

D; ð31Þ

where ẑ and n̂ are normalized three-vectors along the
directions of the initial-state meson MA and final-state
meson MC. Basically, wA;C;D are the light-cone vectors
along the directions of meson A,C, andD, respectively, and
the corresponding vectors with bars refer to the conjugate
light-cone vectors along the opposite directions. The
essential point is that any soft gluon momentum ks can
be routed to only flow through two collinear subgraphs. For

this, we introduce the notation kðijÞs to be a soft gluon
momentum that leaves the collinear subgraph i into S, then
into the collinear subgraph j, through the hard subgraph H

and back to i. Apparently, we have kðijÞs ¼ −kðjiÞs , with
i; j ¼ A, C, D and i ≠ j.
When considering the soft gluon momentum kðijÞs , we

expand it in the wi − wj frame as defined in Eq. (18),5

kðijÞs ¼ wi
kðijÞs · wj

wi · wj
þ wj

kðijÞs · wi

wi · wj
þ kðijÞsT ; ð32Þ

where all the three terms on the right are of the same size,
OðλsQÞ. When it flows in the collinear subgraph i, whose

momenta are dominantly along wi, the kðijÞs can be
approximated to only retain the wj component,

kðijÞs ≃ k̂ðijÞs ¼ wj
kðijÞs · wi

wi · wj
: ð33Þ

Moreover, the coupling of this soft gluon to the collinear
subgraph Di can be approximated as

Di
μðki; kðijÞs ÞgμνSνðkðijÞs Þ ≃Di

μðki; k̂ðijÞs Þ k̂
ðijÞμ
s wν

i

kðijÞs · wi

SνðkðijÞs Þ;

ð34Þ

because it is the component g−þ of gμν, which is given by
wμ
jw

ν
i =wi · wj, that provides the dominant contribution. In

Eq. (34), ki stands for some collinear momentum in the
subgraph i. This approximation will allow the use of Ward
identity to factorize the soft gluons out of the collinear
subgraphs.6

While this is a good approximation for the central soft
region, it is not for the Glauber region in which

jkðijÞs · wijjkðijÞs · wjj ≪ jkðijÞsT j2wi · wj: ð35Þ

Now because all the collinear lines in the subgraph i or j

only give poles for kðijÞs · wi or k
ðijÞ
s · wj on the same half

complex plane, the integration contour of kðijÞs is not
pinched in the Glauber region, and a proper deformation
can get it out of the Glauber region. Since we anticipate that
in generalizing the factorization to the diffractive process in

the next subsection, a soft momentum kðAjÞs flowing in the

A-collinear subgraph has its component kðAjÞs · wA trapped
in the Glauber region, we choose not to deform the contour

of kðAjÞs · wA in this 2 → 2 hard exclusive scattering of the
full SDHEP while trying to factorize soft interactions from
other leading collinear subgraphs.
The needed deformations can be motivated by

examining a single soft gluon exchange between different
collinear subgraphs. We first consider the collinear sub-
graph C that has one soft gluon kðCAÞs and kðCDÞ

s exchange
with the A-collinear subgraph and D-collinear subgraph,

FIG. 17. Leading-region graphs for the photoproduction of a
light meson pair. (a) is for the 2 → 2 hard exclusive scattering of
SDHEP, and (b) is for the full SDHEP. There can be any numbers
of soft gluons connecting S to each collinear subgraph. The
regions with S connecting to one or more collinear subgraphs via
quark lines or transversely polarized gluon lines are omitted.
Depending on the quantum numbers, the collinear quark lines
may be replaced by transversely polarized gluon lines. The dots
represent arbitrary numbers of longitudinally polarized collinear
gluons.

5While we may define the plus and minus components in each
wi − wj frame like Eqs. (18)–(20), having multiple such frames
makes the notation cumbersome, so we stick to the covariant
notations.

6We should note that the argument given here is equivalent to
Refs. [39,40] that boost into the rest frame of two collinear
subgraphs. The underlying reason is that any two distinct
collinear subgraphs are well separated in rapidity; in the language
here, it is wi · wj ≃Oð1Þ.
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respectively. Since kðCAÞs flows in C in the same direction as

the C-collinear lines, the poles of kðCAÞs · wC are all on the
lower half complex plane, so we deform the contour of

kðCAÞs by

kðCAÞs → kðCAÞs þ iwAOðQÞ; ð36Þ

when it is in the Glauber region. Similarly, we deform the

contour of kðCDÞ
s by

kðCDÞ
s → kðCDÞ

s þ iwDOðQÞ: ð37Þ

In order for the approximator in Eq. (34) not to obstruct
such deformations, we modify it to

DC
μ ðkC; kðCAÞs ÞgμνSνðkðCAÞs Þ

≃DC
μ ðkC; k̂ðCAÞs Þ k̂ðCAÞμs wν

C

kðCAÞs · wC þ iε
SνðkðCAÞs Þ; ð38aÞ

DC
μ ðkC; kðCDÞ

s ÞgμνSνðkðCDÞ
s Þ

≃DC
μ ðkC; k̂ðCDÞ

s Þ k̂ðCDÞμ
s wν

C

kðCDÞ
s · wC þ iε

SνðkðCDÞ
s Þ; ð38bÞ

where only the relevant arguments are written explicitly.
Both approximations in Eq. (38) have the structure

DC
μ ðkC;ksÞgμνSνðksÞ≃DC

μ ðkC; k̂sÞ
k̂μswν

C

ks ·wCþ iε
SνðksÞ; ð39Þ

where the structure k̂μsDC
μ ðkC; k̂sÞ allows the use of Ward

identity in a uniform way, no matter which other collinear
subgraph ks flows through. The þiε choice will lead to
future-pointing soft Wilson lines.
Now we consider the collinear longitudinally polarized

gluons attaching C to H. Similarly, the approximation can
be obtained by examining a single gluon, whose momen-
tum kC flows from H into C and can be expanded in the
wC-w̄C frame,

kC ¼ wCðkC · w̄CÞ þ w̄CðkC · wCÞ þ kC;T; ð40Þ

where among the three terms on the right, the wC
component dominates and scales as OðQÞ. Then we
approximate kC in H by

kC → k̂C ¼ wCðkC · w̄CÞ; ð41Þ

and the coupling of the collinear gluon to H by

HμðkH; kCÞgμνDC
ν ðkCÞ ≃HμðkH; k̂CÞ

k̂μCw̄
ν
C

kC · w̄C − iε
DC

ν ðkCÞ;

ð42Þ

where only the relevant argument dependence is written
explicitly and kH stands for some hard momentum in H.
The −iε in Eq. (42) is chosen in order to be compatible

with the deformations in Eqs. (36) and (37). Even though we
are approximating the collinear region, which does not suffer
from the Glauber region problem, Eq. (42) is applied to the
whole diagram with deformed contours. Furthermore, the
samegluon kC considered in Eq. (42) can also go into the soft
region, attaching toA- orD-collinear subgraph, forwhichwe

will change the notation kC to kðAÞC or kðDÞ
C ,7 whose con-

tribution has already been included in the soft approxima-
tions defined in Eq. (38). A subtraction is needed from
Eq. (42) to avoid such double counting, which is obtained by
first applying the soft approximation [Eq. (38)] and then
applying the collinear approximation [Eq. (42)]. Since the
subtraction mixes the collinear and soft approximations for
the same gluons, and the latter require deformation of
contours, we do need the iε prescription in Eq. (42) not to
obstruct the contour deformations in Eqs. (36) and (37).
Since we need the deformations

ΔkðAÞC ¼ −iwAOðQÞ; ΔkðDÞ
C ¼ −iwDOðQÞ; ð43Þ

which means that the denominator in Eq. (42) needs to be
compatible with the deformations

ΔkðAÞC · w̄C ¼ −iðwA · w̄CÞOðQÞ ¼ −iOðQÞ;
ΔkðDÞ

C · w̄C ¼ −iðwD · w̄CÞOðQÞ ¼ 0: ð44Þ

This explains the−iε choice inEq. (42). After applyingWard
identity, it leads to collinearWilson lines pointing to the past.
Equations (38) and (42) constitute the needed approx-

imations related to the collinear subgraph C. Even though
we only considered a single soft or collinear gluon
connection, they generalize to multiple gluon connections
in an obvious way: one just applies Eq. (38) to every soft
gluon connecting C to A or D, and (42) to every collinear
longitudinally polarized gluon connecting H to C. Then by
applying suitable on-shell projections to the C-collinear
quark lines or transversely polarized gluon lines, and
summing over all possible attachments of the collinear
gluons, we can factorize the collinear longitudinally polar-
ized gluons out of the hard part H onto two Wilson lines
along w̄C pointing to the past, and the soft gluons out of C
onto two Wilson lines along wC pointing to the future.

7Note that now the soft momentum direction is reversed
compared to the convention of kðCAÞs and kðCDÞ

s , which are used
in Eqs. (36) and (37).

JIAN-WEI QIU and ZHITE YU PHYS. REV. D 107, 014007 (2023)

014007-16



We should note that by choosing lightlike auxiliary
vectors wC in the soft approximation Eq. (38), the resultant
soft factor contains rapidity divergences. This can be
remedied by a different vector nC that differs from wC
by being slightly off light cone, as in Refs. [27,51] for
example, which does not affect the argument. Since the soft
gluons eventually cancel whether we use wC or nC, the
problem of rapidity divergence does not affect our argu-
ment of collinear factorization, and we will simply use the
lightlike vector wC.
The subsequent argument follows the same line of

Ref. [27]. The essence is that the factorized soft Wilson
lines along wC are only coupled to the factorized collinear
subgraph C in colors, but not in momenta and Lorentz
indices. The exclusiveness guarantees that the collinear
factor DC is a color singlet and becomes a meson DA,
which then ensures the cancellation of the soft gluons
coupled to C. This reduces the graph in Fig. 17(a) to the
partly factorized one in Fig. 18(a), in which only the two
collinear subgraphs A and D are coupled to the hard
subgraph H, and the soft subgraph S is only coupled to
A and D subgraphs.
With the C-collinear subgraph factorized out, the leading-

region graph in Fig. 18(a) is similar to that in Fig. 9(a),
whose factorization is shown in Sec. III B 1. Again, in the
treatment of the soft region, one only needs to deform the

contour of soft gluon kðDAÞ
s by

kðDAÞ
s → kðDAÞ

s þ iwAOðQÞ; ð45Þ

regardless of the poles of kðDAÞ
s · wA provided by the

A-collinear propagators. By the same argument as for the
C subgraph, the soft gluons coupling to D are canceled, and
theD subgraph is factorized out ofH into the meson DA for
D. Then the soft gluons are only coupled to the A subgraph
and no longer pinched. They can then be deformed into the
A-collinear region and grouped into a part of A-collinear

subgraph, which can be further factorized from H into the
DA of the A meson.
Finally, the amplitude of the 2 → 2 scattering in Eq. (30)

is factorized as

MMAγ→MCMD
¼
X
i;j;k

Z
1

0

dzAdzCdzDϕi=AðzAÞ

×Ciγ→jkðzA; zC; zD;qTÞϕj=CðzCÞϕk=DðzDÞ;
ð46Þ

where ϕi=AðzAÞ, ϕj=CðzCÞ, and ϕk=DðzDÞ are the DAs
associated with the initial-state meson MA and final-state
mesonsMC andMD, respectively, the i, j, and k run over all
possible parton channels, ½qq̄0� or ½gg�, as well as their spin
structures, and the hard coefficient Ciγ→jk is the scattering
between a photon and parton pair i into two parton pairs j
and k.

2. Production of two high-qT light mesons
in the SDHEP with a photon beam

Extending the factorization of the previous subsection to
the full SDHEP of two high-qT light mesons is trivial. The
only complication arises from the extra DGLAP region in
the single diffractive channel of the hadron h → h0, which
causes the momentum ks of the soft gluon coupling to the
A-collinear subgraph to be pinched in the Glauber region
for its component ks · wA, as explained in Sec. III B 2. The
strategy that we used in the previous subsection for
factorizing the SDHEP’s hard exclusive 2 → 2 scattering
applies here with no change, because we never deformed
the contour of ks · wA when ks flows through the
A-collinear subgraph. The important step of factorizing
the C-collinear subgraph is shown in Fig. 18(b). In the end,
the diffractive amplitude is factorized into the hadron GPD
and meson DAs,

Mð2Þ
hγ→h0MCMD

¼
X
i;j;k

Z
1

−1
dx

Z
1

0

dzCdzDFhh0
i ðx;ξ;tÞ

×Ciγ→jkðx;ξ;zC;zD;qTÞϕj=CðzCÞϕk=DðzDÞ;
ð47Þ

up to 1=qT power suppressed terms, where the symbols
have the same definitions as those in Eq. (46), and the hard
coefficient Ciγ→jkðx; ξ; zC; zD; qTÞ can be calculated in the
same way as that in Eq. (46), just with a proper variable
change zA → zAðx; ξÞ ¼ ðxþ ξÞ=ð2ξÞ as in Ref. [27].

D. Virtual photon or heavy quarkonium production

We have considered the production of real photons from
the SDHEP with a photon beam, like the diphoton
production or photon-meson pair production discussed
above. At leading power, the produced photons in the final

FIG. 18. The factorization of the C-collinear subgraph out of
the hard subgraph H into the C meson DA, and soft gluons out of
the C-collinear subgraph, which results in their cancellation. The
soft subgraph is now only coupled to the D-collinear subgraph
and (a) the effective “meson” state A, or (b) the single diffractive
hadron h → h0.
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state directly couple to the hard interaction.We can also have
any one (or both) of those photons being virtual with an
invariant massQ0, which can vary fromQ0 ≪ qT toQ0 ≲ qT .
For the same reason as stated in Sec. III C, the leading-power
diagrams also have those virtual photons directly coupling to
the hard part. Therefore, factorizationworks in the sameway
as for the real photon cases as long as the virtual photons still
have hard transverse momenta qT . The scale Q of the hard
part now depends on both qT and the photon virtuality Q0,
schematically as Q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2T þQ02p

.
The kinematic signal for the virtual photon is a charged

lepton pair lþl− with a hard total transverse momentum qT .
Depending on the relative size between qT and their
invariant mass mll, the hard scattering amplitudes take
different forms in a way similar to the analysis in Sec. III C.
We leave a detailed study to the future.
While the factorization for real photon production can be

directly generalized to virtual photon production, going
from the light meson production to a heavy quarkonium
production is not so trivial, as explained in Sec. III C. One
situation where one can still factorize the heavy quarko-
nium production into its DA is when qT is much greater
than the heavy quark mass mQ, in which case the error of
the factorization is enhanced from power of ΛQCD=qT to
power of mQ=qT . But the factorizability when qT is of the
same order as mQ needs further study, as in Sec. III C.

E. Sensitivity to the x-dependence of GPDs

As discussed in Sec. III D, to get sensitivity to the
x-dependence of GPDs, we need to find SDHEPs that avoid
the n ¼ 1 channel and have their partonic hard parts to
include the x-dependence that cannot be factorized from the
external observables.
For both the dilepton or diphoton production processes,

one has the n ¼ 1 channel, and the hard coefficient of the
n ¼ 2 channel takes a factorized form [19,23], so that
these processes can only provide moment-type sensitivity,
which is further contaminated by the γ�-mediated n ¼ 1
subprocesses.
For the γ-meson pair production, which is a crossing

process of the meson-production of diphoton process
considered in Ref. [27], we show an example of the
hard-part diagrams in Fig. 19(a). Similar to the type-A
diagrams of the diphoton production process in Ref. [27],
due to the gluon propagator that connects the two fermion
lines, the hard coefficients depend on both x and qT in a
nontrivial way to provide enhanced sensitivity to the
x-dependence of GPDs. Also, by a suitable choice of the
final-state meson species, one can eliminate the n ¼ 1
channel; see the discussion in Sec. IV B.
As for the meson pair production process, the leading-

order ½qq̄0�-channel diagrams of the hard scattering contain
two quark and two gluon propagators, shown in Fig. 19(b)
for example. The gluon propagator with both x and zC

flowing through is exactly the same as that in Fig. 19(a) for
the photon-meson pair production process. For the same
reason, it leads to enhanced sensitivity to the x-dependence
of GPDs.
A more detailed discussion of the sensitivity to GPD

x-dependence will be given later in Sec. VI F, together with
a general criterion for the enhanced sensitivity.

V. SDHEP WITH A MESON BEAM

For theSDHEPwith amesonbeam,wehaveB being some
meson MB, which is usually a pion or kaon. Similar to the
case with a photon beam, we consider three cases for the
particles C and D: (1) massive dilepton ðCDÞ ¼ ðlþl−Þ or
diphoton ðγγÞ production; (2) real photon and light meson
pair ðCDÞ ¼ ðγMDÞ production; and (3) light meson pair
ðCDÞ ¼ ðMCMDÞ production. The dilepton and diphoton
production processes have been studied in Refs. [20,27],
respectively, and their factorizations are similar to theDVMP
process. The processes (2) and (3) have not been considered
in the literature. In this section, we address the factorization
of these processes in the framework of the SDHEPwithin the
two-stage paradigm.

A. Massive dilepton or diphoton production:
ðCDÞ = ðl + l − Þ or ðγγÞ

The SDHEPs of massive dilepton and diphoton produc-
tions are

hðpÞ þMBðp2Þ → h0ðp0Þ þ l−ðq1Þ þ lþðq2Þ; ð48Þ

and

hðpÞ þMBðp2Þ → h0ðp0Þ þ γðq1Þ þ γðq2Þ; ð49Þ

respectively. Both processes have C and D being colorless
elementary particles, and they are similar to the meson
production in the SDHEP with a lepton beam in Sec. III B
and the meson-photon pair production in the SDHEP with a

FIG. 19. Example diagrams of the hard parts for (a) the single
diffractive photoproduction of photon-meson pair, and (b) the
single diffractive photoproduction of meson pair. The parton
momentum flows are indicated by green thin curved arrowed
lines, and the amputated parton lines are indicated in blue.
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photon beam in Sec. IV B, respectively. The difference
comes from switching the final-state meson with the initial-
state lepton or photon. The argument for the factorization
works in essentially the same way, with only a slight
change due to the meson being in the initial state instead of
final state. In reality, only charged light meson beams such
as π� or K� are readily accessible in experiments, so we
will consider only those beams. Then charge conservation
implies a flavor change of the diffractive hadron, i.e.,
h0 ≠ h, which forbids the γ�-mediated n ¼ 1 channel.
Therefore, the leading-power contributions to the ampli-
tudes in Eqs. (48) and (49) start with the n ¼ 2 channels,
which are factorized into the GPDs associated with the
hadron transition h → h0, as in [20,27].
For the process in Eq. (48), at the lowest order in QED,

the high-qT lepton pair is produced via a timelike photon γ�ll
with a high virtuality Q ∼OðqTÞ, when it is sufficiently
away from the resonance region of a heavy quarkonium. It
is this highly virtual photon that couples directly to the
parton lines from the h −MB interaction, whose virtuality
Q provides the hard scale that localizes the parton inter-
actions. This is sufficient for the factorization argument.
Furthermore, due to the lack of γ�-mediated n ¼ 1 sub-
process, the requirement of the high invariant mass for the
lepton-pair is a sufficient condition for factorization,
allowing us to release the high qT requirement, which is
contrary to the requirement for the lepton-pair production
in the SDHEP with a photon beam, as discussed in
Sec. IVA.
In contrast, the process in Eq. (49) has the two final-state

photons directly couple to the parton lines, and the hard
scale is solely provided by their high transverse momentum
qT , which is both the sufficient and necessary condition for
collinear factorization. In the low-qT regime, one starts to
have two widely separated scales in the same process,
q2T ≪ ŝ ¼ ðp − p0 þ p2Þ2, just as the photoproduction of
diphoton process in Sec. IVA, the factorization for which
needs further study.

B. Real photon and light meson pair production:
ðCDÞ= ðγMDÞ

Now we consider the process

hðpÞ þMBðp2Þ → h0ðp0Þ þ γðq1Þ þMDðq2Þ; ð50Þ

which differs from the photoproduction of a meson pair
process in Sec. IV C by switching the initial-state photon
with one of the final-state mesons. The n ¼ 1 channel
corresponds to the subprocess γ�ðp1Þ þMBðp2Þ → γðq1Þþ
MDðq2Þ, which is the crossing process of meson pair
production process in Ref. [50] or the meson-meson anni-
hilation process in Ref. [27]. Depending on the quantum
numbers of MB and MD, this channel may or may not be
present. The amplitude can be factorized into the DAs ofMB

andMD, which can be easily generalized from the treatment
in Ref. [27].
The amplitude of n ¼ 2 channel can be factorized into a

GPD and two DAs, whose proof can be adapted from
Sec. IV C with straightforward modifications: one can first
factorize the D-collinear subgraph and the soft gluons
attached to it, and then do the same thing for B, which is
sufficient to complete the proof.

C. Light meson pair production: ðCDÞ= ðMCMDÞ
Now we consider the process

hðpÞ þMBðp2Þ → h0ðp0Þ þMCðq1Þ þMDðq2Þ; ð51Þ

whose corresponding 2 → 2 hard scattering is

MAðp1Þ þMBðp2Þ → MCðq1Þ þMDðq2Þ: ð52Þ

The n ¼ 1 channel, γ�ðp1ÞþMBðp2Þ→MCðq1ÞþMDðq2Þ,
which may or may not contribute depending on the
quantum numbers, can be analyzed in the same way that
was used for analyzing the 2 → 2 hard exclusive scattering
of the meson pair production in the SDHEP with a photon
beam in Sec. IV C 1. The n ¼ 2 channel has leading
regions shown in Fig. 20, under the assumptions of strong
soft-end suppression and a single hard scattering in which
all the parton lines are off shell by the hard scale. Compared
to the meson pair photoproduction process in Sec. IV C,
there is one more collinear subgraph in the initial state, and
factorization works with a simple generalization. In both
Figs. 20(a) and 20(b) one does not deform the contours of
soft gluon momenta ks for their components ks · wA when
they flow in the A-collinear subgraph. We first factorize C,
D, and B fromH sequentially, together with the soft gluons
attached to them, and then group the soft gluons into the
A-collinear subgraph to complete the proof in a way similar
to what we did in Sec. IV C. Consequently, the amplitude of

FIG. 20. Leading-region graphs for the meson-production of
two mesons for (a) the corresponding 2 → 2 hard exclusive
scattering [Eq. (52)], and (b) the full SDHEP [Eq. (51)]. There
can be any numbers of soft gluons connecting S to each collinear
subgraph. Depending on the quantum numbers, the quark lines
may be replaced by transversely polarized gluon lines. The dots
represent arbitrary numbers of longitudinally polarized collinear
gluons.
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the diffractive process in Eq. (51) can be factorized into the
GPD and DAs,

Mð2Þ
hMB→h0MCMD

¼
X
i;j;k;l

Z
1

−1
dx

Z
1

0

dzBdzCdzD

× Fhh0
i ðx; ξ; tÞϕj=BðzBÞ

× Cij→klðx; ξ; zB; zC; zD; qTÞ
× ϕk=CðzCÞϕl=DðzDÞ; ð53Þ

up to 1=qT power suppressed terms, where the symbols
have the same definitions as those in Eq. (46), and the hard
coefficient Cij→klðx; ξ; zB; zC; zD; qTÞ can be calculated as
the scattering of two collinear parton pairs i and j into
another two pairs k and l.

D. Virtual photon or heavy quarkonium production

For similar reasons as in Secs. III C and IV D, factori-
zation for the diphoton production holds when one of the
final-state real photons is changed to a virtual photon,
which then decays into a charged lepton pair, whose total
transverse momentum is balanced by the other observed
real photon. Similar factorization applies to the case when
both photons are virtual and decay into lepton pairs.
However, it would be an experimental challenge to deter-
mine which pair of leptons comes from the same virtual
photon.
On the other hand, if the real photon in the photon-meson

pair production is changed to a virtual photon, the kin-
ematic signal is lþl−MD in the final state, which has no
mixed microscopic subprocesses and whose factorization is
easily generalized. However, as discussed in Secs. III C and
IV D, the heavy quarkonium production is not straightfor-
wardly adapted while the qT ≫ mQ case is still factorizable
into a heavy quarkonium DA.

E. Sensitivity to the x-dependence of GPDs

For the dilepton production process, the hard scale qT is
not generated from the interaction with the partons, but
instead, via the decay of a virtual photon of invariant mass
Q ≥ 2qT which couples to the parton lines via a single
vertex. The hard scale Q thus interferes with the parton
momentum flows via a pointlike interaction. Hence, in the
hard coefficient, the x-dependence factorizes from the qT
dependence, which leads to the moment-type sensitivity
[20]. In contrast, for the diphoton production process, the
hard scale qT is generated from the parton interactions, and
the qT and parton momentum x have to flow through the
same gluon propagator in a way that they cannot be
disentangled [27]. The process can thus provide enhanced
sensitivity to the x-dependence of GPDs.
In addition, by choosing a charged meson beam, we can

eliminate the γ�-mediated subprocesses for the dilepton or
diphoton production processes.

For the photon-meson or meson-meson pair production,
which have not been studied in the literature, we expect a
similar kind of enhanced sensitivity to the x-dependence of
GPDs like the diphoton production processes.

VI. DISCUSSION

In this section, we give a few general remarks on the
properties of SDHEPs, and their factorizability and sensi-
tivities for extracting GPDs.

A. Two-stage paradigm and factorization

We have presented the arguments to prove the factori-
zation of SDHEPs with different colliding beams and
different types of final-state particles. Our proofs follow
a unified two-stage approach by taking advantage of the
unique feature of SDHEPs, which can be effectively
separated into two stages, as specified in Eqs. (3) and
(4). By requiring qT ≫

ffiffiffiffiffijtjp
, we effectively force the

exchanged state A� between the single diffractive transition
of h → h0 and the hard exclusive 2 → 2 scattering to be a
low-mass and long-lived state in comparison to the time-
scale ∼Oð1=qTÞ of the hard exclusive process, and effec-
tively reduce the SDHEP into two stages: single
diffractiveþ hard exclusive with the quantum interference
between these two subprocesses suppressed by powers offfiffiffiffiffijtjp

=qT . As emphasized earlier, requiring large transverse
momenta for the final-state particles C and D is not
equivalent to requiring a large invariant mass of them,
mCD ≫

ffiffiffiffiffijtjp
; the latter does not necessarily guarantee a

hard collision.
This two-stage paradigm gives a unified picture for the

microscopicmechanism of the SDHEPs, described in Eq. (5)
and Fig. 2. It accounts for the γ�-mediated n ¼ 1 channel in a
coherent framework, which is usually regarded as a “by-
product” of the GPD channel in the literature and can be
easily forgotten butwhich is in fact one power higher than the
GPD channel and should be incorporated unless it is
forbidden by some quantum number conservation.
Furthermore, this two-stage paradigm leads to a simple

methodology for proving factorization of the SDHEPs in
Eq. (1), in particular, for the n ¼ 2 channel. By treating the
long-lived exchanged state A� as a “meson” capturing
the quantum number of h → h0 transition, we make the
corresponding scattering A� þ B → CþD effectively a
2 → 2 exclusive process with a single hard scale, whose
factorization is relatively easier to prove. In this way, the
factorization proof of the SDHEP can focus on its
differences from the 2 → 2 hard exclusive process.
The only difference between the factorization of the

2 → 2 hard exclusive process and the full SDHEP is that
the GPD channel supports both ERBL and DGLAP
regions, and a Glauber pinch can exist for the DGLAP
region. However, since we only have one diffractive
hadron, only one component ks · wA of the soft gluon
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momentum ks is pinched in the Glauber region. The
factorizability of the corresponding 2 → 2 exclusive proc-
ess implies that soft gluons coupling to B, C, and/or D are
canceled, which applies equally to the situation of
SDHEPs. The rest of the soft gluons only couple to the
diffracted hadron and can be grouped into the collinear
subgraph of the diffractive hadron h → h0; see Fig. 21 as an
illustration. The factorization of soft gluons leads to the
independence among different collinear subgraphs, and
help to establish the factorization of the collinear subgraph
of the diffractive hadron into a universal GPD, and the other
collinear subgraphs into universal meson DAs.

B. Assumptions for the exclusive factorization

As discussed in Ref. [27], the keys to collinear factori-
zation are the cancellation of soft subgraphs that connect to
different collinear subgraphs and the factorization of all
collinear subgraphs from the infrared-safe short-distance
hard part.
The first assumption that we made is that the leading

active quark lines or transversely polarized gluon lines from
the mesons must be coupled to the hard interaction, but not
to the soft subgraph, for which we effectively assume that
we could get an additional suppression from the expected
end point behavior of meson wave function, when one of
the active quarks (or gluons) has a soft momentum, which
we have referred to as the soft-end suppression. The result
of this assumption is that, to the leading power, the soft
subgraph is only connected to collinear subgraphs by gluon
lines that are longitudinally polarized, for which Ward
identity can be applied to factorize them onto Wilson lines.
The soft Wilson lines are only connected to the rest of the
graph by colors, and can be disentangled and factorized
from the collinear subgraphs because the collinear sub-
graphs are in color singlet states, which is an important
feature of exclusive processes. Consequently, the soft
cancellation for the factorization of SDHEPs is very
different from typical soft cancellation for the factorization
of inclusive processes [52].
Another consequence of the soft-end suppression is that

we are allowed to constrain the light-cone parton momenta
of the mesons on the real axis and arrive at a definition of

meson DA, ϕðzÞ with 0 < z < 1, as argued at the end of
Sec. III A.
This assumption was also applied to the most factoriza-

tions of exclusive processes involving high-momentum
mesons, notably for the pion form factor and large-angle
production processes; see the review [53]. Even though the
soft-end region was conjectured to be Sudakov suppressed
in [53], which is more than the power suppression taken as
our assumption, a more extensive discussion on this issue is
still lacking in the literature. We wish to come back to this
in the future.
The second assumption that we implicitly made is that

there is only one single hard interaction in which all the
parton lines are effectively off shell by the hard scale. This
applies especially to the meson-production of a meson pair
process in Sec. V C. It is well known that the exclusive
hadron-hadron scattering into large-angle hadrons can
happen via multiple hard interactions, which has an
enhanced power counting with respect to the single hard
interaction [54,55]. We have shown the factorization for the
hard exclusive 2 → 2 meson-meson scattering and the
corresponding SDHEP with a meson beam for the single
hard interaction case. Within the two-stage paradigm, it is
unclear to us whether the factorization of the large-angle
meson-meson scattering via multiple hard interactions can
imply a corresponding factorization for the SDHEP with a
meson beam; we leave that for future study.
One may also consider representing A� as a sum over

virtual hadronic states, instead of the expansion in terms of
partonic states like ½qq̄0� and ½gg�. However, the exchanged
state A� in the SDHEP enters a hard collision, which has a
resolution scale 1=Q much smaller than the typical had-
ronic scale, and therefore it is the partonic degrees of
freedom inside the virtual hadronic state or the diffractive
hadron that are probed. For example, the leading-power
contribution from a virtual hadronic state should also be
mediated by two active parton lines, just as in Figs. 6, 9(a),
17(a), and 20(a), along with the same short-distance hard
part as the n ¼ 2 partonic channel in connection with
GPDs. In principle, to this power, one should add all the
two-parton-mediated contributions from all possible virtual
hadronic states of the same diffractive hadron, which could
possibly recover the full contributions from the correspond-
ing GPDs of the same hadron, but, only from their ERBL
region. GPDs also contain the DGLAP region, which
cannot be covered by the subprocesses mediated by virtual
hadronic states. The approach of taking out a virtual meson
A� from the h → h0 transition, described by some form
factor FA

h→h0 ðtÞ, followed by extracting two parton lines via
its distribution amplitude, should also be captured by the
GPD of h → h0 transition in a more general sense. The
choice to represent A� by a single virtual meson state, like
the Sullivan process, is therefore an additional approxima-
tion. On the other hand, the expansion in terms of the
number of partons, n, is an expansion in powers of 1=Q.

FIG. 21. The result of soft cancellation in the diagram Fig. 1(b).
The cancellation of the soft gluons in the 2 → 2 hard exclusive
scattering implies the same cancellation of the soft gluons that
couple to B, C, and/or D.
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C. Why single diffractive?

From the procedure for proving factorization in the two-
stage paradigm, it is easy to understand the importance of
the single diffraction for factorizability of the exclusive
process. The whole difficulty from the diffraction is the
DGLAP region that pinches one component of the soft
gluon momentum in the Glauber region, and we get away
with it by only deforming the other components associated
with other mesons. After factorizing out all the other
mesons, the rest of the soft gluons are only coupled to
the diffracted hadron and can be grouped together into this
hadron’s GPDs.
If we consider the double diffractive process, as shown in

Fig. 22, the soft gluon ks exchanged between the remnants
along opposite directions is pinched in the Glauber region
for both kþs and k−s , and thus no deformation can be done to
get it out. As a result, this process cannot be factorized,
even if we do have a hard scale provided by the transverse
momentum qT of the final-state photon pair.
Similar conclusion holds for the inclusive diffractive

processes [56,57]. The observation of the diffracted hadron
anchors the inclusive sum over the final state and forbids
the use of unitarity to cancel the Glauber gluon exchanges.
While the soft gluon momentum can be deformed out of
the Glauber region for single diffractive inclusive
processes [57], in a similar way to the exclusive processes
discussed in this paper, it does not work for inclusive
diffractive hadron-hadron scattering [56,58–62].
This phenomenon is very similar to the factorization of

Drell-Yan process at high twists [63,64], where the hadron
connected by more than two active partons to the hard part
is analogous to the diffracted hadron here. Even though the
extra transversely polarized gluon lines at a high twist may
be confused by soft gluons and endangers factorization, this
is still factorizable as one can first factorize soft gluons out
of the other hadron at the leading twist, similar to the
procedure for the single diffractive process here that we
first factorize the soft gluons out of the other mesons. This
can only be done at the first subleading twist for which one
of the two hadrons still has a twist-2 PDF involved, and so
the Drell-Yan process is not factorizable beyond the first

nonvanishing subleading twist, similar to the nonfactoriz-
ability of double diffractive processes.

D. Comparison to high-twist inclusive processes

The factorization of exclusive processes at the amplitude
level shares many common features with the inclusive
process factorization at a high twist. Taking the leading-
order DVCS amplitude as an example, we show the
amplitude square as a cut diagram in Fig. 23(a), which
is compared with one of the leading-order diagrams of the
inclusive DIS at twist-4 in Fig. 23(b). They only differ in
that the cut line for the DVCS forces an exclusive final
state. Both diagrams have two collinear parton lines
connecting the hadron-collinear subgraph to the hard part,
in both the amplitude to the left of the cut and conjugate
amplitude to the right. In this sense, the DVCS amplitude
squared corresponds to a twist-4 contribution to the cross
section of the real photon electroproduction process. On the
other hand, the amplitude squared of the n ¼ 1 channel for
the γ�-mediated subprocess corresponds to a twist-2 con-
tribution [see Fig. 24(a)], and the interference between the
n ¼ 1 and n ¼ 2 channels corresponds to a twist-3 con-
tribution [see Fig. 24(b)].
In the DVCS amplitude in Fig. 23(a), the two partons

carry momenta ðx1 þ ξÞPþ and ðx1 − ξÞPþ (following the
directions indicated by the curved arrow), with x1 inte-
grated in ½−1; 1�. In its conjugate amplitude, the two partons
carry momenta ðx2 � ξÞPþ with x2 integrated in the same
range. Similarly, for the twist-4 DIS diagram in Fig. 23(b),

FIG. 22. Diphoton production in a double diffractive hard
exclusive scattering process between two head-on hadrons N1

and N2 along the z axis.

FIG. 23. Sample leading-order cut diagrams for (a) DVCS
amplitude squared and (b) inclusive DIS cross section at twist-4.
The red thick lines indicate the hard parts, and the blue lines are
collinear partons.

FIG. 24. Sample cut diagrams of the amplitude squared of the
real photon electroproduction process for (a) the γ�-mediated
channel, and (b) the interference between the γ�-mediated
channel and GPD channel. The red thick lines indicate the hard
parts, and the blue lines are collinear partons or photons.
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the amplitude part has two collinear partons with momenta
ðxþ x1Þpþ and x1pþ, with x1 integrated in ½−1; 1 − x�. The
conjugate amplitude part has two collinear partons with
momenta ðxþ x2Þpþ and x2pþ, with x2 integrated in the
same range. In both cases, the x1 and x2 integrations are not
related and to be integrated independently. Only the total
momentum of the two partons, which is 2ξPþ for the
DVCS and xpþ for the twist-4 DIS, is observable, whose
dependence is probed by the experiment.
On the other hand, there are soft breakpoint poles of x1

(or x2), given by the situations when one of the two partons
has zero momentum, which is x1 ¼ �ξ for DVCS and
x1 ¼ 0 or −x for twist-4 DIS. However, those poles are not
pinched and they happen at the middle part of the x1
integration range. As a result, we can deform the contour of
x1 to avoid them, just as discussed around Eq. (15). This
situation is contrary to the DA factorization, for which the
soft poles happen at the end points of the DA integration
and cannot be deformed away, which requires us to make
the soft-end suppression assumption in Sec. VI B.

E. Angular correlation

By the two-stage paradigm, the most natural frame for
the study of the SDHEP is the c.m. frame of the A� and B
with A� along the z axis, which is shown in Fig. 25, where
the diffraction process [Eq. (3)] happens in the blue plane,
and the hard scattering process [Eq. (4)] happens in the
orange plane. The x axis lies on the diffraction plane and
points to the same direction as p1T ¼ ΔT ≡ pT − p0T in the
lab frame, as shown in Fig. 25. This frame can be obtained
from the lab frame, the c.m. frame of the colliding beams of
h and B, by boosting along −p0, as defined in Ref. [19].

Each event of SDHEP can be described by five inde-
pendent kinematic variables: the transverse momentum qT
(or equivalently, its polar angle θ) of one of the two back-
to-back final-state particles (C or D) in their c.m. frame,
which is our hard scale, the azimuthal angle variable ϕ of
this particle in the same frame, which is directly connected
to the angle between the diffractive plane and the scattering
plane, the c.m. energy squared ŝ of the hard collision
between A� and B, and the transverse momentum shift ΔT
of the diffracted hadron in the lab frame. They can be
equivalently transformed into ðθ;ϕ; ξ; t;ϕΔÞ, where ϕΔ is
the azimuthal angle of ΔT in the lab frame. The distribution
of ϕΔ is determined by the diffraction process, in particular,
by the spin state of the initial state hadron h.
The angle ϕ describes the angular correlation between

the diffraction and the hard collision. Its distribution is
solely determined by the spin states of A� and B. If we
denote the helicities of A� and B by λA and λB, respectively,
then the ϕ dependence of the hard scattering amplitude is
captured by a phase factor

eiðλA−λBÞϕ: ð54Þ

For the n ¼ 1 channel, A� ¼ γ� has three helicity states
ðþ1; 0;−1Þ. For the n ¼ 2 channel, the quark GPDs have
three possible helicities λqA ¼ 0 or �1, where λqA ¼ 0 has
two independent contributions from the unpolarized and
polarized GPDs, while λqA ¼ �1 is given by the two
transversity GPDs. Similarly, the gluon GPDs also have
three helicities λgA ¼ 0 or �2, with λgA ¼ 0 receiving
contributions from both the unpolarized and polarized
GPDs and λgA ¼ �2 from the two transversity GPDs.
The interference between ðλA; λBÞ and ðλ0A; λ0BÞ leads to

the azimuthal correlations

cosðΔλA − ΔλBÞϕ; and=or sinðΔλA − ΔλBÞϕ; ð55Þ

depending on details of the interaction, where ΔλA;B ¼
λA;B − λ0A;B. Extracting different trigonometric components
of the azimuthal distribution is a great way to disentangle
different GPD contributions, in a way similar to using the
angular modulations in the semi-inclusive DIS to extract
different transverse momentum dependent PDFs, or TMDs
[65]. Similarly, the angular distribution of the lepton pair in
the Drell-Yan process [66] was studied to capture richer
structures of QCD dynamics than the production rate alone.
Because of the exclusive nature, the SDHEP cross section
can receive contributions from the interferences among any
two of A� ¼ γ�; ½qq̄0� and ½gg� channels as well as their
different polarization states.

F. Sensitivity to x-dependence of GPDs

We are considering the sensitivity to the x-dependence
of GPDs from the tree-level hard part Cðx;QÞ, where
Q is the external observable not associated with the

FIG. 25. The frame to study the SDHEP is the c.m. frame of A�
and B. F denotes the (nonperturbative) diffraction process
h → h0 þ A�, which happens in the blue plane (“diffraction
plane”), and H denotes the hard interaction between A� and B
to produce C and D, which happens in the orange plane
(“scattering plane”). The two planes form an angle of ϕ and
intersect at the collision axis between A� and B, which is chosen
as the z axis. ΔT denotes the transverse momentum of A� in the
lab frame, along which the x axis is chosen.
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diffractive hadron.8 As discussed in the previous sections,
we consider the two types of sensitivity:

(I) Moment-type sensitivity: Cðx;QÞ factorizes into an
x-dependent part and Q-dependent part,

Cðx;QÞ ¼ GðxÞTðQÞ: ð56Þ

In this case, the measurement of the Q distribution,
which is fully captured by the predictable TðQÞ,
does not help in probing the x-dependence of GPDs,
and all the sensitivity is in the moment-type quantity

Z
1

−1
dxGðxÞFðx; ξ; tÞ: ð57Þ

We call a process with only moment-type sensitivity
a type-I process.

(II) Enhanced sensitivity: Cðx;QÞ does not factorize, in
the sense of Eq. (56). Then, the distribution of Q
depends on the detailed x distribution in the GPD. To
some extent, Q is the “conjugate variable” of x, and
they are related in the amplitude

MðQÞ ∼
Z

1

−1
dxCðx;QÞFðx; ξ; tÞ ð58Þ

through the transformation kernel Cðx;QÞ, which is,
in general, not invertible, of course. We call a
process with enhanced sensitivity a type-II process.

Only having moment-type sensitivity is far from enough,
even with next-to-leading-order hard coefficients and
evolution effects included [67], as also confirmed in
practical fits of GPDs [68–71]. Given the complicated
functional dependence of the GPD on x plus its entangle-
ment with ξ and t variables, one should have as much
enhanced sensitivity as possible while having as many
independent moment constraints. Among the processes that
have been studied in the literature, only the DDVCS [21],
photoproduction of photon-meson pair [22,24], and meson-
production of diphoton [27] processes are type-II proc-
esses, and all the other processes [15–20,23] belong to
type I.
A careful examination of the denominator structure of

the leading-order hard part of the partonic scattering can
help understand and identify the difference in the
x-sensitivity from these two types of processes. The
type-I processes have one common feature that every
internal propagator can be made to have one end connect
to two on-shell massless external lines, whether the external
line is an amputated parton line or a real massless particle.
Take the photoproduction of diphoton process, with one of

its hard scattering diagrams in Fig. 26(a), as an example, the
propagator of momentum l1 is connected to an amputated
parton line of on-shell momentum k ¼ ðxþ ξÞP̂ and the
incoming photon line of momentum p2, while the propa-
gator of momentum l2 is connected to an amputated parton
line of momentum k0 ¼ ðx − ξÞP̂ and the outgoing photon
line of momentum q2. In the c.m. frame of the hard
exclusive collision as defined in Fig. 25, we have

P̂μ ¼ ðPþ; 0−; 0TÞ; pμ
2 ¼ ð0þ; p−

2 ; 0TÞ;
Δþ ¼ pþ

1 ¼ 2ξPþ ¼ p−
2 ¼

ffiffiffiffiffiffiffi
ŝ=2

p
; ð59Þ

and the final-state momenta q1 and q2, which define the
hard scale qT ,

qμ1 ¼
ffiffiffî
s

p

2
ð1; nÞ

¼
� ffiffiffî

s
2

r
1þ cos θ

2
;

ffiffiffî
s
2

r
1 − cos θ

2
; qT

�
;

qμ2 ¼
ffiffiffî
s

p

2
ð1;−nÞ

¼
� ffiffiffî

s
2

r
1 − cos θ

2
;

ffiffiffî
s
2

r
1þ cos θ

2
;−qT

�
; ð60Þ

where we present them first in terms of Cartesian coor-
dinates with n being a unit spatial vector defined as q⃗1=jq⃗1j
and then in light-front coordinates, and we also introduced
the polar angle θ to represent qTð¼

ffiffiffî
s

p
sin θ=2Þ. With all

external momenta defined in Eqs. (59) and (60), we can
express the virtuality of the internal momentum l1 as

l21 ¼ 2k · p2 ¼ 2ðxþ ξÞP̂ · p2 ¼
xþ ξ

2ξ
ŝ≡ xξŝ; ð61Þ

where xξ ¼ ðxþ ξÞ=2ξ is the same as the z1 variable
defined in Eq. (3.16) of Ref. [27]. Similarly, we have the
virtuality of the other internal momentum l2 as

l22 ¼ 2k0 · q2 ¼ 2ðx − ξÞP̂ · q2 ¼ x0ξ · cos
2ðθ=2Þŝ; ð62Þ

FIG. 26. Sample diagrams for the hard scattering of the single
diffractive (a) photoproduction of diphoton process, and (b) pho-
toproduction of photon-meson pair process. The red thick lines
indicate the propagators in the hard part, and the blue lines are
amputated parton lines that are put on shell and massless.

8Even though the GPD variable ξ is also in the hard coefficient
C and is directly observable from the diffracted hadron momen-
tum, we do not consider it to be included in Q, but instead it
always comes with x and is suppressed in Cðx;QÞ.
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where x0ξ ¼ ðx − ξÞ=2ξ ¼ xξ − 1. And then the hard coef-
ficient of the diagram Fig. 26(a) takes a factorized form,

Cðx; ξ; cos θÞ ∝ 1

ðl21 þ iεÞðl22 þ iεÞ

∝
�

1

ðxξ þ iεÞðx0ξ þ iεÞ
�
·

1

cos2ðθ=2Þ ; ð63Þ

in which the dependence on θ (or equivalently, qT) is
factorized from the momentum fraction x of the relative
momentum of the active ½qq̄� pair. This is an immediate
consequence of having the internal propagator directly
connected to two external on-shell massless particles.
Generally, as a result of connecting to two on-shell massless
lines with momenta e1 and e2, the virtuality of the internal
propagator is just a product e1 · e2, which simply factorizes
into a GPD-x (or DA-z) dependent factor and a factor that
depends on the external observable such as θ in Eq. (62).
This example also indicates that the poles of x take place at
xξ ¼ 0 or x0ξ ¼ 0, that is, x ¼ �ξ, which are at the boundary
points between the DGLAP and ERBL regions.
In contrast, a type-II process has at least one internal line

in the hard part that cannot be made to have either end
connect to two on-shell massless lines. We take the
photoproduction of a photon-meson pair process as an
example, for which one hard scattering diagram is shown in
Fig. 26(b). The kinematics is the same as in Eqs. (59) and
(60), and two of the propagators, l1 and l2, are the same as
the previous diphoton production example, given in
Eqs. (61) and (62).
However, the gluon propagator q is connected to l1 on

one end and to l2 one the other end, both of which are not
on shell. Letting the outgoing quark line along q1 have its
momentum zq1, we have the gluon momentum,

q ¼ kþ p2 − zq1 ¼ ðxþ ξÞP̂þ p2 − zq1; ð64Þ

which has the virtuality

q2 ¼ ŝ½xξð1 − z sin2ðθ=2ÞÞ − z cos2ðθ=2Þ�: ð65Þ

This leads to a hard coefficient that does not take a simple
factorized form to separate the ðxξ; zÞ dependence from the
observable θ, and therefore the distribution of θ contains
extra sensitivity to the shape of x and z in the GPD and DA,
respectively.
Compared to Eq. (63), the gluon propagator in Eq. (65)

leads to some new poles of x at

xξ ¼
z cos2ðθ=2Þ

1 − z sin2ðθ=2Þ ∈ ½0; 1�; for z ∈ ½0; 1�; ð66Þ

which corresponds to x ∈ ½−ξ; ξ�, and thus lies in the ERBL
region. These are not pinched poles, so do not pose any

theoretical obstacles, but are just the regions where we need
to deform the contour of x to avoid them.
Similarly, in Fig. 26(a), if we make the photon q2 virtual

in the diphoton production process, the photon momenta in
Eq. (60) will become

qμ1 ¼
ffiffiffî
s

p

2
ð1 − ζÞð1; nÞ;

qμ2 ¼
ffiffiffî
s

p

2
ð1þ ζ;−ð1 − ζÞnÞ; ð67Þ

where ζ ¼ Q02=ŝ with Q02 ¼ q22 being the virtuality of the
photon q2 that decays into a lepton pair. Then the
propagator l2 becomes

l22 ¼ ŝfx0ξcos2ðθ=2Þ þ ζ½1þ x0ξsin
2ðθ=2Þ�g; ð68Þ

which differs from Eq. (62) by having an additional term
proportional to ζ that introduces an extra scale dependence.
By varying ζ and θ, one can get extra sensitivity to the x-
dependence of the GPD. This is the same mechanism that
gives the enhanced x-sensitivity as the DDVCS process
[21] which we discussed around Eq. (29). This propagator
[Eq. (68)] leads to a new pole of x at

x0ξ ¼
−ζ

cos2ðθ=2Þ þ ζ sin2ðθ=2Þ ∈ ½−1;−ζ�; for θ ∈ ½0; π�;

ð69Þ

that is x ∈ ½−ξ; ð1 − 2ζÞξ� ⊂ ½−ξ; ξ�, which is again inside
the ERBL region.
By comparison, the type-I processes are usually topo-

logically or kinematically simpler than the type-II proc-
esses, so their theoretical analysis and hard coefficient
calculations are usually easier. The type-II processes
introduce enhanced sensitivity to the x dependence by
having extra scale dependence that entangles with the x
flow. For the two type-II examples we have just examined,
the photon-meson pair production process differs from the
DVMP process by having one extra photon attaching to the
active parton lines, while the virtual photon production
process differs from the real photon production process by
having an extra scale Q0 which is in turn achieved by
having that photon decay into two leptons. In general, extra
scale dependence is introduced by more complicated top-
ology,9 which is usually the necessary condition for
enhanced sensitivity.
One important role that the SDHEP plays is that it sets a

template for listing a number of processes, which we have
categorized according to the beam types. We have shown

9Here, we consider virtual or massive particles as having more
complicated topology than real massless particles, even in the
case when the mass scale is not associated with virtual particle
decay.
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the proof of factorization in a general sense. Within this
framework, one shall study as many independent processes
as possible, which should in turn constrain the x depend-
ence of GPDs as much as possible.

VII. SUMMARY AND OUTLOOK

GPDs are important and fundamental nonperturbative
parton correlation functions in QCD, and carry rich
information on the spatial distributions of quarks and
gluons in a confined hadron, which could provide the
unprecedented and much needed information to uncover
the mystery of QCD tomography. The knowledge of GPDs
can help answer many unknown questions surrounding
QCD and strong interaction physics.
In this paper, we proposed a general type of exclusive

processes to help extract GPDs from experimental mea-
surements, referred to as the SDHEPs. The SDHEP keeps
intact the hadron to be studied, and has it undergo a
diffraction from momentum p to p0, as specified in Eq. (3),
which is characterized by a large momentum transfer Δ ¼
p − p0 with a small invariant mass

ffiffiffiffiffi
−t

p ¼
ffiffiffiffiffiffiffiffiffi
−Δ2

p
. On the

one hand, the large momentum transfer guarantees a high-
energy exclusive scattering with the colliding beam of
leptons, photons, or mesons to produce two back-to-back
particles with large transverse momenta qT , as defined in
Eq. (4). On the other hand, the small invariant mass

ffiffiffiffiffijtjp
ensures that the exchanged state A� is so long lived that the
“hard probe”—the 2 → 2 hard exclusive process does not
alter the internal structure and properties of the diffracted
hadron, which are quantified by the factorized GPDs.
In this way, the SDHEP is a generic 2 → 3 exclusive

process with two distinct momentum scales: a hard scale qT
that defines the resolution of the hard probe for it to see the
particle nature of the quarks and gluons at a short-distance
scale, and a soft scale

ffiffiffiffiffijtjp
≪ qT (or jðp − p0ÞT j ≪ qT) for

it to be sensitive to the long-distance partonic landscape or
spatial tomography inside a confined hadron. The conditionffiffiffiffiffijtjp

≪ qT is necessary to suppress the quantum entangle-
ment between the hard probe taking place at the scale of qT
and the structure information at the scale of

ffiffiffiffiffijtjp
∼ jðp −

p0ÞT j inside the diffracted hadron, allowing us to factorize
the latter into universal and process-independent GPDs. It
is the Fourier transform of GPDs’ dependence on ðp − p0ÞT
that provides the access to the spatial distribution of quarks
and gluons inside the hadron in slices of different values
of x.
Even though the SDHEP is the minimal configuration

that can ensure the condition of
ffiffiffiffiffijtjp

≪ qT , we have
demonstrated that it is generic enough that nearly all the
processes that have been considered in the literature for
extracting GPDs fit into the SDHEP framework. One can
further generalize the SDHEP to processes with more than

two large-transverse-momentum particles in the final state,
which we leave for future study.
We have shown that the condition

ffiffiffiffiffijtjp
≪ qT is not only

necessary, but also generally sufficient for the SDHEP to be
factorized into hadron GPDs, convoluted with perturba-
tively calculable hard matching coefficients, provided that
the hard exclusive 2 → 2 scattering is dominated by a
single hard scale. The proof is given under a two-stage
paradigm, introduced in Eqs. (3)–(5) and Fig. 2, which
decomposes the whole SDHEP amplitude into a sum over
the partonic channels connecting the single diffractive
hadron and the hard exclusive 2 → 2 scattering. The
two-stage paradigm incorporates the Bethe-Heitler process,
which we call the n ¼ 1 channel, naturally in the same
framework. The factorizations of the n ¼ 2 subprocesses
into GPDs are proved by two steps: (1) prove the
factorization of the corresponding 2 → 2 hard exclusive
process, which is effectively a single-scale observable, and
(2) complete the factorization of the SDHEP by examining
the extra complication of the Glauber pinch. The necessary
ability to get out of the Glauber region implies that only the
single diffractive processes are factorizable, and double
diffractive processes are not. This conclusion is similar to
the inclusive diffractive processes. And we have also given
the analogy to the factorization of inclusive processes at
high twists.
From its two-stage paradigm, we introduced a natural

reference frame for studying SDHEP, as defined in Sec.VI E.
This frame is not only a convenient one for proving
factorization, but also provides new opportunities to relate
the angular correlation between the “diffractive plane” and
the “scattering plane” to the spin of the beam particle B and
the spin structure of the exchanged state A�, allowing the
access to enhancing the sensitivity to various types of GPDs.
While two of the three variables ðx; ξ; tÞ of GPDs are

directly related to the measured momenta of the diffractive
hadron, p − p0, it is the relative momentum fraction x of the
two exchanged partons, ½qq̄0� or ½gg�, between the diffrac-
tive hadron and the hard probe that is the most difficult one
to extract from the experimental measurement, while it is
the most important one to define the slices of the hadron’s
spatial tomography. We systematically examined the sen-
sitivity of various SDHEPs for extracting the x-dependence
of GPDs. We divided the sensitivity into two types:
moment type and enhanced type, as defined in Sec. VI
F. We discussed the sensitivity of specific processes in
Sec. III D for SDHEPs with an electron beam, Sec. IV E for
SDHEPs with a photon beam, and Sec. V E for SDHEPs
with a meson beam. A more general discussion was also
given in Sec. VI F. We argued that the requirement for
enhanced sensitivity on x is to have at least one internal
propagator in the hard part that is not connected to two on-
shell massless external lines on either of its ends, which
usually requires observing more than one external particle
that comes out of the hard scattering.
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Given both the theoretical and experimental difficulties
to unambiguously extract the x-dependence of GPDs, one
should not only study as many independent GPD-related
processes as possible, but also identify more processes that
yield enhanced sensitivity to the x dependence of GPDs.
With a generic factorization proof, the SDHEP can serve as
a framework to identify and categorize all specific proc-
esses for the study of GPDs. In this paper, we categorized
these processes in terms of the type of the beam colliding
with the diffractive hadron. With the two-stage paradigm of
the SDHEP, we are well motivated for the search of new
processes for extracting GPDs, and in particular, their
x-dependence.
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