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We present a high statistics study of the isovector nucleon charges and form factors using seven
ensembles of 2þ 1-flavor Wilson-clover fermions. The axial vector and pseudoscalar form factors
obtained on each of these ensembles satisfy the partially conserved axial current relation between them
once the lowest energy Nπ excited state is included in the spectral decomposition of the correlation
functions used for extracting the ground state matrix elements. Similarly, we find evidence that the Nππ
excited state contributes to the correlation functions with the insertion of the vector current, consistent with
the vector meson dominance model. The resulting form factors are consistent with the Kelly para-
metrization of the experimental electric and magnetic data. Our final estimates for the isovector charges
are gu−dA ¼ 1.32ð6Þð5Þsys, gu−dS ¼ 1.06ð9Þð6Þsys, and gu−dT ¼ 0.97ð3Þð2Þsys, where the first error is the

overall analysis uncertainty and the second is an additional combined systematic uncertainty. The form
factors yield: (i) the axial charge radius squared, hr2Aiu−d ¼ 0.428ð53Þð30Þsys fm2; (ii) the induced

pseudoscalar charge, g�P ¼ 7.9ð7Þð9Þsys; (iii) the pion-nucleon coupling, gπNN ¼ 12.4ð1.2Þ; (iv) the electric
charge radius squared, hr2Eiu−d ¼ 0.85ð12Þð19Þsys fm2; (v) the magnetic charge radius squared, hr2Miu−d ¼
0.71ð19Þð23Þsys fm2; and (vi) the magnetic moment, μu−d ¼ 4.15ð22Þð10Þsys. All our results are consistent
with phenomenological/experimental values but with larger errors. Last, we present a Padé parametrization
of the axial, electric, and magnetic form factors over the range 0.04 < Q2 < 1 GeV2 for phenomenological
studies.

DOI: 10.1103/PhysRevD.105.054505

I. INTRODUCTION

The success of high precision experiments such as
DUNE at Fermilab [1,2] and the T2T-HyperK in Japan
[3,4] is predicated on precise determination of the flux of
the neutrino beam, incident neutrino energy, and their cross
sections off nuclear targets. A major source of uncertainty
in the analysis of neutrino-nucleus interactions is the
axial vector form factors of the nucleon and appropriate
nuclear corrections. Steady improvements in lattice quan-
tum chromodynamics (QCD) calculations are expected to
provide first principle results with control over all system-
atics [5]. In this paper, we present high statistics results for
the matrix elements of the isovector axial and vector current
between ground state nucleons. From these we extract the
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axial, electric, and magnetic form factors and charges that
are inputs in the analysis of the charged current lepton-
nucleus scattering utilizing electron, muon, and neutrino
beams. A heuristic parametrization of the form factors
for phenomenological analyses is summarized in Eqs. (55),
(56), and (58).
In previous publications, we have presented results for

the isovector charges, gu−dA , gu−dS , and gu−dT [6]; axial,
GAðQ2Þ, induced pseudoscalar, G̃PðQ2Þ, and pseudoscalar,
GPðQ2Þ, form factors [7,8]; and the electric and magnetic
form factors, GEðQ2Þ and GMðQ2Þ [9]. Those calculations
were done using the clover-on-HISQ formulation; i.e., the
Wilson-clover fermion action was used to construct corre-
lation functions on background gauge configurations
generated with 2þ 1þ 1 flavors of the highly improved
staggered quark (HISQ) action by the MILC Collaboration
[10]. They exposed a number of issues that require
attention: The central value for the isovector axial charge
gu−dA ¼ 1.218ð25Þð30Þ [6], a key parameter that encapsu-
lates the strength of weak interactions of nucleons, is about
5% below the accurately measured value λ ¼ gA=gV ¼
1.27641ð45Þstatð33Þsys [11–14]. Second, the axial and pesu-

doscalar form factors, GA, G̃P, and GP, did not satisfy the
relation imposed on them by the partially conserved axial
current (PCAC) relation [7], whereas the original three-point
correlation functions did. Third, the electric and magnetic
form factors, GE and GM, showed significant deviations
from the Kelly parametrization, which accurately describes
the experimental data [9]. Last, while the uncertainty in
the scalar and tensor charges, gu−dS ¼ 1.022ð80Þð60Þ and
gu−dT ¼ 0.989ð30Þð10Þ, was reduced to Oð10%Þ as required
to put constraints on novel scalar and tensor interactions at
theOð10−3Þ level [15] that can arise at the TeV scale, future
experiments targeting Oð10−4Þ sensitivity require the reduc-
tion of errors to a few percent level.
In this paper, we revisit these issues with high-statistics

calculations on seven ensembles with similar lattice
parameters but generated using 2þ 1 flavor Wilson-
Clover fermions by the JLab=W&M=LANL=MIT
Collaborations [16]. Three important improvements are
made over those presented in our previous papers [6–9].
First, these calculations have been done using a unitary,
clover-on-clover, lattice formulation, whereas possible
systematics in the clover-on-HISQ mixed action calcula-
tions due to the nonunitarity formulation were not explored.
Second, the results are based on much higher statistics,
Oð2–6 × 105Þ measurements on Oð2–5 × 103Þ configura-
tions. The resulting smaller errors in the raw data provide
more reliable control over the systematics. Last, we
compare several analysis strategies to control excited-state
contamination (ESC) and quantify the sensitivity of the
results to different theoretically motivated values of the
mass gaps, and investigate the possible excited states that
may be contributing.

Results for the nucleon charges from a subset of the
ensembles analyzed here have been presented in
Refs. [17,18]. In parts of the paper, we will drop, for
brevity, the superscripts (u − d) to denote isovector quan-
tities since all the analyses presented here are restricted to
this case. We will, however, include this superscript in the
final results and at appropriate places to avoid confusion for
the general reader. For the overall methodology used to
calculate the two- and three-point correlation functions, we
refer the reader to our previous work [6,7,9].
This paper is organized as follows. After a review of the

phenomenology and known results in Sec. II and the lattice
setup and error analysis strategy in Sec. III, we briefly
summarize the main systematics that need to be resolved in
Sec. IV. The analysis of excited states in the two-point
functions is discussed in Sec. V, and in three-point
functions in Sec. VI. The relations for the extraction of
form factors from ground state matrix elements are
given in Sec. VII and the results for the isovector charges
gu−dA;S;T in Sec. VIII. The analysis of the A4 correlator,
hΩjN ðτÞA4ðtÞN ð0ÞjΩi, and the consequent description
of the strategies used for controlling ESC in the axial
channel are discussed in Sec. IX. The extraction of the axial
form factors is then presented in Sec. X followed by the
parametrization of the Q2 dependence of GAðQ2Þ and the
extraction of gA and hr2Ai in Sec. X A, and of the induced
pseudoscalar form factor G̃PðQ2Þ and the couplings g�P and
gπNN in Sec. XI. Section XII is devoted to the electromag-
netic form factors. Final estimates at the physical point
defined by a ¼ 0, Mπ ¼ 135 MeV, and MπL ¼ ∞ are
obtained using simultaneous chiral-continuum-finite-
volume (CCFV) fits in Sec. XIII. An alternate heuristic
parametrization of the form factors is given in Sec. XIV,
and the comparison with previous work and phenomenol-
ogy in Sec. XV. Our conclusions are presented in Sec. XVI.
Further details of the data, analyses, and figures are
presented in eight appendixes.

II. PHENOMENOLOGY

One of the main uncertainties in the phenomenological
analyses of neutrino-nucleon scattering is the knowledge of
the axial form factors. Direct experiments using liquid
hydrogen (proton) targets are not being carried out due to
safety concerns. Thus, phenomenologists are looking to
lattice QCD to provide first principle estimates. A good
validation of the lattice methodology for the calculation of
form factors is to demonstrate agreement between the
simultaneously calculated isovector electric and magnetic
form factors with the Kelly (or other good) parametrization
of the accurate experimental data (see Sec. XII).
Furthermore, calculating the full set of axial and electro-
magnetic form factors is the first step in the analysis of the
charged current neutrino-nucleon cross section with all
required input taken from lattice QCD. Our results in
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Eqs. (55), (56), and (58) represent significant progress
toward this goal.
The matrix element of the isovector axial vector current

Aμ ¼ ūγμγ5d between ground state nucleons, which
describes neutron β-decay and the weak charged current
of the interaction of the neutrino with the nucleon, has the
following relativistically covariant decomposition in terms
of two form factors:

hNðpf; sfÞjAμðqÞjNðpi; siÞi

¼ ūNðpf; sfÞ
�
GAðq2Þγμ þ qμ

G̃Pðq2Þ
2MN

�
γ5uNðpi; siÞ;

ð1Þ

where GAðq2Þ is the axial vector form factor, G̃Pðq2Þ is
the induced pseudoscalar form factor, jNðpf; sfÞi is the
nucleon state with momentum pf and spin sf, and the
momentum transfer is q ¼ pf − pi. Throughout this paper,
all data for the form factors are presented in terms of
Q2 ≡ p2 − ðE −mÞ2 ¼ −q2, i.e., the spacelike four-
momentum squared. We use the DeGrand-Rossi basis
for the gamma matrices [19] and assume isospin symmetry,
mu ¼ md. Thus, we neglect the induced tensor form factor
G̃T that vanishes in the isospin limit [15]. The axial charge
gA ≡GAðq2 ¼ 0Þ is obtained from both the forward matrix
element and by extrapolating GAðQ2Þ to Q2 ¼ 0 as dis-
cussed in Secs. VIII and XIII A, respectively.
The pseudoscalar form factor, GP, is defined by

hNðpfÞjPðqÞjNðpiÞi ¼ ūNðpfÞGPðq2Þγ5uNðpiÞ; ð2Þ

where P ¼ ūγ5d is the pseudoscalar density.
The discrete lattice momenta are given by 2πn=La with

the components of the vector n≡ ðn1; n2; n3Þ taking on

integer values, jnij ∈ f0; Lg. The normalization of the
nucleon spinors uNðp; sÞ in Euclidean space is

X
s

uNðp; sÞūNðp; sÞ ¼
EðpÞγ4 − iγ · pþM

2EðpÞ : ð3Þ

The three form factors, GAðQ2Þ, G̃PðQ2Þ, and GPðQ2Þ,
are not independent because of the PCAC operator identity,
∂μAμ − 2m̂P ¼ 0. By contracting Eq. (1) with qμ and
using Eq. (2), this identity gives the following relation
between them:

2m̂GPðQ2Þ ¼ 2MNGAðQ2Þ − Q2

2MN
G̃PðQ2Þ; ð4Þ

where m̂≡ ZmZPðmu þmdÞ=ð2ZAÞ is the average bare
PCAC mass of the u and d quarks, Zm, ZP and ZA are the
renormalization constants for the quark mass, the pseudo-
scalar and the axial currents, respectively. Table I gives the
results for m̂ calculated using the PCAC relation within
the pseudoscalar two-point correlation function, i.e., by
requiring that, up to lattice artifacts, the relation ΓðτÞ ¼
hΩjð∂μAμ − 2m̂PÞτP0jΩi ¼ 0 holds for all Euclidean times
τ ≠ 0. It can also be measured using the three-point
functions by inserting the operator ∂μAμ ¼ 2m̂P between
any state including the nucleon. Estimates of m̂ from two-
and three-point correlation functions with the same bare
lattice operators should agree up to discretization artifacts.
The pseudoscalar two-point function also gives the pion

decay constantFπ through the matrix element hΩjApoint
4 jπi¼ffiffiffi

2
p

MπFπ , which is obtained from a simultaneous fit to data
in the plateau region of hΩjApoint

4 ðτÞPsmearedð0ÞjΩi and
hΩjPsmearedðτÞPsmearedð0ÞjΩi. These values for Fπ are given
in Table I, and their CCFV extrapolation is shown in the

TABLE I. Results for the PCAC quark mass m̂ defined in the text and the pion decay constant Fπ with the two renormalization
methods defined in Sec. VIII A. The ∼1% uncertainty in Fπ comes mainly from that in scale a given in Table XV. The combination
MNgA=Fπ , which is independent of ZA and dimensionless, is equal to gπNN by the Goldberger-Treiman relation. It is evaluated using
three ways of calculating gA discussed in Secs. VIII and XIII A: f4; 3�g in which gA is taken from the forward matrix element,
f4Nπ; 2sim; P2g and f4Nπ; 2sim; z2g that uses P2 Padé and z2 fits to GAðQ2Þ given in Table IV. The last row gives the continuum result
from CCFV fits to these data as discussed in Sec. XIII A.

Fbare
π [MeV] FπjR1 [MeV] FπjR2 [MeV]

gπNN ¼ MNgA=Fπ

ID am̂PCAC aFbare
π f4; 3�g f4Nπ; 2sim; P2g f4Nπ; 2sim; z2g

a127m285 0.009304(34) 0.07115(15) 110.5(1.8) 97.5(2.1) 95.5(2.0) 12.46(12) 12.42(28) 12.32(19)
a094m270 0.005726(29) 0.05182(12) 108.8(1.2) 96.0(1.7) 95.1(1.4) 12.92(48) 12.49(45) 12.46(30)
a094m270L 0.005724(05) 0.05204(05) 109.2(1.2) 96.8(1.9) 97.2(1.4) 12.45(09) 12.63(16) 12.55(13)
a091m170 0.002104(09) 0.04743(06) 102.8(1.1) 90.7(1.7) 90.2(1.4) 12.45(19) 12.55(37) 12.63(33)
a091m170L 0.002123(10) 0.04754(05) 103.1(1.1) 90.2(1.7) 89.8(1.3) 12.55(16) 13.19(33) 13.17(31)
a073m270 0.004328(04) 0.04016(04) 108.9(1.2) 97.9(1.6) 97.8(1.4) 12.70(14) 12.63(18) 12.58(14)
a071m170 0.001522(04) 0.03661(04) 102.2(1.2) 91.6(1.3) 91.8(1.3) 12.60(32) 13.08(39) 13.10(36)

CCFV 93.0(3.8) 95.9(3.5) 12.65(38) 13.60(65) 13.58(49)
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bottom row of Fig. 36. The result is consistent with the
experimental value. The largest contributor to the error,
1σ ≈ 4%, is the CCFV extrapolation. Since the calculations
of Fπ on the lattice are among the most reliable [20], it is
reasonable to expect a 4% uncertainty in results from CCFV
fits to seven points for all other quantities analyzed in
this work.
Last, Table I also gives the product MNgA=Fπ , which is

equal to the pion-nucleon coupling gπNN by the
Goldberger-Treiman relation, for three estimates of gA
given in Table IV, i.e., from f4; 3�g, f4Nπ; 2sim; P2g, and
f4Nπ; 2sim; z2g strategies used to control ESC that are
defined in Sec. XIII A (also see Appendix A for their
definitions). The nucleon mass, MN , is given in Table XV.
A large part of the analysis presented in this work is

influenced by the recent understanding and resolution [8] of
why the axial form factors calculated in the “standard” way
do not satisfy the PCAC relation given in Eq. (4), a problem
that afflicts previous lattice calculations [7]. We show that a
much lower energy excited state, with a mass gap much
smaller than obtained from n-state fits to the two-point
nucleon correlator and used in the standard analysis of three-
point functions, contributes in the axial channel. Including
these states in the fits, with masses consistent with the
noninteracting Nðp ¼ 0ÞπðpÞ and Nð−pÞπðpÞ states on the
lattice, gives form factors that show much better agreement
with the PCAC relation, Eq. (4), and satisfy other consis-
tency checks discussed in Sec. IXA. While the need for
including such low-energy multihadron states has, so far,
been demonstrated only in the axial and pseudoscalar
channels, it behooves us to determine whether such multi-
hadron states also contribute in other channels. In this paper,
we build on the discussion in Ref. [8] and investigate the
dependence of various matrix elements on the spectrum of
excited states obtained from different fits.
The decomposition in Minkowski space of the matrix

element of the electromagnetic current Vem
μ ¼ 2

3
ūγμu− 1

3
d̄γμd

within the nucleon ground state into the Dirac, F1, and Pauli,
F2, form factors is

hNðpf; sfÞjVem
μ ðqÞjNðpi; siÞi

¼ ūNðpf; sfÞ
�
F1ðq2Þγμ þ iσμνqν

F2ðq2Þ
2MN

�
uNðpi; siÞ;

ð5Þ
where σμν ¼ i=ðγμγν − γνγμÞ=2 and the induced scalar form
factor is neglected since we work in the isospin limit.
Throughout this paper, we will present results in terms of
the isovector Sachs electric, GE, and magnetic, GM, form
factors that are related to the Dirac and Pauli form factors in
Euclidean space as

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4M2
N
F2ðQ2Þ; ð6Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð7Þ

These are very well measured experimentally, and from them
one gets the vector charge

gV ¼ GEjQ2¼0 ¼ F1jQ2¼0; ð8Þ

which satisfies the conserved vector current relation
gVZV ¼ 1, where ZV is the renormalization constant for
the local vector current used on the lattice. The isovector
form factor GM gives the difference between the magnetic
moments of the proton and the neutron:

μp−μn¼GMjQ2¼0¼ðF1þF2ÞjQ2¼0¼1þκp−κn: ð9Þ

The anomalous magnetic moments of the proton and the
neutron, κp and κn, in units of the Bohr magneton, are known
very precisely [21]:

κp ¼ 1.79284735ð1Þ ðprotonÞ;
κn ¼ −1.91304273ð45Þ ðneutronÞ: ð10Þ

In phenomenological studies, it is customary to para-
metrize the form factors to obtain their value and slope
at Q2 ¼ 0. These give the charges, gA, gV , and μ, and the
charge radii squared, hr2A;E;Mi, defined as

hr2i ¼ −6
d

dQ2

�
GðQ2Þ
Gð0Þ

�����
Q2¼0

: ð11Þ

For the electromagnetic form factors, the Kelly paramet-
rization provides a good fit to the experimental data [22]
and gives

rp−nE jexp ¼ 0.926ð4Þ;
rp−nM jexp ¼ 0.872ð7Þ: ð12Þ

In this study, we analyze various systematics and provide
results for both axial and electromagnetic form factors
over a range of Q2, especially the region ≲1 GeV2 where
nonperturbative effects are large. These data are analyzed
using the dipole, Padé, and model-independent z-expansion
parametrizations. Control over various systematics in the
extraction of the form factors is illustrated by comparing
the lattice data for GE;M with the Kelly parametrization in
Secs. XII and XIV. For the purpose of comparison, and
given the much larger errors in the lattice data, one can
equally well use other parametrizations, for example, the
recent rational fraction discussed in Ref. [23], without a
change in our conclusions.
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III. LATTICE AND ERROR ANALYSIS
METHODOLOGY

The parameters of the seven ensembles with 2þ 1-
flavors of OðaÞ improved Wilson-clover fermions gener-
ated by the JLab=W&M=LANL=MIT Collaboration are
given in Table XV in Appendix B. The parameters used to
calculate the quark propagators are given in Table XVI. We
have madeOð2–6 × 105Þmeasurements of each observable
on these ensembles using the truncated solver with bias
correction [24,25] and the coherent sequential propagator
[17,26] methods. Even with these statistics, because of the
e−ðMN−3Mπ=2Þτ decay of the signal-to-noise ratio, the three-
point correlation functions are well-measured only up to
source-sink separation τ ∼ 1.5 fm. At these separations,
excited state contamination is significant, and we fit the
data using the spectral decomposition of the correlation
functions to isolate the ground state value as discussed in
Sec. VI. In the calculation of form factors, the signal also
degrades with momentum transfer Q2, and the errors at the
larger momentum transfers are sizable in some cases.
The central values and errors are calculated using a

single-elimination jackknife method. We make Oð100Þ
measurements on each configuration with randomly
selected but widely separated source points to maximize
decorrelations. From these, bias corrected averages are
constructed for each configuration, which are then binned
over 5–11 configurations to further reduce correlations.
These Oð500Þ binned values are then analyzed using the
jackknife procedure. All fits using minimization of χ2 are
made using the full covariance matrix calculated using the
binned values. This procedure is followed for all observ-
ables, values of momentum insertion, and ensembles.
Note that even when using a Bayesian procedure including
priors to stabilize the fits, the errors are calculated using
the jackknife method and are thus the usual frequentist
standard errors.1

We use two criteria to determine whether the fits, for
example, those used to remove ESC or the CCFV fits,
are overparametrized: (i) the Akaike Information Criteria
(AIC) [27] which requires that the total χ2 decreases by two
units for every extra free parameter in the fit ansatz, and
(ii) whether the errors in the additional parameters intro-
duced to include, for example, the third state have more

than 100% uncertainty. The AIC weights are calculated to
assess whether the fits are overparametrized. The actual
choice of the averaging performed to get final results is
discussed in the individual sections.
Overall, the errors in data from three ensembles need to

be reduced to improve precision: on a094m270 due to the
small volume and on a091m170L and a071m170 due to
the lighter pion mass. Of these, the latter two ensembles are
important for the chiral extrapolation, and we plan to
double their statistics in the future.
In our previous work using the clover-on-HISQ formu-

lation, we observed that some observables that should
vanish by the parity symmetry show a nonzero signal at
the 2.5–3σ level. Even though such deviations are most
likely statistical fluctuations, we improved the realization
of parity symmetry in our clover-on-clover work by
applying a random parity transformation on each gauge
configuration as follows: For a randomly chosen direction
μ ∈ 1–4, each gauge configuration is parity transformed by
implementing

UνðxÞ → UνðPμðxÞ − ν̂Þ† for ν ≠ μ; ð13Þ

UμðxÞ → UμðPμðxÞÞ; ð14Þ

where PμðxÞ, the parity transformation acting on the vector
x labeling the sites, flips the sign of all components, except
for xμ [17,18].

IV. SYSTEMATICS IN THE EXTRACTION
OF NUCLEON MATRIX ELEMENTS

There are four challenges to high precision calculations
of nucleon charges and form factors (or their primitives,
the ground state matrix elements) at a given value of
fa;Mπ;MπLg. The first and key challenge is the exponen-
tially decreasing signal-to-noise in all nucleon correlation
functions—the signal falls off as e−ðMN−1.5MπÞτ with an
increase in the source-sink separation τ. As shown in Fig. 1,
with Oð2–6 × 105Þ measurements, a good signal in the
two-point functions extends to ∼2 fm. Similarly, in the
three-point functions, it extends to ∼1.5 fm as illustrated in
Figs. 17–19. At ∼ 1.5 fm, ESC is still significant in all
three-point functions as shown in Appendixes C, E, F,
and G. As a result, for given fixed statistics, one has to
balance statistical uncertainty against a systematic bias due
to the values of τ picked to control ESC.
The second challenge is determining all the excited states

that contribute significantly to a given three-point function
and isolating their contribution by making fits to a
truncated spectral decomposition—a sum of exponentials
as shown in Eqs. (15) and (18). While the contribution of a
given excited state is exponentially suppressed by its mass
gap, we are, however, confronted by a tower of low-lying
multihadron excited states starting with Nðp ¼ 0Þπð−pÞ,

1When priors are used, the augmented χ2 is defined as the
standard correlated χ2 plus the square of the deviation of the
parameter from the prior mean normalized by the prior width.
This quantity is minimized in the fits. In the following, we quote
this augmented χ2 divided by the degrees of freedom, and call it
χ2=dof for brevity. In the jackknife process, we keep the prior and
its width fixed. This is a consistent strategy as the errors quoted
are frequentist errors and do not represent a Bayesian credibility
interval. The p-value listed in figures showing fits is given for
convenience only as it is calculated from the also listed χ2 value
using the standard χ2 distribution.
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NðpÞπð−pÞ, Nð0Þπð0Þπð0Þ. On Mπ ¼ 135 MeV ensem-
bles, the tower, as a function of p, starts at ≈1200 MeV and
gets arbitrarily dense as p → 0. Thus, the suppression of
excited-state contributions due to the mass gap is smaller

than in mesons and decreases as Mπ → 0 and p → 0.
In short, possible contributions of the many multihadron
states that lie below the first two radial excitations,
Nð1440Þ and Nð1710Þ, need to be evaluated.

FIG. 1. The effective mass Meff plotted versus the source-sink separation τ=a for five ensembles. The left panels show the standard
four-state fits, f4g, while the right panels show f4Nπg, in which the noninteracting energy of the Nπ state is input as the central value of
the prior for ΔM1. The legends give the ground state amplitude A0 and mass aM0, the excited-state amplitude ratios Ri ¼ jAij2=jA0j2
and mass gaps aΔMi ¼ aðMi −Mi−1Þ, the prior value and width (pr) used, the fit range FR, the χ2=dof, and the ensemble ID. The
signal-to-noise grows rapidly after (τ ¼ 1.8–2.2) fm depending on the statistics and the ensemble. Note that for the 170 MeVensembles,
even the ground state mass and amplitude differ by about 2–3σ between the two fit strategies, and the relative contribution, R1e−ΔM1τ, of
the low mass Nð1Þπð−1Þ state in the f4Nπg fit is still about 3% at τ ≈ 1.8 fm.
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It is typical to reduce the contributions of excited states
by smearing the delta-function source used to generate the
quark propagators. We use the gauge-invariant Wuppertal
method [28] with parameters given in Table XVI in
Appendix B. However, in this approach, one does not
have detailed control over the size of the coupling to a given
excitation since there is only one tunable parameter, the
smearing size given by σ in Table XVI. Second, for a
given three-point function, couplings to certain states can
get enhanced. A case in point is the contribution of the
Nðp ¼ 0Þπð−pÞ and NðpÞπð−pÞ states in the axial channel
as discussed in Sec. X.
The third issue is calculating the renormalization factor,

including operator mixing, to connect to a continuum
scheme such as MS. This systematic, for the calculations
presented in this work, is considered to be under control
to within about 2% as discussed in Ref. [20] and in
Sec. VIII A.
Once data with control over the statistical and the above

systematic uncertainties are obtained at multiple values
of fa;Mπ;MπLg, simultaneous CCFV fits, which include
corrections with respect to Mπ, a, and MπL, are used to
extract the physical result in the limits Mπ → 135 MeV,
a → 0, and MπL → ∞. Having only seven ensembles
introduces the fourth challenge: only leading order correc-
tions in each variable can be included without overpar-
ametrization; hence residual corrections may be
underestimated. The analyses performed, using appropriate
CCFV fit ansatz, are described in Sec. XIII.
Of these four issues, the most serious is excited state

contributions, which is exacerbated by the exponentially
falling signal-to-noise ratio with τ. To summarize, while the
overall methodology for all the lattice calculations presented
here is well-established, a clear strategy for controlling
excited state contamination that can be applied to all nucleon
matrix elements remains elusive as discussed below. We,
therefore, analyze the data using multiple strategies, each
of which should converge and give the correct result with
perfect data. At appropriate places, we give reasons for

picking the strategy used to quote the final results and
estimates of possible remaining systematic uncertainties.

V. THE NUCLEON SPECTRUM FROM FITS
TO THE TWO-POINT FUNCTION

To determine the nucleon spectrum, we keep four states
in the spectral decomposition of the two-point functions
C2pt with momentum p:

C2ptðτ; pÞ ¼
X3
i¼0

jAiðpÞj2e−EiðpÞτ: ð15Þ

Here Ei are the energies and Ai are the corresponding
amplitudes for the creation/annihilation of a given state jii
by the interpolating operator N chosen to be

N ðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ; ð16Þ

with color indices fa; b; cg, charge conjugation matrix
C ¼ γ4γ2 in the DeGrand-Rossi basis [19], and q1 and q2
denoting the two different flavors of light Dirac quarks.
The Ei and the Ai are extracted from a fit to a large range,
½τmin; τmax�. The starting time τmin=a is taken to be small,
between 1 and 4, and τmax is ∼2 fm with the current
statistics as shown in Fig. 1. For brevity, throughout this
paper, it should be assumed that the values of t and τ are in
lattice units.
There are two nagging issues with this “standard”

analysis. First the mass gaps, ΔE1 ≡ ðE1 − E0Þ, shown in
Table II are slightly larger than even of Nð1440Þ. This could
be explained away by assuming that the lower-energy states,
such as Nπ or even Nð1440Þ, do not couple significantly.
Second, the axial vector and pseudoscalar form factors
obtained using this spectrum to remove the ESC do not
satisfy the PCAC relation, Eq. (4), to a much larger
extent than observed in the original three-point correlation

TABLE II. Results for the nucleon mass in lattice units, aMf4g
N and aMf4Nπg

N , obtained from the two four-state fits to the two-point
functions. The next six columns give the values of the mass gap, aΔM1 ≡ aðM1 −M0Þ, of the first excited state obtained from different
fits studied in this work. The notation f2g (f4g) denotes a two-state (four-state) fit to the two-point functions, (f4Nπg) is a four-state fit to
the two-point functions with a prior for aΔM1 with a narrow width corresponding to the noninteracting NðqÞπð−qÞ [or the
Nð0Þπð0Þπð0Þ] state (see also Appendix A). In the three f2freeg cases, the mass gaps aΔM̃1 are determined from fits to the three-point
functions used to extract the three charges gA;S;T as explained in Sec. VIII.

ID aMf4g
N aMf4Nπg

N aΔMf2g
1 aΔMf4g

1 aΔMf4Nπg
1 aΔM̃f2freeg

1 jgA aΔM̃f2freeg
1 jgS aΔM̃f2freeg

1 jgT
a127m285 0.618(2) 0.617(2) 0.43(5) 0.39(5) 0.33(2) 0.15(7) 0.71(11) 0.60(10)
a094m270 0.468(5) 0.470(2) 0.31(6) 0.22(8) 0.25(1) 0.09(13) 0.51(6) 0.54(3)
a094m270L 0.466(1) 0.465(1) 0.35(2) 0.28(5) 0.20(2) 0.13(3) 0.52(2) 0.50(1)
a091m170 0.416(2) 0.413(3) 0.34(2) 0.29(5) 0.16(1) 0.08(13) 0.39(8) 0.46(6)
a091m170L 0.415(2) 0.408(4) 0.31(3) 0.24(3) 0.14(2) 0.14(9) 0.54(9) 0.44(4)
a073m270 0.372(1) 0.372(1) 0.32(2) 0.23(4) 0.20(2) 0.06(3) 0.40(2) 0.40(2)
a071m170 0.326(3) 0.323(2) 0.25(3) 0.18(5) 0.12(1) 0.08(4) 0.41(7) 0.38(2)
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functions in which the size of deviation is consistent with
that expected due to discretization errors [7].
The likely reason for both issues is that standard fits to

the two-point function do not expose the lighter multi-
hadron, Nπ, Nππ;…, states that are needed in the analysis
of three-point functions [8]. In Fig. 1, we show results of
four-state fits to C2ptðτ; p ¼ 0Þ along with the data for the
effective energy defined as

EeffðτÞ ¼ log
C2ptðτÞ

C2ptðτ þ 1Þ : ð17Þ

It converges to the ground state energy for τ → ∞ and for
p ¼ 0 reduces to MeffðτÞ. The criteria used for judging the
quality of the fits is χ2=dof. The panels on the left show fits
with the standard strategy labeled f4g, in which empirical
Bayesian priors with wide widths are used only to stabilize
the fits. The initial central values for the priors for
ΔM1 ≡M1 −M0, ΔM2 ≡M2 −M1, and for the corre-
sponding amplitude ratios, Ri ≡ jAij2=jA0j2, are taken
from an unconstrained three-state fit. Prior widths are set
at ∼50% of the value. The fit is repeated and resulting
values are used as central values for the priors in a four-
state fit. This process is iterated one more time to adjust
the priors for the three excited states. The final fit
parameters for the p ¼ 0 case, the prior value and width,
the fit range (FR), and the augmented χ2=dof of the fit are
given in the labels.
The second strategy, labeled f4Nπg, uses a prior for the

mass gap, ΔE1, with value given by the lowest relevant
state, Nð1Þπð−1Þ or Nð0Þπð0Þπð0Þ, with a narrow width.
(The priors and their widths for the five larger volume
ensembles are given in the labels in Fig. 1.) No narrow prior
is put on the amplitude R1. The rest of the procedure is the
same as for f4g.
We stress an important clarification regarding the nota-

tion ΔE1, and it is “representing” the first excited state that
is implicit throughout this paper. The value ofΔE1 given by
a four-state fit is a number that minimizes χ2=dof and, most
likely, represents an “effective” combination of a set of
the lowest contributing states. Fits to different correlation
functions can, therefore, give different effective ΔE1 (in
fact, ΔEi) depending on the couplings of and spacings
between the contributing states.
There are two reasons for stopping at four-state fits. First,

in the three-state fits to the three-point functions we use E0,
E1, and E2. The ignored E3, which is most contaminated by
all the higher neglected states, acts as a buffer. Second,
including more than four states overparametrizes the fits.
A summary of the ground-state mass and the mass gap of
the first excited state obtained from different fits is given in

Table II. Note that in most cases, the aΔMf4g
1 is a little

larger but close to that expected for the Nð1440Þ. The one
exception is the low value on the a094m270 ensemble that

should be the same, modulo finite volume corrections, as
from a094m270L.
We find, illustrated by the zero-momentum case in

Fig. 1, that (i) the final value of ΔMNπ
1 tracks the prior

in f4Nπg and (ii) the two fits, f4g and f4Nπg, are not
distinguished on the basis of the augmented χ2=dof, which
are similar. In fact, for each p there is a flat direction in E1;
i.e., a whole region of parameter values between f4g and
f4Nπg gives similar augmented χ2=dof. Since the ENπ

1

corresponds to roughly the value for the lowest theoreti-
cally allowed state and is much smaller than the radial
excitation Nð1440Þ or E2pt

1 , we will assume it is a good
estimate of the lower end of possible values. Similarly, the
data derived E2pt

1 is taken to be an estimate of the upper end
when probing the sensitivity of results for the ground state
matrix elements to E1. Later we will discuss other estimates
of E1 obtained from fits to the three-point functions.
The values of Q2 ¼ p2 − ðE −MNÞ2 for the two strat-

egies are given in Table XVII and are essentially the same.
Nevertheless, all the analyses and plots presented use the
values of Q2 appropriate to the fits, f4g or f4Nπg.
An important point to note from Fig. 1 is that the Meff

data from the Mπ ≈ 170 MeV ensembles do not show a
plateau over the range 1≲ τ ≲ 2 fm, in contrast to what is
commonly assumed. Concomitantly, we find a systematic
difference in M0 and A0 between the two strategies, f4g
and f4Nπg, with f4Nπg giving a 1–2σ smaller value for both
M0 and jA0j2, and the relative difference growing as Mπ is
reduced. Note that the correlated decrease in M0 and jA0j2
under f4g → f4Nπg is consistent with both fits preserving
the asymptotic, τ → ∞, value of C2ptðτÞ. Such a variation
implies that one has to reexamine the strategy for even
extracting M0 in calculations where percent precision is
needed, such as in the calculation of the pion-nucleon
sigma term, σπN , using the Hellmann-Feynman theorem
[20,29], and in the extraction of matrix elements discussed
here. Consequently, we consider a number of strategies for
the analysis of charges and axial and vector form factors in
Secs. VI, VIII, X, and XII.

VI. CONTROLLING EXCITED-STATE
CONTAMINATION IN THREE-POINT

FUNCTIONS

The spectral decomposition of the three-point functions,
C3pt
O , truncated at three states is

C3pt
O ðτ; tÞ ¼

X2
i;j¼0

Ap
iAjhipjOjjie−Eit−Ejðτ−tÞ; ð18Þ

where O is the operator and Ai are the amplitudes with
which the states jii are created by the interpolating operator
N with energies Ei as defined in Eq. (15). The source
point has been translated to t ¼ 0, the operator is inserted at
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time t, and the nucleon is annihilated at the sink time slice τ.
In Eq. (18), Ap

i and jipi denote that these states could have
nonzero momentum p, whereas the momentum at the sink
is fixed to zero in all three-point functions. Thus, for
momentum transfer q ¼ p, the initial nucleon’s momentum
is −p.
In principle, the spectrum of the transfer matrix that

contributes to the three-point functions, Eq. (18), should be
obtainable from the two-point function, Eq. (15); however,
the relative contributions can vary significantly as men-
tioned above, particularly in different three-point functions.
As a result, their contribution may be manifest in some
correlators but not in all. This is demonstrated for the axial
channel in Sec. IX and for the vector current in Sec. XII.
It is important for the reader to note that individual

excited state amplitudes Ap
i and Aj with i, j > 0, and their

values determined from fits to two-point functions, C2ptðτÞ,
are never used in fits to C3pt

O ðτ; tÞ. The reason is that in fits

to C3pt
O ðτ; tÞ, only the combinations Ap

iAjhipjOjji enter.
Furthermore, while these combinations are unknown
parameters in fits to C3pt

O ðτ; tÞ to remove ESC, they are
not used any further in the analysis.
Data for the three-point functions have been accumulated

for the 4–6 values of τ specified in Table XV, and for each τ
for all values 0 < t < τ. In much of the subsequent
analyses, we make 3�-state fits. These are three-state fits
with the term proportional to h2pjOj2i set to zero as it is not
resolved with the current data and including it overpar-
ametrizes the fit.
The spectral decomposition, given in Eqs. (15) and (18),

forms the basis of all analyses of excited-state contamina-
tion in two- or three-point functions. In order to extract the
ground state matrix element h0pjOΓj0i for a given p using
the three-state ansatz given in Eq. (18), one has to, a priori,
resolve 16 parameters from fits to C3pt

O calculated as a
function of t and τ. These areA0;A

p
0, the three eachMi and

Ei, and the eight products of the type jAp
0jjA1jh0pjOΓj1i

involving excited state transition matrix elements. The ideal
situation occurs when A0;A

p
0 and the three Mi and Ei can

be obtained from, say, fits to the two-point functions for
then the fit ansatz reduces to a sum of terms with a linear
dependence on the unknowns. This, however, requires the
states that provide significant contributions to two- and
three-point functions at the simulated values of t and τ are
the same—naively a reasonable expectation since the same
interpolating operator N is used in both.
In Ref. [8], we showed that, operationally, this expect-

ation fails for the form factors in the axial vector and
pseudoscalar channels. In fact, taking the three Mi and Ei

from f4g-fits to C2ptðτ; pÞ to extract the axial vector form
factors from C3pt

Aμ
and C3pt

P gave results that do not satisfy

the PCAC relation between them. Since the original
correlation functions, C3pt

Aμ
and C3pt

P , do satisfy PCAC up

to discretization errors, the problem was shown to be
introduced while extracting the ground state matrix ele-
ments from the correlation functions. We showed that the
lower-energy excited states NðqÞπð−qÞ and Nð0Þπð−qÞ
contribute to the two sides of the operator insertion in the
three-point functions even though they are not manifest in
straightforward fits to the two-point function. The lesson
was, one cannot just take the spectrum obtained from the
two-point function with current statistics and apply it to all
the three-point functions. One has to explore and validate,
both numerically and theoretically, the relevant values of
Mi and Ei to use in the extraction of the various ground
state matrix elements.
Theoretically, NðqÞπð−qÞ and Nð0Þπð−qÞ states have

much smaller energy, E1, compared to that obtained from
standard fits to the two-point function. (The noninteracting
energies of multiparticle states in a finite box are taken
to be the sum of lattice single particle energies assuming
a relativistic dispersion relation.) The clue to their
relevance came from fits to the three-point function with
the insertion of the time component of the axial current,
hΩjN ðτÞA4ðtÞN ð0ÞjΩi [8]. Fits to it using Eq. (18) with
the Ei from standard fits to C2ptðτ; pÞ gave large χ2=dof.
Consequently these data were ignored in previous works
(see Ref. [7]) because GA and G̃P can be determined from
the Ai correlators as defined in Eqs. (20)–(22); i.e., the A4

data were superfluous because the system of equations,
Eqs. (20)–(23), is overdetermined. The reason for the poor
signal was that the ESC in this channel is very large; in fact,
it dominates the signal. Exploiting this last fact led us to
determine the relevant mass gap(s), which are much smaller
than the standard ΔE1, i.e., from f4g.
To analyze hΩjN ðτÞA4ðtÞN ð0ÞjΩi we, instead, used the

two-state version of Eq. (18) with the excited state energy
E1 left as a free parameter [8]. The resulting value, labeled
EA4
1 , was close to the noninteracting Nπ state, and much

smaller than what the fits to the two-point function gave
(labeled E2pt

1 ). The three form factors GA, GP, and G̃P,
extracted using EA4

1 , satisfied PCAC to within expected
lattice systematics. This resolution has, however, created
a conundrum for the analysis of all nucleon matrix
elements—what the relevant excited-state energies, Ei,
are that contribute to a given matrix element, how to
determine them, and how to deal with the towers of
multiparticle states such as Nπ, Nππ, …, that have the
same quantum numbers as the nucleon and become
increasingly dense as the lattice size L → ∞. Addressing
these questions is particularly hard for channels that do not
have an independent check such as PCAC.
The tools available include extracting the Ei from fits to

the three-point functions themselves, getting guidance from
heavy baryon chiral perturbation theory, evaluating the full
tower of excited states that could contribute, and satisfying
relations such as PCAC. In this paper, we attempt to
develop a framework to determine the relevant Ei for each
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matrix element considered and, if possible, associate
them with [multi]hadron states for a deeper understand-
ing of the excited states that contribute. For the axial
channel, this is done in Appendix E, and for the vector
channel in Sec. XII.
Throughout the paper, we will use Mi and Ei for first

excited-state energies determined from four-state fits to the
two-point functions, and M̃1 and Ẽ1 for the values obtained
from two-state fits to the three-point functions.

VII. EXTRACTING FORM FACTORS FROM
GROUND STATE MATRIX ELEMENTS

All matrix elements are obtained from fits to the three-
point correlators with the insertion of the various compo-
nents of the axial, pseudoscalar, scalar, tensor, and vector
currents. To display these three-point correlator data we
construct the ratio, RO, of the three-point to the two-point
correlation functions,

ROðt; τ; p; 0Þ ¼
C3pt
O ðt; τ; p; 0Þ
C2ptðτ; pÞ

×

�
C2ptðt; pÞC2ptðτ; pÞC2ptðτ − t; 0Þ
C2ptðt; 0ÞC2ptðτ; 0ÞC2ptðτ − t; pÞ

�
1=2

;

ð19Þ

where C2pt and C3pt
O are defined in Eqs. (15) and (18). This

ratio gives the desired ground state matrix element in the
limits t → ∞ and ðτ − tÞ → ∞. For all the two-point
correlation functions in Eq. (19), we use the results of
the appropriate four-state fit instead of the measured values.
When calculating the three-point correlation functions, we
use the spin projection P ¼ ð1þ γ4Þð1þ iγ5γ3Þ=2. As a
result, the “3” direction is special while “1” and “2” are
equivalent under the rotational cubic symmetry. For the
axial vector current, q̄γ5γμq, the imaginary part of the Ai

and real part of A4 have a signal in the following four ratios
and give the desired form factors in the limit t and
ðτ − tÞ → ∞:

R51 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−
q1q3
2M

G̃P

�
; ð20Þ

R52 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−
q2q3
2M

G̃P

�
; ð21Þ

R53 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−

q23
2M

G̃P þ ðM þ EÞGA

�
;

ð22Þ

R54 →
q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
M − E
2M

G̃P þ GA

�
: ð23Þ

The G̃P can be determined from R51 with momenta
q ¼ ði; 0; jÞ × ð2π=LaÞ and from R52 with q ¼ ð0; i; jÞ×
ð2π=LaÞ. In practice, cases equivalent under the cubic
symmetry are averaged before we make the ESC fits. The
GA can be determined uniquely from R53 with q3 ¼ 0. In
the other momentum channels, the coupled set of equa-
tions, Eqs. (20)–(22), are solved for GA and G̃P using the
full covariance matrix. The A4 correlator gives a second,
and so far considered redundant because of the much larger
errors, linear combination of GA and G̃P. As discussed
below, it will play an important role in determining the
first excited state parameters, and thus in the overall
analysis.
The pseudoscalar form factorGPðQ2Þ is given by the real

part of R5, i.e., with O ¼ q̄γ5q in Eq. (19):

R5 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp ½q3GP�: ð24Þ

For the electric and magnetic form factors, the following
quantities, with O ¼ ð2ūγμu − d̄γμdÞ=3, have a signal:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ℜðRiÞ ¼ −ϵij3qjGM; ð25Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ℑðRiÞ ¼ qiGE; ð26Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ℜðR4Þ ¼ ðMN þ EpÞGE: ð27Þ

Exploiting the cubic symmetry under spatial rotations, we
construct two averages over equivalent three-point corre-
lators before doing fits to get the ground-state matrix
elements: over ℜðC3pt

1 Þ and ℜðC3pt
2 Þ for GMðQ2Þ and over

ℑðC3pt
1 Þ, ℑðC3pt

2 Þ, and ℑðC3pt
3 Þ for GEðQ2Þ. We label these

form factors as GVi
M and GVi

E . Together with GV4

E extracted
from Eq. (27), they constitute the three form factors
analyzed. Each is obtained from a distinct correlation
function, and it is important to note that the discretization
artifacts and the excited-state contaminations in these can
be very different.
We remind the reader that these ratios are used only to

plot the data. Our results are obtained by making n-state fits
to the correlation functions themselves. In making these fits
we attempt to balance statistical and systematic uncertain-
ties. Data at smaller τ have smaller statistical errors but
larger ESC because a larger number of states contribute.
Similarly, data close to the source and the sink have larger
ESC. Therefore, for each τ we neglect data on tskip time
slices at either end, and we make fits to data with the largest
τ values that have statistically precise data. By skipping
the same number of points, tskip, at all τ fit, we increase the
weight of the larger τ data to partially compensate for the
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larger statistical weight given to the lower error points at
smaller τ.

VIII. EXTRACTING NUCLEON CHARGES

This section covers the calculations of the isovector
nucleon charges, gu−dΓ , from the forward matrix elements:

hNðp; sÞjOΓjNðp; sÞi ¼ gΓūsðpÞΓusðpÞ: ð28Þ

For q ¼ 0 in the three-point functions, Eq. (19) simplifies
toROΓ

ðt; τ; 0; 0Þ ¼ C3pt
OΓ
ðt; τ; 0; 0Þ=C2ptðτ; 0Þ. With the spin

projection in the “3” direction, the Dirac matrix structure of
operators used to calculate the scalar, vector, axial, and
tensor charges are Γ ¼ 1; γ4; γ3γ5, and σ12, respectively.
Since the nucleon states and all four operators, which
commute with γ4, have positive parity, therefore all possible
excited states with positive parity are theoretically allowed
in all four channels: axial, scalar, tensor, and vector. Based
on conserved symmetries alone, the ones with the smallest
mass gap are Nð0Þπð0Þπð0Þ or Nð1Þπð−1Þ. As mentioned
above, their noninteracting energies are roughly the same
on each of the seven ensembles. The unknown is their
coupling in the various channels. Furthermore, the analysis
of the two-point function in Sec. V showed that there is a
large range of M1 values with similar χ2=dof in four-state
fits. This range includes the Nπ and Nππ states. We will,
therefore, investigate the impact on ground state matrix
elements of choosing values of M1 over this interval, the
lower end of which is taken to be the approximately
degenerate energy of these two states ignoring interactions.
The question is how to determine, nonperturbatively,

which of the possible states contribute significantly? In
chiral perturbation theory, Nð1Þπð−1Þ arises at one loop
[30] and Nð0Þπð0Þπð0Þ at two loops [31] in the axial
channel. Similarly, the vector current couples to the ρ
meson (vector meson dominance), or equivalently the two-
pion state it decays into for sufficiently small pion mass
(see also the discussion in Ref. [32]). As will be shown
later, the contribution of these multihadron states increases
with decreasing Mπ (and q in the case of form factors) in
both the axial and the vector channels. More generally, it is,
a priori, not straightforward to narrow down the states that
give significant contributions to a particular correlation
function. Again, the criterion we will use is the χ2=dof
of the fits, input from χPT, and the sensitivity of the
observables to the value of the mass gaps used in the fit to
judge the best strategy.
To include the effect of either of the two kinds of states,

Nð0Þπð0Þπð0Þ or Nð1Þπð−1Þ, we use the spectrum from
the f4Nπg fit noting that the fit to the three-point function
only cares about ΔM1 and not the identity of the state(s).
So, in the current analysis, the contributions from all three
possibilities, Nð0Þπð0Þπð0Þ or Nð1Þπð−1Þ or both, are
included under the same label f4Nπg.

We examine two more strategies, which we call f4; 2freeg
and f4Nπ; 2freeg, in which E1 is left a free parameter
to be fixed by a two-state fit to the three-point functions.
Note that these two strategies differ only in the ground
state parameters A0 and M0 (or E0), which are slightly
different between the f4Nπg and f4g fits as shown in
Fig. 1.
Furthermore, in Appendix D, we examine the ESC in

each charge from operator insertion on the u and d quarks
separately. These data provide additional understanding of
the statistical precision of the data, and how the errors and
ESC in the isovector (u − d) and in the connected part of
the isoscalar (uþ d) combinations arise.
A comparison between fits with these four strategies is

shown in Figs. 17–19 for the three charges gA;S;T . The data
show the following common features:

(i) The symmetry of R3pt
O (and C3pt

O ) about the midpoint
of the interval, t ¼ τ=2, improves with statistics as
expected. The observed deviations, mostly in the
largest τ data for gS, are statistical fluctuations (see
also the discussion in Appendix D).

(ii) The value of R3pt
O at each t (especially at the

midpoint, t ¼ τ=2) converges monotonically toward
the τ ¼ ∞ value. Having a clear monotonic behav-
ior, i.e., not obscured by the errors, is important for
choosing the values of τ to keep in the n-state fits to
remove ESC, and it improves the stability of the fits
with respect to variations in τ and tskip.

Having data with these features, hallmarks of high statistics
calculations, improves the reliability of three-state fits that
we make to the largest three (four) values of τ listed in
Table XV to obtain results in the limit τ → ∞ for gA and gT
(gS). To evaluate the convergence of estimates for gA;S;T
on each ensemble, we compared results from the two- and
3�-state fits. Using this framework, and the methodology
for statistical analysis given in Sec. III, the four charges,
gA;S;T;V , are analyzed next.

A. gV and operator renormalization

The data for the vector charge obtained from the correlator
hNðτ; 0ÞV4ðt; 0ÞNð0; 0Þi show a small (about 1%) variation
over the range of τ values investigated as illustrated in Fig. 2
for the a091m170L and a071m170 ensembles. We show
two versions of the ratio RVðt; τ; 0; 0Þ: C3pt

V ðt; τ; 0; 0Þ=
C2ptðτ; 0Þjfit and C3pt

V ðt; τ; 0; 0Þ=C2ptðτ; 0Þ, where in the first
case we use the result of the f4g fit,C2ptðτ; 0Þjfit, while in the
second case we use the two-point function itself. In both
cases, the data are essentially flat about τ=2, so for the final
value of gV , we take the average of 5–6 central points at the
largest two values of τ using the first version. The errors in
these estimates cover the spread in the values at τ=2 for the
various τ.
A check on these estimates of gV is that the product

ZVgV ¼ 1 within OðaÞ discretization errors, where ZV is
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the renormalization constant for the local vector current
used in this study. Values of ZVgV are shown in Table III
and deviate from unity by ≲1%, i.e., by an amount smaller
than the errors in the product that come mainly from ZV .
The calculation of the renormalization constants ZA;S;T;V

for the local axial, scalar, tensor, and vector quark bilinear
operators on the lattice is done using the regularization
independent symmetric momentum (RI-sMOM) scheme
[33,34]. Results are then converted to the MS scheme at
scale 2 GeV using two-loop matching and three-loop
running as described in Ref. [18]. The calculation is done
on all seven ensembles. Using these estimates, together
with the conserved vector charge relation ZVgV ¼ 1, we
present renormalized quantities calculated in two ways. In
the first method, labeled Z1, the renormalized results for
operator O are given by ZOO. In the second method,
labeled Z2, we construct the two ratios ZO=ZV and gO=gV
for the charges. For constructing ZO=ZV , we start with the
ratio of the two amputated three-point functions in the RI-
sMOM scheme, and for gO=gV, the ratio of the matrix
element after making the excited-state fits for each. In both
cases, these ratios are taken within the jackknife process.
For Z2, the expectation is a cancellation of correlated
fluctuations in each of the two ratios leading to smaller
overall errors. The data summarized in Table III show
that the errors in ZA=ZV and ZT=ZV are smaller than
in ZA;T but not in ZS=ZV versus ZS. Furthermore, data in

Tables IV and V show smaller errors from Z2 for gA;T and
from Z1 for gS. Results from the two methods, after the
CCFV fits carried out in Sec. XIII A, differ by ∼0.03. When
quoting the central values, we will choose to renormalize
gA;T using Z2 and gS using Z1. The difference between the
two estimates will be used to assign an appropriate
systematic uncertainty in the three charges.

B. gA
The findings from the four fit strategies, f4; 3�g, f4Nπ; 3�g

(and their two-state versions f4; 2g, f4Nπ; 2g to check
for overparametrization), f4; 2freeg, and f4Nπ; 2freeg are the
following:

(i) The results from the f4; 2freeg or f4Nπ; 2freeg fits are
shown in Fig. 17 by the broad gray bands and given
in the labels. The output values ofΔM̃1 on all but the
a091m170L ensemble have large errors and are
much smaller than even those for the Nπ state as
shown in Table II. The reason is that the fluctuations
between the jackknife samples are unreasonably
large. Lacking statistical control, we do not consider
these two strategies any further for gA. In future
higher precision calculations, especially on Mπ ≲
200 MeV ensembles, we will continue to check
whether estimates from the f4; 2freeg and f4Nπ; 2freeg
strategies become more robust.

FIG. 2. Data for the ratio RV4
, which give gV in the limit τ → ∞, are plotted versus t − τ=2 for the a091m170L (left two) and

a071m170 (right two) ensembles. Panels 1 and 3 show results using the f4g-state fit for C2pt in RV4
, while in panels 2 and 4 the data for

C2pt are used. The final estimate shown by the gray band is the average of the five (six) central points for τ ¼ 14, 16 (τ ¼ 19, 21) for the
a091m170L (a071m170) ensemble.

TABLE III. Results for the bare vector charge gV and the renormalization constants ZA;S;T;V calculated nonperturbatively on the lattice
using the RI-sMOM scheme. The value of the product ZVgV is consistent with unity and the errors in it are dominated by those in ZV .
Note that the errors in the ratios ZA=ZV and ZT=ZV are smaller than those in ZA and ZT , respectively, while those in ZS=ZV are larger
than in ZS.

Ensemble ID gV ZV ZVgV ZA ZS ZT ZA=ZV ZS=ZV ZT=ZV

a127m285 1.260(04) 0.806(23) 1.016(30) 0.882(13) 0.829(15) 0.892(16) 1.089(14) 1.017(40) 1.106(11)
a094m270 1.213(05) 0.828(17) 1.005(21) 0.883(12) 0.789(11) 0.928(17) 1.065(09) 0.946(25) 1.121(08)
a094m270L 1.203(02) 0.829(19) 0.997(23) 0.886(14) 0.796(14) 0.929(19) 1.070(10) 0.958(29) 1.122(09)
a091m170 1.210(03) 0.832(20) 1.006(24) 0.882(13) 0.790(15) 0.931(20) 1.061(11) 0.947(27) 1.122(08)
a091m170L 1.211(04) 0.827(18) 1.001(22) 0.875(14) 0.783(11) 0.926(15) 1.056(09) 0.943(24) 1.120(08)
a073m270 1.171(02) 0.857(15) 1.003(17) 0.899(11) 0.779(10) 0.961(18) 1.052(09) 0.911(30) 1.124(07)
a071m170 1.169(04) 0.853(13) 0.998(16) 0.896(07) 0.767(13) 0.965(15) 1.051(09) 0.897(28) 1.132(07)
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(ii) Overall, two- and 3�-state fits, irrespective of
whether inputs of ground state parameters are
from either the f4g or the f4Nπg fits to two-point
functions, overlap on every ensemble. The 3*-state
fits are overparametrized with respect to the two-
state fits based on both the Akaike criteria and
because the uncertainty in the two additional fit
parameters is > 100% for the following ensembles
and strategies:

(i) a094m270: f4; 3�g, f4Nπ; 3�g
(ii) a091m170: f4Nπ; 3�g
(iii) a091m170L: f4; 3�g, f4Nπ; 3�g.

The values from f4Nπ; 3�g agree with those from f4Nπ; 2g
but have larger errors. To be conservative, we choose the
f4Nπ; 3�g results for all ensembles.
(iii) There is a roughly 2σ difference between f4; 3�g and

f4Nπ; 3�g results on the Mπ ≈ 170 MeV ensembles,
a091m170, a091m170L, and a071m170, as shown

TABLE IV. Results for gA from the seven ensembles and with the four strategies, specified in column one and defined in Appendix A,
used to control the excited state contamination. The second column gives estimates from the forward matrix element (q ¼ 0) for the two
strategies f4; 3�g and f4Nπ; 3�g in which the excited state spectrum is taken from f4g and f4Nπg fits to C2pt. Columns 5–7 give gA
obtained by extrapolatingGAðQ2 ≠ 0Þ data using a dipole, P2 Padé, and z2 fits to all tenQ2 ≠ 0 points. The fits to f4Nπ; 2A4g data on the
a094m270 ensemble are not stable, so no results are presented. The corresponding renormalized values using the two methods,
Z1 ≡ ZAgbareA and Z2 ≡ ðZA=ZVÞ × ðgbareA =gbareV Þ, are given in columns 3–4 and 8–9.

Fit gbareA jq¼0 gAjZ1

q¼0 gAjZ2

q¼0
gbareA jdipole gbareA jP2

gbareA jz2 gAjZ1

z2
gAjZ2

z2

a127m285
f4; 3�g 1.433(13) 1.264(22) 1.238(19) 1.424(13) 1.423(14) 1.424(13) 1.255(21) 1.230(19)
f4Nπ; 3�g 1.445(13) 1.274(22) 1.248(19) 1.449(16) 1.459(19) 1.453(16) 1.281(23) 1.255(21)
f4Nπ; 2A4g � � � � � � � � � 1.458(18) 1.488(26) 1.465(20) 1.291(25) 1.266(23)
f4Nπ; 2simg � � � � � � � � � 1.429(20) 1.432(32) 1.421(22) 1.252(26) 1.227(24)

a094m270
f4; 3�g 1.431(51) 1.263(48) 1.256(45) 1.360(27) 1.390(52) 1.386(33) 1.224(34) 1.216(30)
f4Nπ; 3�g 1.416(21) 1.250(25) 1.242(20) 1.365(25) 1.426(42) 1.409(28) 1.244(30) 1.237(27)
f4Nπ; 2A4g � � � � � � � � �
f4Nπ; 2simg � � � � � � � � � 1.350(25) 1.379(49) 1.375(33) 1.213(33) 1.206(31)

a094m270L
f4; 3�g 1.3892(96) 1.231(21) 1.236(14) 1.387(9) 1.393(10) 1.392(9) 1.234(21) 1.239(14)
f4Nπ; 3�g 1.413(11) 1.252(22) 1.258(15) 1.410(13) 1.424(15) 1.418(14) 1.256(23) 1.262(16)
f4Nπ; 2A4g � � � � � � � � � 1.412(10) 1.434(13) 1.426(11) 1.264(22) 1.269(15)
f4Nπ; 2simg � � � � � � � � � 1.397(12) 1.414(17) 1.406(14) 1.246(23) 1.251(17)

a091m170
f4; 3�g 1.419(20) 1.251(25) 1.244(21) 1.399(15) 1.402(19) 1.413(19) 1.247(25) 1.240(21)
f4Nπ; 3�g 1.495(41) 1.319(41) 1.311(38) 1.480(40) 1.469(58) 1.488(51) 1.313(49) 1.305(47)
f4Nπ; 2A4g � � � � � � � � � 1.412(21) 1.504(36) 1.504(31) 1.327(34) 1.319(31)
f4Nπ; 2simg � � � � � � � � � 1.421(25) 1.442(41) 1.451(37) 1.280(38) 1.273(35)

a091m170L
f4; 3�g 1.436(17) 1.257(25) 1.252(19) 1.426(17) 1.419(18) 1.423(19) 1.245(25) 1.241(20)
f4Nπ; 3�g 1.521(41) 1.331(42) 1.327(39) 1.502(44) 1.487(51) 1.496(49) 1.309(47) 1.305(45)
f4Nπ; 2A4g � � � � � � � � � 1.441(25) 1.507(32) 1.504(30) 1.316(33) 1.312(29)
f4Nπ; 2simg � � � � � � � � � 1.499(27) 1.538(36) 1.536(33) 1.344(36) 1.339(32)

a073m270
f4; 3�g 1.371(15) 1.233(20) 1.232(17) 1.358(11) 1.359(17) 1.363(14) 1.226(19) 1.226(16)
f4Nπ; 3�g 1.384(12) 1.245(18) 1.244(15) 1.361(11) 1.402(18) 1.392(13) 1.251(19) 1.251(16)
f4Nπ; 2A4g � � � � � � � � � 1.329(12) 1.359(18) 1.348(14) 1.212(20) 1.212(16)
f4Nπ; 2simg � � � � � � � � � 1.342(12) 1.365(19) 1.360(15) 1.222(20) 1.222(17)

a071m170
f4; 3�g 1.414(34) 1.267(32) 1.271(33) 1.371(21) 1.372(23) 1.377(24) 1.234(24) 1.237(24)
f4Nπ; 3�g 1.479(38) 1.325(36) 1.329(36) 1.448(37) 1.476(49) 1.484(46) 1.329(42) 1.333(43)
f4Nπ; 2A4g � � � � � � � � � 1.359(21) 1.469(32) 1.472(30) 1.319(29) 1.323(29)
f4Nπ; 2simg � � � � � � � � � 1.432(29) 1.483(44) 1.485(40) 1.330(37) 1.334(38)

PRECISION NUCLEON CHARGES AND FORM FACTORS USING … PHYS. REV. D 105, 054505 (2022)

054505-13



in Fig. 3. The f4Nπ; 3�g values are larger—a smaller
mass gap implies a larger ESC and leads to a
larger τ → ∞ value since the convergence is from
below as shown in Fig. 17. The difference is
approximately 6% at Mπ ¼ 170 MeV and becomes
≈8% after the CCFV fits as shown in Table X
in Sec. XIII.

(iv) A similar difference of approximately 5% is also
present in the axial form factor GA for the lowest
nonzero momentum transfer, q⃗ ¼ ð1; 0; 0Þ2π=La,
data on the Mπ ≈ 170 MeV ensembles between

the f4; 3�g and f4Nπ; 3�g strategies as shown in
Table XVIII.

The key issue to settle is whether the Nð1Þπð−1Þ state,
which is seen to contribute to the axial form factors at
the lowest Q2 and whose effect grows as Q2 → 0, also
contributes at the approximately 5% level to the forward
matrix element as indicated by the data. We discuss this
issue further in Sec. X, and in Sec. XIII A where we
compare these estimates of gA to the second set of values
obtained by extrapolating GAðQ2Þ to Q2 ¼ 0 using the
dipole, Padé, and z-expansion fits defined in Sec. X A.

TABLE V. Results for gS and gT on the seven ensembles and for the four strategies specified in column 1 and defined in Appendix A
that are used to control the excited state contamination. The second and fifth columns give the bare values. The renormalized values
using the two different methods, Z1 ≡ ZS;TgbareS;T and Z2 ≡ ðZS;T=ZVÞ × ðgbareS;T =g

bare
V Þ, are given in columns 3–4 and 6–7. The numbers

within square brackets give the χ2=dof of the ESC fits.

Fit gbareS gSjZ1 gSjZ2 gbareT gT jZ1 gT jZ2

a127m285
f4; 3�g 1.083(27)[0.94] 0.897(28) 0.874(41) 1.173(10)[1.16] 1.046(21) 1.029(14)
f4Nπ; 3�g 1.091(31)[0.96] 0.904(30) 0.880(43) 1.169(12)[1.18] 1.043(22) 1.026(15)
f4; 2freeg 1.036(22)[1.16] 0.858(24) 0.836(37) 1.1825(83)[1.10] 1.055(20) 1.038(13)
f4Nπ; 2freeg 1.041(21)[1.15] 0.863(23) 0.840(37) 1.1839(92)[1.16] 1.056(21) 1.039(13)

a094m270
f4; 3�g 1.22(10)[1.21] 0.965(83) 0.953(84) 1.102(24)[1.12] 1.022(30) 1.019(24)
f4Nπ; 3�g 1.193(58)[1.22] 0.942(48) 0.930(51) 1.108(19)[1.12] 1.028(26) 1.024(19)
f4; 2freeg 1.113(48)[1.19] 0.878(40) 0.867(44) 1.140(25)[1.02] 1.058(31) 1.054(24)
f4Nπ; 2freeg 1.101(36)[1.21] 0.869(31) 0.858(36) 1.133(10)[1.01] 1.051(22) 1.047(12)

a094m270L
f4; 3�g 1.195(24)[1.35] 0.951(25) 0.952(35) 1.0923(86)[0.96] 1.015(22) 1.019(11)
f4Nπ; 3�g 1.176(43)[1.33] 0.936(38) 0.937(44) 1.095(13)[0.94] 1.017(24) 1.021(15)
f4; 2freeg 1.165(15)[1.44] 0.927(20) 0.928(30) 1.1110(41)[1.03] 1.032(22) 1.0364(92)
f4Nπ; 2freeg 1.178(15)[1.44] 0.938(20) 0.939(31) 1.1184(47)[1.11] 1.039(22) 1.0433(96)

a091m170
f4; 3�g 1.172(60)[0.96] 0.926(51) 0.918(54) 1.054(14)[0.84] 0.981(25) 0.977(15)
f4Nπ; 3�g 1.18(14)[0.95] 0.93(11) 0.92(11) 1.063(39)[0.89] 0.990(42) 0.985(37)
f4; 2freeg 1.152(53)[0.98] 0.910(45) 0.902(48) 1.083(12)[0.88] 1.009(24) 1.004(13)
f4Nπ; 2freeg 1.188(53)[1.00] 0.938(45) 0.930(49) 1.107(16)[0.88] 1.031(27) 1.027(17)

a091m170L
f4; 3�g 1.145(73)[0.84] 0.897(58) 0.892(60) 1.061(14)[0.96] 0.983(20) 0.982(15)
f4Nπ; 3�g 1.17(14)[0.85] 0.92(11) 0.91(11) 1.031(32)[1.01] 0.955(34) 0.954(31)
f4; 2freeg 1.132(43)[0.91] 0.887(36) 0.882(40) 1.0977(91)[1.04] 1.017(18) 1.016(11)
f4Nπ; 2freeg 1.223(57)[0.95] 0.958(47) 0.952(50) 1.149(26)[1.75] 1.064(29) 1.063(25)

a073m270
f4; 3�g 1.271(25)[1.13] 0.989(23) 0.989(37) 1.0627(73)[0.87] 1.021(21) 1.0201(91)
f4Nπ; 3�g 1.272(30)[1.09] 0.990(26) 0.989(40) 1.0623(86)[0.88] 1.020(21) 1.020(10)
f4; 2freeg 1.230(14)[1.00] 0.958(16) 0.957(33) 1.0823(51)[1.00] 1.040(21) 1.0389(78)
f4Nπ; 2freeg 1.235(14)[1.00] 0.962(16) 0.961(33) 1.0853(46)[1.01] 1.042(20) 1.0418(76)

a071m170
f4; 3�g 1.22(13)[0.84] 0.94(10) 0.94(10) 1.016(22)[0.92] 0.980(26) 0.983(22)
f4Nπ; 3�g 1.24(21)[0.84] 0.95(16) 0.95(16) 1.006(34)[0.89] 0.971(36) 0.974(33)
f4; 2freeg 1.182(72)[0.83] 0.907(57) 0.907(62) 1.052(15)[0.89] 1.016(21) 1.019(16)
f4Nπ; 2freeg 1.230(72)[0.83] 0.943(57) 0.944(62) 1.083(17)[0.96] 1.045(23) 1.049(18)
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C. gS
The data and fits to the largest four values of τ used to

remove ESC in gS are shown in Fig. 18. The statistical
errors in individual points are much larger compared to gA
or gT, and are sizable for the Mπ ≈ 170 MeV ensembles.
The results after the ESC fits are collected together in
Table V. The notable features in the data, fits, and results are
the following:

(i) The f4; 2freeg and f4Nπ; 2freeg fits give results with
smaller errors compared to the f4Nπ; 3�g and f4; 3�g

fits. As shown in Table II, the ΔM̃1 ≈ 1 GeV is,
however, much larger than even ΔM1, i.e., the result
of the f4g-fits. Even accounting for the fact that
a two-state fit typically gives a larger ΔM1 (this

can be seen by comparing aΔMf2g
1 with aΔMf4g

1 in
Table II), the values from the f2freeg fits are
unexpectedly large.

(ii) Estimates from the four fit strategies are consistent
on all ensembles as shown in Fig. 18 and in Table V.
No significant difference is observed between the
f4Nπ; 3�g and f4; 3�g values as shown in Fig. 3.

(iii) The χ2=dof for the four fits are similar, so it cannot
be used to distinguish between them.

(iv) The 3�-state fits are not overparametrized by the
Akaike criteria.

(v) On the Mπ ≈ 170 MeV ensembles, the 0 ↔ 2 tran-
sition term is not well-determined in the 3� fits.

(vi) The expected monotonic convergence in not yet
realized for the τ ¼ 19 or 21 data on the a071m170
ensemble as shown in Fig. 18. However, as shown in
Fig. 20 in Appendix D, the data for the connected
insertions on u and d quarks do show it. On making
the same ESC fits to each of these to get the τ → ∞
values, and then constructing the isovector combi-
nation gu−dS gave overlapping values. The errors,
however, are larger, presumably because there is a
cancellation of fluctuations when fitting to the u − d
data. The largest difference, about 0.5σ, is in the
a091m170L and a071m170 ensembles. Based on an
analysis of subsets of data, error reduction comes
mainly from the average over gauge configurations;
i.e., the average over multiple measurements on each
configuration is less effective as compared to that
for gA and gT .

Overall, we do not have an airtight criterion for picking
one strategy over the other. In Sec. XIII A, we perform the
CCFV extrapolation for all four cases, and the results,
summarized in Table X, show consistency within 1σ.
Eventually in Sec. XIII A, we will invoke the fact that
the two f2freeg fits give an unexpectedly largeΔM̃1 to focus
on the f4; 3�g and f4Nπ; 3�g values, which give consistent
results as shown in Fig. 3.

D. gT
The magnitude of the ESC and the errors in the data for

gT are smaller than those in gA or gS. Nevertheless, we find
that using a larger tskip improves the fits in many cases.
Other features in the data are the following:

(i) The χ2=dof of fits with all four strategies are, again,
reasonable and consistent as shown in Fig. 19.

(ii) The ΔM̃1 from f4; 2freeg and f4Nπ; 2freeg strategies
is determined with similar precision (5%–15% error)
as from the f4Nπg and f4g fits to the two-point
function. It is, however, much larger and comparable

FIG. 3. The difference in the renormalized (Z1 method) axial
(top), scalar (middle), and the tensor (bottom) charges between
the two strategies, f4Nπ; 3�g − f4; 3�g. The data are shown for all
the seven ensembles.
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to the values found in the gS analysis as shown in
Table II. Thus, the same argument made in the case
of gS for choosing results from f4; 3�g or f4Nπ; 3�g
applies.

(iii) The f4; 2freeg and f4Nπ; 2freeg estimates are system-
atically larger by 1–2σ as can be seen in Fig. 19 and
from Table V. This is because a largerΔM̃1 leads to a
smaller τ → ∞ extrapolation and thus a larger gT
because convergence is from above.

(iv) We note a roughly 1σ difference between f4; 3�g and
f4Nπ; 3�g results on the a091m170L and a071m170
ensembles, as shown in Fig. 3. While this ≈2%
difference is well within our error estimates, future
calculations, especially at Mπ ≈ 135 MeV, are
needed to confirm whether the low-lying multihadron
states make a contribution at the few percent level
as Mπ → 135 MeV.

(v) For the f4Nπ; 2freeg strategy, the gray band in Fig. 19
showing the τ ¼ ∞ value lies above the largest τ
data. This happens because the ratio data need not
converge monotonically for specific combinations
of ΔM̃1 (or ΔM4Nπ

1 ) and the size of the ESC in the
three-point function. An example is when the con-
tribution of the excited states in the three-point
function comes with a positive sign (as for gT that
converges from above) while that from the two-point
correlator always comes with a negative sign. (The
spectral decomposition of the two-point function in
the denominator is a sum of positive terms because
our source and sink interpolating operators are the
same.) We have checked that this behavior describes
our data and leads to a nonmonotonic convergence
in the ratio for gT ; i.e., the ratio data go below the
gray band as τ is increased and then turn back up at
values of τ larger than accessible in current calcu-
lations. Our fits to the three-point correlators, which
show monotonic convergence in τ, are, on the other
hand, robust.

Overall, as for gS, the χ2=dof of the various fits to the
data do not help us select among the strategies. We,
therefore, perform the CCFV extrapolation for all four
strategies in Sec. XIII A and then discuss our choice of
the best estimate.

IX. THE A4 THREE-POINT FUNCTION AT Q2 ≠ 0
AND UNDERSTANDING ESC IN GAðQ2Þ

In Ref. [8], we showed that the first excited state
energies M1 and E1, obtained from the four-state fit f4g,
are much larger than those of the noninteracting multi-
hadron states relevant for extracting axial form factors:
NðqÞπð−qÞ or Nð0Þπð−qÞ, or Nππ or even the Nð1440Þ.
The differences are striking at small momentum transfers.
In fact, as illustrated in Fig. 1, estimates of E1 have large

uncertainty, and only the ground state parameters are
determined with few percent accuracy from fits to the
two-point functions. Even for M0, in spite of the seem-
ingly long plateau in the effective-mass plots starting at
τ ∼ 1 fm, estimates from four- and 4Nπ-state fits differ by
1%–2%. In Ref. [8], we also showed that when Ẽ1

extracted from two-state fits to the A4 three-point function
hN ðτ;−qÞA4ðt; qÞN̄ ð0; 0Þi is used to obtain GA, G̃P, and
GP, the PCAC relation between the three form factors is
much better satisfied. That strategy, labeled SA4 in [8], is
called f4; 2A4g or f4Nπ; 2A4g in this paper.
With high statistics data, we further explore the two- and

three-state fits to the A4 correlator at nonzero momentum
transfer. We can now make fits with the full covariance
matrix and can take the first excited state parameters from
two-point correlators or leave M1 and E1 free along with
the matrix elements, i.e., take only M0, E0, A0, and Ap

0

from one of the two four-state fits to the two-point function.
To quantify the sensitivity of the form factors to different
choices for the mass gaps, we investigate six strategies:
f4; 3�g, f4Nπ; 3�g, f4; 2A4g, f4Nπ; 2A4g, f4; 2simg, and
f4Nπ; 2simg. The last two involve a simultaneous fit, with
common M̃1 and Ẽ1, to all four Aμ and the P three-point
functions as discussed below. A more detailed discussion of
the possible excited states and the limitations of analyses is
given in Appendix E.
The first comparison of such fits to the three-point

function hN ðτÞA4ðtÞN̄ ð0Þi is shown in Fig. 23 for the four
strategies f4; 3�g, f4Nπ; 3�g, f4Nπ; 2A4g, and f4Nπ; 2simg.
Data from six ensembles are shown for momentum transfer
n ¼ ð0; 0; 1Þ as these have large ESC. For the f4; 3�g
strategy, the χ2=dof of the fits, given in the labels in
Fig. 23, are uniformly bad as was pointed out in Ref. [8].
Also, as shown in Fig. 4, the form factors obtained with this
strategy do not satisfy the PCAC relation rewritten as

Q2

4M2
N

G̃PðQ2Þ
GAðQ2Þ þ

2m̂
2MN

GPðQ2Þ
GAðQ2Þ ¼ 1; ð29Þ

with m̂ given in Table I. Even though f4; 3�g data fail the
PCAC test, wewill continue to perform a full analyses with it
for the purpose of comparison.
The χ2=dof improves significantly with f4Nπ; 3�g and is

the best with f4Nπ; 2A4g as shown in Fig. 23. The χ2=dof
of the f4Nπ; 2simg fit is similar; however, recall it involves a
simultaneous fit to all five correlators. Also, estimates of
M̃1 and Ẽ1 are similar in the two cases. The same is true
with respect to satisfying PCAC as shown in Fig. 4.
Next, note that ΔM1 and ΔE1 decrease on going from

f4; 3�g to f4Nπ; 3�g to f4Nπ; 2A4g; and the difference
between ΔM1 and ΔE1 also changes. Overall, the
behavior using strategy f4Nπ; 2A4g is consistent with
the results in Ref. [8]; i.e., (i) the χ2=dof of the fits are
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much reduced2; (ii) the M̃1 and Ẽ1, which we label as M̃
A4

1

and ẼA4

1 , are much smaller than those obtained from the
f4g-fits to the two-point correlation function; and
(iii) M̃A4

1 and ẼA4

1 are roughly consistent with the non-
interacting energies of NðqÞπð−qÞ and Nð0Þπð−qÞ states,
respectively, as shown in Fig. 22. These features are also
consistent with the effective field theory (χPT) result that,
at leading (tree) order, the axial current inserts a pion
with momentum q, i.e., the pion-pole dominance (PPD)
hypothesis [35,36].
In contrast, fits to the Ai correlators with M̃1 and Ẽ1 left

as free parameters do not have good χ2=dof; i.e., these
correlators do not constrain the excited-state parameters.
The reason is that the ground state dominates in the Ai
correlators, whereas the excited state is dominant in A4.
Using the M̃1 and Ẽ1 obtained from fits to A4 to also

analyze Ai and P leads to form factors that are in much
better agreement with the PCAC relation as shown in
Fig. 4. This step, however, assumes that the same combi-
nation of excited states provides the dominant contribution
to all five (O ¼ Aμ and P) correlation functions. If this is

the case, then, statistically, the more sound method is to fit
these five correlators simultaneously with common M̃1 and
Ẽ1. These strategies are labeled f4; 2simg and f4Nπ; 2simg.
As expected, the resulting M̃1 and Ẽ1 from these simulta-
neous fits are similar to MA4

1 and EA4

1 because these are
mainly controlled by the A4 correlator.
Figure 4 also shows tests of the pion-pole dominance

hypothesis, which, with the Goldberger-Treiman relation
[37], relates G̃PðQ2Þ to GAðQ2Þ as

Q2 þM2
π

4M2
N

G̃PðQ2Þ
GAðQ2Þ ¼ 1: ð30Þ

The behavior of the data for the combination in Eq. (29)
(PCAC) and Eq. (31) (PPD) is very similar and correlated,
and f4Nπ; 2simg gives the most consistent outcome. Noting
this strong correlation, we examine the relation

2m̂
2MN

M2
π

GPðQ2Þ
G̃PðQ2Þ ¼ 1; ð31Þ

which should hold for the PCAC relation, Eq. (29), and
PPD, Eq. (30), to be simultaneously satisfied. Following
Ref. [38], and working to first order in χPT in M2

π and Q2,
the left-hand side of Eq. (31) can be expanded as

FIG. 4. The top four panels show tests of the PCAC relation between the axial form factors for four analysis strategies specified at the
bottom left corner. The middle panels show tests of the pion-pole dominance (PPD) hypothesis, and the bottom panels show the quantity
4MNm̂GPðQ2Þ=M2

πG̃PðQ2Þ that should equal unity for the PPD and the PCAC relation to be simultaneously satisfied. A fit linear in Q2

is shown in the bottom right panel. The symbols and color code used to show the data from the five larger volume ensembles are
specified in the legends. Only data with Q2 ≤ 1 GeV2 are shown as the errors above it are large in some cases.

2The χ2=dof is still large in many cases indicating that the fit
ansatz used to control ESC does not fully describe the data and
highlights the need for a more nuanced understanding of excited
states that contribute significantly. This caveat should be con-
sidered implicit throughout the paper.
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1þ Δþ 1

6
hr2AiM2

π þ
Q2

M2
π

�
Δþ 1

6
hr2AiM2

π

�
; ð32Þ

where Δ≡ 2d̄18M2
π=gA is the Goldberger-Treiman discrep-

ancy and d̄18 is an unknown low-energy constant. The data
for the left-hand side of Eq. (31), also presented in Fig. 4,
show that the ratio is close to unity at Q2 ¼ 0 and has a
significant, essentially linear, increase with Q2 on all
seven ensembles. A linear fit to the five larger volume
ensembles, shown in the bottom right panel in Fig. 4, gives
1.033ð5Þ þ 0.272ð16ÞQ2, withQ2 in GeV2. From Eq. (32),
the quantity ðΔþ 1

6
hr2AiM2

πÞ should equal the intercept
minus one, and also the slope times M2

π . Using our result
hr2Ai ¼ 0.43 fm2 presented in Sec. XIII B, we get Δ ∼ 0
from the intercept and ∼ − 0.02 from the slope. For
comparison, using the Goldberger-Treiman relation gAMN ¼
gπNNFπð1þΔÞ and the experimental values gA ¼ 1.27641,
MN ¼ 939 MeV, Fπ ¼ 92.2 MeV, and gπNN ¼ 13.25
[39–41] gives Δ ∼ −0.02. In short, we show that the ratio
defined in Eq. (31) is not unity and exhibits a linear
dependence on Q2 that is consistent with the prediction
of χPT.
The data in Fig. 4 also show that with the f4Nπ; 2simg

strategy, the smallest Q2 points on the a091m170L
ensemble start to deviate away from unity for both the
PCAC and PPD relations but not those from the a071m170
ensemble. In contrast, for the f4; 3�g strategy, the data from
both ensembles bend down at small Q2, which we have
shown is due to the missed Nπ states. To investigate this
difference between the a091m170L and a071m170 data
with the f4Nπ; 2simg strategy, we show ðQ2 þM2

πÞG̃PðQ2Þ
versus Q2 in Fig. 26 in Appendix F, and note that the data
move up as a → 0 for all but the f4; 3�g strategy; i.e., they
indicate a dependence on a when the Nπ state is included.
Nevertheless, we cannot pinpoint whether the difference
in behavior is a discretization effect or a combination of
statistical and/or larger discretization effects in the
a091m170L data, or indicates the need to include addi-
tional (multihadron) low energy excited states in the fits. In
the near future, we plan to double the statistics on these two
ensembles to better quantify the difference and explore
adding a third state, i.e., a f4Nπ; 3simg fit.

A. f4Nπ; 2simg is our preferred strategy
for analyzing the axial form factors

Data from the two strategies f4Nπ; 2A4g and f4Nπ; 2simg
show much better agreement with the PCAC and PPD
relations as shown in Fig. 4. To choose between them, we
consider two additional checks: First, the ground state
matrix elements extracted from the A4 correlator with q ≠ 0
should satisfy the relation ∂4A4 ¼ ðE0 −M0ÞA4 for all q.
Second, the value of the ground state matrix element
hNjA4jNi extracted from fits to hNA4N i should agree
with that reconstructed by inserting GA and G̃P calculated

from the Ai correlators into the right-hand side of Eq. (23).
The first condition is satisfied by both strategies even
though hNjA4jNi is very poorly determined with
f4Nπ; 2A4g. The second check is satisfied within errors
only by data from f4Nπ; 2simg. Based on these two con-
sistency checks and the PCAC relation, we select
f4Nπ; 2simg as our preferred strategy for analyzing the
axial form factors; however, we will continue to examine
all six strategies discussed above to exhibit the spread.
The obvious next step is f4Nπ; 3simg fits, i.e., leaving

the first and second excited-state energy gaps as free
parameters (or using priors for them) in fits to the three-
point functions. With current data, we do not get mean-
ingful results. Much higher statistics are required.

X. AXIAL VECTOR FORM FACTORS

As discussed in Sec. IX, we compare six strategies to
extract the axial vector form factors, with our preferred one
being f4Nπ; 2simg. It makes the following assumption: the
excited-state contamination in all five channels, Aμ and P,
can, to a good approximation, be accounted for by a “single
low mass effective excited state” whose parameters can be
determined from a simultaneous two-state fit to the five
three-point functions. Only the ground state parameters are
taken from fits to the two-point functions.
We find that the two sets of estimates using f4Nπ; 2A4g

and f4Nπ; 2simg versus f4; 2A4g and f4; 2simg fits give
overlapping results for the form factors, which satisfy
PCAC equally well. These two sets differ only in the M0

and A0 obtained from the f4Nπg- and f4g-state fits to the
two-point functions, and these differences do not signifi-
cantly impact the results for the form factors. It is the mass
gap of the first excited-state used in the fits to the three-point
function that is important. In both the f2A4g and f2simg fits,
the output ΔẼ1 is controlled by the A4 correlator and
corresponds to the Nπ state as discussed in Sec. IX.
Thus, the impact of including the Nπ state is far more
significant in the three-point functions; however, our
approach is to consistently choose strategies in which the
mass gap in both the two- and three-point functions does or
does not include the low-lying (Nπ) state. This is achieved
with the f4; 3�g, f4Nπ; 3�g, f4Nπ; 2A4g, and f4Nπ; 2simg
strategies (see Appendix A for their definition), which are,
therefore, used to present the final results. We do not discuss
estimates from the f4; 2A4g and f4; 2simg strategies any
further since all we can add from their analysis is they give
results consistent with f4Nπ; 2A4g and f4Nπ; 2simg.
The data for ZAGAðQ2Þ and ZAG̃PðQ2Þ for the four

remaining strategies are given in Tables XVIII and XIX
and plotted in Figs. 5 and 6, where we divide them
by gexpA ¼ 1.277 so that the value should equal unity at
Q2 ¼ 0 in the CCFV limit. Similarly, the unrenormalized
GPðQ2Þ is given in Table XX and plotted in Fig. 7.

SUNGWOO PARK et al. PHYS. REV. D 105, 054505 (2022)

054505-18



The latter is used primarily to check the PCAC and PPD
relations as shown in Fig. 4.

A. Parametrizing the Q2 behavior of GAðQ2Þ
and the extraction of gA and hr2Ai

Our primary goal is to calculate the axial form factors,
GA and G̃P, as a function of Q2 as these are needed in the
calculation of the neutrino-nucleus cross sections. These
results are shown in Figs. 5 and 6.
In most current lattice QCD calculations, the smallest

nonzero lattice momentum, which is also the gap between

the discrete momenta, is large, jqminj ≥ 200 MeV.
Consequently, it is important to keep in mind that obtaining
the slope and the value at Q2 ¼ 0 from fits to lattice data
with Q2 ≳ 0.04 GeV2 have an associated systematic uncer-
tainty. This can be estimated by comparing gA obtained
directly at Q2 ¼ 0 from the forward matrix element with the
extrapolated value GAðQ2 → 0Þ. In this work, we perform
this extrapolation using three parametrizations, dipole, Padé,
and z-expansion, as discussed below and in Sec. XIII A.
Historically, the dipole (D) ansatz has been used to

parametrize the Q2 behavior of GAðQ2Þ:

FIG. 5. The data for the renormalized axial form factor ZAGAðQ2Þ=gexpA , with gexpA ¼ 1.277, are plotted versus Q2 in GeV2 (left) and
Q2=M2

N (right). Each panel shows the data from the five larger volume ensembles. The four rows show the results from four strategies,
specified at the lower left corner of each panel that are used to control ESC. The three curves show the dipole ansatz withMA ¼ 1.026,
1.2, and 1.35 GeV, and have been drawn only to guide the eye. The agreement between the three ∼270 and the two 170 MeV data
indicates that discretization errors are small.
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GAðQ2ÞjD ¼ GAð0Þ
ð1þQ2=M2

AÞ2
⇒ hr2Ai ¼

12

M2
A
: ð33Þ

It is the Fourier transform of a distribution exponentially
falling in space and appealing for phenomenological
analyses because it has only one unknown parameter,
the axial mass MA since gA is known accurately from
experiments. Also, it goes to zero as Q4 for large Q2 as
predicted by QCD perturbation theory [42,43].
The second parametrization used is themodel-independent

z-expansion [44,45],

GAðQ2Þ
GAð0Þ

¼
X∞
k¼0

akzðQ2Þk; ð34Þ

where the ak are fit parameters and z is defined to be

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ t̄0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þ t̄0
p : ð35Þ

In terms of z, the form factors are analytical within the
unit circle with the nearest singularity, a branch cut, at

FIG. 6. The data for the renormalized induced pseudoscalar form factor ZAG̃PðQ2Þ=gexpA , with gexpA ¼ 1.277, are plotted versus Q2 in
GeV2 (left) and Q2=M2

N (right). Each panel shows the data from the five larger volume ensembles. The four rows show the results from
four strategies for controlling ESC that are specified in the label at the bottom left corner. The difference among the three ∼270 and the
two 170 MeV data is more noticeable when plotted versus Q2=M2

N .
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Q2 ¼ −tcut ¼ −9M2
π (or −4M2

π in the vector channel). We
choose the parameter t̄0, which is the value of −Q2 that is
mapped to z ¼ 0, to be themidpoint of the range ofQ2 values
on each ensemble to minimize the maximum value of jzj as
discussed in Ref. [8]. For the seven ensembles listed in
Table XV, this corresponds to t̄0 ¼ f0.4; 0.6; 0.3; 0.3; 0.2;
0.5; 0.25g GeV2, respectively. We find no significant differ-
ence in the results on using t̄0 ¼ 0.
The data for ZAGAðQ2Þ=1.277 are plotted versus z in

Fig. 8 for the f4Nπ; 2simg strategy and show only small
deviations from linearity. As a result, z-expansion fits with

zf2;3;4g truncations give essentially identical results for both
gA and hr2Ai. As shown in Fig. 9, the augmented χ2 does not
decrease by two units on increasing the order of truncation
from z2 → z3 → z4. Therefore the zf3;4g fits are considered
overparametrized by the Akaike information criteria [27].
In Ref. [9], we had observed that fitting the precise
experimental data for the electric and magnetic form
factors stabilizes for zk truncated at k ≥ 4. Our current
lattice data with ten points are well fit by the z2 (z3)
truncation for the axial (vector) form factors as discussed
further in Sec. XII.

FIG. 7. The unrenormalized pseudoscalar form factor GPðQ2Þ is plotted versus Q2 in GeV2 (left) and Q2=M2
N (right). Each panel

shows the data from the five larger volume ensembles. The four rows show the results from four strategies for controlling ESC that
are specified in the labels. The difference among the three ∼270 MeV and the two 170 MeV data is more noticeable when plotted
versus Q2=M2

N .
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We also examine z-expansion fits with sum rules that
ensure that GAðQ2Þ falls as Q−4 with Q2 → ∞ as predicted
by perturbation theory [43] following the procedure
described in Ref. [9]. Results of analyses with and without
sum rules overlap. Our final results for gA (Table IV) and
hr2Ai (Table VI) are taken from fits without sum rules as
these quantities characterize the behavior at Q2 ¼ 0. To
stabilize all these z-expansion fits, we use Gaussian priors
for all the ak with central value zero and width five.
Last, we make two Padé fits, P2 ≡ Pðg; 0; 2Þ and

P3 ≡ Pðg; 1; 3Þ, defined as

Pðg; 0; 2Þ ¼ g
1þ b1Q2 þ b2Q4

; ð36Þ

Pðg; 1; 3Þ ¼ gð1þ a1Q2Þ
1þ b1Q2 þ b2Q4 þ b3Q6

: ð37Þ

These also incorporate the 1=Q4 behavior expected at
large Q2. Since the calculation is done for spacelike Q2

and at values sufficiently far from the physical poles and
cuts, their influence is expected to be small. Therefore,
these Padé fits should provide an equally good paramet-
rization as the z-expansion.
We find that P2 gives results consistent with the z2;3;4 fits

and has the virtue of being easier to visualize in terms of
powers of Q2. In Sec. XIV we will also present a Pðg; 0; 2Þ
and z2 (or z3) parametrization of the axial, electric, and
magnetic form factors ignoring lattice artifacts, with results
given in Eqs. (55), (56), and (58).
To explore systematic errors due to the limited range of

Q2 points fit, we compare results obtained by fitting all ten
Q2 ≠ 0 points versus the six with the smallest Q2 values.
This cut, based on the number of points rather than a value
of Q2 in physical units, is chosen because, in the prob-
lematic cases in the vector channel, the errors are large in
the four largest Q2 points as can be seen in Figs. 12–14.
Based on this comparison, we selected ten-point fits for the
axial form factors and six-point fits for the vector.
Results for gA and hr2Ai depend on both the strategy used

to obtain the ground state matrix element and the fits
(dipole, or the z-expansion or the Padé) used to parametrize
the Q2 behavior of GAðQ2Þ. In particular, the value of the
low Q2 points in GAðQ2Þ vary among the strategies as
shown in Fig. 21, which in turn leads to differences in the
Q2 parametrization, i.e., in gA and hr2Ai. These differences
can be inferred from the labels in Fig. 9, where the three
panels give Q2 fits to GAðQ2 ≠ 0Þ data for the f4; 3�g,

FIG. 9. Plot of GA versus Q2 for the a091m170L (top row) and a071m170 (bottom row) ensembles. Also shown are the dipole, Padé
(gA; 0; 2Þ, and zf2;3;4g fits to the tenQ2 points. The results for unrenormalized gA and rA (in fm) are given in the legends: dipole (top line),
Padé (second line), and z2;3;4 (lines 3–5). The χ2=dof of the fits are given within square brackets. The error bands of the fits are shown by
dotted lines of the same color only over the range of the data for clarity.

FIG. 8. The renormalized GA plotted versus z for the seven
ensembles. The data are from the f4Nπ ; 2simg strategy.
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f4Nπ; 3�g, and f4Nπ; 2simg strategies for the a091m170L
and a071m170 ensembles. Recall that the difference in gA,
obtained from the forward matrix element, between the
f4; 3�g and f4Nπ; 3�g strategies was shown in Fig. 3.
Comparing results for gA and hr2Ai from the seven

ensembles, summarized in Tables IV and VI, we note
the following points:

(i) With the f4; 3�g strategy, results for gA from dipole,
zf2;3;4g, and Padé fits agree with those measured
directly from the forward matrix element on all
ensembles. The fits have reasonable χ2=dof.

(ii) For the f4Nπ; 3�g strategy, similar agreement is seen
between results from the dipole, zf2;3;4g, and Padé
fits, and from the forward matrix element. However,
these estimates are larger than those with the f4; 3�g
strategy, especially for the Mπ ≈ 170 MeV ensem-
bles (see Fig. 3).

(iii) With the f4Nπ; 2A4g and the preferred f4Nπ; 2simg
strategies, (i) the dipole estimates are smaller than
the zf2;3;4g or the Padé values on all three Mπ ¼
170 MeV ensembles, and (ii) the χ2=dof becomes
larger for the dipole fit to the data from all three
f4Nπg strategies, mainly because it misses the low
Q2 points.

A key point is that the differences observed on theMπ ≈
170 MeV ensembles are not evident at Mπ ∼ 270 MeV.
This is consistent with the earlier discussion that the
difference in the mass gaps between the f4g and f4Nπg
fits become larger as Mπ decreases, i.e., the mass gap of
the Nπ state decreases. In short, the data shown in
Tables IV and VI indicate that estimates of gA and hr2Ai
become increasingly sensitive to the ESC strategy as
Mπ → 135 MeV. Also, the dipole fit starts to fail. This
Mπ dependent behavior has a significant impact on the final
estimates obtained from the CCFV fits as discussed in
Sec. XIII and shown in Fig. 32.

XI. THE INDUCED PSEUDOSCALAR FORM
FACTOR G̃PðQ2Þ AND THE EXTRACTION

OF g�P AND gπNN

The data for the renormalized induced pseudoscalar
form factor ZAG̃PðQ2Þ=ðgexpA Þ from the five larger volume
ensembles are plotted versus Q2 and Q2=M2

N in Fig. 6.
Overall, the data show dependence on the pion mass; i.e.,
data fall into two bands for ensembles with Mπ ≈ 270 and
170 MeV. This dependence is more evident when plotted
versus Q2=M2

N . On the other hand, we do not observe a
significant a dependence.
The Q2 dependence of G̃PðQ2Þ, given in Table XIX, is

analyzed using the small Q2 expansion of the pion-pole
dominance ansatz given in Eq. (30):

mμ

2MN
G̃PðQ2Þ ¼ c0

a2ðM2
π þQ2Þ þ c1 þ c2a2Q2 þ c3a4Q4;

ð38Þ

where the leading term is the pion-pole term and the
polynomial approximates the dependence coming from
the small Q2 behavior of GAðQ2Þ. It is also the behavior
predicted for small Q2 and M2

π by the leading order chiral
perturbation theory [38]. In practice, this ansatz fits the
data over a large range of Q2, 2.5M2

π – 50M2
π in units of

Mπ ¼ 135 MeV, as given in Table XVII.

TABLE VI. Results for hr2Ai from a dipole, P2 Padé, and z2 fits
to all ten Q2 ≠ 0 points for the seven ensembles and the four
strategies in column 1 (see Appendix A) used to control excited
state contamination. The fits to f4Nπ ; 2A4g data on the a094m270
ensemble are not stable so no results are given.

Fit hr2Aijdipole hr2AijP2
hr2Aijz2

a127m285
f4; 3�g 0.293(13) 0.293(20) 0.297(15)
f4Nπ; 3�g 0.315(13) 0.333(22) 0.323(15)
f4Nπ; 2A4g 0.302(15) 0.349(32) 0.315(18)
f4Nπ; 2simg 0.304(15) 0.310(42) 0.297(21)

a094m270
f4; 3�g 0.255(18) 0.293(65) 0.291(29)
f4Nπ; 3�g 0.265(14) 0.340(43) 0.314(18)
f4Nπ; 2A4g
f4Nπ; 2simg 0.247(11) 0.280(48) 0.278(23)

a094m270L
f4; 3�g 0.290(11) 0.305(18) 0.305(13)
f4Nπ; 3�g 0.317(11) 0.348(20) 0.336(13)
f4Nπ; 2A4g 0.312(9) 0.358(19) 0.339(12)
f4Nπ; 2simg 0.298(10) 0.333(26) 0.317(16)

a091m170
f4; 3�g 0.301(15) 0.307(30) 0.340(29)
f4Nπ; 3�g 0.376(33) 0.355(92) 0.411(69)
f4Nπ; 2A4g 0.292(16) 0.459(52) 0.466(41)
f4Nπ; 2simg 0.306(16) 0.350(59) 0.378(53)

a091m170L
f4; 3�g 0.341(19) 0.323(30) 0.342(30)
f4Nπ; 3�g 0.449(45) 0.426(74) 0.462(63)
f4Nπ; 2A4g 0.311(20) 0.486(48) 0.484(40)
f4Nπ; 2simg 0.369(19) 0.478(61) 0.479(51)

a073m270
f4; 3�g 0.269(12) 0.270(24) 0.280(17)
f4Nπ; 3�g 0.271(9) 0.330(22) 0.312(12)
f4Nπ; 2A4g 0.242(9) 0.287(21) 0.271(14)
f4Nπ; 2simg 0.253(8) 0.285(22) 0.278(13)

a071m170
f4; 3�g 0.284(22) 0.288(36) 0.306(38)
f4Nπ; 3�g 0.368(29) 0.428(66) 0.455(56)
f4Nπ; 2A4g 0.271(15) 0.494(47) 0.507(39)
f4Nπ; 2simg 0.308(18) 0.424(67) 0.438(59)
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From these fits, we extract g�P and the pion-nucleon
coupling, gπNN , using the following expressions:

g�P ≡ mμ

2MN
G̃Pð0.88m2

μÞ; ð39Þ

gπNN ≡ lim
Q2→−M2

π

M2
π þQ2

4MNFπ
G̃PðQ2Þ ¼ c0

2a2mμFπ
; ð40Þ

where gπNN is defined as the residue of G̃PðQ2Þ at the pion
pole at Q2 ¼ −M2

π , mμ ¼ 105.7 MeV is the muon mass,
and Fπ ¼ 92.2 MeV is the pion decay constant.
We carried out fits to G̃PðQ2Þ versus Q2 to get g�P and

gπNN , (i) to just the smallest six Q2 points and (ii) to all ten.
On all seven ensembles and for all four strategies (except
for the four highest momenta points with the f4Nπ; 2A4g
strategy on the a094m270 ensemble that could not be fit
reliably) the estimates from these two fits are consistent
at <1σ level. For our final results, we choose the ten-
point fits.
A second issue is whether the Q4 term in Eq. (38) is

needed or is an overparametrization. Results of the fits with
and without the Q4 term are given in Table VII for the
a091m170L and a071m170 ensembles. We note a signifi-
cant difference between the f4; 3�g and f4Nπ; 3�g strate-
gies, and in both cases there is a large reduction in the total
χ2, which justifies including the Q4 term by the Akaike
information criteria [27]. The errors on c0 are, however,
about a factor of 2 larger with the f4Nπ; 3�g strategy.

Estimates from the f4Nπ; 2A4g and the f4Nπ; 2simg strategies
are consistent and larger than those from even f4Nπ; 3�g.
In these two cases, the Q4 term is an overparametrization
by AIC and in fits including it; even the c1 are poorly
determined.
Data from all seven ensembles obtained using strategies

f4; 3�g and f4Nπ; 2simg are given for the two ways of
renormalizing the axial current in Table VIII. It shows
clearly that the main difference in the estimates comes from
whether the Nπ state is included in the analysis.
Our final results are presented with the f4Nπ; 2simg

strategy based on the discussion in Sec. IX A and with
the term proportional to c3 set to zero. The CCFV fits to the
data in Table VIII are discussed in Sec. XIII C where we
also compare our final results for gπNN with the phenom-
enological Goldberger-Treiman relation and the experi-
mental value from the πN scattering length.

XII. ELECTRIC AND MAGNETIC
FORM FACTORS

To obtain the electric and magnetic form factors, we
analyze the three sets of correlators, ℜV4, ℑVi, and ℜVi
defined in Eqs. (25)–(27) using four strategies f4; 3�g,
f4Nπ; 3�g, f4; 2simg, and f4Nπ; 2simg to remove ESC. In the
f2simg fits to the three-point functions, all three correlators
are fit simultaneously with common ΔM̃1 and ΔẼ1. Only
the ground state parameters are taken from the two-point
function. Fits with different strategies are illustrated in
Figs. 27–29 using the lowest momentum transfer (n2 ¼ 1)

TABLE VII. Results of fits to mμ

2MN
G̃PðQ2Þ versusQ2 using the ansatz and the parameters ci defined in Eq. (38). The strategies used to

remove ESC in column 1 are defined in Appendix A. Fits to a091m170L data (top) and a071m170 (bottom), with and without the finite
volume (c3) term, are compared for the four strategies listed in column one. All ten values ofQ2 are used in the fits and results are given
for both renormalization methods.

ESC strategy c0 c1 c2 c3 [χ2=dof] g�PjZ1
gπNN jZ1

g�PjZ2
gπNN jZ2

Q2 fits to the a091m170L data
f4; 3�g 0.0356(16) 0.136(37) −2.13ð30Þ � � � [29.38/7] 3.89(15) 7.52(39) 3.87(15) 7.50(38)
f4; 3�g 0.0312(18) 0.545(93) −11.8ð2.0Þ 65(13) [6.22/6] 3.76(16) 6.59(42) 3.75(15) 6.57(41)
f4Nπ; 3�g 0.0501(41) −0.13ð10Þ −0.99ð74Þ � � � [15.91/7] 5.19(36) 10.59(90) 5.17(36) 10.55(90)
f4Nπ; 3�g 0.0425(49) 0.43(23) −14.0ð4.7Þ 87(31) [8.04/6] 4.86(38) 9.0(1.1) 4.84(38) 8.9(1.1)
f4Nπ; 2A4g 0.0548(23) −0.287ð64Þ 0.86(48) � � � [3.59/7] 5.55(21) 11.56(57) 5.53(19) 11.53(54)
f4Nπ; 2A4g 0.0530(33) −0.18ð15Þ −1.2ð2.9Þ 13(18) [3.06/6] 5.45(25) 11.20(75) 5.43(23) 11.17(73)
f4Nπ; 2simg 0.0529(25) −0.196ð83Þ −0.05ð71Þ � � � [4.02/7] 5.43(21) 11.17(60) 5.41(20) 11.13(58)
f4Nπ; 2simg 0.0516(40) −0.11ð21Þ −1.8ð4.3Þ 12(28) [3.85/6] 5.36(27) 10.90(89) 5.34(26) 10.86(88)

Q2 fits to the a071m170 data
f4; 3�g 0.0192(17) 0.116(67) −2.04ð70Þ � � � [10.98/7] 3.69(27) 6.89(63) 3.71(27) 6.91(63)
f4; 3�g 0.0174(18) 0.47(14) −13.7ð4.1Þ 102(36) [2.81/6] 3.66(27) 6.22(67) 3.67(27) 6.24(67)
f4Nπ; 3�g 0.0318(27) −0.231ð94Þ 0.32(92) � � � [7.43/7] 5.73(42) 11.38(99) 5.75(43) 11.4(1.0)
f4Nπ; 3�g 0.0271(34) 0.21(23) −12.0ð5.8Þ 104(48) [2.82/6] 5.24(48) 9.7(1.3) 5.25(49) 9.7(1.3)
f4Nπ; 2A4g 0.0325(11) −0.295ð49Þ 1.83(59) � � � [7.24/7] 5.81(17) 11.64(48) 5.83(17) 11.68(48)
f4Nπ; 2A4g 0.0359(20) −0.60ð16Þ 10.0(4.2) −67ð34Þ [3.34/6] 6.19(26) 12.87(80) 6.21(26) 12.91(80)
f4Nπ; 2simg 0.0342(15) −0.295ð66Þ 1.22(76) � � � [2.54/7] 6.13(23) 12.24(61) 6.15(24) 12.28(62)
f4Nπ; 2simg 0.0354(26) −0.40ð19Þ 4.1(5.0) −24ð41Þ [2.20/6] 6.27(34) 12.69(98) 6.29(34) 12.73(98)
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data that have significant ESC and a good statistical signal,
and the fits are stable with respect to variations in τ and tskip.
The χ2=dof of the fits and the values of ΔM1 and ΔE1

entering in the fits to the three-point functions (or ΔM̃1 and
ΔẼ1 that are outcomes in the f2simg fits) are given in the
legends. Note that for each strategy, the mass gaps in fits to
the three correlation functions are the same since they either
are taken from fits to two-point functions for the first two
strategies or are outputs of simultaneous fits in the two
f2simg cases.
The first issue we investigate is whether the excited

states that contribute to these three correlators can be
identified. The analog of the pion-pole dominance in the
axial channel is vector-meson dominance; i.e., the vector
current, VμðqÞ, couples to the ρ-meson, the lowest excita-
tion in the vector channel, and thus to the 2πðqÞ state.

In this case, the dominant excited state contributing toΔM̃1

and ΔẼ1 should be NðqÞ2πð−qÞ [and/or Nð0Þ2πð0Þ� and
Nð0Þ2πðqÞ, respectively, where 2πðqÞ is a two pion state
with total momentum q.
In Fig. 10, the ΔM̃1 and ΔẼ1 from simultaneous f2simg

fits are compared to the ΔM1 and ΔE1 from the f4g- and
f4Nπg-state fits to the two-point functions and to the mass
gaps expected for a specified state (dotted lines). Our
criteria for identification of a state is when the ΔM̃1 or ΔẼ1

agree with the corresponding dotted line. We remind the
readers that f4Nπg-state fits are also relevant for the vector
channel because the mass gap of the Nð0Þπð0Þπð0Þ state is
close to that for theNð1Þπð−1Þ state for our ensembles. The
data exhibit the following features:

(i) The ΔẼ1 (open red triangles) for the 170 MeV
ensembles are consistent with the energy of a

TABLE VIII. Results for g�P ≡ mμ

2MN
G̃Pð0.88m2

μÞ and gπNN ≡ c0
2a2mμFπ

from fits to mμ

2MN
G̃PðQ2Þ using Eq. (38) with the term proportional

to c3 set to zero. Estimates from the two renormalization methods and the two strategies f4; 3�g and f4Nπ ; 2simg are compared.

f4; 3�g f4Nπ; 2simg f4; 3�g f4Nπ; 2simg
Ensemble g�PjZ1

g�PjZ2
g�PjZ1

g�PjZ2
gπNN jZ1

gπNN jZ2
gπNN jZ1

gπNN jZ2

a127m285 2.266(66) 2.221(61) 2.655(81) 2.602(78) 11.30(53) 11.08(51) 13.64(67) 13.37(65)
a094m270 2.52(16) 2.50(16) 2.87(10) 2.851(96) 11.27(89) 11.20(87) 12.97(59) 12.90(57)
a094m270L 2.455(94) 2.465(89) 2.919(68) 2.931(55) 10.89(56) 10.94(54) 13.46(46) 13.51(43)
a091m170 3.93(14) 3.91(14) 5.53(22) 5.50(21) 7.77(37) 7.73(36) 11.30(56) 11.24(55)
a091m170L 3.89(15) 3.87(15) 5.43(21) 5.41(20) 7.52(39) 7.50(38) 11.17(60) 11.13(58)
a073m270 2.45(11) 2.45(10) 2.883(54) 2.883(48) 11.11(62) 11.11(62) 13.30(40) 13.30(39)
a071m170 3.69(27) 3.71(27) 6.13(23) 6.15(24) 6.89(63) 6.91(63) 12.24(61) 12.28(62)

FIG. 10. Estimates, in lattice units, ofΔM1 (black filled circles) andΔE1 (open black diamonds) from fits to the two-point function for
four ensembles in the order a094m270L, a073m270, a091m170L, and a071m170 in each row. Each panel also shows the values of
ΔM̃1 (open blue squares) and ΔẼ1 (open red triangles) from the f4; 2simg (top row) and the f4Nπ; 2simg (bottom row) fits to the vector
three-point functions. The mass gaps of the noninteracting NðqÞ2πð−qÞ and Nð0Þ2πð−qÞ states are shown by the dotted blue and red
lines. The horizontal dotted black lines show the masses of 1; 2;…, pions.
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noninteracting Nð0Þ2πðqÞ state shown by the red
dotted line. This agreement is seen for both the
f4; 2simg and f4Nπ; 2simg strategies.

(ii) The ΔẼ1 for the 270 MeV ensembles lie between
1 and 2 times Mπ . The closest association would be
NðqÞπð0Þ or Nð0ÞπðqÞ or NðqÞ2πð0Þ states but not
the Nð0Þ2πðqÞ state shown by the red dotted line.

(iii) The values of ΔM̃1 (blue squares) lie much below
the NðqÞ2πð−qÞ state shown by the blue dotted line
for the 270 MeVensembles; however, the difference
decreases significantly in the data from the 170MeV
ensembles. The increase with q also becomes similar
in shape to that for NðqÞ2πð−qÞ.

(iv) The ΔM̃1 are similar to ΔẼ1 for the 170 MeV
ensembles while they lie about Mπ=2 above for the
270 MeV ensembles. This behavior is very different
from the axial case shown in Fig. 22.

(v) With f4Nπ; 2simg, the mass gap ΔM̃1 ≈ ΔẼ1 and
comes close to ΔE1 used in f4Nπ; 3�g for both
170 MeV ensembles. Such an agreement between
the mass gaps in the f4Nπ; 2simg and f4Nπ; 3�g
strategies implies that they should give similar results.

These trends in ΔM̃1 and ΔẼ1 support vector meson
dominance, i.e., the insertion of 2πðqÞ by the current,
which we anticipate will become even more apparent on
physical Mπ ¼ 135 MeV ensembles. This is in analogy
with pion-pole dominance with the axial current inserting
πðqÞ as inferred from Fig. 22. The values of ΔM̃1 from the
Mπ ≈ 270 MeV ensembles lying close to 2Mπ suggest that
the Nð0Þ2πð0Þ state and its tower also contribute on the
p ¼ 0 side of the operator.
Next, we investigated whether the data for GE from ℑVi,

which show large ESC as illustrated in Fig. 28 and similar
to that seen in hN †A4N i, provide further insight on the
identity of the excited states. We find that the χ2=dof of
even the f4; 3�g fits is not unreasonably large compared to
the other strategies even though the values ofΔM1 andΔE1

are significantly different. Overall, current data for GVi
E do

not help us decide which excited states give the dominant
contribution.
An important feature in the ESC fits shown in Figs. 27

and 29 in Appendix G is that while the differences in the
mass gaps between the four strategies are large, the variation
in results for GV4

E and GVi
M is ≲5%. The smallness of the

variation is further highlighted in Figs. 12 and 14—all four
estimates of the form factors are consistent within errors with
the Kelly parametrization of the experimental data.
We base our choice of which strategy to choose for

presenting the final results on the trends in the mass gaps
illustrated in Fig. 10. The first is the growing agreement
between ΔM̃1 and ΔẼ1 in the f4Nπ; 2simg data. Next is
their agreement with the ΔM1 andΔE1 from the f4Nπg fits.
Last, ΔM̃1 ≈ 2Mπ suggests that the lowest excited state
Nð0Þπð0Þπð0Þ also contributes. These trends suggest that

the f4Nπ; 2simg and f4Nπ; 3�g strategies should give similar
results for the form factors. Thus we will choose between
these when presenting the final results.
Results for the renormalized form factors from the four

strategies are given in Tables XXII–XXIV. The χ2=dof of
the fits used to remove the ESC are reasonable in most
cases. The errors are the smallest in the f4; 3�g data and are
large for many of the largeQ2 points from the f4; 2simg and
the f4Nπ; 2simg fits. For this reason, we choose fits to the
smallest six Q2 points for calculating the charge radii.
A comparison of the form factors, and the errors in them,

among the four strategies is shown in Fig. 11 for the five
large volume ensembles. For each strategy, the full data
from the seven ensembles are shown in Figs. 12–14. The
GVi

E show significant variation between the strategies, with
the f4; 2simg data being closest to the Kelly curve. Part of
this observed variation is a result of a poorer statistical
signal and part due to less control over ESC. For these
reasons, we do not include GVi

E in our final analysis;
however, this channel influences the extraction of ΔM̃1

and ΔẼ1 from the simultaneous f2simg fits.
For the two cases with the best signal, GE from ℜV4 and

GM from ℜVi, we make the following observations from
Fig. 11 using the Kelly curve as a benchmark and to guide
the eye:

(i) No significant difference is observed between the
data from the two simultaneous fits, f4; 2simg versus
f4Nπ; 2simg; i.e., the differences in the ground state
parameters used do not significantly affect the
results. On the four largest Q2 points, the errors
are large in many cases, but the overall shape of the
data is similar for all four strategies.

(ii) Results for GV4

E and GVi
M lie close to the Kelly

parametrization for all four strategies, with the
f4Nπ; 3�g data plotted versus Q2=M2

N showing the
best agreement.

(iii) All four strategies give consistent results on the
Mπ ≈ 270 MeV ensembles.

(iv) In Fig. 11, one can notice (i) a small spread among
the four strategies in GV4

E on the Mπ ≈ 170 MeV
ensembles, (ii) a small upward movement of data
from a091m170L to a071m170, and (iii) the f4; 3�g
and both f2simg data on a ≈ 0.07 fm ensembles lie
above the Kelly curve.

(v) The GVi
M data also move upwards from a091m170L

to a071m170. The f4; 3�g strategy data lie below
others on the two smallest Q2 points.

(vi) The data plotted versus Q2 show some dependence
on a and/or M2

π, whereas when plotted versus
Q2=M2

N , no significant dependence on either a or
M2

π is observed, and the agreement with the Kelly
curve is better. The size of the observed difference
between the data plotted versusQ2 orQ2=M2

N can be
accounted for by discretization errors. Assuming
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that there is a cancellation of these in the analysis
versus the dimensionless quantity Q2=M2

N, we
choose it for presenting our final results.

As mentioned above, the analog of the PCAC relation for
the electromagnetic form factors is the conserved vector
charge, i.e., limQ2→0GEðQ2Þ≡ gV ¼ 1=ZV . Since gV from

the forward matrix element has an Oð1%Þ excited-state
effect as shown in Fig. 2, one could use it to pick the best
strategy, i.e., the one for which the extrapolation ofGEðQ2Þ
to Q2 ¼ 0 using the z2 or Padé fit is most consistent
with gV . However, data from all four strategies shown in
Figs. 12 and 14 are consistent within expected lattice

FIG. 11. Each panel shows a comparison among the renormalized form factors GℜV4

E (left), GℑVi
E (middle), and GℜVi

M (right) obtained
using four strategies and plotted versus Q2 in GeV2. The labels specify the strategy used to remove the ESC and the ensemble ID. The
solid black line shows the Kelly fit to the experimental data.
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FIG. 12. GEðQ2Þ fromℜV4 plotted versusQ2 in GeV2 (top panels) and versusQ2=M2
N (bottom panels). Each panel shows the data for

the seven ensembles, and each row compares the four strategies used to remove ESC.

FIG. 13. GEðQ2Þ from ℑVi plotted versusQ2 in GeV2 (top panels) and versusQ2=M2
N (bottom panels). Each panel shows the data for

the seven ensembles, and each row compares the four strategies used to remove ESC.

FIG. 14. GMðQ2Þ fromℜVi plotted versusQ2 in GeV2 (top panels) and versusQ2=M2
N (bottom panels). Each panel shows the data for

the seven ensembles, and each row compares the four strategies used to remove ESC.
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artifacts with the Kelly parametrization, so this check does
not help in picking among the strategies.
The reduction in scatter in the form factors under

variation in a and Mπ when plotted versus Q2=M2
N is

consistent with the analysis of clover-on-HISQ data pre-
sented in Ref. [9], where results by other collaborations
carried out at or near the physical pion mass were also
reviewed. On the other hand, the improvement in agree-
ment with the Kelly curve of the clover-on-clover data
presented here is striking. (See in particular the f4Nπ; 3�g
strategy data plotted versus Q2=M2

N in Figs. 12 and 14.)
Beyond the fact that the clover-on-clover formulation is
unitary, the only substantial change in the lattice method-
ology we have made over the clover-on-HISQ calculations
is the random parity transformation [see Eq. (14) in Sec. III]
on all the lattices [17,18]. Symmetry under parity plays an
important role in constraining the excited states that should
contribute; for example, it disallows theNð0Þπð0Þ state. So,
while we expect improvement in the precision with which
correlation functions or contributions that should be zero
under parity transformation are indeed zero, the level of
improvement in agreement with the Kelly parametrization
calls for further study.
For the f4; 3�g strategy, the data in Fig. 11 for GEðQ2Þ

lie above the Kelly curve and the low Q2 points of GMðQ2Þ
lie below. This behavior is in accord with the deviations
pointed out in Ref. [9]. The data with the f4Nπ; 3�g strategy
are more consistent with the Kelly result. We hypothesize
on the basis of the observed improvement with the Kelly
curve, the behavior of the mass gaps shown in Fig. 10, and
the vector meson dominance model that the low lying
multihadron excitations contribute. While significantly
more data, especially on Mπ ≈ 135 MeV ensembles, are
needed to validate this conjecture, we will select between
f4Nπ; 3�g and f4Nπ; 2simg strategies for presenting results
in this paper. Of these two strategies, the statistical
precision of the current data is better for f4Nπ; 3�g, and
it has the advantage of including three states in the fit. On
the other hand, f2simg is, statistically, better motivated if the
same set of states contribute to the three correlation
functions. For the time being, we will continue to analyze
all four strategies since it is instructive to explore the
differences.
The errors in the current lattice data are much larger than

in the Kelly parametrization of the experimental data and
cover a smaller range in Q2. It will be some time before
lattice data reach the precision of experiments even in the
range 0.04 < Q2 < 1 GeV2. Nevertheless, we regard the
consistency of our results with the Kelly curve an important
and necessary step in demonstrating control over all
systematic uncertainties in the calculations of form factors.
The main thrust of future improvements will be on
increasing the statistics, designing better nucleon interpo-
lating operators to further control ESC, extending the

calculation to more values of a and Mπ to confirm the
observed lack of dependence on them, and obtaining data at
smaller values of Q2.
Having obtained GEðQ2Þ and GMðQ2Þ from the four

strategies to control ESC, we again parametrize the Q2

dependence using the dipole, z-expansion, and Padé fits.
From these fits, we extract the electric and magnetic
isovector charge radii squared, hr2Ei and hr2Mi, and the
magnetic moment μ. These data are given in Table IX and
exhibit two noteworthy features: (i) the estimates with
f4Nπ; 3�g are larger, and (ii) the intercept at Q2 ¼ 0 of fits
to GM=gV shows the beginning of a flare-out, especially for
z-expansion fits with sum rules. This second feature
suggests that Q2 ¼ 0 is already at the edge of reliability
of extrapolation of the fits to our data, which have
Q2

min ≳ 0.04 GeV2.
In Ref. [9], we had shown that the ratio GE=GM exhibits

a linear behavior versus Q2 and had used it to get an
estimate of GMðQ2 ¼ 0Þ ¼ μ. The clover-on-clover data
presented in this study confirms this behavior as illus-
trated in Fig. 15 for the a091m170L and a071m170

ensembles. So we use this value of GMðQ2 ¼ 0Þ=gV as
a prior in the fits to GMðQ2Þ=gV . The error in it is ≲0.2 for
all ensembles, so we select 0.2 for the width. Setting the
width to 0.3 changes the estimates by ≲σ=3 for both hr2Mi
and μ. Overall, the use of the prior stabilizes the fits near
Q2 ¼ 0, but does not change the results for hr2Mi or μ
significantly. The dipole, Padé, and z-expansion fits for
the four strategies are illustrated in Figs. 30 and 31 in
Appendix G for the a091m170L and a071m170 ensem-
bles, respectively. The values of hr2Ei; hr2Mi; μ obtained,
and the prior used, are given in the labels. These fits are
made to the six smallest Q2 points since the errors are
large in some of the higher Q2 data. For completeness, we
state that the results of fits to all ten points are essentially
the same.
Two important points: first, the current data (six or ten

values of Q2) can be fit by the z2 and z3 truncations and z4

is an overparametrization. We note a change between z2

and z3 and reasonable stability between z3 and z4. Thus all
subsequent results are with fits using the z3 truncation.
Second, the two Padé fits give overlapping results, and the
Pðg; 1; 3Þ is again an overparametrization.
To obtain the continuum limit values for hr2Ei, hr2Mi, and

μ, the CCFV fits to the data given in Table IX are discussed
in Sec. XIII E.

XIII. FINAL RESULTS FROM THE
CHIRAL-CONTINUUM-FINITE-VOLUME FITS

In this section, we examine the dependence of the
isovector charges, gu−dA;S;T , the axial charge radius hr2Ai,
the induced pseudoscalar charge g�P, the pion-nucleon
coupling gπNN , the electric and magnetic charge radii,
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hr2Ei and hr2Mi, and the magnetic moment μu−d on the lattice
spacing a, the pion mass Mπ , and the lattice size parameter
MπL. The data are shown in Figs. 32–39 in Appendix H
along with the CCFV fit results as pink bands. In cases for

which the largest variation is versus M2
π, we also show, for

comparison, the result of just a chiral fit by a gray band.
The more these two bands overlap, the more dominant is
the chiral correction.

TABLE IX. Results for the isovector electric charge radius squared, hr2Ei (top); magnetic charge radius squared, hr2Mi (middle); and
magnetic moment, μp − μn (bottom); for the seven ensembles obtained using the dipole and the z3 parametrization of the Q2 behavior.
These fits were made keeping the smallest six Q2 ≠ 0 points. In fits to GM, we included the point GMð0Þ=gV , obtained by linearly
extrapolating GE=GM to Q2 ¼ 0, as a prior with width 0.2. Data are compared for the four strategies (f4; 3�g, f4Nπ ; 3�g, f4; 2simg, and
f4Nπ; 2simg) for controlling ESC (see Appendix A). Dipole estimates are not included in the final results as explained in the text.

hr2Eijdipole hr2Eijz3
Ensemble f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg
a127m285 0.738(28) 0.773(27) 0.778(36) 0.777(38) 0.734(30) 0.768(30) 0.782(39) 0.778(43)
a094m270 0.698(37) 0.704(20) 0.705(49) 0.706(48) 0.656(52) 0.699(32) 0.692(62) 0.711(63)
a094m270L 0.682(22) 0.734(19) 0.698(22) 0.684(23) 0.669(24) 0.737(25) 0.701(25) 0.674(26)
a091m170 0.740(27) 0.891(32) 0.767(36) 0.728(32) 0.726(41) 0.969(77) 0.847(86) 0.772(98)
a091m170L 0.768(28) 0.902(54) 0.809(40) 0.784(38) 0.737(43) 0.893(79) 0.880(83) 0.76(10)
a073m270 0.643(23) 0.681(19) 0.667(25) 0.664(24) 0.625(26) 0.662(25) 0.712(33) 0.710(33)
a071m170 0.747(42) 0.854(43) 0.737(29) 0.712(25) 0.666(76) 0.834(96) 0.883(96) 0.72(11)

hr2Mijdipole hr2Mijz3
Ensemble f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg
a127m285 0.582(22) 0.613(23) 0.627(29) 0.624(29) 0.569(33) 0.627(34) 0.672(34) 0.654(35)
a094m270 0.507(25) 0.505(19) 0.544(29) 0.536(26) 0.565(36) 0.623(36) 0.634(31) 0.657(37)
a094m270L 0.544(19) 0.613(19) 0.564(18) 0.558(17) 0.592(34) 0.642(34) 0.576(35) 0.568(34)
a091m170 0.562(23) 0.691(39) 0.592(26) 0.615(29) 0.77(11) 1.00(11) 0.765(86) 0.743(95)
a091m170L 0.630(29) 0.817(52) 0.610(27) 0.678(30) 0.61(11) 0.88(11) 0.55(10) 0.66(11)
a073m270 0.495(18) 0.514(16) 0.509(20) 0.522(18) 0.527(40) 0.545(40) 0.613(26) 0.636(36)
a071m170 0.562(31) 0.679(37) 0.581(25) 0.582(23) 0.71(12) 0.85(11) 0.89(10) 0.83(11)

hμijdipole hμijz3
Ensemble f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg f4; 3�g f4Nπ; 3�g f4; 2simg f4Nπ ; 2simg
a127m285 4.558(51) 4.696(64) 4.753(84) 4.730(82) 4.538(56) 4.712(71) 4.823(89) 4.771(86)
a094m270 4.252(84) 4.249(76) 4.421(94) 4.421(93) 4.343(67) 4.452(72) 4.542(73) 4.558(75)
a094m270L 4.369(41) 4.571(57) 4.444(44) 4.422(41) 4.419(47) 4.578(61) 4.441(53) 4.426(47)
a091m170 4.177(55) 4.598(95) 4.303(71) 4.359(72) 4.321(83) 4.749(54) 4.445(64) 4.474(77)
a091m170L 4.323(64) 4.717(99) 4.275(57) 4.494(83) 4.311(78) 4.735(85) 4.224(72) 4.484(84)
a073m270 4.273(52) 4.332(52) 4.307(65) 4.371(58) 4.301(71) 4.374(75) 4.487(70) 4.550(72)
a071m170 4.200(78) 4.526(96) 4.230(70) 4.286(74) 4.281(82) 4.560(75) 4.455(79) 4.469(80)

FIG. 15. A linear fit to the smallest six Q2 points for GM=GE from the a091m170L and a071m170 ensembles obtained with the
f4Nπ; 3�g strategy. The intercept at Q2 ¼ 0 gives μu−d. The left panel shows separate fits to the two ensembles and the right to the
combined data. Also shown, for comparison, in the right panel are the data from the other three larger volumeMπ ∼ 270 MeV ensembles.
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The overall framework of the CCFV analysis is as
follows. A simultaneous CCFV fit in the three variables
is made to get the results at the physical point defined as
Mπ ¼ 135 MeV, a ¼ 0, and MπL ¼ ∞. With seven data
points, we can only include leading order corrections in
each variable to avoid overparametrization. Keeping just
the leading terms, we cannot directly assess a systematic
error associated with possible higher-order corrections
to the CCFV ansatz. What we do evaluate is whether the
final error estimate from the simultaneous CCFV fit is
conservative in comparison to the observed change under
extrapolation in each parameter. In particular, for each
quantity, we compare the change between the data from
the ensemble closest to the physical point and the extrapo-
lated value. For example, when discretization errors are
dominant, we compare the difference between data at
a071m170 and the extrapolated value with the error
estimate from the CCFV fit to determine if the latter is
conservative enough.
In all cases, the discretization corrections are taken to be

linear in a as our calculation (lattice action and operators) is
not fully OðaÞ improved.
To evaluate possible finite volume corrections in a given

observable, we compare the data on the two pairs of
ensembles fa094m270; a094m270Lg and fa091m170;
a091m170Lg. Second, we also compare outputs of chiral-
continuum (CC) fits to the five larger volume data with
CCFV fits to the seven points and check for overparamet-
rization. Differences between the two fits, if significant in
comparison to the quoted error, are evaluated for whether
an additional systematic uncertainty should be assigned.
Overall, finite-volume corrections are observed to be small
for MπL > 4.
The analysis so far has been carried out with a number of

strategies for removing ESC in the various quantities. As
already discussed, the overriding uncertainty in the final
analysis comes from whether the low-lying Nπ or Nππ
states are relevant and included. Including them signifi-
cantly impacts the estimates from the Mπ ≈ 170 MeV
ensembles and thus the chiral extrapolation. In many cases
the errors in the ≈170 MeV data are much larger than in the
Mπ ≈ 270 MeV points. Thus, their weight in the CCFV fits
is small. This is a serious limitation. In subsequent sections,
we will discuss this and other issues on a case-by-case
basis, and provide our reasons for picking the strategy used
to present the final results and the assessment of the need
for an additional systematic uncertainty.

A. The CCFV extrapolation for gu− dA;S;T

The leading order CCFV fit ansatz used for all three
isovector charges is

gða;Mπ;MπLÞ ¼ c1 þ c2aþ c3M2
π þ c4

M2
πe−MπLffiffiffiffiffiffiffiffiffiffi
MπL

p : ð41Þ

Results from these CCFV and CC (c4 set to zero) fits to
gu−dA;S;T are summarized in Table X, and the CCFV fits are
shown in Figs. 32–34 in Appendix H. Overall, these data
indicate possible finite-volume corrections in gu−dA , but no
significant effect is observed in gu−dS or gu−dT . Below, just
before Eq. (42), we also discuss the change in results (i) on
assuming that the discretization errors begin at Oða2Þ,
i.e., replacing the term c2a by c2a2, and (ii) without any
discretization error term.
All averages presented in this section are averages

weighted by the inverse square of the errors. In most cases
the χ2 of the different fits whose results we average are very
similar, so the averages constructed using AIC weights are
also the same. Furthermore, both of these are also con-
sistent with unweighted averages. We caution the reader
that, for brevity, we use the term average to denote averages
weighted by the inverse square of the errors.
We note a number of systematic shifts of Oð0.03Þ in

results summarized in Table X, which, while smaller than
the individual total analysis errors in most cases, need to be
addressed. These are (i) between the two renormalization
methods Z1 and Z2, (ii) between the CC and CCFV fits, and
(iii) the variation between the various strategies.
The two methods of renormalization, Z1 and Z2,

are equally well motivated, however, as discussed in
Sec. VIII A, and the errors in the renormalization constants
are better controlled with Z1 for gS and with Z2 for gA and
gT . We, therefore average the gS values obtained with Z1,
given in Table X and specified below, and gA and gT with
Z2. To account for the difference in results obtained using
Z1 versus Z2, we assign an additional systematic uncer-
tainty for all three charges.
Second, comparing the CCFVand CC estimates, there is

a notable difference only in gu−dA , which we discuss below.
For gu−dS and gu−dT , the CCFV fits have slightly larger errors
but in most cases the reduction in χ2 is not sufficient to
warrant including the finite volume correction term by the
Akaike criteria. As they are consistent, we present the
average of the CC and CCFV results.
On the third issue, for gu−dS and gu−dT , the two f2freeg

strategies yield an unexpectedly large ΔM̃1. A larger value
is expected in a two-state fit; i.e., it constitutes an effective
mass gap representing the contribution of all excited states.
Including a third state improves the estimate for ΔM1.
Therefore, as discussed in Sec. VIII, we will choose the
final results from the strategies that use a three-state fit,
f4; 3�g and f4Nπ; 3�g. The axial charge gu−dA requires a
more extensive analysis with respect to ESC that is
presented below.

1. gu− d
A

The axial charges, summarized in Table X for the various
strategies considered, are obtained in two different ways:
(i) from the forward matrix element, which for the f4; 3�g
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and f4Nπ; 3�g strategies are given in rows one and eight,
and (ii) by extrapolating the form factorGAðQ2Þ toQ2 ¼ 0.
To specify the parametrization used in the second case, we
introduce a third symbol, fDg=fz2g=fP2g, to represent a
dipole=z2=Pðg; 0; 2Þ fit. For example, f4Nπ; 3�; z2g means
form factors obtained using the f4Nπ; 3�g strategy and
extrapolated using the z2 fit (the glossary in Appendix A

describes the various fits). In many of the CCFV fits, the
data show no significant finite volume correction, espe-
cially above MπL > 4.0. The effect is much smaller than
the overall analysis error from the CCFV fit shown in
Fig. 32 in Appendix H. So we also performed CC fits to
data neglecting the two small volume ensembles,
a094m270 and a091m170. These are labeled as fD̂g or

TABLE X. Results for the renormalized gu−dA;S;T after CC (c4 ¼ 0) and CCFV extrapolations using Eq. (41) for the various strategies
used to remove the ESC listed in column one that are discussed in Secs. VIII and X, as well as in Appendix A. The results for gu−dA
labeled with additional z2=P2=D use gA ¼ GAðQ2 ¼ 0Þ obtained by extrapolating GAðQ2Þ to Q2 ¼ 0 using these fits to all ten Q2 ≠ 0

points (see glossary in Appendix A). The results in rows with D̂=ẑ2=P̂2 are from CC fits to data excluding the small volume a094m270

and a091m170 ensembles. The χ2=dof of the CC and CCFV fits are given within the square brackets.

Strategy gu−dA jZ1
(c4 ¼ 0) gu−dA jZ1

gu−dA jZ2
(c4 ¼ 0) gu−dA jZ2

f4; 3�g 1.215(48) [0.26] 1.203(59) [0.31] 1.250(42) [0.18] 1.250(51) [0.24]
f4; 3�; z2g 1.194(44) [0.04] 1.200(52) [0.05] 1.230(39) [0.12] 1.242(46) [0.05]
f4; 3�; ẑ2g 1.194(44) [0.02] 1.230(40) [0.14]
f4; 3�; P2g 1.184(46) [0.02] 1.191(56) [0.01] 1.221(41) [0.16] 1.239(49) [0.06]
f4; 3�; P̂2g 1.185(46) [0.00] 1.222(41) [0.23]
f4; 3�; Dg 1.183(42) [0.35] 1.206(48) [0.15] 1.217(36) [0.59] 1.248(42) [0.03]
f4; 3�; D̂g 1.184(42) [0.05] 1.219(37) [0.13]
f4Nπ; 3�g 1.280(48) [0.11] 1.288(55) [0.12] 1.317(42) [0.14] 1.331(47) [0.03]
f4Nπ; 3�; z2g 1.274(52) [0.24] 1.289(61) [0.24] 1.307(48) [0.24] 1.328(55) [0.13]
f4Nπ; 3�; ẑ2g 1.277(54) [0.24] 1.312(49) [0.15]
f4Nπ; 3�; P2g 1.272(57) [0.14] 1.273(69) [0.18] 1.308(53) [0.10] 1.316(62) [0.12]
f4Nπ; 3�; P̂2g 1.277(58) [0.20] 1.313(54) [0.10]
f4Nπ; 3�; Dg 1.222(49) [0.61] 1.262(56) [0.14] 1.256(43) [0.98] 1.303(50) [0.03]
f4Nπ; 3�; D̂g 1.225(50) [0.01] 1.260(45) [0.18]
f4; 2sim; z2g 1.248(55) [0.84] 1.295(66) [0.56] 1.276(51) [1.07] 1.332(61) [0.52]
f4; 2sim; ẑ2g 1.263(56) [0.05] 1.296(52) [0.04]
f4; 2sim; P2g 1.239(64) [0.91] 1.290(78) [0.78] 1.269(59) [1.12] 1.332(73) [0.75]
f4; 2sim; P̂2g 1.257(65) [0.07] 1.293(60) [0.05]
f4; 2sim; Dg 1.160(47) [1.50] 1.219(54) [0.35] 1.193(43) [2.33] 1.261(49) [0.27]
f4; 2sim; D̂g 1.159(47) [0.06] 1.192(43) [0.49]
f4Nπ; 2sim; z2g 1.279(54) [0.68] 1.320(62) [0.34] 1.308(50) [1.04] 1.357(57) [0.37]
f4Nπ; 2sim; ẑ2g 1.290(54) [0.00] 1.322(50) [0.26]
f4Nπ; 2sim; P2g 1.273(63) [0.73] 1.326(75) [0.38] 1.303(59) [1.07] 1.368(69) [0.38]
f4Nπ; 2sim; P̂2g 1.283(64) [0.00] 1.316(59) [0.23]
f4Nπ; 2sim; Dg 1.210(48) [1.14] 1.259(55) [0.27] 1.242(44) [1.90] 1.299(49) [0.27]
f4Nπ; 2sim; D̂g 1.215(49) [0.02] 1.250(44) [0.43]

Strategy gu−dS jZ1
(c4 ¼ 0) gu−dS jZ1

gu−dS jZ2
(c4 ¼ 0) gu−dS jZ2

f4; 3�g 1.068(68) [0.05] 1.052(92) [0.04] 1.101(96) [0.05] 1.09(12) [0.07]
f4Nπ; 3�g 1.062(93) [0.05] 1.06(11) [0.06] 1.10(11) [0.02] 1.10(13) [0.02]
f4; 2freeg 1.056(52) [0.39] 1.086(63) [0.28] 1.081(82) [0.40] 1.118(92) [0.27]
f4Nπ; 2freeg 1.100(52) [1.01] 1.157(61) [0.25] 1.120(82) [0.85] 1.186(91) [0.21]

Strategy gu−dT jZ1
(c4 ¼ 0) gu−dT jZ1

gu−dT jZ2
(c4 ¼ 0) gu−dT jZ2

f4; 3�g 0.944(46) [0.06] 0.942(53) [0.08] 0.968(27) [0.03] 0.971(34) [0.03]
f4Nπ; 3�g 0.938(50) [0.14] 0.926(57) [0.13] 0.962(33) [0.15] 0.955(38) [0.17]
f4; 2freeg 0.995(43) [0.15] 0.985(50) [0.15] 1.017(24) [0.26] 1.017(29) [0.35]
f4Nπ; 2freeg 1.027(44) [0.22] 1.027(50) [0.29] 1.047(25) [0.46] 1.047(28) [0.61]
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fẑ2g or fP̂2g. Overall, the main issue that needs to be
resolved in both ways is whether the Nð1Þπð−1Þ state
should be included in the analysis.
With the f4; 3�g strategy (first seven rows in Table X),

the ΔM1 from a four-state fit is large, about 600 MeV,
and the τ → ∞ value for gu−dA is smaller, about 5% below
the experimental value. In this case, estimates from the
forward matrix element (first row) and those using the
dipole or z2 or Padé parametrization of the form factors give
consistent results. Comparison of these estimates from the
Q2 fits is shown in the two left panels in Fig. 9 for the two
Mπ ∼ 170 MeV ensembles.
With the f4Nπ; 3�g strategy [uses the Nð1Þπð−1Þ as the

lowest excited state as discussed in Sec. V], we find that the
finite-volume correction term is negligible as shown by
the CCFV fit to the f4Nπ; 3�g data in Fig. 32. Comparing
the results in rows 9–14, we note that the estimates
with the dipole fit, f4Nπ; 3�; Dg, are smaller. The reason
is that the dipole fit misses the lowest Q2 point on the
Mπ ≈ 170 MeV ensembles as illustrated in the middle
panels in Fig. 9.
With the preferred f4Nπ; 2simg strategy, selected on the

basis of satisfying the PCAC relation, only results from the
extrapolation of the form factor are possible. Within errors,
the estimates in each of the four columns in Table X are
consistent, but two of the three Oð0.03Þ shifts discussed
above (renormalization, and finite volume indicated by
CCFV versus CC estimates) are manifest. We derive our
best estimate as follows. The finite volume systematic is not
well controlled, so we average the larger volume,MπL > 4,
CC-fit values f4Nπ; 2sim; ẑ2g, and the f4Nπ; 2sim; P̂2g. For
renormalization, we choose the Z2 estimates as discussed
in Sec. VIII A. With these choices, our result is gu−dA ¼
1.32ð5Þ. The same selection procedure applied to the
f4; 3�g strategy gives gu−dA ¼ 1.23ð4Þ. The large difference,
∼0.09, makes it clear that establishing whether the low-
mass Nπ state(s) contribute is essential to the extraction
of gu−dA .
Three systematic uncertainties, summarized in Eq. (42),

are added to the above estimate. These are taken to be half
the spread in the data in Table X as follows: For renorm-
alization it is half the difference between the Z1 and Z2

values, i.e., 0.02. Half the spread in results between the
strategies that include the Nπ state when removing ESC
gives 0.04. For finite volume corrections, half the differ-
ence between the CC and CCFV fit values gives 0.02. In all
these averages and error estimates, we do not consider the
dipole fit values since these fits miss the lowestQ2 point on
the Mπ ≈ 170 MeV ensembles. This is illustrated in the
right panels in Fig. 9.
Overall, in the CCFV fits we note (i) there is tiny if any a

dependence in data from any of the strategies investigated;
(ii) there is almost no dependence on M2

π for f4; 3�g but a
significant one in the strategies that include the Nπ state;

and (iii) there is an indication of a finite volume correction
with the f4Nπ; 2sim; z2g and f4Nπ; 2sim; P2g strategies. Of
these three changes, the largest effect is in the slope versus
M2

π on including the Nπ state. The contribution of the Nπ
state grows asQ2 → 0 andMπ → 135 MeV. SinceGAðQ2Þ
is analytical and monotonic in Q2, we expect the
influence of the Nπ state to persist at Q2 ¼ 0 in the
sense that the value of gA obtained directly atQ2 ¼ 0 from
the forward matrix element calculated using the A3

correlator must agree in the continuum limit with that
extracted from a z-expansion (or Padé) fit to the
form factor. Even though our data satisfy this check
individually for both f4; 3�g and f4Nπ; 3�g strategies as
shown in Table X, the value of gA, however, is different.
The estimate from f4Nπ; 3�g varies between 1.28(5)
and 1.33(5). This is consistent with our final result,
gu−dA ¼ 1.32ð6Þ, and the error covers the f4Nπ; 2sim; ẑ2g
and the f4Nπ; 2sim; P̂2g estimates.
We consider f4Nπ; 2sim; ẑ2g and f4Nπ; 2sim; P̂2g as two

models because, up to some reasonably small Q2, both
the fixed order z-expansion and the Padé should give the
same intercept in the limit of perfect data. The reason we
take the weighted average and do not include the AIC
weight is because the χ2 of both is abnormally small as
discussed below.

2. gu− d
S

We neglect the results from the two f2freeg strategies,
which are somewhat larger, because the associated ΔM̃1 is
larger than even that from the f4g fit as discussed in
Sec. VIII. Results from f4; 3�g and f4Nπ; 3�g overlap (see
Fig. 3) and no significant finite-volume correction is
observed. Thus we average estimates from the latter two
strategies and the two fits, CCFV and CC, all with the Z1

renormalization method (see Sec. VIII A). The result is
gu−dS ¼ 1.06ð9Þ. Note that the error estimate covers the
larger but neglected f2freeg values.
The most significant variation in the CCFV fits shown

in Fig. 33 in Appendix H is versus a. The difference
between the a ¼ 0.071 fm and the a ¼ 0 value is ∼0.12,
so we assign, in Eq. (42), an additional systematic
uncertainty of 0.06 for possible incomplete accounting
of the discretization error in the CCFV or CC fits.
Estimates from the two renormalization methods show
a difference of ∼0.04, so we assign an additional system-
atic uncertainty of 0.02.

3. gu− d
T

We again neglect the results from the two f2freeg fits for
the same reason as for gu−dS . Similarly, we take the weighted
average of the remaining four estimates in Table X with Z2

renormalization and get gu−dT ¼ 0.97ð3Þ. The largest varia-
tion in the CCFV fits shown in Fig. 34 in Appendix H is
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versus M2
π , with a possible ∼0.02 difference between

Mπ ¼ 170 and the extrapolated 135 MeV value. This
difference is covered by the overall analysis (CC or
CCFV) error. There is also a ≈0.02 difference between
the two ES strategies (see Fig. 3), so we assign a 0.01
uncertainty for possible additional ES effects. Last, the
two renormalization methods give estimates that differ
by ∼0.02, so we assign an additional 0.01 uncertainty
due to it.

4. Remarks on discretization errors

The discretization correction in the CC and CCFV fit
ansatz, Eq. (41), is taken to be linear in a since our action
and the axial operator are not fully OðaÞ improved. We
have also carried out the analysis with the errors starting at
Oða2Þ, i.e., using c2a2 instead of c2a in Eq. (41) and
assuming the linear in a correction is negligible. The χ2

of the two sets of CCFV fits are essentially the same for
all three charges. The corresponding estimates for the
charges change to gu−dA ¼ 1.34ð4Þ, gu−dS ¼ 0.97ð6Þ, and
gu−dT ¼ 0.97ð2Þ. The reason for the smaller CCFV fit errors
is that the range of extrapolation to the continuum limit is
smaller in a2. We keep the larger error estimates from fits
with c2a but assign an additional discretization uncer-
tainty of 0.02 and 0.01 for gu−dA and gu−dT , respectively.
The largest change in gu−dS is with respect to a, and the
error already assigned covers the variation between c2a
and c2a2 fits.
We also show chiral fits (gray bands) for gA and gT in the

middle panels of Figs. 32 and 34. The reason for neglecting
discretization and finite volume corrections is the obser-
vation that the data on the five large volume lattices do not
show a significant dependence on a or MπL. In all cases,
these results overlap with the CCFV values but have
smaller errors. The similar χ2 suggests that the CCFV fits
are overparametrized. Nevertheless, as discussed above, for
the final results we quote the CC values and errors for gA
and CCFV for gS and gT .

5. Remarks on low χ 2 values in CCFV fits

The χ2 of the two fits f4Nπ; 2sim; ẑ2g and f4Nπ; 2sim; P̂2g
used to get gu−dA are essentially zero as given in Table X.
The following two factors could explain such χ2 ≪ 1:
(i) the errors assigned to the data points are overesti-
mated, and (ii) the fits are overparametrized. The first
because the error in the multiplicative renormalization
factor ZA is of the same size as the statistical error in gbareA
(see Tables III and IV) and is neither normally distributed
nor independent. The second because the discretization
errors are small and including the c2 term is an over-
parametrization. We have chosen to include it (CC fit)
but do not construct an AIC weighted average due to the
small χ2.

Within this framework, our final results are

Charge Value δES δZ δa δFV

gu−dA 1.32ð6Þ ð4Þ ð2Þ ð2Þ ð2Þ
gu−dS 1.06ð9Þ ð2Þ ð6Þ
gu−dT 0.97ð3Þ ð1Þ ð1Þ ð1Þ

ð42Þ

where the first error is the overall analysis uncertainty
and δES, δZ, δa, and δFV are the additional systematic
uncertainties due to excited states, renormalization, dis-
cretization, and finite volume artifacts. Combining these
systematic errors in quadrature, our results are

gu−dA ¼ 1.32ð6Þð5Þsys;
gu−dS ¼ 1.06ð9Þð6Þsys;
gu−dT ¼ 0.97ð3Þð2Þsys: ð43Þ

Even with our high statistics data, the errors in gu−dA are
much larger than in the experimental value gu−dA ¼
1.2764ð1Þ [12–14]. Estimates for gu−dS and gu−dT are con-
sistent with results in Ref. [6] obtained using the clover-on-
HISQ formulation.

B. The CCFV extrapolation for the axial
charge radius squared hr2Ai

The data given in Table VI show no significant difference
between the f4; 3�g and f4Nπ; 2simg strategies on the Mπ ≈
270 MeV ensembles. However, there is a difference on the
Mπ ≈ 170 MeV ensembles due to the inclusion of the Nπ
state. We have summarized our reasons for choosing
the f4Nπ; 2simg strategy for the analysis of the axial form
factorsGA and G̃P in Sec. IX A, and we will use it to obtain
the quantities derived from them, hr2Ai, g�P, and gπNN .
The CCFV ansatz used to fit hr2Ai,

r2Aða;Mπ; LÞ ¼ c1 þ c2aþ c3M2
π þ c4M2

π
e−MπLffiffiffiffiffiffiffiffiffiffi
MπL

p ; ð44Þ

is the same as for the isovector charges given in Eq. (41).
Fits with the f4Nπ; 2sim; z2g strategy are shown in Fig. 35
and the results summarized in Table XI. We note a strong
dependence on M2

π and a slight increase with both MπL
and a. Most of the increase with MπL takes place for
MπL < 4; therefore, we take the final result from the
f4Nπ; 2sim; ẑ2g analysis

r2Ajz2 ¼ 0.428ð53Þð30Þ fm2 ⇒ rAjz2 ¼ 0.65ð4Þð2Þ fm;

ð45Þ

where the second, systematic, uncertainty is the difference
from the f4Nπ; 2sim; P̂2g value. This result is consistent with
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the f4Nπ; 2sim; z2g and f4Nπ; 2sim; P2g values, and the
quoted error also covers the spread in the CCFV estimates
from the f4Nπ; 3�g, f4; 2simg, f4Nπ; 2simg strategies and
both z2 and P2 fits.
Results for hr2Ai using the dipole parametrization of the

Q2 behavior are significantly smaller than those from the z2

or P2 fits, and the χ2=dof is large in many cases. More
important, these fits miss the low Q2 points as illustrated in
Fig. 9. So we do not include the dipole estimates in deriving
the final results.
Our result, rA ¼ 0.65ð4Þð2Þ fm, is consistent with the

three phenomenological/experimental values: (i) a weighted
world average of (quasi)elastic neutrino and antineutrino
scattering data [38], (ii) charged pion electroproduction
experiments [38], and (iii) a reanalysis of the deuterium
target data [46]:

rA ¼ 0.666ð17Þ fm ðMA ¼ 1.03ð2Þ GeVÞ ½ν; ν̄ scattering�;
rA ¼ 0.639ð10Þ fm ðMA ¼ 1.07ð2Þ GeVÞ ½Electroprod:�;
rA ¼ 0.68ð16Þ fm ðMA ¼ 1.00ð24Þ GeVÞ ½Deuterium�:

ð46Þ

In this list, we do not quote the MiniBooNE value
MA ¼ 1.35ð17Þ GeV (rA ¼ 0.506 fm) [47] as it is not the
outcome of an analysis, but the best value that reproduces the
double differential cross section for charged current quasie-
lastic neutrino and antineutrino scattering data off carbon
analyzed with a dipole ansatz and a relativistic Fermi gas
model of nuclear interactions [42]. It will be interesting to see
an update of the MiniBooNE analysis with our parametriza-
tion ofGAðQ2Þ given in Eq. (55) and amore realisticmodel of
nuclear interactions [48,49].

C. The CCFV extrapolation for g�P and gπNN
To perform the CCFV fit for g�P given in Table VIII,

we use the ansatz

g�Pða;Mπ;MπLÞ=gA ¼ d1 þ d2aþ d4
M2

π þ 0.88m2
μ

þ d3M2
π þ

d5M2
πffiffiffiffiffiffiffiffiffiffi

MπL
p e−MπL; ð47Þ

where the leading behavior in M2
π is taken to be the pion-

pole term evaluated at the momentum scale of the muon
capture experiment [50,51]. The data and fit in Fig. 35 in
Appendix H show no significant dependence on either a
or MπL but a strong dependence on M2

π . The result of the
CCFV fit to the f4Nπ; 2simg data is

g�P ¼ 7.9ð7Þð9Þsys; ð48Þ

where the second systematic uncertainty is half the change
from the a071m170 point in the chiral extrapolation. The
two methods for renormalization give overlapping results,
so we do not assess an additional systematic uncertainty
due to it. To underscore the importance of including the Nπ
state in the analysis of ESC, note that the analogous result
with the f4; 3�g strategy is 3.9(1.1).
Experimentally, G̃PðQ2 ¼ 0.88m2

μÞ is determined from
muon capture by a proton, μ− þ p → νμ þ n [50,51].
Current estimates from the MuCap experiment [50,51]
and from chiral perturbation theory [38,52] are

g�PjMuCap ¼ 8.06ð55Þ;
g�PjχPT ¼ 8.29þ0.24

−0.13 � 0.52; ð49Þ

respectively.
The CCFV fit to the pion-nucleon coupling gπNN data,

also given in Table VIII, was carried out using the ansatz
given in the right-hand side of Eq. (44). The result of the fit,
shown in Fig. 35 in Appendix H, is

gπNN ¼ 12.4ð1.2Þ: ð50Þ

TABLE XI. Results for the axial charge radius hr2Ai from (i) different strategies for removing ESC listed in column one (see
Appendix A) and (ii) fits to the ten Q2 ≠ 0 points for the axial form factor GAðQ2Þ using the z2, P2 Padé and the dipole
parameterizations. The additional † in column one denotes results from CC fits with c4 ¼ 0, i.e., neglecting the small volume
(a094m270 and a091m170) points. The χ2=dof of the Q2 fits are given within the square brackets.

ESC strategy z2 (c4 ¼ 0) z2 P2 (c4 ¼ 0) P2 Dipole (c4 ¼ 0) Dipole

f4; 3�g 0.307(38) [0.27] 0.319(45) [0.29] 0.276(48) [0.36] 0.298(58) [0.33] 0.262(29) [1.58] 0.297(34) [0.78]
f4; 3�g† 0.306(40) [0.51] 0.277(48) [0.70] 0.270(29) [1.41]
f4Nπ; 3�g 0.424(45) [0.34] 0.446(49) [0.10] 0.408(62) [0.17] 0.412(72) [0.23] 0.315(30) [2.75] 0.362(34) [0.46]
f4Nπ; 3�g† 0.441(49) [0.07] 0.421(65) [0.06] 0.327(33) [1.53]
f4; 2simg 0.413(47) [1.95] 0.450(53) [1.89] 0.375(75) [1.99] 0.434(90) [2.20] 0.228(25) [6.06] 0.281(28) [0.31]
f4; 2simg† 0.465(51) [0.42] 0.445(80) [0.57] 0.224(26) [2.01]
f4Nπ; 2simg 0.399(49) [1.01] 0.439(55) [0.47] 0.366(80) [0.90] 0.437(93) [0.48] 0.244(27) [4.71] 0.283(29) [0.98]
f4Nπ; 2simg† 0.428(53) [0.33] 0.398(83) [0.31] 0.243(28) [2.04]
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Again, the dominant dependence of the data is on M2
π but

there is no significant change from the a071m170 value.
The variation with the renormalization method is ∼0.3σ.
These are much smaller than the quoted 1σ error, so we do
not assign an additional systematic uncertainty. For com-
parison, the result with the f4; 3�g strategy that does not
include the Nπ state is 6.8(1.3).
To summarize, results for all three quantities, hr2Ai, g�P,

and gπNN given in Eqs. (44), (48), and (50) come in
reasonable agreement with phenomenological values with
the f4Nπ; 2simg strategy that is singled out on the basis of
the axial form factors satisfying the PCAC relation.

D. Goldberger-Treiman relation and Fπ

The Goldberger-Treiman (GT) relation predicts
gπNNð1þ ΔÞ ¼ MNgA=Fπ as discussed in Sec. IX A.
Three of these quantities, MN (Table XV), gA
(Table IV), and Fπ (Table I), are calculated in this work.
Data for the productMNgA=Fπ, which is independent of the
renormalization constant ZA and the lattice scale, are also
given in Table I for each ensemble. The CCFV fits to these
data forMNgA=Fπ and Fπ using the ansatz given in Eq. (44)
are shown in Fig. 36 in Appendix H. The result for
MNgA=Fπ depends, as expected, on the strategy used to
determine gA, and for the two extreme values for gA
obtained from f4; 3�g and f4Nπ; 2sim; z2g fits discussed
in Sec. XIII A, it is ¼ 12.65ð38Þ and 13.58(49), respec-
tively. We also show the CCFV fit for Fπ in the bottom row
of Fig. 36 and find Fπ ¼ 93.0ð3.9Þ [96.1(3.6)] MeV with
Z1 (Z2) renormalization. These CCFV fits to the Fπ and
MNgA=Fπ data show significant variation with a and Mπ .
Thus, to improve precision more fa;Mπ;MπLg points are
needed.
For comparison, using the experimental values, gA ¼

1.2764, MN ¼ 939 MeV, and Fπ ¼ 92.2 MeV, and ignor-
ing the Goldberger-Treiman discrepancy Δ (see discussion
in Sec. IX) give gπNN ¼ MNgA=Fπ ¼ 13. The phenom-
enological estimate obtained from the πN scattering length
analysis is 13.25(5) [39–41].

E. CCFV fits to the electric and magnetic radii,
hr2Ei and hr2Mi, and the magnetic moment μ

The CCFV fits to each of these three quantities have four

free parameters denoted by cfE;M;μg
i . The fit ansatz for the

electric mean-square charge radius used is

hr2Eiða;Mπ; LÞ ¼ cE1 þ cE2aþ cE3 ln
M2

π

λ2
þ cE4 ln

M2
π

λ2
e−MπL;

ð51Þ

where the mass scale λ is chosen to beMρ ¼ 775 MeV and
the form of the chiral and FV corrections are taken from
Refs. [53–55]. For the magnetic mean charge radius
squared, we use

hr2Miða;Mπ; LÞ ¼ cM1 þ cM2 aþ cM3
Mπ

þ cM4
Mπ

e−MπL; ð52Þ

where the leading dependence on Mπ is taken from
Refs. [53,54]. Last, the CCFVansatz used for the magnetic
moment is

μða;Mπ; LÞ ¼ cμ1 þ cμ2aþ cμ3Mπ

þ cμ4Mπ

�
1 −

2

MπL

�
e−MπL; ð53Þ

where the forms of the chiral and finite-volume correction
terms are taken from Refs. [54,56]. All masses are
expressed in units of GeV and the lattice spacing in fm.
In all three CCFV fit ansatz, Eqs. (51)–(53), results from

the heavy baryon chiral perturbation theory (χPT) have
been used only to determine the form of the leading order
chiral correction. For example, for μ, χPT predicts the
slope, cμ3, of the linear dependence onMπ asMNg2A=ð4πF2

πÞ
[57] with Fπ ¼ 92.2 MeV [21]; however, we leave cμ3 a free
parameter. Also, we include only the leading nonanalytical
term in Eqs. (51) and (52).
Data for hr2Ei, hr2Mi, and μ from the four strategies and the

CCFV fits to them are shown in Figs. 37–39. The results are
collected together in Table XII. We remind the reader that a
prior for GMð0Þ=gV ≡ μ, obtained from the linear extrapo-
lation of GE=GM, is included in the Q2 fits to GM to get
hr2Mi and μ on each ensemble.
In Sec. XII, we had presented evidence that the low-lying

multihadron Nππ state is relevant, and asMπ → 135 MeV,
estimates from the f4Nπ; 3�g and f4Nπ; 2simg strategies
should agree. This is not manifest in Table XII for hr2Ei
or hr2Mi and estimates from f4Nπ; 2simg are smaller.
Furthermore, the data, and therefore the CCFV fits, have
three additional weaknesses:

(i) The errors in hr2Ei and hr2Mi at Mπ ≈ 170 MeV and
with the z3 and Padé fits are larger by a factor of
2–3 compared to Mπ ≈ 270 MeV points as can
be seen from the data in Table IX for all four
strategies, and from Figs. 37 and 38. The CCFV fits
are therefore dominated by the smaller error
Mπ ≈ 270 MeV points.

(ii) To a lesser extent, the same is true for the data with
the dipole fit and the f4Nπ; 3�g strategy.

(iii) The dipole fits to the a071m170 data with the
f4Nπ; 2simg strategy shown in Fig. 31 miss the
low Q2 points, and the results differ from those
from the z3 or the P2 analyses.

In short, these CCFV fits are not yet robust. For our best
estimate, we take the average of the z3 and P2 fits to the
f4Nπ; 3�g strategy data and the larger of the two analyses
error. The same is done for μu−d ≡ μp−n even though errors
in it at the two values ofMπ are comparable and the CCFV
fits are reasonable. In both cases we use half the spread
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between the f4Nπ; 3�g and the f4Nπ; 2simg values as an
additional systematic uncertainty for possible residual ESC
and Q2 fit ansatz dependence.
With the above selections, our final results are

hr2Eiu−d ¼ 0.85ð12Þð19Þsys fm2 ⇒ rE ¼ 0.92ð12Þ fm;

hr2Miu−d ¼ 0.71ð19Þð23Þsys fm2 ⇒ rM ¼ 0.84ð18Þ fm;

μu−d ¼ 4.15ð22Þð10Þsys: ð54Þ

These radii are consistent with values obtained from
the Kelly parametrization [22] of the experimental data
given in Eq. (12) (see our review in Appendix D in
Ref. [9]), and the more precise value of the proton charge
radius rp ¼ 0.831� 0.007stat � 0.012sys from the PRad
experiment at Jefferson Lab [23] that claims to resolve
the “proton radius puzzle” by reconciling the values from
e − p scattering with those from muonic hydrogen. The
errors in the lattice results are, of course, much larger and
do not provide independent input on the “proton radius
puzzle.” The μp−n is about 2σ smaller than the precisely
measured value μp−njexp ¼ 4.7059.

XIV. PARAMETRIZING THE FORM
FACTORS GA, GE, AND GM USING PADÉ

AND z-EXPANSION FITS

The Padé and z-expansion fits to form factors presented
in this section should be considered a good heuristic; i.e.,
they serve our primary goal to provide a good but simple
parametrization of the lattice data. This is in the same spirit
as the phenomenologically useful Kelly parametrization
[22] of GE and GM that are well measured in electron
scattering experiments, or the rational function fit used in a

recent analysis of the PRad experiment at Jefferson Lab
[23]. Note that the improvement in the precision with which
the proton radius is extracted and the likely resolution of the
proton radius puzzle in Ref. [23] has come from increasing
the range of Q2 and the accuracy of the data and not from
the parametrization.
On the other hand, the axial form factors of the nucleon,

GA and G̃P, that are important inputs in the analysis of
neutrino-nucleus scattering, are not well measured due to
safety concerns with the use of liquid hydrogen targets.
Traditionally, GA has been parameterized using the dipole
ansatz, Eq. (33), with estimates of the axial mass, MA,
ranging from 1 to 1.35 GeV, and G̃P obtained fromGA using
the PPD hypothesis [5]. Our analysis shows that a dipole
ansatz does not have enough free parameters to fit the
data over the range 0.04 < Q2 < 1 GeV2, nevertheless, we
include it in this section for comparison. Furthermore, as
discussed in Secs. XIII A, XIII B and XIII E, while the data
for the form factors have small errors, the CCFV fits to
charges and charge radii derived from them are not yet
robust, a consequence of having only seven ensembles and
the relatively larger errors in theMπ ≈ 170 MeVdata. Thus,
we did not present a fa → 0;Mπ ¼ 135MeV;MπL → ∞g
limit parameterization of the form factors in those sections.
On a positive note, the small dependence ofGA,GE andGM
on fa;Mπ;MπLg observed in Figs. 5, 12 and 14 motivated
the following heuristic analysis.
This simple parametrization assumes that the depend-

ence on a,Mπ , andMπL can be neglected, with the intent to
subsequently include a and Mπ dependent corrections as
data get better. (This assumption is the least well-motivated
for GA.) To reduce the impact of the neglected finite
volume corrections, we do not include data from the two
small volume ensembles, a094m270 and a091m170 with

TABLE XII. Results for hr2Ei, hr2Mi, and μ from CC and CCFV fits to data from the four strategies, f4; 3�g, f4Nπ; 3�g, f4; 2simg, and
f4Nπ; 2simg, used to control ESC (see Appendix A). TheQ2 behavior of the data from each strategy is parametrized using the dipole (D),
the Padé (P2), and the z3 fits. The χ2=dof of the CC/CCFV fits are given within the square brackets.

hr2Ei hr2Mi μ

ESC fit Q2 fit CC CCFV CC CCFV CC CCFV

f4; 3�g D 0.633(60) [0.26] 0.658(75) [0.25] 0.479(48) [1.24] 0.579(67) [0.04] 3.78(12) [1.36] 3.95(15) [0.54]
P2 0.589(74) [0.07] 0.613(98) [0.04] 0.491(93) [0.26] 0.49(14) [0.34] 3.81(14) [0.30] 3.86(17) [0.30]
z3 0.562(71) [0.05] 0.577(98) [0.05] 0.73(12) [0.50] 0.71(17) [0.66] 3.95(13) [0.28] 4.03(16) [0.13]

f4Nπ; 3�g D 0.792(58) [0.36] 0.843(77) [0.16] 0.651(54) [5.28] 0.879(77) [1.19] 4.07(14) [3.17] 4.43(17) [0.20]
P2 0.792(81) [0.69] 0.85(12) [0.76] 0.64(13) [0.85] 0.48(19) [0.70] 4.03(18) [0.25] 4.06(22) [0.32]
z3 0.803(87) [0.43] 0.84(12) [0.52] 0.97(12) [0.56] 0.94(16) [0.72] 4.15(15) [0.54] 4.24(18) [0.44]

f4; 2simg D 0.621(64) [0.26] 0.646(85) [0.28] 0.457(52) [0.27] 0.494(68) [0.12] 3.64(15) [0.45] 3.64(18) [0.59]
P2 0.65(11) [0.53] 0.65(16) [0.71] 0.52(13) [2.03] 0.31(17) [1.47] 3.80(20) [2.89] 3.62(23) [2.68]
z3 0.80(10) [0.57] 0.80(14) [0.76] 0.73(11) [2.17] 0.60(15) [2.37] 4.00(17) [3.85] 3.85(19) [4.15]

f4Nπ; 2simg D 0.590(63) [0.52] 0.623(81) [0.54] 0.497(51) [1.04] 0.564(67) [0.62] 3.83(15) [0.89] 3.86(18) [1.17]
P2 0.59(12) [0.97] 0.49(18) [1.10] 0.67(12) [1.39] 0.49(18) [1.25] 4.04(20) [2.51] 3.86(22) [2.10]
z3 0.66(11) [0.79] 0.55(16) [0.79] 0.77(12) [1.41] 0.60(17) [1.18] 4.17(17) [2.28] 4.05(19) [2.45]
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MπL≲ 4, which show some evidence of finite volume
corrections. With the remaining data from five ensembles
(a total of 50 Q2 ≠ 0 points for GA and 30 for GE;M), we
compare six parametrizations for each of the three form
factors: the dipole, two Padé, Pðg; 0; 2Þ and Pðg; 1; 3Þ, and
three z-expansion fits, z2;3;4. For GA, we use the preferred
f4Nπ; 2simg data with Z2 renormalization and remark that
Z1 gives overlapping results. For GE and GM, we use the
f4Nπ; 3�g data.
The data and three of the six fits are compared in Fig. 16.

The results are summarized in Table XIII. We observe the
following:

(i) The two Pðg; 0; 2Þ and Pðg; 1; 3Þ Padé results are
essentially identical and stable for all three form
factors. On the basis of the Akaike criteria, Pðg; 1; 3Þ
is an overparametrization.

(ii) The dipole fit to GA is poor and shows deviations
near Q2 ¼ 0 and at large Q2. Similar, but smaller,

deviations are seen for GM. The dipole is a reason-
able fit only for GE.

(iii) The zn-expansion fits do not show convergence:
Table X shows variation between the z2;3;4 estimates,
and an increase in errors. Furthermore, these esti-
mates now depend on the choice of t0 [see Eq. (35)]
with the overall midpoint value t0 ¼ 0.5 GeV2

giving the smallest χ2. As in Sec. XIII, our best
choice based on the Akaike criteria is again z2 for
GA and z3 for GE and GM.

Incorporating these observations and bearing in mind
the caveats, our best parametrizations of GA, neglecting
fa;Mπ;MπLg dependent lattice artifacts, are (i) the
f4Nπ; 2sim; P̂2g fit

GAðQ2Þ≡ gA
1þ b0

Q2

4M2
N
þ b1ð Q2

4M2
N
Þ2

¼ 1.270ð11Þ
1þ 5.36ð20Þ Q2

4M2
N
− 0.22ð81Þð Q2

4M2
N
Þ2
; ð55Þ

with χ2=dof ¼ 1.27 and MN ¼ 939 MeV, and (ii) the
f4Nπ; 2sim; ẑ2g fit that gives

GAðQ2Þ ¼ 0.725ð5Þ − 1.63ð3Þzþ 0.17ð13Þz2; ð56Þ

with χ2=dof ¼ 1.15, and z defined in Eq. (35) with
t0 ¼ 0.5 GeV2. For our best results, we take the average
of these f4Nπ; 2sim; P̂2g and f4Nπ; 2sim; ẑ2g values given in
Table XIII to get

gu−dA ¼ 1.281ð11Þð22Þsys;
hr2Aiu−d ¼ 0.391ð15Þð70Þsys fm2; ð57Þ

which are slightly smaller than the values in Eqs. (42)
and (45). The second, systematic, error is taken to be the
difference between the two estimates averaged.
Similarly, the results of the f4Nπ;3�;P̂2g and f4Nπ;3�; ẑ3g

fits to GE and GM are

GEðQ2Þ ¼ 0.999ð5Þ
1þ 11.72ð29Þ Q2

4M2
N
þ 38.5ð1.9Þð Q2

4M2
N
Þ2
; or

¼ 0.290ð3Þ − 1.23ð3Þzþ 1.72ð19Þz2
þ 2.48ð35Þz3;

GMðQ2Þ ¼ 4.52ð5Þ
1þ 9.68ð35Þ Q2

4M2
N
þ 21.3ð1.8Þð Q2

4M2
N
Þ2
; or

¼ 1.613ð11Þ − 5.74ð14Þzþ 6.1ð1.2Þz2
þ 11.9ð2.5Þz3: ð58Þ

Both sets of fits have very similar χ2=dof: ≈0.43 and ≈1.65
for GE and GM, respectively. The variance-covariance

FIG. 16. Comparison of the dipole, P2 Padé, and z-expansion
fits to the combined data from the five larger volume ensembles.
We selected f4Nπ ; 2simg data forGA and f4Nπ; 3�g forGE andGM
as they show the least dependence on a and Mπ , which is
neglected in these fits. Result of the P2 fit to GA is given in
Eq. (55), and to GE and GM in Eq. (58).
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matrices of the above six fits are given in Appendix I. The
results are

f4Nπ; 3�; P̂2g f4Nπ; 3�; ẑ3g
hr2Eiu−d fm2 0.778ð19Þð50Þsys 0.743ð54Þð50Þsys
hr2Miu−d fm2 0.642ð23Þð80Þsys 0.48ð10Þð8Þsys
μu−d 4.52ð5Þð10Þsys 4.42ð9Þð10Þsys:

ð59Þ

The second, systematic, error in both cases is taken to be
half the spread between the f4Nπ; 3�; P̂2g, f4Nπ; 3�; ẑ3g,
f4Nπ; 2sim; P̂2g, and f4Nπ; 2sim; ẑ3g estimates.
Next, we explored adding corrections due to fa;Mπg in

these combined fits by expanding all parameters in them,
for example, b0 → ðb00þba0aþbm0 OðM2

πÞÞ, where OðM2
πÞÞ

is logðM2
πÞ for hr2Ei and 1=Mπ for hr2Mi. The result is that

the χ2 is reduced only marginally but the errors in the
observables jump by a factor of 6 or more with any (even
one) additional parameter. Also, in most cases the extra
parameter(s) are essentially undetermined indicating over-
parametrization. Our conclusion again is that much higher
precision data on more ensembles are needed to include
fa;Mπg dependent corrections in this approach.
Another estimate of μu−d is obtained from a linear fit to

the GM=GE data as shown in Fig. 15. The left panel shows
separate fits to the a091m170L and a071m170 data with
the f4Nπ; 3�g strategy. The right panel shows the fit to the
combined data from these two ensembles. (Data from the
other three larger volume Mπ ∼ 270 MeV ensembles are
included only for comparison.) The result from the fit to the
two Mπ ≈ 170 MeV ensembles, μu−d ¼ 4.67ð12Þ, is con-
sistent with that in Eq. (59).
This heuristic analysis has the advantage of evading the

two-step process used to get results given in Sec. XIII: first
a parametrization of the Q2 behavior and then CCFV fits
to the observables with just leading order corrections in
fa;Mπ;MπLg. The disadvantage is assuming that the
fa;Mπ;MπLg corrections can be neglected, even though
the data in Figs. 5, 12, and 14 suggest it. The remarkable

outcome is that the estimates from the heuristic analysis
are consistent with those given in Eqs. (42), (45), and (54)
but with much smaller errors in all cases. Also note that
these fits give GEðQ2¼0Þ¼0.999ð5Þ and GMðQ2 ¼ 0Þ ¼
4.52ð5Þ, i.e., a necessary consistency check against the
precisely known values for the electric charge and the
magnetic moment.
To understand why the dipole fit does not work forGA in

this case also, we note that the errors on points at small Q2

grow as Q2 → 0 because the extrapolation in τ to remove
ESC in the f4Nπ; 2simg fits is large on the 170 MeV
ensembles as can be seen from Fig. 24. Similarly, the
errors grow asQ2 increases because the statistical signal-to-
noise degrades. Thus, the dipole fit in Fig. 16 with gA
and MA left as free parameters is anchored by the smaller
error points in the middle and fails at both ends as it does
not have enough degrees of freedom to fully capture the
curvature. The Padé fgA; 0; 2g, with one additional degree
of freedom, is sufficient.

XV. COMPARISON WITH PREVIOUS LATTICE
QCD CALCULATIONS

In this section, we compare with results from other recent
lattice calculations done with either 2þ 1þ 1 or 2þ 1
dynamical flavors. We assume that a dynamical charm in
the lattice generation does not significantly impact the
quantities composed of light quarks that are investigated
here; i.e., the two formulations give the same results. For a
more extensive review of the calculation of the charges, we
direct the reader to the Flavor Lattice Averaging Group
(FLAG) Reviews 2019 [20] and 2021 [58].
It is important to note that all of these isovector quantities

from different calculations are expected to only agree at the
physical point, and thus a CCFVextrapolation is necessary.
We have therefore applied the following criteria in selecting
the calculations to compare. We require that (i) the results
either are obtained at Mπ ≈ 135 MeV or have been
extrapolated to it, and similarly (ii) they include ensembles
with a < 0.1 fm or a continuum extrapolation has been

TABLE XIII. Results for the charge radii and charges obtained using the dipole, Padé, and z-expansion fits to the renormalized

form factors GAðQ2ÞjZ2
, GEðQ

2

M2
N
Þ=gV , and GMðQ

2

M2
N
Þ=gV . The fits are made to the combined data from the five larger volume ensembles.

The value t0 ¼ 0.5 GeV2 (midpoint of the Q2 range) is used in the z-expansion fits for all data. The f4Nπ; 2simg data for GA and the
f4Nπ; 3�g data for GE and GM have been selected for this analysis as they exhibit the least dependence on a,Mπ , andMπL as shown in
Figs. 5, 12, and 14.

Fit hr2Ai ½fm2� gA χ2=dof hr2Ei ½fm2� gV χ2=dof hr2Mi ½fm2� μ χ2=dof

Dipole 0.283(04) 1.232(09) 1.98 95=48 0.799(08) 1.003(04) 0.46 13=28 0.628(08) 4.499(35) 1.60 45=28
Padé ðg; 0; 2Þ 0.356(13) 1.270(11) 1.27 60=47 0.778(19) 0.999(05) 0.42 11=27 0.642(23) 4.520(48) 1.64 44=27
Padé ðg; 1; 3Þ 0.356(13) 1.271(11) 1.17 53=45 0.778(19) 0.999(05) 0.45 11=25 0.652(24) 4.532(48) 1.54 38=25
ẑ2 0.426(15) 1.292(11) 1.15 54=47 1.081(16) 1.048(05) 2.25 61=27 0.919(24) 4.750(49) 2.42 65=27
ẑ3 0.454(43) 1.301(17) 1.17 54=46 0.743(54) 0.996(9) 0.43 11=26 0.48(10) 4.424(85) 1.66 43=26
ẑ4 0.67(11) 1.349(29) 1.11 50=45 0.66(18) 0.987(20) 0.44 11=25 1.04(33) 4.72(20) 1.61 40=25
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performed. (iii) We find that so far no other calculation has
carried out the extensive high statistics analysis of excited
states presented in this work, so we do not apply an excited-
state criterion for inclusion, but will comment on the
method used to control ESC and the outcome.
The results compared are summarized in Table XIV. For

each collaboration, we quote the latest (or best in the words
of the authors) value for each observable, which is often
given in different publications. Overall, it is evident that a
complete control over systematic uncertainties, especially
excited-state effects, is still work under progress.
The PNDME results [6,7,9] are from a clover-on-HISQ

formulation using eleven 2þ 1þ 1-flavor HISQ ensem-
bles, including two at the physical pion mass. All the
quoted results are from CCFV fits to data with the f4; 3�g
strategy; i.e., they represent the status [20] before Nπ (or
Nππ) states were included in fits to remove the ESC.
The ETM Collaboration [60–62] has presented

results for most of the quantities analyzed in this work.
Their latest results are from one 2þ 1þ 1-flavor twisted
mass clover-improved ensemble with a ¼ 0.0801ð4Þ fm,
Mπ ¼ 139ð1Þ MeV, MπL ¼ 3.62, so issues of continuum
extrapolation, finite volume corrections, and chiral behav-
ior are not addressed. (Our a071m170 ensemble provides
data at similar values of Q2.) Their statistical sample is 750
lattices separated by four trajectories each, and results for
the isovector charges [61] are taken from a two-state fit,
f2; 2g in our notation. Their axial form factors [60] do not
satisfy the PCAC relation, and their estimates presented
for G̃P and GP are not the calculated values but those
obtained from GA using the pion-pole dominance relation.
Consequently, we do not quote their estimates for g�P and
gπNN . Both the dipole and z-expansion fits to GAðQ2Þ
obtained from f2; 2g strategy work well and give
hr2Ai ¼ 0.343ð42Þð16Þ fm2, which is consistent with our
f4; 3�g value. The electric and magnetic form factors,
presented in Ref. [62], are well fit by a dipole ansatz;
however, they differ from the Kelly parametrization at small
Q2, as also seen in the PNDME results in Ref. [9].
The RBC-UKQCD Collaboration has analyzed two

ensembles of 2þ 1-flavor domain wall (DW) fermions
with Iwasaki plus dislocation-suppressing-determinant-
ratio (DSDR) gauge action at a ¼ 1.378ð7Þ fm and with
Mπ ¼ 249.4ð3Þ and 172.3(3) MeV. They report issues of
long autocorrelations in a statistical sample of only 700
trajectories, which may explain an underestimate of gA and
a large uncertainty in gS.
The CalLat Collaboration [64,65] reports gu−dA with

percent level accuracy using the domain-wall-on-HISQ
formulation. In their calculation, the operator is already
summed over all insertion times t during generation; there-
fore, they can only analyze their data versus τ. They use two-
state fits to data starting at much smaller source-sink
separations, 0.2≲ τ ≲ 0.8 fm, where many higher excited
states contribute and sensitivity to contributions from Nπ

states would be small. They do not explicitly include an Nπ
state in their analysis. Thus, the balance between control
over statistical versus systematic errors, especially the impact
of the inclusion of the Nπ state(s), remains to be addressed.
The CCFV fits are made to data from 16 ensembles at three
values of a ≈ 0.09, 0.12, 0.15 fm and five values of
Mπ ≈ 400, 350, 310, 220, 130 MeV.
The PACS Collaboration [66–68] uses a single 1284

ensemble generated with 2þ 1-flavor stout-smeared OðaÞ
improved Wilson-clover fermions and Iwasaki gauge
action at a ¼ 0.0846ð7Þ fm and Mπ ¼ 135ð9Þ MeV.
While the lattice volume is large, MπL ¼ 7.4, results have
been presented from only 20 lattices, each separated by
10 trajectories. The JLQCD [74] use 2þ 1-flavor overlap
formulations with a single value of a ¼ 0.11 fm, four
values of Mπ ¼ 293, 379, 453, 540 MeV, and 50 gauge
configurations. In both calculations, even though some of
their estimates are reasonable, the control over the stat-
istical and various systematic uncertainties we have dis-
cussed is limited. For example, on the key issue of excited
states, in Ref. [67] they find no significant excited-state
effects over the range 0.84 < τ < 1.35 fm, in contradiction
to all other calculations. Also, estimates from 964 [66] and
1284 [67] lattices with the same lattice spacing but with
Mπ ¼ 146 versus 135 MeV show much larger differences
than expected, presumably due to low statistics in both
calculations.
The RQCD Collaboration [59] has presented results for

the axial form factors on 37 ensembles with 2þ 1 flavors of
nonperturbatively OðaÞ improved Wilson-clover fermions
with a tree- level Symanzik improved gauge action gen-
erated by the CLS Collaboration [75]. These ensembles
cover five values of the lattice spacing and include two
physical pion mass ensembles. To remove excited states
they use a strategy similar to f3; 2g for the axial charge and
GA, and to f4Nπ; 3�g for G̃P and GP form factors. The
resulting form factors satisfy the PCAC relation at a level
similar to that presented in this work. They find that both
the dipole and the z-expansion ansatz fit the Q2 behavior
of GAðQ2Þ; however, results for gu−dA , hr2Aiu−d, and g�P are
different as can be seen from the summary in Table XIV.
The Mainz Collaboration [69] analyzed 11 CLS ensem-

bles [75] that are common with the RQCD work described
above. On these ensembles, the pion mass ranges between
203 and 353 MeV. To control ESC they explore the
summation method and two-state fits with a common value
for ΔM1 for six quantities, the three charges and three
Mellin moments that give the momentum fraction, helicity,
and transversity. Note that our data for ΔM1 (or ΔM̃1) for
the three charges given in Table II and for the three
moments given in Ref. [76] do not support using a common
value for ΔM1 in the analysis of all six quantities. Their
final results are also obtained with the CCFV ansatz given
in Eq. (41), which they call ABDE. For the vector form
factors [70], they analyze ten CLS ensembles including one
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with the physical pionmass; however, errors in data fromit are
large. The ESC is again controlled using the summation and
two-state fit methods (f2; 2g in our notation), which give
consistent values. The errors in the data with the summation
method, especially at the larger Q2, are much larger. They
employ dipole and z-expansion parametrization of the Q2

behavior, and the chiral-continuum extrapolation using heavy
baryon chiral perturbation theory (HBChPT) supplemented
with leading order corrections for lattice discretization and
finite volume. Their final estimates are obtained from a
model-agnostic average (summation, two-state fits, dipole,
z-expansion, HBChPT, and cuts on Q2 andM2

π values) with
weights given by the Akaike information criteria.
The LHPC Collaboration [71,72] analyzed two physical

pion mass 2þ 1-flavor ensembles generated with 2-HEX-
smeared Wilson-clover action (the Budapest-Marseille-
Wuppertal ensembles). One of their main observations
from the study of charges [71] is a significant variation in
ZS between the RI0-MOM and RI-sMOM renormalization
schemes which, along with the statistical errors and
extrapolation in a uncertainty, accounts for the large error
in gS. In Ref. [72], they present results for μp−n and charge
radii from two methods: traditional (z-expansion) and
derivative. In Table XIV, we quote their results from the
traditional method as recommended by them, and from the
two analyses for handling ESC: τ=a ¼ 10 ratio data (top)
and summation (bottom), which differ. Systematic uncer-
tainties were not evaluated in either set of estimates.
The χQCD Collaboration [73] used the overlap-

on-domain-wall formulation on three 2þ 1-flavor
domain-wall ensembles generated by the RBC/UKQCD
Collaboration. On each of these ensembles, data with 5–6
values of the valence pion mass are generated. They obtain
gu−dA using a CC fit to these partially quenched data.
From the summary of results in Table XIV, we conclude

that, overall, results for gu−dT are consistent within 5%, and
for gu−dS within 10%, and sensitivity to excited states in their
extraction is small. For all other quantities such as gu−dA , the
charge radii, g�P and gπNN , results from analyses that do not
include the Nπ states give smaller values compared to
phenomenology.

XVI. CONCLUSIONS

We have presented an analysis of isovector charges and
axial and electromagnetic form factors on seven 2þ 1-
flavor Wilson-clover ensembles generated by the JLab/
W&M/LANL/MIT Collaborations [16] and described in
Table XV. This unitary clover-on-clover calculation is an
improvement over our previous work using the nonunitary
clover-on-HISQ formulation [6–9]. In addition, high-
statistics data have allowed us to make significant progress
in understanding key issues in controlling other systematic
uncertainties including excited state contamination in
various nucleon matrix elements.

The excited-state contributions to each observable are
analyzed using a number of possible values of the energy
of the first excited state, which is assumed to provide the
dominant contamination. The axial form factors extracted
including the low-lying multihadron Nπ state satisfy the
PCAC relation between them and are consistent with the
pion-pole dominance hypothesis. We also find evidence
that the Nππ state, theoretically supported by the vector-
meson dominance hypothesis, contributes to the electric
and magnetic form factors. They show much less sensi-
tivity to the excited state mass gap, and the results agree
with the experimental data parametrized using the Kelly
result [22].
Results of the pseudoscalar decay constant, Fπ , after

CCFV fits to data with two methods for renormalization are
FπjZ1

¼ 93.0ð3.9Þ (this CCFV fit is shown in Fig. 36) and
FπjZ2

¼ 95.9ð3.5Þ. These estimates agree with the exper-
imental value to within a few percent. Noting that Fπ data
points have small statistical errors, the difference and the
size of the errors after CCFV fits, ≈4%, should be regarded
as a measure of the overall accuracy of the CCFV fits with
seven data points, especially in observables that show
significant variations with respect to fa;Mπ;MπLg.
The results for the three isovector charges obtained

from the forward matrix elements [see Eq. (43)] are gu−dA ¼
1.32ð6Þð5Þsys (this estimate includes input from the
extrapolation of the Q2 ≠ 0 data), gu−dS ¼ 1.06ð9Þð6Þsys,
and gu−dT ¼ 0.97ð3Þð2Þsys. The first overall analysis error is
conservative with respect to the variation observed under
CCFV extrapolations. Estimation of systematic uncertain-
ties are discussed in Sec. XIII A. The scalar and tensor
charges gu−dS;T do not show a significant dependence on the
value of the first excited state mass, so we consider their
estimate robust.
The value of gu−dA has been extracted in two ways, one

from the forward matrix element and the second from an
extrapolation of the axial form factor to Q2 ¼ 0. These two
ways must give the same result in the continuum limit that
should agree with the experimental value. We find that gu−dA
is sensitive to the inclusion of theNπ state. Our results have
a ∼10% spread depending on the ESC strategy and the Q2

fits used as discussed in Sec. XIII A. A snapshot of the
spread is given in Table X. The change in GAðQ2Þ on
including the Nπ state is, in most cases, a few percent (see
Table XVIII): the largest change (3%–5%) is in the smallest
Q2 point (n2 ¼ 1) on the Mπ ≈ 170 MeV ensembles;
however, it is precisely the change in the low Q2 points
that has the largest impact on the extraction of gu−dA from fits
to GA. Similarly, the change in the forward matrix element
is about 6% (see Fig. 3). These changes are of the same
size as our overall analysis error estimate, ∼5%, and the
additional systematic uncertainty included in the final result
gu−dA ¼ 1.32ð06Þð05Þsys. Thus, this level of the possible
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contribution of the Nπ state in extractingGA, and its impact
on the improvement of the PCAC relation, is just at the
level of our current resolution. Our conclusion, therefore, is
as follows: to fully resolve the issue of the size of the
contributions of the Nπ states in the extraction of GA and to
improve the precision of lattice estimates of gu−dA requires
more extensive data.
To fit the Q2 dependence of the form factors, we explore

the z-expansion, the dipole ansatz, and Padé fits. Estimates
from the z2;3;4 truncation of the z-expansion give consistent
results for the axial form factors, and we take final values
from the z2 fits to avoid overparametrization. For the vector
form factors we use the z3 truncation. The second order
Padé, Pðg; 0; 2Þ, with three free parameters, is found to
provide an equally good parametrization. The dipole ansatz
does not provide a good fit to GAðQ2Þ obtained including
the Nπ state when removing the ESC. It provides a
reasonable fit to the electric form factor, and less so to
the magnetic.
We have carried out two analyses to get charge radii from

the form factors, and both sets of results are summarized
in Table XIV. In the first, the Q2 dependence of data from
each ensemble is parametrized using the dipole, Padé, and
z-expansion, and the lattice artifacts in the resulting values
of the charges and the charge radii due to discretization,
finite volume effects, and heavier than physical values
of quark masses are then removed by simultaneous CCFV
fits keeping leading order corrections in the three variables
fa;Mπ;MπLg. The results are the following: (i) the axial
charge radius squared, hr2Ai ¼ 0.428ð53Þð30Þsys fm2;
(ii) the induced pseudoscalar charge, g�P ¼ 7.9ð7Þð9Þsys;
(iii) the pion-nucleon coupling, gπNN ¼ 12.4ð1.2Þ;
(iv) the electric charge radius squared, hr2Eiu−d ¼
0.85ð12Þð19Þsys fm2; (v) themagnetic charge radius squared,
hr2Miu−d ¼ 0.71ð19Þð23Þsys fm2; and (vi) the magnetic
moment, μu−d ¼ 4.15ð22Þð10Þsys. At this point, we do not
consider deviations from phenomenological/experimental
results significant. In the axial channel, to obtain this
improved consistency of results and for the form factors to
satisfy the PCAC relation between them, it was crucial to
include the Nπ state in the removal of ESC.
The electric and magnetic form factors GE and GM,

shown in Figs. 12 and 14, exhibit much less sensitivity to
the value of the mass gap of the excited state. Our results
agree with the Kelly parametrization of the experimental
data over the range 0.04≲Q2 ≲ 1.2 GeV2 when plotted as
a function of Q2=M2

N , and show no significant variation
with respect to either a or M2

π. This agreement is a major
improvement over our previous work using the clover-on-
HISQ formulation presented in Ref. [9].
A second, heuristic, analysis of form factors, presented in

Sec. XIV, explores the same set of parametrizations (see
Table XIII) but makes a single fit to data from all five larger
volume ensembles as shown in Figs. 5, 12, and 14,

i.e., ignoring fa;Mπ;MπLg dependent artifacts. The
Pðg; 0; 2Þ Padé does a good job of parametrizing the Q2

behavior, and the results are given in Eqs. (55) and (58).
The results for gu−dA , hr2Aiu−d, hr2Eiu−d, hr2Miu−d, and μu−d

from these two sets of analyses, summarized in Table XIV,
are consistent but the errors from the second set are smaller,
a consequence of the analysis becoming simpler on ignor-
ing fa;Mπ;MπLg dependent artifacts.
Our goal is to provide a parametrization of the form

factors themselves versus Q2 for input into phenomeno-
logical analyses. In the analysis method “A,” we do not
have a robust theoretical guide or adequate data for
performing CCFVextrapolations of each of the coefficients
of the z-expansion or Padé fits [the ak in Eq. (34) or the bi
in Eq. (36)] determined from fits to individual ensembles.
In method “B,” we make the assumption that the
fa;Mπ;MπLg dependent artifacts can be ignored (see
the data in Fig. 16). Under this assumption, Eqs. (55),
(56), and (58) give our continuum limit parametrization of
the form factors.
Overall, our results for the form factors are consistent

with phenomenological/experimental values. For this
agreement, it was essential to include the low-energy Nπ
(Nππ) excited state in the analysis of the axial form factors,
and to a smaller extent in the vector channel. Motivation
for including these states comes from χPT, pion-pole
dominance for axial, and vector meson dominance for
vector channels. Our data support these hypotheses, and the
estimates of ΔM1 are in rough agreement with those
expected with Nπ (or Nππ for vector) states (see
Figs. 22 and 10 for the axial and vector cases, respectively).
The change in the axial form factors is only a few percent;
however, it is large, ∼35%, in both the induced pseudo-
scalar, G̃P, and the pseudoscalar, GP, form factors. With
these changes, the resulting form factors satisfy the PCAC
relation between them. Furthermore, the estimates of the
induced pseudoscalar charge, g�P ¼ 7.9ð7Þð9Þ, and of the
pion-nucleon coupling gπNN ¼ 12.4ð1.2Þ become consis-
tent with phenomenology.
The change in the electric and magnetic form factors

between the four ESC strategies is small as shown in
Figs. 12 and 14. A significant reduction in the dependence
on fa;Mπg of both form factors is observed when plotted
versus Q2=M2

N . This provided motivation for the Padé and
z-expansion parametrization presented in Sec. XIV and the
results in Eqs. (55)–(59).
To increase precision, address the issue of the spread in

results due to different estimates of the relevant mass gap,
and to resolve whether additional Nπ state(s) should be
included in the analysis, higher statistics data at more
values of fa;Mπ;MπLg are needed. The benchmarks for
improvement will continue to be satisfying the PCAC
relation between the axial form factors, the agreement
with the experimental value gu−dA ¼ 1.2764ð1Þ, and the well
measured vector form factors GE and GM.
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APPENDIX A: GLOSSARY OF LABELS USED TO
DESCRIBE THE VARIOUS FITS MADE

A summary of the abbreviations used to describe the
various analysis strategies and fits is given below in order
of the three entries such as in f4Nπ; 3�; P̂2g.
The first entry specifies the fits to the two-point

function used to extract the spectrum. It has two
possibilities:

(i) f4g denotes that four-state fits are made to the two-
point function. Empirical Bayesian priors with wide
widths for excited state energies and amplitudes are
used only to stabilize the fits. These fits are
illustrated in the left-hand column in Fig. 1.

(ii) f4Nπg denotes that a prior for ΔE1 with a narrow
width centered about the energy of the noninteract-
ing Nπ (or of Nππ that is essentially degenerate)
state is used in four-state fits to the two-point
function. Priors on higher states are similar to those
in f4g fits. These fits are illustrated in the right-hand
column in Fig. 1.

The second entry specifies the four different fits made to the
three-point functions:

(i) f3�g specifies that three-state fits are made to the
three-point functions with the spectrum taken from
either f4g or f4Nπg fits to two-point functions, and
the h2jOj2i term in Eq. (18) is set to zero.

(ii) f2A4g: This is a two-state fit to the three spatial axial
vector and the pseudoscalar three-point functions
with a common ΔE1 determined from fits to the A4

correlator. The ground state parameters are taken
from either f4g or f4Nπg fits.

(iii) f2simg: This is a two-state fit to a set of three-point
functions. In the axial channel it denotes that a
simultaneous fit to the four axial vector and the
pseudoscalar channels is made with a common ΔE1.
In the vector channel it denotes a simultaneous fit to
the three distinct correlation functions described in
Sec. XII. The ground state parameters are taken from
either f4g or f4Nπg fits. In both cases, the output
mass gap is called ΔẼ1.

(iv) f2freeg: This is a two-state fit to an individual three-
point function with ΔE1 left as a free parameter. The
output mass gap is called ΔẼ1. The ground state
parameters are taken from either f4g or f4Nπg fits.

The third entry specifies the six different fits made to the
form factors to parametrize the Q2 behavior:

(i) fDg and fD̂g: “D” stands for a dipole fit. The hat in
fD̂g specifies that subsequent CCFV fits to quan-
tities such as gA, hr2Ei, hr2Mi, and μ have been carried
out neglecting the two small volume points,
a094m270 and a091m170, and the finite-volume
correction term, i.e., only a CC fit is performed.

(ii) fzkg and fẑkg: These are z-expansion fits truncated
at power k. The hat in the label fẑg again specifies
that subsequent CC fits have been done neglecting
the two small volume points, a094m270 and
a091m170, and the finite-volume correction term,
i.e., only a CC fit is performed.

(iii) fPng and fP̂ng: “P” stands for a Padé fit. The
subscript n specifies the order of the Padé as
discussed in Sec. X. The hat in fP̂g again specifies
that the two small volume points, a094m270 and
a091m170, and the finite-volume correction term,
i.e., only a CC fit is performed.
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APPENDIX B: LATTICE PARAMETERS AND THE VALUES OF Q2 FROM THE TWO
FOUR-STATE FITS, f4g AND f4Nπg

In this Appendix we give the parameters of the seven ensembles in Table XV and the corresponding parameters used in
the calculation of the clover propagators in Table XVI. The values of momentum transfer squared, Q2, obtained from the
two four-state fits, f4g and f4Nπg, to the two-point correlation function are given in Table XVII.

TABLE XV. Parameters of the seven isotropic clover ensembles being generated by the JLab/W&M/LANL/MIT Collaboration using
the highly tuned CHROMA code. Each row gives the ensemble ID and parameters, the number of lattices analyzed, the number of high
precision, NHP, and low precision, NLP, measurements of isovector quantities made, and the values of source-sink separation τ
simulated. Each lattice is separated by 4–6 trajectories with ≈92% acceptance rate in the Hybrid Monte Carlo algorithm. The nucleon
mass,MN , is given for the two fit strategies f4g and f4Nπg defined in the text. The lattice spacing a is determined from the Wilson flow
parameter w0 using the method proposed in Ref. [85].

ID β a [fm]
Mπ

[MeV]
Mf4g

N
[MeV]

Mf4Nπg
N

[MeV]

Size

MπL Lattices NHP NLP τL=a T=a

a127m285 6.1 0.127(2) 285(5) 961(15) 958(15) 32 96 5.87 2,002 8,008 256,256 f8; 10; 12; 14g
a094m270 6.3 0.094(1) 269(3) 982(15) 986(11) 32 64 4.09 2,469 7,407 237,024 f8; 10; 12; 14; 16g
a094m270L 6.3 0.094(1) 269(3) 979(11) 976(11) 48 128 6.15 4,510 18,040 577,280 f8; 10; 12; 14; 16; 18g
a091m170 6.3 0.091(1) 169(2) 903(11) 895(12) 48 96 3.75 4,012 16,048 513,536 f8; 10; 12; 14; 16g
a091m170L 6.3 0.091(1) 170(2) 901(11) 884(13) 64 128 5.03 2,002 10,010 320,320 f8; 10; 12; 14; 16g
a073m270 6.5 0.0728(8) 272(3) 1008(11) 1007(11) 48 128 4.81 4,720 18,880 604,160 f11; 13; 15; 17; 19g
a071m170 6.5 0.0707(8) 166(2) 911(13) 901(12) 72 192 4.28 2,500 15,000 240,000 f13; 15; 17; 19; 21g

TABLE XVI. The parameters used in the calculation of the clover propagators. The hopping parameter for the light/strange quarks,
κl;s, in the clover action is given by 2κl;s ¼ 1=ðml;s þ 4Þ. cSW is the Sheikholeslami-Wohlert improvement coefficient in the clover
action. The parameters used to construct Gaussian smeared sources [28], fσ; NKGg, are given in the fifth column where NKG is the
number of applications of the Klein-Gordon operator and the width of the smearing is controlled by the coefficient σ, both in CHROMA

convention [77]. The resulting root-mean-square radius of the smearing in lattice units, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
drr4S†S=

R
drr2S†S

q
with SðrÞ the

value of the smeared source at radial distance r, is given in the last column.

ID ml ms cSW Smearing parameters RMS smearing radius

a127m285 −0.2850 −0.2450 1.24931 f5; 50g 5.79(1)
a094m270 −0.2390 −0.2050 1.20537 f7; 91g 7.72(3)
a094m270L −0.2390 −0.2050 1.20537 f7; 91g 7.76(4)
a091m170 −0.2416 −0.2050 1.20537 f7; 91g 7.64(3)
a091m170L −0.2416 −0.2050 1.20537 f7; 91g 7.76(4)
a073m270 −0.2070 −0.1750 1.17008 f9; 150g 9.84(1)
a071m170 −0.2091 −0.1778 1.17008 f10; 185g 10.71(2)
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APPENDIX C: COMPARISON OF CHARGES EXTRACTED USING FOUR STRATEGIES

In this Appendix, we show the data and the fits made to control ESC in gA, gS, and gT in Figs. 17–19, respectively, using
the four strategies, f4; 3�g, f4Nπ; 3�g, f4; 2freeg, and f4Nπ; 2freeg discussed in Sec. VIII. The results for the charges are
summarized in Tables IV and V.

TABLE XVII. Data for the momentum transfer squared, Q2 ¼ q2 − ðE −MNÞ2, in units of GeV2, for the two strategies f4g (top) and
f4Nπg (bottom) used in the analysis of the form factors.

Q2 values with strategy f4g
n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

(1, 0, 0) 0.091(03) 0.164(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.314(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
(1, 1, 1) 0.262(08) 0.453(11) 0.215(05) 0.226(05) 0.131(03) 0.348(08) 0.169(04)
(2, 0, 0) 0.341(11) 0.598(15) 0.281(06) 0.294(07) 0.172(04) 0.451(10) 0.222(05)
(2, 1, 0) 0.419(13) 0.716(18) 0.346(07) 0.361(08) 0.213(05) 0.553(12) 0.272(07)
(2, 1, 1) 0.495(16) 0.839(21) 0.409(09) 0.426(10) 0.252(06) 0.652(15) 0.322(08)
(2, 2, 0) 0.638(21) 1.046(28) 0.530(12) 0.549(13) 0.328(07) 0.838(20) 0.413(10)
(2, 2, 1) 0.705(23) 1.172(30) 0.588(13) 0.609(15) 0.365(08) 0.927(22) 0.461(12)
(3, 0, 0) 0.706(23) 1.186(32) 0.586(13) 0.611(16) 0.365(08) 0.923(22) 0.465(13)
(3, 1, 0) 0.774(25) 1.293(34) 0.642(14) 0.672(17) 0.401(09) 1.010(24) 0.506(13)

Q2 values with strategy f4Nπg
n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170
(1, 0, 0) 0.091(03) 0.165(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.315(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
(1, 1, 1) 0.261(08) 0.456(10) 0.215(05) 0.225(05) 0.130(03) 0.348(08) 0.168(04)
(2, 0, 0) 0.341(11) 0.593(13) 0.281(06) 0.293(07) 0.171(04) 0.451(10) 0.221(05)
(2, 1, 0) 0.418(13) 0.715(16) 0.345(07) 0.359(08) 0.211(05) 0.552(12) 0.271(06)
(2, 1, 1) 0.493(16) 0.837(19) 0.408(09) 0.424(10) 0.249(06) 0.650(15) 0.320(08)
(2, 2, 0) 0.636(20) 1.042(25) 0.529(11) 0.546(13) 0.325(08) 0.833(19) 0.412(10)
(2, 2, 1) 0.704(22) 1.165(28) 0.587(13) 0.606(14) 0.361(09) 0.921(21) 0.459(11)
(3, 0, 0) 0.705(23) 1.173(32) 0.586(13) 0.605(15) 0.361(09) 0.918(21) 0.461(11)
(3, 1, 0) 0.772(25) 1.280(33) 0.641(14) 0.665(16) 0.397(10) 1.004(23) 0.503(12)
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FIG. 17. Each panel gives the data for the ratio RAðt; τÞ ¼ C3pt
A ðt; τ; 0; 0Þ=C2ptðτ; 0Þ defined in Eq. (19), which gives the

unrenormalized axial charge gu−dA in the limit τ → ∞, plotted as a function of t − τ=2 for the four largest values of τ. The data
connected by lines of the same color for the three largest τ are used in the fit to get the τ → ∞ value given by the black line with its
gray error band. Data at the smallest τ, shown as gray crosses, are not used in the fit. The four panels in each row show the excited-state
fits to the same data but with the four strategies, f4; 3�g (left column), f4Nπ ; 3�g (second column), f4; 2freeg (third column), and
f4Nπ; 2freeg (right column). The labels give the bare charge gA, the χ2=dof of the fit, the mass gap aΔM1 (or aΔM̃1), and the
ensemble ID.
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FIG. 18. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized scalar charge gu−dS in the
limit τ → ∞, and plotted as a function of t − τ=2 for the five largest values of τ (four for a127m285). In each panel, the data with
the four largest τ and connected by lines of the same color are used in the fit to get the τ → ∞ value (gray band). The rest is the same as in
Fig. 17.
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FIG. 19. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized tensor charge gu−dT in the limit
τ → ∞, and plotted as a function of t − τ=2 for the four largest values of τ. The rest is the same as in Fig. 17.
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APPENDIX D: ANATOMY OF THE EXCITED-
STATE CONTAMINATION IN THE CHARGES

In this Appendix, we compare fits to the data for the
three charges, gA;S;T , in Fig. 20 to highlight (i) the
differences in ESC for the u, d, u − d, and uþ d quark
bilinear operator insertions and (ii) how these ESC patterns
impact the extraction of the isovector and isoscalar (con-
nected only) combinations. Data are presented for the
a071m170 ensemble, which have the largest statistical
errors. The fits are made using the f4; 3�g strategy. We also
examine the data for symmetry about ðt − τ=2Þ, monotonic
convergence versus τ, and the size of errors, as well as how
these impact our ability to remove ESC.
The ESC in the axial channel is equally large in

magnitude for insertion in the u and d quarks. It adds in
the u − d combination as the data have opposite signs, but
cancel in uþ d. In the case of the scalar charge, the ESC in
both the u and d insertions are a similar fraction of the
value. Thus, it adds in uþ d. In the u − d combination,
there is a large cancellation; however, significant ESC
remains as shown in Fig. 18. In the case of the tensor
charge, the value and the ESC in the insertion in the u quark
is much larger, and it dominates in both the u − d and the

uþ d combinations. Overall, in the uþ d axial and u − d
scalar cases, where there is a cancellation, much higher
statistical precision in the τ > 1.5 fm data is needed to
demonstrate monotonic convergence and improve the
reliability of n-state fits.
Given these patterns, we made fits with the same set of

ESC strategies to data with separate insertions of u and d
quark operators. The goal was to see whether these fits,
especially in the scalar channel, are more stable and the
gu−dS combination constructed from individual ESC fits has
better precision. What we found, on all seven ensembles
and for all three charges, is that direct fits to the u − d data
gave values and errors consistent with those obtained by
combining results from separate fits to data with u and d
insertions. The largest differences are in gu−dS for the
a091m170L (about 1σ) and a071m170 (about 0.5σ)
ensembles. This check shows that our error estimates are
reasonable even in the worst cases. In short, examining the
separate fits did provide a better understanding of the ESC
and of the statistical precision of the fits but did not improve
the estimates for the isovector charges.

FIG. 20. Data for the ratio defined in Eq. (19) for different operator insertions—on the u quark (left column), d quark (second column),
u − d combination (third column), and the connected part of the uþ d combination (right column)—are shown for the a071m170
ensemble. Data for gA (top row), gS (middle row), and gT (bottom row) are plotted as a function of t − τ=2 for the values of τ specified in
the labels. All the fits to get the τ → ∞ values are with the f4; 3�g strategy.
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APPENDIX E: EXCITED STATES IN THE
AXIAL THREE-POINT FUNCTIONS

On a finite lattice, one has towers of eigenstates of the
transfer matrix labeled by their quantum numbers. A
strict identification with physical states such as Nð0ÞπðqÞ
and Nð−qÞπðqÞ can only be done in infinite volume and in
the continuum limit. As mentioned in the text, both
NðpÞπð−pÞ and Nð0Þπð0Þπð0Þ have the right quantum
numbers (spin, parity, G-parity) to contribute to the axial
channel. It is the magnitude of their couplings that
decides the size of their contributions. These need to
be determined nonperturbatively from fits to the
three-point functions for high precision results. In such
analyses, for example in the axial channel, χPT is a
good guide.
In a series of papers, Bär has presented the predictions

of χPT [30,35,36] keeping one excited state, Nπ, in the
analysis. At the tree level, consistent with the pion-pole
dominance hypothesis, the axial current AμðqÞ couples
through a pion with momentum qμ. In our setup, for the
matrix elements of the three spatial Ai, the interaction with
πðqÞ causes the transitions to the excited states Nð0Þ →
Nð0ÞπðqÞ and Nð−qÞ → Nð−qÞπðqÞ in addition to the
desired ground state transitions Nð0Þ → NðqÞ and
Nð−qÞ → Nð0Þ. These ESC arise at tree-level, depend
on q, and are expected to be large in the G̃P and GP form
factors. In addition, at the loop-level, all states with the
right quantum numbers such as NðqÞπð0Þ, Nð0ÞπðqÞ,
Nð0Þπð0Þπð0Þ and the full tower of Nð−pÞπðpÞ states with
all allowed values of p on the p ¼ 0 side of the three-point
function can contribute to all three form factors. These

loop-level contributions are estimated to be a few percent
effect and show only a mild dependence on p.
The f4Nπ; 2simg strategy analysis of the axial form factors

includes the Nπ state predicted by tree-level χPT analysis
but neglects the contribution of all other states that can
contribute at loop-level. Compared to f4; 3�g, this changes
G̃P and GP by ∼35% and GA by ∼5% at the smallest Q2

point on the a071m170 ensemble as shown in Fig. 21. The
difference is much smaller on the Mπ ≈ 270 MeV ensem-
bles as shown for the a073m270 ensemble; i.e., the effect of
the Nπ state increases asQ2 → 0 andMπ → 0. For the axial
charge gA obtained from A3, there is no tree-level contri-
bution due to the kinematic constraint. Our analysis in
Sec. VIII, including only the lowest, Nð−1Þπð1Þ [or the
approximately degenerate Nð0Þπð0Þπð0Þ], state that can
contribute at loop-level indicates that the effect could be
∼8% for Mπ ¼ 135 MeV. The impact of the remaining
tower of excited states in either case is unknown. In this
Appendix, we discuss these effects and how best to proceed
to remove all ESC.
First, we discuss the evidence that multihadron states

contribute. Next, we point out why it will be difficult
to resolve all relevant states from fits to the two-point
function. Last, we provide some thoughts on how the
analysis presented in this work can be extended.
The data for the energy gaps, aΔM̃1 and aΔẼ1, obtained

using three strategies f4; 2simg, f4Nπ; 2A4g, and f4Nπ; 2simg
are presented in Fig. 22 and compared against the values
obtained assuming that the excited states on the two sides
of the operator are NðqÞπð−qÞ (blue dotted lines) and
Nð0ÞπðqÞ (red dotted lines), respectively. The data exhibit
the following features:

FIG. 21. The form factors ZAGA=g
exp
A , ZAG̃P=g

exp
A , and GP from the two strategies f4; 3�g and f4Nπ; 2simg are compared in each panel

for the ensembles a071m170 (top row) and a073m270 (bottom row). We also show two dipole fits with MA ¼ 1.026 and 1.35 to GA,
and a pion-pole dominance fit to G̃P with GA given by the dipole ansatz to guide the eye.
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FIG. 22. Mass gaps in the axial channel from various fits plotted versus the momentum transfer in units of n2 for six ensembles. The
aΔM1 (black filled circles) and aΔE1 (black diamonds) are from fits to the two-point function using strategy f4g (left panel), and f4Nπg
that uses a prior with a narrow width for the energy of a noninteractingNð0ÞπðqÞ state (middle and right panels). The output of the f2simg
(or f2A4g) fits are aΔM̃1 (blue squares) and aΔẼ1 (red triangles). The dotted blue line is calculated assuming aΔM1 is given by a
noninteracting NðqÞπð−qÞ state, while the red dotted line shows the aΔE1 for a noninteracting Nð0ÞπðqÞ state.
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(i) The energy gaps given by the fits to the three-point
functions, aΔM̃1 (blue squares) and aΔẼ1 (red
triangles), differ significantly, depending on the mo-
mentum transfer q, and the difference increases with q.

(ii) The rough agreement between the blue dotted line
and blue squares and the red dotted line and red
triangles improves as Mπ decreases and indicates
that aΔM̃1 and aΔẼ1 correspond to NðqÞπð−qÞ and
Nð0ÞπðqÞ excited states, respectively. The agree-
ment was found to be even better for the physical
mass ensemble investigated in Ref. [8] using the
clover-on-HISQ formulation.

(iii) The values of aΔM1 (black filled circle) and aΔE1

(black diamonds) obtained from f4g and f4Nπg fits
(left versus the right two panels) to the two-point
function have a smaller difference.

(iv) The agreement between the aΔE1 (black diamonds)
from the f4Nπg fits to the two-point function and the
dotted red line showing the energy of the non-
interacting Nð0ÞπðqÞ state is by construction since
the latter is used as a prior for aE1 in the f4Nπg fit.

The identification of Nð0ÞπðqÞ and Nð−qÞπðqÞ as the
leading excited states on the two sides of the operator
insertion is consistent with the predictions of chiral
perturbation theory [35,36,86].
An important consequence of the energy gaps, aΔM̃1

and aΔẼ1, being different and corresponding to different
momentum dependent excited states, NðqÞπð−qÞ versus
Nð0ÞπðqÞ, is that their mass gaps cannot be determined
straightforwardly from fits to the two-point function. For
example, for our calculations, to get the mass gaps for the
ten NðqÞπð−qÞ states from the p ¼ 0 correlator is unreal-
istic, even with a variational ansatz. As shown by the onset
of the plateau in the effective mass plots in Fig. 1, the
ground state dominates at τ ≳ 1 fm, i.e., the plateau starts at
9 < τstart < 14 in the ensembles we have analyzed. Thus,
the number of earlier time slices sensitive to and available
for determining excited-state parameters is 6–11, which
restricts the analysis to a maximum of four states, including
radial excitations. Second, at these short times, the con-
tributions of the full set of excited states are still significant,
and even the first excited state parameters, M1 and E1,
extracted from the fit are typically larger and τmin depen-
dent. Third, these four-state fits (as well as the three-state
fits) have exposed flat directions in the fit parameters
leading to a large space of values with roughly similar
χ2=dof as illustrated in Fig. 1. In short, fits to the data
show many equally good solutions, and the output val-
ues are heavily influenced by the priors used to stabilize
the fits.
To resolve a light excited state such as Nð0ÞπðqÞ, which

has a mass of about 1200 MeV as q → 0, from the ground
state from fits to the two-point function requires very high
precision data at large enough τ by which the higher states
have died out sufficiently. In our setup, this occurs for

τ ≳ 1 fm. Isolating two (actually a whole tower as q → 0)
states from the “plateau” region at τ ≳ 1 fm will be
challenging. In short, our work suggests that determining
the masses and amplitudes of all the needed low-lying
excited states from fits to two-point functions constructed
using a single nucleon or multihadron interpolating oper-
ator is unlikely in the foreseeable future.
One can improve the situation by working on anisotropic

lattices (setting the spacing in the time direction much finer
than in the three spatial directions to have more points to
fit within the same physical time interval) and/or by using
a variational approach with many nucleon interpolating
operators, including relevant multihadron operators with
the same quantum numbers. The two methods have been
implemented together successfully in detailed calculations
of the meson and baryon excited-state spectra [87]. For
matrix elements, however, only exploratory calculations of
nucleon charges using the variational method have been
performed [17,88]. Each of these approaches, unfortu-
nately, requires additional/new simulations that are beyond
the scope of the current work.
We are, therefore, faced with the following possibilities

to systematically include all the relevant excited states to
get percent level precision:

(i) Take only the ground state parameters from fits to
the two-point function and leave all the excited state
parameters, ΔM̃i and ΔẼi, to be determined from
the three-point functions. This is the basis of our
strategies f4Nπ; 2A4g and f4Nπ; 2simg; however, so
far we have been able to include a single excited
state. To include the next, second, excited state with
the current data, one could hardwire the ΔM̃1 and
ΔẼ1, determined from a two-state fit, in a three-state
fit with only ΔM̃2 and ΔẼ2 free. Our attempts at this
failed—the χ2 does not decrease by two units for
each additional parameter as required to satisfy the
Akaike information criteria, and the parameter
values have over 100% errors. We are also not able
to estimate how precise the data need to be for this
approach to work given the large flat regions in the
χ2 landscape, evident already by the range of ΔM̃1

and ΔẼ1 values, and the large number of possible
states that could contribute.

(ii) Assume, based on chiral perturbation theory, that
NðqÞπð−qÞ and Nð0ÞπðqÞ are the relevant first
excited states and hardwire their noninteracting
energies for ΔM1 and ΔE1 in fits to the three-point
function. For the second and higher excited states,
one can again resort to χPT or take the estimate of
the next lowest energy level from fits to the two-
point function. This approach has recently been used
in Ref. [59]. In our case, the f4Nπ; 3�g strategy is a
step in this direction; however, since f4Nπ; 2A4g and
f4Nπ; 2simg do a better job of satisfying PCAC, one
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could add a third state with fixed ΔM2 and ΔE2 to
the latter when making the fits. Our attempts at
adding a third state to the f4Nπ; 2simg fit led to both
an overparametrization and essentially undeter-
mined values for all the extra parameters.

(iii) Determine the spectrum of (multihadron) excited
states in a finite box from a variational calculation of
two-point functions with a large enough basis of
operators and use them as priors in fits to the three-
point functions. Our contention, based on the current
analyses, is that, for the first excited state, the energy
gaps will be close to those given by f4Nπ; 2A4g or the
f4Nπ; 2simg strategies and the fits to the three-point
functions with current statistics will not be sensitive
to the higher states.

In short, determining the spectrum of multiparticle
excited states that contribute significantly is essential for
obtaining ground state matrix elements in the axial channel.
The A4 correlator allows us to nonperturbatively identify
Nπ as giving the leading contribution, consistent with χPT
analysis; however, more work is needed to determine
the second relevant (multiparticle) excited state, which
may be necessary to reach percent level precision. In
Sec. XII, we show that similar issues need to be addressed
in the vector channel also, but the electric and magnetic
form factors are less sensitive to the values of the excited-
state energies.

APPENDIX F: COMPARISON OF THE AXIAL
FORM FACTORS EXTRACTED
USING FOUR STRATEGIES

This Appendix contains the data for the axial form
factors obtained from four strategies used to remove ESC:
f4; 3�g, f4Nπ; 3�g, f4Nπ; 2A4g, and f4Nπ; 2simg. The renor-
malized axial form factors ZAGA and ZAG̃P and the
unrenormalized GP are given in Tables XVIII–XX, respec-
tively. Data for the left-hand side of Eq. (29), which by the
PCAC relation should equal unity, are presented in
Table XXI. Figure 23 shows the data for R54, defined in
Eq. (23), for six ensembles and compares the fits with the
four strategies. A comparison of three matrix elements that
give G̃P, GA, and GP obtained using the four strategies is
shown in Fig. 24 for the a091m170L and a071m170
ensembles. Each row in Fig. 25 compares the results of the
fits to data obtained using the four strategies to remove
ESC. The six rows show data for the a091m170L (rows
one, three, and five) and a071m170 (rows two, four, and
six) ensembles and the three ratios: R53 defined in Eqs. (22)
for two different n2 ¼ 1 momentum channels, and for R5

defined in Eq. (24). Figure 26 shows that the data for
ðQ2 þM2

NÞG̃PðQ2Þ are almost linear and monotonic versus
Q2 on all seven ensembles except at small Q2 for the
f4; 3�g, and to a lesser extent for f4Nπ; 3�g, strategy on the
Mπ ¼ 170 MeV ensembles (data in the upper two panels).

SUNGWOO PARK et al. PHYS. REV. D 105, 054505 (2022)

054505-54



TABLE XVIII. Data for the renormalized axial form factor ZAGAðQ2Þ obtained using four strategies f4; 3�g, f4Nπ ; 3�g, f4Nπ; 2A4g,
f4Nπ; 2simg for controlling excited-state contamination. The values ofQ2, given in Table XVII, for a given value of n are different for all
seven ensembles, so only the data with the four strategies on each ensemble should be compared. No reasonable fits could be made
for the four largest Q2 points for the a094m270 ensemble with the f4Nπ; 2A4g strategy. The χ2=dof is shown only for the f2simg fit.
In other cases, the result is obtained using a two-step process—first fits are made to remove ESC and then the overdetermined set of
equations is solved to get the form factors. The data are arranged by ensemble to facilitate comparison between the four strategies for
each Q2.

f4; 3�g f4Nπ ; 3�g f4Nπ ; 2A4g f4Nπ; 2simg f4; 3�g f4Nπ; 3�g f4Nπ; 2A4g f4Nπ; 2simg
n a127m285 a094m270

(1, 0, 0) 1.128(18) 1.136(20) 1.152(20) 1.128(22) [1.54] 1.009(20) 1.008(20) 1.014(20) 1.007(21) [1.33]
(1, 1, 0) 1.021(17) 1.023(18) 1.031(17) 1.011(18) [0.95] 0.864(23) 0.866(16) 0.884(18) 0.878(17) [1.23]
(1, 1, 1) 0.921(15) 0.918(16) 0.923(16) 0.915(17) [0.82] 0.743(24) 0.747(15) 0.763(26) 0.752(21) [1.19]
(2, 0, 0) 0.853(16) 0.848(16) 0.858(18) 0.856(19) [1.59] 0.656(40) 0.674(23) 0.714(20) 0.701(23) [1.31]
(2, 1, 0) 0.785(14) 0.779(14) 0.800(15) 0.786(16) [1.22] 0.589(26) 0.601(14) 0.619(28) 0.615(16) [0.98]
(2, 1, 1) 0.720(15) 0.712(14) 0.747(16) 0.716(16) [1.25] 0.537(26) 0.549(16) 0.588(29) 0.566(15) [1.12]
(2, 2, 0) 0.639(15) 0.635(14) 0.641(18) 0.627(18) [1.15] 0.482(32) 0.490(24) 0.519(27) [1.36]
(2, 2, 1) 0.592(16) 0.585(13) 0.608(23) 0.587(21) [1.18] 0.424(27) 0.436(23) 0.460(13) [1.26]
(3, 0, 0) 0.614(22) 0.608(25) 0.627(31) 0.618(59) [1.38] 0.542(84) 0.521(50) 0.448(19) [1.12]
(3, 1, 0) 0.570(16) 0.563(15) 0.585(17) 0.560(29) [1.39] 0.489(53) 0.485(33) 0.430(36) [1.19]

a094m270L a091m170
(1, 0, 0) 1.124(19) 1.134(21) 1.134(20) 1.134(20) [1.40] 1.122(19) 1.153(30) 1.167(23) 1.156(25) [1.15]
(1, 1, 0) 1.030(17) 1.031(18) 1.027(22) 1.030(18) [1.55] 1.018(17) 1.020(29) 1.028(20) 1.020(21) [1.21]
(1, 1, 1) 0.951(16) 0.945(17) 0.963(17) 0.952(17) [1.57] 0.937(16) 0.932(31) 0.948(20) 0.937(21) [1.14]
(2, 0, 0) 0.889(16) 0.876(17) 0.886(16) 0.887(16) [1.58] 0.873(17) 0.849(32) 0.894(21) 0.893(22) [1.28]
(2, 1, 0) 0.828(16) 0.815(15) 0.827(14) 0.834(15) [1.48] 0.813(16) 0.789(26) 0.828(18) 0.830(19) [1.92]
(2, 1, 1) 0.776(15) 0.761(15) 0.771(14) 0.773(15) [1.50] 0.755(16) 0.728(29) 0.764(22) 0.765(17) [1.63]
(2, 2, 0) 0.695(15) 0.680(15) 0.715(15) 0.699(14) [1.24] 0.660(18) 0.595(34) 0.741(34) 0.707(23) [2.15]
(2, 2, 1) 0.659(14) 0.647(14) 0.675(15) 0.652(14) [1.14] 0.632(17) 0.600(36) 0.678(29) 0.636(18) [1.51]
(3, 0, 0) 0.662(15) 0.637(16) 0.687(20) 0.652(19) [1.10] 0.603(28) 0.513(49) 0.753(78) 0.627(28) [1.13]
(3, 1, 0) 0.627(15) 0.601(15) 0.623(16) 0.618(18) [1.44] 0.607(21) 0.552(37) 0.638(22) 0.616(22) [1.23]

a091m170L a073m270
(1, 0, 0) 1.169(22) 1.208(39) 1.229(29) 1.236(30) [2.00] 1.067(14) 1.072(15) 1.061(15) 1.066(15) [1.63]
(1, 1, 0) 1.101(20) 1.119(29) 1.137(28) 1.132(29) [1.81] 0.945(13) 0.942(13) 0.941(13) 0.946(14) [1.66]
(1, 1, 1) 1.048(19) 1.059(27) 1.054(23) 1.073(29) [2.18] 0.841(13) 0.834(12) 0.847(12) 0.850(12) [1.29]
(2, 0, 0) 0.972(19) 0.945(27) 1.013(31) 0.997(26) [1.40] 0.760(14) 0.750(13) 0.781(12) 0.774(12) [1.18]
(2, 1, 0) 0.930(18) 0.900(25) 0.971(29) 0.956(20) [2.12] 0.699(13) 0.691(11) 0.725(12) 0.712(11) [2.25]
(2, 1, 1) 0.889(18) 0.851(25) 0.933(29) 0.905(25) [2.68] 0.637(15) 0.637(10) 0.674(12) 0.663(10) [1.73]
(2, 2, 0) 0.806(18) 0.755(28) 0.855(29) 0.849(24) [2.42] 0.554(15) 0.559(11) 0.592(12) 0.577(11) [1.62]
(2, 2, 1) 0.772(18) 0.719(29) 0.833(29) 0.787(21) [2.36] 0.518(16) 0.529(10) 0.544(13) 0.546(11) [1.35]
(3, 0, 0) 0.766(20) 0.700(34) 0.842(31) 0.790(21) [1.99] 0.520(17) 0.521(15) 0.540(24) 0.547(16) [1.28]
(3, 1, 0) 0.735(19) 0.666(31) 0.815(29) 0.773(23) [1.98] 0.483(15) 0.487(13) 0.529(24) 0.508(12) [1.57]

a071m170
(1, 0, 0) 1.154(18) 1.203(31) 1.186(23) 1.214(27) [1.48]
(1, 1, 0) 1.078(14) 1.099(22) 1.076(16) 1.103(22) [1.82]
(1, 1, 1) 1.001(14) 0.997(19) 1.002(15) 1.018(21) [1.43]
(2, 0, 0) 0.941(16) 0.930(22) 0.954(19) 0.957(20) [1.47]
(2, 1, 0) 0.897(16) 0.878(18) 0.896(14) 0.912(19) [1.92]
(2, 1, 1) 0.837(19) 0.812(19) 0.876(33) 0.871(18) [1.69]
(2, 2, 0) 0.777(19) 0.737(22) 0.813(18) 0.799(17) [1.73]
(2, 2, 1) 0.731(20) 0.703(21) 0.787(17) 0.768(18) [1.63]
(3, 0, 0) 0.697(28) 0.658(28) 0.784(21) 0.739(26) [1.67]
(3, 1, 0) 0.686(24) 0.651(22) 0.763(18) 0.722(21) [1.97]
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TABLE XIX. Data for the renormalized induced pseudoscalar form factor, ZAG̃PðQ2Þ, obtained using the four strategies f4; 3�g,
f4Nπ; 3�g, f4Nπ ; 2A4g, f4Nπ; 2simg for controlling excited-state contamination. The rest is the same as in Table XVIII.

f4; 3�g f4Nπ ; 3�g f4Nπ ; 2A4g f4Nπ; 2simg f4; 3�g f4Nπ; 3�g f4Nπ; 2A4g f4Nπ; 2simg
n a127m285 a094m270

(1, 0, 0) 20.82(58) 21.99(67) 24.29(77) 23.78(76) [1.54] 14.85(88) 14.91(48) 16.46(55) 15.89(54) [1.33]
(1, 1, 0) 13.22(32) 13.73(30) 14.56(38) 14.17(33) [0.95] 8.03(27) 8.26(22) 8.79(29) 8.61(23) [1.23]
(1, 1, 1) 9.29(23) 9.40(20) 9.82(29) 9.64(24) [0.82] 5.03(27) 5.23(17) 5.92(27) 5.55(22) [1.19]
(2, 0, 0) 7.04(21) 7.12(19) 7.65(20) 7.47(24) [1.59] 3.66(29) 3.63(18) 4.03(14) 3.83(19) [1.31]
(2, 1, 0) 5.50(14) 5.52(12) 5.95(12) 5.73(15) [1.22] 2.65(17) 2.66(10) 3.05(12) 2.82(11) [0.98]
(2, 1, 1) 4.35(13) 4.27(11) 4.76(11) 4.54(14) [1.25] 2.02(20) 2.03(11) 2.45(14) 2.18(11) [1.12]
(2, 2, 0) 3.24(13) 3.19(10) 3.43(10) 3.27(13) [1.15] 1.53(19) 1.54(13) 1.74(18) [1.36]
(2, 2, 1) 2.62(10) 2.56(10) 2.86(10) 2.82(13) [1.18] 1.01(13) 1.06(12) 1.20(09) [1.26]
(3, 0, 0) 2.57(13) 2.55(16) 2.91(17) 2.69(40) [1.38] 1.49(41) 1.40(27) 1.25(11) [1.12]
(3, 1, 0) 2.28(09) 2.26(10) 2.53(12) 2.34(13) [1.39] 1.44(29) 1.37(19) 1.03(23) [1.19]

a094m270L a091m170
(1, 0, 0) 24.84(84) 27.72(71) 28.51(68) 28.53(68) [1.40] 24.27(67) 28.2(1.7) 32.6(1.4) 32.0(1.3) [1.15]
(1, 1, 0) 16.23(50) 17.49(37) 17.35(78) 17.39(36) [1.55] 14.79(42) 17.17(69) 17.53(50) 17.31(51) [1.21]
(1, 1, 1) 11.70(31) 12.26(27) 12.73(27) 12.30(26) [1.57] 10.20(27) 11.53(55) 11.65(29) 11.75(31) [1.14]
(2, 0, 0) 8.94(22) 9.26(23) 9.27(25) 9.34(21) [1.58] 7.52(23) 7.78(47) 8.74(23) 8.71(26) [1.28]
(2, 1, 0) 7.04(17) 7.14(15) 7.27(16) 7.38(16) [1.48] 5.94(17) 6.25(33) 6.63(15) 6.75(18) [1.92]
(2, 1, 1) 5.74(15) 5.79(14) 5.82(13) 5.99(15) [1.50] 4.84(16) 4.94(36) 5.12(30) 5.37(20) [1.63]
(2, 2, 0) 4.08(11) 4.07(11) 4.53(09) 4.25(11) [1.24] 3.22(14) 2.90(23) 4.38(30) 3.84(12) [2.15]
(2, 2, 1) 3.55(11) 3.51(11) 3.90(09) 3.70(11) [1.14] 2.95(12) 3.04(31) 3.35(14) 3.16(13) [1.51]
(3, 0, 0) 3.54(12) 3.57(13) 3.99(11) 3.64(12) [1.10] 2.79(16) 2.38(40) 3.97(40) 3.20(15) [1.13]
(3, 1, 0) 3.02(09) 2.97(10) 3.36(09) 3.20(12) [1.44] 2.53(13) 2.16(30) 2.81(12) 2.74(12) [1.23]

a091m170L a073m270
(1, 0, 0) 36.3(1.3) 45.3(2.8) 46.2(2.0) 45.7(2.0) [2.00] 18.48(71) 19.98(56) 20.88(44) 21.18(39) [1.63]
(1, 1, 0) 24.55(77) 29.2(1.4) 28.41(91) 28.5(1.0) [1.81] 10.98(36) 11.46(23) 11.89(22) 12.05(21) [1.66]
(1, 1, 1) 18.27(55) 21.45(96) 19.54(74) 20.40(62) [2.18] 7.41(21) 7.56(14) 7.98(16) 8.04(14) [1.29]
(2, 0, 0) 13.64(42) 14.85(71) 15.20(72) 15.07(52) [1.40] 5.38(12) 5.44(11) 5.89(13) 5.87(11) [1.18]
(2, 1, 0) 11.33(29) 12.04(43) 12.32(32) 12.34(39) [2.12] 4.20(10) 4.15(08) 4.60(08) 4.52(09) [2.25]
(2, 1, 1) 9.41(25) 9.74(38) 10.25(27) 10.23(43) [2.68] 3.35(11) 3.26(07) 3.69(07) 3.59(07) [1.73]
(2, 2, 0) 6.78(19) 6.70(30) 7.41(19) 7.55(23) [2.42] 2.35(08) 2.26(06) 2.60(05) 2.49(06) [1.62]
(2, 2, 1) 5.95(18) 5.80(31) 6.56(18) 6.35(25) [2.36] 1.99(07) 1.93(06) 2.18(05) 2.12(06) [1.35]
(3, 0, 0) 5.58(22) 5.19(38) 6.59(24) 6.22(26) [1.99] 1.96(09) 1.90(08) 2.34(19) 2.25(08) [1.28]
(3, 1, 0) 5.08(17) 4.70(30) 5.89(18) 5.77(27) [1.98] 1.71(07) 1.65(06) 1.97(14) 1.84(08) [1.57]

a071m170
(1, 0, 0) 31.8(1.8) 39.4(2.7) 42.5(1.6) 43.5(1.8) [1.48]
(1, 1, 0) 20.9(1.4) 24.3(1.3) 23.12(57) 24.46(72) [1.82]
(1, 1, 1) 14.73(73) 16.46(77) 15.82(45) 16.66(46) [1.43]
(2, 0, 0) 11.37(55) 12.41(54) 12.16(54) 12.36(31) [1.47]
(2, 1, 0) 8.86(33) 9.61(35) 9.29(27) 9.79(25) [1.92]
(2, 1, 1) 7.26(31) 7.57(29) 8.08(56) 8.10(23) [1.69]
(2, 2, 0) 5.17(21) 5.27(21) 5.88(14) 5.77(14) [1.73]
(2, 2, 1) 4.50(23) 4.55(20) 5.16(12) 5.10(16) [1.63]
(3, 0, 0) 4.44(25) 4.36(27) 5.07(14) 4.79(19) [1.67]
(3, 1, 0) 3.95(23) 3.95(19) 4.53(10) 4.31(14) [1.97]
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TABLE XX. Data for the unrenormalized pseudoscalar form factor GPðQ2Þ obtained using four strategies f4; 3�g, f4Nπ ; 3�g,
f4Nπ; 2A4g, f4Nπ; 2simg for controlling excited-state contamination. The numbers within the square brackets are the χ2=dof of the fit.

f4; 3�g f4Nπ ; 3�g f4Nπ ; 2A4g f4Nπ ; 2simg f4; 3�g f4Nπ ; 3�g f4Nπ ; 2A4g f4Nπ ; 2simg
n a127m285 a094m270

(1, 0, 0) 36.0(9) [3.89] 38.6(8) [1.89] 42.0(1.0) [4.74] 41.8(1.0) [1.54] 28.5(2.1) [1.11] 28.5(7) [1.09] 31.0(9) [2.48] 30.3(8) [1.33]
(1, 1, 0) 23.4(5) [2.23] 24.2(3) [1.07] 25.6(5) [2.06] 25.1(4) [0.95] 15.6(5) [1.07] 16.0(3) [0.80] 17.2(5) [0.95] 16.7(4) [1.23]
(1, 1, 1) 17.1(4) [0.98] 17.3(3) [0.87] 18.1(4) [0.55] 17.8(3) [0.82] 10.3(3) [1.00] 10.6(2) [0.95] 11.6(4) [1.14] 11.1(4) [1.19]
(2, 0, 0) 13.0(3) [1.25] 13.1(2) [0.98] 14.2(3) [0.62] 13.9(4) [1.59] 7.2(4) [1.10] 7.2(3) [1.16] 8.0(2) [1.38] 7.6(3) [1.31]
(2, 1, 0) 10.3(2) [1.35] 10.3(1) [1.22] 11.1(2) [1.19] 10.8(2) [1.22] 6.1(3) [0.99] 6.0(2) [1.03] 7.0(3) [0.91] 6.2(3) [0.98]
(2, 1, 1) 8.6(2) [1.32] 8.5(1) [1.31] 9.3(2) [1.46] 8.9(2) [1.25] 4.6(4) [1.93] 4.6(2) [1.94] 5.2(2) [1.85] 4.8(2) [1.12]
(2, 2, 0) 6.1(1) [1.08] 6.0(1) [1.05] 6.6(2) [1.14] 6.3(2) [1.15] 3.4(5) [1.08] 3.4(3) [1.09] 4.0(4) [1.36]
(2, 2, 1) 5.5(2) [0.98] 5.4(1) [0.96] 5.9(2) [1.05] 5.8(2) [1.18] 2.7(5) [1.03] 2.7(3) [1.02] 2.8(2) [1.26]
(3, 0, 0) 5.4(2) [0.68] 5.3(2) [0.65] 6.1(3) [0.57] 5.7(6) [1.38] 2.0(8) [0.69] 2.3(5) [0.68] 2.6(4) [1.12]
(3, 1, 0) 4.8(2) [1.02] 4.7(2) [1.02] 5.5(2) [1.22] 5.0(3) [1.39] 2.4(3) [1.19] 2.4(5) [1.19] 2.7(7) [1.19]

a094m270L a091m170

(1, 0, 0) 44.5(1.5) [3.97] 49.9(8) [1.62] 52.1(1.1) [1.55] 52.0(8) [1.40] 50.8(1.5) [2.43] 65.7(1.4) [0.92] 67.9(2.6) [1.11] 66.9(2.4) [1.15]
(1, 1, 0) 29.9(8) [2.82] 32.3(4) [1.36] 33.2(2.0) [3.33] 32.5(4) [1.55] 31.4(8) [2.84] 36.5(9) [1.46] 37.7(9) [1.12] 37.1(10) [1.21]
(1, 1, 1) 21.9(5) [2.01] 23.0(3) [1.28] 24.0(3) [2.78] 23.3(3) [1.57] 22.0(5) [2.13] 24.6(7) [0.87] 25.7(5) [0.77] 26.2(7) [1.14]
(2, 0, 0) 17.0(3) [1.32] 17.7(2) [0.99] 17.9(4) [1.05] 18.0(3) [1.58] 16.9(4) [1.05] 18.9(8) [0.61] 19.0(5) [0.72] 19.1(5) [1.28]
(2, 1, 0) 13.9(2) [1.53] 14.1(2) [0.82] 14.4(2) [1.82] 14.6(2) [1.48] 13.3(3) [1.83] 13.6(5) [1.21] 15.3(3) [1.43] 15.5(4) [1.92]
(2, 1, 1) 11.6(2) [1.47] 11.7(2) [0.94] 11.9(1) [2.56] 12.1(2) [1.50] 11.1(3) [1.35] 10.9(8) [1.14] 12.0(6) [2.12] 12.3(4) [1.63]
(2, 2, 0) 8.6(1) [0.59] 8.5(1) [0.44] 9.3(1) [0.84] 8.9(1) [1.24] 8.0(3) [1.94] 7.6(6) [1.78] 10.2(6) [2.00] 9.1(3) [2.15]
(2, 2, 1) 7.5(1) [1.26] 7.5(1) [1.07] 8.1(1) [0.96] 7.9(1) [1.14] 6.7(2) [1.32] 5.7(6) [1.13] 7.8(3) [1.85] 7.4(3) [1.51]
(3, 0, 0) 7.5(2) [0.76] 7.6(2) [0.72] 8.4(2) [0.85] 7.7(2) [1.10] 7.4(3) [1.07] 7.4(8) [1.09] 10.3(1.6) [1.43] 7.8(4) [1.13]
(3, 1, 0) 6.5(1) [1.25] 6.4(3) [0.97] 7.3(2) [1.10] 7.0(2) [1.44] 6.3(3) [1.32] 6.5(7) [1.29] 6.8(3) [1.08] 6.9(3) [1.23]

a091m170L a073m270

(1, 0, 0) 73.9(2.3) [2.39] 95.0(5.1) [1.04] 97.7(3.2) [2.50] 97.0(3.4) [2.00] 34.2(1.4) [3.18] 37.2(9) [1.33] 39.1(6) [2.03] 40.1(5) [1.63]
(1, 1, 0) 50.3(1.5) [2.88] 61.4(3.1) [1.54] 60.6(1.4) [1.95] 60.4(1.8) [1.81] 20.8(7) [3.20] 21.8(3) [1.58] 22.6(3) [1.09] 23.0(2) [1.66]
(1, 1, 1) 37.5(1.0) [3.48] 44.8(1.9) [2.12] 42.1(1.1) [5.28] 44.0(1.1) [2.18] 14.7(4) [2.04] 15.0(2) [1.32] 15.7(2) [0.89] 15.7(2) [1.29]
(2, 0, 0) 30.1(8) [1.52] 34.2(1.4) [1.15] 33.9(1.5) [1.02] 34.1(1.1) [1.40] 10.9(2) [2.27] 11.1(1) [1.72] 11.7(2) [1.22] 11.8(2) [1.18]
(2, 1, 0) 24.7(6) [2.07] 27.5(10) [1.45] 27.5(6) [1.57] 27.2(8) [2.12] 8.5(1) [0.99] 8.5(1) [0.91] 9.3(1) [1.68] 9.2(1) [2.25]
(2, 1, 1) 20.7(5) [1.78] 22.7(7) [1.51] 23.0(6) [1.91] 23.3(9) [2.68] 7.0(1) [1.19] 6.9(1) [1.25] 7.7(1) [1.84] 7.5(1) [1.73]
(2, 2, 0) 15.3(3) [2.41] 16.0(5) [1.99] 17.0(4) [1.98] 17.2(6) [2.42] 5.0(1) [1.03] 5.0(1) [0.94] 5.6(1) [1.97] 5.4(1) [1.62]
(2, 2, 1) 13.6(3) [1.85] 14.3(4) [1.71] 15.0(4) [1.54] 15.0(6) [2.36] 4.4(2) [0.75] 4.2(1) [0.77] 4.9(1) [1.36] 4.7(1) [1.35]
(3, 0, 0) 13.8(3) [2.10] 14.3(6) [1.91] 15.5(5) [2.04] 14.8(5) [1.99] 4.3(2) [0.94] 4.2(2) [0.95] 5.0(3) [1.26] 4.9(2) [1.28]
(3, 1, 0) 11.9(3) [1.74] 12.1(5) [1.58] 13.5(4) [2.00] 13.4(6) [1.98] 3.8(2) [0.78] 3.8(2) [0.79] 4.5(3) [1.14] 4.2(2) [1.57]

a071m170

(1, 0, 0) 66.7(4.7) [1.84] 84.4(5.2) [0.90] 91.2(3.0) [1.43] 94.2(3.5) [1.48]
(1, 1, 0) 42.7(2.8) [1.98] 50.3(2.5) [1.28] 49.7(10) [6.23] 52.0(1.4) [1.82]
(1, 1, 1) 31.1(1.7) [1.68] 35.2(1.5) [1.31] 34.4(7) [3.93] 36.0(10) [1.43]
(2, 0, 0) 24.3(1.2) [1.60] 26.6(10) [1.47] 26.4(10) [1.74] 27.6(7) [1.47]
(2, 1, 0) 19.2(6) [1.97] 20.7(6) [1.64] 20.7(4) [6.03] 22.4(6) [1.92]
(2, 1, 1) 15.9(6) [1.24] 16.7(5) [1.08] 17.9(1.2) [1.58] 18.2(5) [1.69]
(2, 2, 0) 11.7(5) [1.64] 12.2(4) [1.24] 13.6(3) [1.29] 13.5(4) [1.73]
(2, 2, 1) 10.4(4) [0.68] 10.6(4) [0.57] 11.9(3) [0.89] 12.1(3) [1.63]
(3, 0, 0) 10.5(5) [1.24] 10.3(5) [1.17] 11.5(3) [1.11] 11.5(4) [1.67]
(3, 1, 0) 9.2(4) [1.19] 9.3(5) [1.16] 10.5(3) [1.31] 10.4(4) [1.97]
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TABLE XXI. Check of the PCAC relation between the axial and pseudoscalar form factors given in Eq. (29) for four strategies used to
remove ESC. Since PCAC is an operator relation, deviations from unity should only be due to discretization errors.

f4; 3�g f4Nπ ; 3�g f4Nπ ; 2A4g f4Nπ; 2simg f4; 3�g f4Nπ; 3�g f4Nπ; 2A4g f4Nπ; 2simg
n⃗ a127m285 a094m270

(1, 0, 0) 0.876(21) 0.931(16) 1.007(20) 1.015(20) [1.54] 0.930(68) 0.931(21) 1.016(25) 0.992(21) [1.33]
(1, 1, 0) 0.926(19) 0.965(11) 1.014(17) 1.008(13) [0.95] 0.951(41) 0.972(16) 1.016(24) 1.000(15) [1.23]
(1, 1, 1) 0.959(23) 0.980(13) 1.019(19) 1.009(13) [0.82] 0.946(35) 0.973(19) 1.074(31) 1.025(25) [1.19]
(2, 0, 0) 0.964(28) 0.985(15) 1.049(25) 1.027(21) [1.59] 0.982(39) 0.937(26) 0.982(18) 0.950(22) [1.31]
(2, 1, 0) 0.970(26) 0.984(13) 1.033(14) 1.012(15) [1.22] 0.948(41) 0.923(21) 1.027(53) 0.954(26) [0.98]
(2, 1, 1) 0.966(31) 0.963(15) 1.021(14) 1.017(19) [1.25] 0.909(54) 0.888(30) 0.993(26) 0.921(33) [1.12]
(2, 2, 0) 1.004(45) 0.998(18) 1.063(26) 1.036(28) [1.15] 0.936(76) 0.915(50) 0.981(69) [1.36]
(2, 2, 1) 0.967(42) 0.963(21) 1.029(25) 1.050(45) [1.18] 0.794(80) 0.796(63) 0.846(47) [1.26]
(3, 0, 0) 0.916(30) 0.919(31) 1.020(42) 0.957(64) [1.38] 0.89(17) 0.86(12) 0.905(65) [1.12]
(3, 1, 0) 0.947(33) 0.955(26) 1.034(36) 0.998(73) [1.39] 1.04(12) 0.984(88) 0.86(13) [1.19]

a094m270L a091m170
(1, 0, 0) 0.858(29) 0.957(17) 0.991(13) 0.991(10) [1.40] 0.723(19) 0.856(36) 0.945(28) 0.938(25) [1.15]
(1, 1, 0) 0.914(29) 0.992(14) 0.998(34) 0.989(08) [1.55] 0.824(25) 0.968(29) 0.983(21) 0.978(20) [1.21]
(1, 1, 1) 0.939(26) 0.996(13) 1.017(10) 0.994(08) [1.57] 0.859(22) 0.988(36) 0.986(19) 1.007(19) [1.14]
(2, 0, 0) 0.947(24) 1.001(13) 0.993(15) 0.999(10) [1.58] 0.862(24) 0.937(37) 0.990(18) 0.988(19) [1.28]
(2, 1, 0) 0.949(25) 0.984(11) 0.988(11) 0.994(08) [1.48] 0.881(25) 0.967(39) 0.982(15) 0.996(18) [1.92]
(2, 1, 1) 0.952(25) 0.983(13) 0.977(12) 1.001(10) [1.50] 0.905(27) 0.965(50) 0.959(35) 1.001(26) [1.63]
(2, 2, 0) 0.946(27) 0.969(14) 1.022(09) 0.985(12) [1.24] 0.877(35) 0.888(56) 1.071(51) 0.983(24) [2.15]
(2, 2, 1) 0.951(32) 0.963(17) 1.020(12) 1.006(18) [1.14] 0.921(39) 1.001(74) 0.986(25) 0.992(36) [1.51]
(3, 0, 0) 0.940(32) 0.992(19) 1.025(16) 0.989(23) [1.10] 0.923(51) 0.94(12) 1.058(08) 1.020(41) [1.13]
(3, 1, 0) 0.920(26) 0.948(18) 1.036(22) 0.998(27) [1.44] 0.908(46) 0.867(88) 0.963(27) 0.972(36) [1.23]

a091m170L a073m270
(1, 0, 0) 0.710(22) 0.897(44) 0.903(22) 0.889(22) [2.00] 0.855(33) 0.926(21) 0.980(10) 0.993(06) [1.63]
(1, 1, 0) 0.811(25) 0.986(48) 0.947(18) 0.952(22) [1.81] 0.909(34) 0.955(16) 0.993(09) 1.001(06) [1.66]
(1, 1, 1) 0.861(25) 1.034(42) 0.952(21) 0.977(17) [2.18] 0.936(33) 0.965(14) 1.002(10) 1.004(06) [1.29]
(2, 0, 0) 0.884(27) 1.027(51) 0.975(29) 0.985(20) [1.40] 0.935(19) 0.960(10) 0.997(12) 1.004(08) [1.18]
(2, 1, 0) 0.917(26) 1.041(44) 0.985(15) 0.999(21) [2.12] 0.944(25) 0.946(10) 0.998(08) 0.998(09) [2.25]
(2, 1, 1) 0.926(25) 1.034(40) 0.988(17) 1.019(26) [2.68] 0.959(38) 0.933(14) 0.997(09) 0.987(10) [1.73]
(2, 2, 0) 0.934(25) 1.019(41) 0.991(17) 1.016(18) [2.42] 0.969(41) 0.925(14) 1.004(09) 0.984(15) [1.62]
(2, 2, 1) 0.946(27) 1.022(45) 0.992(18) 1.019(30) [2.36] 0.962(40) 0.912(17) 1.001(12) 0.974(18) [1.35]
(3, 0, 0) 0.900(26) 0.950(45) 0.989(22) 0.994(28) [1.99] 0.939(32) 0.910(25) 1.077(76) 1.025(19) [1.28]
(3, 1, 0) 0.928(25) 0.978(44) 0.994(20) 1.027(31) [1.98] 0.963(34) 0.919(22) 1.010(44) 0.980(36) [1.57]

a071m170
(1, 0, 0) 0.723(46) 0.885(45) 0.968(23) 0.972(25) [1.48]
(1, 1, 0) 0.833(59) 0.971(44) 0.950(14) 0.979(17) [1.82]
(1, 1, 1) 0.878(54) 1.004(43) 0.964(17) 0.998(15) [1.43]
(2, 0, 0) 0.915(57) 1.029(39) 0.985(28) 1.001(14) [1.47]
(2, 1, 0) 0.898(41) 1.012(33) 0.961(16) 0.998(13) [1.92]
(2, 1, 1) 0.920(45) 1.006(33) 0.995(34) 1.004(15) [1.69]
(2, 2, 0) 0.892(30) 0.976(29) 0.987(15) 0.987(13) [1.73]
(2, 2, 1) 0.914(34) 0.976(31) 0.990(15) 1.004(15) [1.63]
(3, 0, 0) 0.956(61) 1.007(47) 0.981(16) 0.984(18) [1.67]
(3, 1, 0) 0.934(48) 1.000(36) 0.978(16) 0.986(19) [1.97]
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FIG. 23. The ratio R54, defined in Eq. (23), is plotted versus the shifted operator insertion time t − τ=2 for n ¼ ð0; 0; 1Þ. Results of the
fits with f4; 3�g (left column), f4Nπ; 3�g (second column), f4Nπ; 2A4g (third), and f4Nπ; 2simg (right) strategies are shown by lines
connecting the data points. The τ → ∞ value is shown by the gray band. The y-axis interval is the same for a given row to facilitate
comparison of the result and the error. The legends give the analysis strategy, the ensemble ID, the ground state value (the gray band), the
χ2=dof and the p-value of the fit, and the mass gaps, ΔM1 and ΔE1 (or ΔM̃1 and ΔẼ1 for f2A4g or f2simg fits), of the first excited state
on the two sides of the operator. For each τ, only the data points connected by lines with the same color as the symbols are included in the
simultaneous fits.
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FIG. 24. Matrix elements of the axial and pseudoscalar currents that give (i) G̃P [from R51 with n2 ¼ 2 defined in Eq. (20)] in column

one, (ii)GA [from R53 with n2 ¼ 1 and qz ¼ 0 defined in Eq. (22)] in the second column, (iii) the combination G̃P
2MN

− ðMþEÞ
q2
3

GA [from R53

with q3 ¼ ð0; 0; 1Þ2π=La] in the third column, and (iv) GP [from R5 defined in Eq. (24)] in the right column. All data are with the
f4Nπ; 2simg strategy and plotted versus the shifted operator insertion time t − τ=2. The rest is the same as in Fig. 23.
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FIG. 25. Matrix elements at momentum transfer n2 ¼ 1 that give GA [from R53 with qz ¼ 0 defined in Eq. (22)] in rows one and two,

the combination G̃P
2MN

− ðMþEÞ
q2
3

GA [from R53 with q3 ¼ ð0; 0; 1Þ2π=La] in rows three and four, and GP [from R5 defined in Eq. (24)] in

rows five and six. Data from the a091m170L (rows one, three, and five) and a071m170 (rows two, four, and six) ensembles are plotted
versus the shifted operator insertion time t − τ=2. The four panels in each row show the data and fits from the four strategies, f4; 3�g
(left), f4Nπ ; 3�g (second), f4Nπ; 2A4g (third), and f4Nπ; 2simg (right). The y-axis interval is chosen to be the same for each row to
facilitate comparison of the result and the error. The rest is the same as in Fig. 23.
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FIG. 26. The data for ðQ2 þM2
NÞG̃PðQ2Þ from the seven ensembles are plotted versus Q2. According to the pion-pole dominance

hypothesis, Eq. (30), the result should be a smooth monotonic function that is proportional to GAðQ2Þ. The data from the f4; 3�g and
f4Nπ; 3�g strategies on the Mπ ¼ 170 MeV ensembles (top two panels) show deviations from this expectation at small Q2. Also, the
“lines” of data from a given ensemble move up slightly as a → 0 and down asMπ → 135 MeV. The labels specify the analysis strategy
and the ensemble ID.
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APPENDIX G: COMPARISON OF ELECTRIC AND MAGNETIC FORM FACTORS
EXTRACTED USING FOUR STRATEGIES

In this Appendix, we show in Figs. 27–29 the ratios defined in Eqs. (25)–(27) that give GV4

E , GVi
E , and GVi

M . The four
panels in each row show the results for the ground state matrix element obtained using the four ESC strategies, f4; 3�g,
f4Nπ; 3�g, f4; 2simg, f4Nπ; 2simg. The renormalized electric and magnetic form factors are given in Tables XXII–XXIV.
Each panel in Figs. 30 and 31 shows the dipole, Padé, and z-expansion fits to these data and gives the values of hr2Ei; hr2Mi; μ
obtained. Data from the four strategies are shown in the four rows in each figure, and for the a091m170L and a071m170
ensembles in the two figures.

FIG. 27. GEðn ¼ ð1; 0; 0ÞÞ obtained from the ratio R4 defined in Eq. (27) for five ensembles plotted versus the shifted operator
insertion point t − τ=2. The panels in the left column show the fits with f4; 3�g, the second with f4Nπ; 3�g, the third with f4; 2simg, and
the right column with f4Nπ; 2simg strategies. The interval along the y-axis is the same for a given row to facilitate comparison of the result
and the error. The rest is the same as in Fig. 23.
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FIG. 28. GEðn ¼ ð1; 0; 0ÞÞ, obtained from ℑVi [see Eq. (26)] plotted versus the shifted operator insertion point t − τ=2. The rest is the
same as in Fig. 23.
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FIG. 29. GMðn ¼ ð1; 0; 0ÞÞ, obtained fromℜVi [see Eq. (25)] plotted versus the shifted operator insertion point t − τ=2. The rest is the
same as in Fig. 23.
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TABLE XXII. Data for renormalized GℜV4

E ðQ2Þ=gV from the seven ensembles and with the four strategies for controlling ESC. The
χ2=dof of the fits are given within square parentheses, and are the same for the three quantities GℜV4

E ðQ2Þ, GℑVi
E ðQ2Þ, and GℜVi

M ðQ2Þ in
the simultaneous f2simg fits. Only data with the four strategies for a given ensemble and n can be compared.

a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

n Strategy f4; 3�g
(1, 0, 0) 0.764(05) [2.05] 0.642(20) [1.18] 0.817(04) [1.03] 0.791(06) [1.06] 0.870(05) [1.07] 0.737(07) [1.29] 0.845(11) [1.10]
(1, 1, 0) 0.609(06) [1.21] 0.461(21) [1.56] 0.680(06) [0.90] 0.643(08) [1.04] 0.764(06) [0.90] 0.569(11) [0.99] 0.723(15) [1.17]
(1, 1, 1) 0.495(08) [1.47] 0.356(16) [0.95] 0.576(08) [1.32] 0.541(09) [0.63] 0.679(07) [0.79] 0.454(12) [1.35] 0.622(18) [1.25]
(2, 0, 0) 0.417(08) [1.04] 0.245(21) [0.91] 0.499(08) [1.03] 0.464(10) [0.95] 0.607(08) [1.71] 0.376(09) [1.16] 0.548(20) [0.91]
(2, 1, 0) 0.356(08) [1.01] 0.214(14) [1.02] 0.436(08) [1.44] 0.401(09) [1.44] 0.546(09) [1.24] 0.312(10) [1.42] 0.488(17) [0.88]
(2, 1, 1) 0.303(10) [1.33] 0.184(11) [1.13] 0.385(08) [1.69] 0.355(09) [1.09] 0.498(09) [0.81] 0.262(11) [1.56] 0.435(18) [0.95]
(2, 2, 0) 0.234(09) [0.77] 0.137(16) [1.02] 0.310(08) [1.35] 0.276(11) [1.52] 0.414(09) [1.54] 0.196(11) [1.21] 0.364(14) [0.89]
(2, 2, 1) 0.208(10) [1.04] 0.128(14) [1.12] 0.278(08) [1.62] 0.251(09) [0.47] 0.385(09) [0.91] 0.176(09) [2.24] 0.333(13) [0.62]
(3, 0, 0) 0.212(10) [1.23] 0.094(43) [1.33] 0.284(08) [1.31] 0.236(16) [1.11] 0.384(09) [1.26] 0.180(09) [0.97] 0.319(18) [0.52]
(3, 1, 0) 0.188(09) [0.78] 0.125(24) [1.41] 0.261(07) [1.31] 0.222(11) [1.42] 0.353(09) [1.35] 0.156(08) [1.07] 0.301(14) [0.48]

Strategy f4Nπ; 3�g
(1, 0, 0) 0.755(05) [1.64] 0.643(09) [1.15] 0.804(04) [1.02] 0.750(10) [0.94] 0.839(11) [1.01] 0.725(06) [0.97] 0.815(14) [1.16]
(1, 1, 0) 0.599(05) [1.04] 0.465(07) [1.24] 0.664(05) [0.89] 0.593(09) [1.01] 0.726(13) [0.87] 0.557(06) [1.02] 0.688(14) [1.19]
(1, 1, 1) 0.487(05) [1.49] 0.357(07) [0.89] 0.559(05) [1.27] 0.492(11) [0.85] 0.632(15) [0.76] 0.442(07) [1.59] 0.584(15) [1.46]
(2, 0, 0) 0.409(05) [1.01] 0.268(10) [0.96] 0.481(05) [0.98] 0.416(12) [0.88] 0.562(16) [1.92] 0.364(06) [1.11] 0.507(16) [1.05]
(2, 1, 0) 0.350(05) [1.03] 0.224(06) [1.04] 0.422(05) [1.19] 0.353(10) [1.18] 0.499(17) [1.43] 0.306(05) [1.58] 0.448(14) [0.96]
(2, 1, 1) 0.300(05) [1.38] 0.192(07) [1.14] 0.371(05) [1.53] 0.317(12) [0.79] 0.453(17) [0.93] 0.263(05) [2.01] 0.398(14) [1.12]
(2, 2, 0) 0.233(05) [0.76] 0.141(12) [1.01] 0.302(05) [1.14] 0.230(16) [1.09] 0.372(16) [1.73] 0.201(05) [1.47] 0.328(13) [0.88]
(2, 2, 1) 0.207(05) [1.03] 0.131(10) [1.12] 0.271(05) [1.49] 0.228(14) [0.55] 0.346(15) [1.05] 0.184(04) [2.52] 0.305(11) [0.67]
(3, 0, 0) 0.207(08) [1.20] 0.122(22) [1.37] 0.269(07) [1.24] 0.213(24) [1.03] 0.342(16) [1.33] 0.184(07) [0.97] 0.295(14) [0.55]
(3, 1, 0) 0.185(07) [0.76] 0.122(27) [1.42] 0.248(06) [1.09] 0.212(17) [1.75] 0.314(15) [1.48] 0.160(06) [1.18] 0.273(12) [0.48]

Strategy f4; 2simg
(1, 0, 0) 0.749(09) [1.58] 0.603(41) [1.07] 0.810(05) [0.96] 0.778(11) [1.48] 0.856(10) [1.06] 0.713(14) [0.89] 0.811(16) [1.02]
(1, 1, 0) 0.589(14) [1.19] 0.424(52) [0.92] 0.671(07) [0.83] 0.625(19) [0.55] 0.749(12) [0.98] 0.549(11) [1.17] 0.709(10) [1.57]
(1, 1, 1) 0.481(17) [1.44] 0.362(22) [1.02] 0.562(11) [1.08] 0.539(15) [0.85] 0.658(14) [1.09] 0.450(11) [1.04] 0.625(11) [1.35]
(2, 0, 0) 0.416(14) [1.19] 0.16(15) [1.31] 0.492(09) [1.11] 0.433(27) [0.82] 0.600(14) [0.93] 0.362(18) [1.35] 0.541(30) [0.91]
(2, 1, 0) 0.350(14) [1.03] 0.218(33) [0.92] 0.407(16) [1.06] 0.347(43) [0.77] 0.533(20) [1.27] 0.311(11) [0.97] 0.488(11) [1.31]
(2, 1, 1) 0.294(17) [1.36] 0.104(44) [1.41] 0.349(24) [1.30] 0.322(32) [0.70] 0.477(17) [1.30] 0.254(21) [0.87] 0.444(12) [1.20]
(2, 2, 0) 0.236(19) [0.90] 0.158(03) [1.28] 0.281(24) [1.13] 0.232(83) [1.24] 0.393(26) [1.29] 0.180(25) [0.76] 0.347(22) [1.10]
(2, 2, 1) 0.172(61) [1.91] 0.115(24) [1.04] 0.179(60) [1.06] 0.219(47) [0.89] 0.363(23) [1.41] 0.182(17) [0.79] 0.341(11) [1.02]
(3, 0, 0) 0.08(26) [1.21] 0.062(52) [1.60] 0.242(29) [1.25] 0.224(66) [1.33] 0.368(38) [1.26] 0.177(25) [0.95] 0.322(31) [0.66]
(3, 1, 0) 0.17(15) [0.91] 0.121(04) [1.74] 0.14(16) [1.01] 0.214(39) [1.04] 0.348(19) [1.29] 0.167(16) [1.13] 0.306(20) [0.70]

Strategy f4Nπ; 2simg
(1, 0, 0) 0.746(11) [1.52] 0.593(43) [1.09] 0.816(06) [0.95] 0.790(15) [1.59] 0.881(27) [0.78] 0.708(13) [0.80] 0.843(18) [1.13]
(1, 1, 0) 0.590(14) [1.21] 0.427(41) [0.89] 0.676(07) [0.88] 0.641(15) [0.60] 0.771(17) [0.81] 0.551(11) [1.19] 0.724(14) [1.62]
(1, 1, 1) 0.478(19) [1.53] 0.357(21) [1.01] 0.567(15) [1.18] 0.548(11) [0.86] 0.675(14) [1.11] 0.450(10) [1.08] 0.635(12) [1.16]
(2, 0, 0) 0.416(14) [1.19] 0.216(90) [1.36] 0.494(10) [1.16] 0.441(36) [0.94] 0.615(16) [0.92] 0.364(18) [1.37] 0.559(22) [0.89]
(2, 1, 0) 0.349(15) [1.06] 0.220(26) [0.93] 0.408(18) [1.14] 0.358(48) [0.80] 0.546(14) [1.27] 0.312(11) [0.96] 0.497(10) [1.29]
(2, 1, 1) 0.295(15) [1.44] 0.112(44) [1.38] 0.351(28) [1.41] 0.336(41) [0.76] 0.488(16) [1.35] 0.259(19) [0.86] 0.453(08) [1.16]
(2, 2, 0) 0.233(16) [1.00] 0.154(04) [1.50] 0.247(31) [1.07] 0.17(16) [0.89] 0.415(19) [1.36] 0.185(23) [0.76] 0.355(18) [1.11]
(2, 2, 1) 0.169(63) [1.95] 0.135(08) [1.06] 0.177(51) [1.33] 0.219(48) [0.96] 0.373(23) [1.44] 0.186(14) [0.78] 0.348(09) [1.01]
(3, 0, 0) 0.127(70) [0.96] 0.076(76) [1.60] 0.246(56) [1.17] 0.224(64) [1.34] 0.375(36) [1.28] 0.181(22) [0.96] 0.329(27) [0.66]
(3, 1, 0) 0.04(28) [1.20] 0.132(72) [1.66] 0.211(30) [1.31] 0.246(13) [1.10] 0.347(22) [0.99] 0.166(17) [1.13] 0.313(15) [0.71]
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TABLE XXIII. Data for the renormalized GℑVi
E ðQ2Þ=gV from the seven ensembles and with the four strategies for controlling ESC.

The rest is the same as in Table XXII.

a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

n Strategy f4; 3�g
(1, 0, 0) 0.761(17) [1.20] 0.701(89) [0.96] 0.817(19) [0.90] 0.816(46) [2.36] 0.872(35) [0.88] 0.726(30) [2.99] 0.862(81) [1.00]
(1, 1, 0) 0.620(15) [1.23] 0.534(52) [1.00] 0.690(17) [0.91] 0.679(30) [1.47] 0.788(28) [0.58] 0.583(25) [2.32] 0.749(59) [1.59]
(1, 1, 1) 0.505(16) [1.24] 0.394(25) [1.20] 0.593(18) [1.51] 0.591(26) [1.37] 0.728(27) [0.85] 0.483(23) [1.86] 0.661(57) [1.04]
(2, 0, 0) 0.436(20) [0.85] 0.296(38) [1.08] 0.531(17) [1.13] 0.518(26) [0.73] 0.635(29) [0.81] 0.412(16) [1.23] 0.611(56) [1.00]
(2, 1, 0) 0.374(16) [1.48] 0.254(25) [0.92] 0.466(14) [1.19] 0.461(22) [1.27] 0.598(24) [0.81] 0.339(16) [1.15] 0.528(34) [1.11]
(2, 1, 1) 0.318(17) [1.90] 0.185(25) [1.48] 0.419(15) [1.34] 0.418(20) [0.81] 0.564(22) [1.20] 0.295(18) [1.35] 0.484(34) [0.97]
(2, 2, 0) 0.248(20) [1.54] 0.163(27) [1.25] 0.345(13) [0.98] 0.335(21) [0.96] 0.473(25) [1.07] 0.216(16) [1.11] 0.427(27) [1.16]
(2, 2, 1) 0.218(18) [1.90] 0.095(36) [1.04] 0.311(15) [0.99] 0.309(19) [0.77] 0.439(20) [0.69] 0.201(15) [1.42] 0.376(24) [0.78]
(3, 0, 0) 0.221(17) [1.43] 0.082(66) [1.20] 0.322(16) [1.31] 0.262(34) [0.92] 0.435(28) [0.87] 0.212(16) [1.04] 0.378(38) [0.60]
(3, 1, 0) 0.212(21) [0.61] 0.211(93) [1.56] 0.302(13) [1.00] 0.280(30) [1.31] 0.397(29) [1.23] 0.162(18) [0.89] 0.346(28) [0.58]

Strategy f4Nπ; 3�g
(1, 0, 0) 0.725(34) [0.91] 0.635(33) [1.00] 0.823(27) [1.38] 0.94(12) [1.74] 0.91(10) [0.58] 0.669(26) [1.21] 0.910(93) [0.96]
(1, 1, 0) 0.609(15) [0.91] 0.498(20) [1.01] 0.694(20) [0.69] 0.709(63) [1.09] 0.860(69) [0.57] 0.567(15) [1.31] 0.793(56) [1.67]
(1, 1, 1) 0.505(13) [1.09] 0.375(19) [1.20] 0.601(17) [0.97] 0.624(55) [1.36] 0.802(63) [0.74] 0.477(12) [1.52] 0.707(58) [1.26]
(2, 0, 0) 0.430(15) [0.81] 0.317(23) [1.08] 0.531(17) [1.16] 0.443(51) [0.66] 0.682(62) [0.77] 0.405(12) [1.01] 0.659(51) [0.98]
(2, 1, 0) 0.371(12) [1.49] 0.259(16) [0.94] 0.471(13) [0.90] 0.490(44) [0.66] 0.639(51) [0.80] 0.343(09) [1.04] 0.528(32) [1.24]
(2, 1, 1) 0.320(11) [1.90] 0.198(18) [1.49] 0.427(13) [1.06] 0.453(45) [0.57] 0.604(44) [1.22] 0.310(09) [1.43] 0.496(35) [1.09]
(2, 2, 0) 0.250(12) [1.53] 0.167(21) [1.24] 0.353(11) [0.93] 0.351(42) [0.68] 0.492(48) [1.14] 0.233(08) [1.15] 0.423(29) [1.15]
(2, 2, 1) 0.219(13) [1.89] 0.113(26) [1.05] 0.321(13) [0.88] 0.317(52) [0.79] 0.449(38) [0.75] 0.217(10) [1.45] 0.374(31) [0.80]
(3, 0, 0) 0.217(19) [1.42] 0.095(97) [1.23] 0.319(17) [1.25] 0.198(23) [0.87] 0.432(55) [0.81] 0.220(16) [1.05] 0.402(38) [0.59]
(3, 1, 0) 0.206(23) [0.59] 0.16(12) [1.57] 0.306(18) [0.88] 0.296(72) [1.37] 0.378(54) [1.21] 0.176(17) [0.93] 0.330(42) [0.61]

Strategy f4; 2simg
(1, 0, 0) 0.778(27) [1.58] 0.585(78) [1.07] 0.820(19) [0.96] 0.815(42) [1.48] 0.858(36) [1.06] 0.729(32) [0.89] 0.916(89) [1.02]
(1, 1, 0) 0.615(19) [1.19] 0.448(48) [0.92] 0.680(18) [0.83] 0.631(36) [0.55] 0.767(28) [0.98] 0.560(19) [1.17] 0.755(54) [1.57]
(1, 1, 1) 0.488(24) [1.44] 0.379(35) [1.02] 0.569(20) [1.08] 0.550(25) [0.85] 0.690(25) [1.09] 0.458(17) [1.04] 0.653(41) [1.35]
(2, 0, 0) 0.436(17) [1.19] 0.15(16) [1.31] 0.504(15) [1.11] 0.453(35) [0.82] 0.610(24) [0.93] 0.376(20) [1.35] 0.555(61) [0.91]
(2, 1, 0) 0.359(18) [1.03] 0.225(36) [0.92] 0.419(21) [1.06] 0.388(48) [0.77] 0.562(23) [1.27] 0.326(14) [0.97] 0.522(29) [1.31]
(2, 1, 1) 0.290(26) [1.36] 0.003(04) [1.41] 0.361(28) [1.30] 0.346(39) [0.70] 0.525(22) [1.30] 0.263(24) [0.87] 0.476(26) [1.20]
(2, 2, 0) 0.241(25) [0.90] 0.170(05) [1.28] 0.292(27) [1.13] 0.239(86) [1.24] 0.424(27) [1.29] 0.197(27) [0.76] 0.398(34) [1.10]
(2, 2, 1) 0.152(94) [1.91] 0.002(04) [1.04] 0.202(64) [1.06] 0.270(39) [0.89] 0.406(22) [1.41] 0.194(18) [0.79] 0.360(20) [1.02]
(3, 0, 0) 0.09(26) [1.21] 0.002(05) [1.60] 0.258(34) [1.25] 0.282(30) [1.33] 0.406(38) [1.26] 0.193(26) [0.95] 0.338(39) [0.66]
(3, 1, 0) 0.196(84) [0.91] 0.117(09) [1.74] 0.19(13) [1.01] 0.251(45) [1.04] 0.376(25) [1.29] 0.167(20) [1.13] 0.350(23) [0.70]

Strategy f4Nπ; 2simg
(1, 0, 0) 0.747(25) [1.52] 0.527(62) [1.09] 0.804(17) [0.95] 0.818(55) [1.59] 0.830(49) [0.78] 0.694(33) [0.80] 0.825(56) [1.13]
(1, 1, 0) 0.608(17) [1.21] 0.434(41) [0.89] 0.680(17) [0.88] 0.650(34) [0.60] 0.805(45) [0.81] 0.556(17) [1.19] 0.759(37) [1.62]
(1, 1, 1) 0.486(21) [1.53] 0.365(26) [1.01] 0.576(24) [1.18] 0.566(22) [0.86] 0.732(39) [1.11] 0.456(15) [1.08] 0.676(29) [1.16]
(2, 0, 0) 0.434(14) [1.19] 0.21(10) [1.36] 0.506(16) [1.16] 0.470(49) [0.94] 0.649(33) [0.92] 0.378(20) [1.37] 0.582(28) [0.89]
(2, 1, 0) 0.359(16) [1.06] 0.228(30) [0.93] 0.424(23) [1.14] 0.411(48) [0.80] 0.600(26) [1.27] 0.328(13) [0.96] 0.536(18) [1.29]
(2, 1, 1) 0.298(20) [1.44] 0.003(04) [1.38] 0.367(33) [1.41] 0.369(40) [0.76] 0.560(27) [1.35] 0.270(22) [0.86] 0.490(17) [1.16]
(2, 2, 0) 0.242(20) [1.00] 0.166(03) [1.50] 0.262(33) [1.07] 0.18(17) [0.89] 0.460(25) [1.36] 0.207(23) [0.76] 0.412(25) [1.11]
(2, 2, 1) 0.161(95) [1.95] 0.04(30) [1.06] 0.177(56) [1.33] 0.287(34) [0.96] 0.431(25) [1.44] 0.201(13) [0.78] 0.370(14) [1.01]
(3, 0, 0) 0.127(98) [0.96] 0.003(09) [1.60] 0.272(53) [1.17] 0.291(27) [1.34] 0.412(41) [1.28] 0.199(23) [0.96] 0.351(29) [0.66]
(3, 1, 0) 0.15(17) [1.20] 0.109(56) [1.66] 0.251(40) [1.31] 0.282(17) [1.10] 0.401(31) [0.99] 0.168(19) [1.13] 0.358(18) [0.71]
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TABLE XXIV. Data for the renormalized GℜVi
M ðQ2Þ=gV from the seven ensembles and with the four strategies for controlling ESC.

The rest is the same as in Table XXII.

a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

n Strategy f4; 3�g
(1, 0, 0) 3.671(33) [1.21] 3.072(58) [0.71] 3.713(27) [1.04] 3.498(42) [1.27] 3.830(54) [1.07] 3.349(26) [1.39] 3.705(68) [0.84]
(1, 1, 0) 3.071(26) [1.21] 2.320(71) [0.42] 3.193(22) [0.80] 2.962(30) [0.75] 3.458(43) [1.71] 2.724(16) [0.96] 3.250(45) [1.12]
(1, 1, 1) 2.620(28) [1.18] 1.834(68) [0.62] 2.790(23) [0.91] 2.566(68) [0.93] 3.129(40) [1.53] 2.269(22) [0.88] 2.889(44) [0.97]
(2, 0, 0) 2.231(20) [0.97] 1.593(69) [1.35] 2.471(24) [1.07] 2.302(37) [0.66] 2.809(49) [1.01] 1.963(22) [1.21] 2.624(45) [0.98]
(2, 1, 0) 1.967(25) [0.67] 1.333(48) [0.84] 2.203(27) [0.81] 2.032(29) [0.75] 2.612(37) [1.53] 1.691(24) [0.91] 2.377(37) [0.99]
(2, 1, 1) 1.756(30) [1.00] 1.146(51) [1.01] 1.969(31) [1.65] 1.808(34) [1.03] 2.408(37) [1.16] 1.471(33) [1.15] 2.127(50) [0.94]
(2, 2, 0) 1.419(35) [0.85] 0.88(15) [0.85] 1.656(29) [1.12] 1.527(34) [0.73] 2.080(38) [1.27] 1.202(29) [0.90] 1.830(54) [1.18]
(2, 2, 1) 1.312(33) [1.83] 0.817(67) [0.75] 1.500(35) [1.69] 1.364(41) [1.20] 1.944(40) [1.31] 1.069(36) [0.65] 1.696(48) [1.32]
(3, 0, 0) 1.280(39) [1.21] 0.85(20) [1.46] 1.556(28) [1.01] 1.442(51) [1.27] 1.935(48) [1.34] 1.101(31) [1.05] 1.718(57) [0.77]
(3, 1, 0) 1.198(35) [0.97] 0.82(14) [1.80] 1.430(29) [1.09] 1.283(50) [0.40] 1.845(45) [1.51] 1.019(29) [1.14] 1.664(40) [0.87]

Strategy f4Nπ; 3�g
(1, 0, 0) 3.711(52) [1.09] 3.054(47) [0.72] 3.787(43) [0.97] 3.69(15) [1.26] 4.04(14) [0.93] 3.365(34) [1.36] 3.82(12) [0.82]
(1, 1, 0) 3.082(33) [1.17] 2.337(40) [0.44] 3.214(36) [0.79] 2.960(86) [0.69] 3.546(95) [1.54] 2.723(21) [0.95] 3.308(77) [1.09]
(1, 1, 1) 2.614(31) [1.22] 1.842(38) [0.62] 2.785(31) [0.89] 2.535(83) [0.84] 3.148(86) [1.45] 2.254(19) [0.88] 2.896(70) [0.95]
(2, 0, 0) 2.215(29) [0.98] 1.638(51) [1.37] 2.447(31) [1.01] 2.260(92) [0.55] 2.763(85) [0.98] 1.949(21) [1.22] 2.615(66) [0.95]
(2, 1, 0) 1.949(24) [0.72] 1.356(25) [0.85] 2.162(25) [0.71] 1.983(65) [0.77] 2.521(68) [1.39] 1.679(17) [0.92] 2.346(52) [0.99]
(2, 1, 1) 1.738(24) [1.03] 1.172(31) [1.01] 1.917(25) [1.61] 1.714(73) [1.05] 2.294(66) [1.04] 1.471(17) [1.25] 2.051(54) [0.96]
(2, 2, 0) 1.402(25) [0.90] 0.895(50) [0.83] 1.617(24) [1.11] 1.439(81) [0.69] 1.924(72) [1.11] 1.211(18) [0.85] 1.733(56) [1.20]
(2, 2, 1) 1.295(27) [1.81] 0.839(43) [0.75] 1.447(24) [1.63] 1.187(78) [1.08] 1.769(74) [1.11] 1.088(19) [0.69] 1.616(54) [1.33]
(3, 0, 0) 1.255(39) [1.22] 0.879(99) [1.45] 1.516(35) [1.01] 1.44(15) [1.29] 1.797(90) [1.24] 1.109(28) [1.06] 1.670(65) [0.73]
(3, 1, 0) 1.175(32) [1.02] 0.839(80) [1.81] 1.369(29) [1.12] 1.182(93) [0.42] 1.704(81) [1.30] 1.028(25) [1.13] 1.618(56) [0.87]

Strategy f4; 2simg
(1, 0, 0) 3.769(68) [1.58] 3.088(64) [1.07] 3.739(34) [0.96] 3.563(53) [1.48] 3.792(47) [1.06] 3.368(92) [0.89] 3.759(80) [1.02]
(1, 1, 0) 3.095(41) [1.19] 2.327(76) [0.92] 3.209(28) [0.83] 2.968(57) [0.55] 3.442(36) [0.98] 2.709(23) [1.17] 3.222(43) [1.57]
(1, 1, 1) 2.608(32) [1.44] 1.865(56) [1.02] 2.799(20) [1.08] 2.562(31) [0.85] 3.147(44) [1.09] 2.260(24) [1.04] 2.876(37) [1.35]
(2, 0, 0) 2.223(28) [1.19] 1.36(29) [1.31] 2.476(24) [1.11] 2.314(30) [0.82] 2.838(39) [0.93] 1.929(33) [1.35] 2.603(62) [0.91]
(2, 1, 0) 1.975(31) [1.03] 1.345(64) [0.92] 2.179(35) [1.06] 1.951(76) [0.77] 2.619(50) [1.27] 1.687(25) [0.97] 2.377(32) [1.31]
(2, 1, 1) 1.747(44) [1.36] 0.90(21) [1.41] 1.934(49) [1.30] 1.772(69) [0.70] 2.408(39) [1.30] 1.470(53) [0.87] 2.164(32) [1.20]
(2, 2, 0) 1.445(62) [0.90] 0.965(21) [1.28] 1.606(57) [1.13] 1.571(25) [1.24] 2.057(54) [1.29] 1.170(62) [0.76] 1.821(47) [1.10]
(2, 2, 1) 1.23(18) [1.91] 0.73(15) [1.04] 1.30(14) [1.06] 1.31(14) [0.89] 1.948(51) [1.41] 1.114(47) [0.79] 1.744(32) [1.02]
(3, 0, 0) 1.14(34) [1.21] 1.66(67) [1.60] 1.486(64) [1.25] 1.43(12) [1.33] 1.929(84) [1.26] 1.104(57) [0.95] 1.743(65) [0.66]
(3, 1, 0) 1.15(54) [0.91] 0.825(14) [1.74] 1.14(39) [1.01] 1.298(75) [1.04] 1.845(52) [1.29] 1.062(35) [1.13] 1.668(41) [0.70]

Strategy f4Nπ; 2simg
(1, 0, 0) 3.737(67) [1.52] 3.035(88) [1.09] 3.733(29) [0.95] 3.609(56) [1.59] 3.966(78) [0.78] 3.396(35) [0.80] 3.791(77) [1.13]
(1, 1, 0) 3.086(34) [1.21] 2.312(73) [0.89] 3.207(26) [0.88] 3.000(35) [0.60] 3.548(65) [0.81] 2.709(23) [1.19] 3.267(50) [1.62]
(1, 1, 1) 2.612(35) [1.53] 1.854(58) [1.01] 2.796(25) [1.18] 2.584(32) [0.86] 3.190(54) [1.11] 2.261(24) [1.08] 2.912(41) [1.16]
(2, 0, 0) 2.216(28) [1.19] 1.49(16) [1.36] 2.476(24) [1.16] 2.314(52) [0.94] 2.882(55) [0.92] 1.932(34) [1.37] 2.646(53) [0.89]
(2, 1, 0) 1.967(32) [1.06] 1.357(49) [0.93] 2.174(35) [1.14] 1.965(82) [0.80] 2.639(41) [1.27] 1.690(25) [0.96] 2.404(32) [1.29]
(2, 1, 1) 1.741(41) [1.44] 0.98(22) [1.38] 1.930(54) [1.41] 1.796(80) [0.76] 2.425(41) [1.35] 1.482(46) [0.86] 2.189(31) [1.16]
(2, 2, 0) 1.426(57) [1.00] 0.971(20) [1.50] 1.540(68) [1.07] 1.39(27) [0.89] 2.097(48) [1.36] 1.187(52) [0.76] 1.837(45) [1.11]
(2, 2, 1) 1.20(17) [1.95] 0.843(50) [1.06] 1.22(15) [1.33] 1.29(15) [0.96] 1.957(56) [1.44] 1.126(35) [0.78] 1.761(31) [1.01]
(3, 0, 0) 1.15(16) [0.96] 2.3(1.4) [1.60] 1.48(11) [1.17] 1.43(13) [1.34] 1.937(95) [1.28] 1.115(46) [0.96] 1.762(59) [0.66]
(3, 1, 0) 0.7(1.1) [1.20] 0.86(35) [1.66] 1.355(63) [1.31] 1.354(32) [1.10] 1.830(64) [0.99] 1.065(36) [1.13] 1.683(38) [0.71]
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FIG. 30. Data for the renormalized electric (left) and magnetic (right) form factors from the a091m170L ensemble. All fits are made to
the lowest six Q2 points (open circles) and the remaining four points not fit are shown by the symbol cross. Error bands are shown only
over the range of the data for clarity. The prior and its width, μprior, used in the fits to GM is given in each panel and explained in the text.
The top line of the labels gives the results of the dipole fit (ME, hrEi) or (MM, μ and hrMi). Lines 2–5 give hrEi or (μ and hrMi) from the
P2 Padé and the zf2;3;4g fits. In each case, the χ2=dof of the fits are given within the square brackets. The four rows show data from the
four strategies f4; 3�g, f4Nπ; 3�g, f4; 2simg, and f4Nπ ; 2simg defined in the text.
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APPENDIX H: CHIRAL-CONTINUUM-FINITE-VOLUME FITS

This Appendix contains the figures showing the CCFV fits made to get the results at the physical point for various
analysis strategies. Figures 32–39 show the data and fits for the three isovector charges, gu−dA;S;T ; the axial charge radius
squared, hr2Ai; the induced pseudoscalar charge, g�PjZ2

; the pion-nucleon coupling, gπNN jZ2
; the product,MNgA=Fπ; the pion

decay constant, Fπ; the electric and magnetic charge radius squared, hr2Ei and hr2Mi; and the magnetic moment, μp−n,
respectively. The extraction of the final results from the set of CCFV fits and the assessment of additional systematic
uncertainties is presented in Sec. XIII.

FIG. 31. The data for the renormalized electric (left) and magnetic (right) form factors from the a071m170 ensemble fit using the
dipole, P2 Padé, and z2;3;4 ansatz. The rest is the same as in Fig. 30.
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FIG. 32. The CCFV extrapolation of the renormalized (Z2 method) isovector axial charge gu−dA for five strategies: f4; 3�g (top row),
f4Nπ; 3�g (second row), f4; 2sim; z2g (third row), f4Nπ; 2sim; z2g (fourth row), and f4Nπ; 2sim; P2g (fifth row). In each panel, the result of
the simultaneous fit in fa;Mπ ;MπLg is shown by the pink band and plotted versus a (left panel),M2

π (middle) andMπL (right) with the
other two variables in each case set to their physical value. The result of the CCFV fit at the physical point is shown by the red star (label
Extrap) and the value and χ2=dof given in the left panel. The gray band is the result of a chiral fit only with the physical point marked
with a black cross (label M2

π-Extrap) and the value given in the middle panel.
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FIG. 33. The CCFV extrapolation of the renormalized (Z1 method) isovector scalar charge gu−dS for the four strategies, to remove
ESC: f4; 3�g (top row), f4Nπ; 3�g (second row), f4; 2freeg (third row), and f4Nπ; 2freeg (bottom row). The rest is the same as
in Fig. 32.
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FIG. 34. The CCFVextrapolation of the renormalized (Z2 method) isovector tensor charge gu−dT for the four strategies to remove ESC:
f4; 3�g (top row), f4Nπ; 3�g (second row), f4; 2freeg (third row), and f4Nπ; 2freeg (bottom row). The rest is the same as in Fig. 32.
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FIG. 35. The CCFV extrapolation of the axial charge radius squared hr2Ai (top row), the induced pseudoscalar charge g�PjZ2
(middle

row), and the pion-nucleon coupling gπNN jZ2
(bottom row). The data for hr2Ai are obtained using the z2-fit to parametrize theQ2 behavior.

Data for g�PjZ2
and gπNN jZ2

are obtained using the pion-pole dominance ansatz given in Eq. (38) to fit G̃P. Data for all three quantities are
with the f4Nπ ; 2simg strategy. The rest is the same as in Fig. 32.
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FIG. 36. The CCFV extrapolation of the product MNgA=Fπ with gA from the f4; 3�g (top row) and the f4Nπ ; 2simg (middle row)
strategies. The bottom row shows the fit for Fπ renormalized using the Z1 method. The rest is the same as in Fig. 32.
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FIG. 37. The CCFVextrapolation of the electric charge radius squared, hr2Ei. Data and fits are shown for three strategies, f4; 3�g (rows
one and two), f4Nπ ; 3�g (rows three and four), and f4Nπ; 2simg (rows five and six). Data from the dipole (D) fit (rows one, three, and five)
are compared with those from z3 (rows two, four, and six). Each panel shows the simultaneous (CCFV) fit in the three variables,
fa;Mπ;MπLg, but plotted versus a single variable (a, or M2

π, or MπL) with the other two set to their physical value defined by a ¼ 0,
Mπ ¼ 135 MeV,MπL ¼ ∞. The result and the χ2=dof of the fit are given by the label at the bottom left in the left panel and marked by a
red star (“Extrap”).
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FIG. 38. The CCFVextrapolation of the magnetic charge radius squared, hr2Mi. A prior for GMð0Þ was used when making the dipole,
P2 and z3 fits to parametrize the Q2 dependence as explained in the text. The rest is the same as in Fig. 37.

PRECISION NUCLEON CHARGES AND FORM FACTORS USING … PHYS. REV. D 105, 054505 (2022)

054505-77



FIG. 39. The CCFV extrapolation of the isovector magnetic dipole moment, μp−n. A prior for GMð0Þ was used when making the
dipole, P2, and z3 fits to parametrize the Q2 dependence as explained in the text. The rest is the same as in Fig. 37.
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APPENDIX I: VARIANCE-COVARIANCE
MATRICES OF THE FITS

The fits versus (Q2=4M2
N) and z presented in Sec. XIV

and the errors on the fit parameters, calculated by propa-
gating the errors on individual points, were done using
LSQFIT [89], which calls MULTIFIT from the GNU scientific
library [90], and GVAR [91] routines. In this Appendix we
provide the sampling variance-covariance matrices of the
fits. The errors quoted in the main text in Sec. XIV are the
square roots of the diagonal elements of these matrices.
The variance-covariance matrix for the f4Nπ; 2sim; P̂2g fit

to (GA) given in Eq. (55) is

gA b0 b1
gA
b0
b1

0
B@

1.184×10−4 1.507×10−3 −4.499×10−3

1.507×10−3 3.898×10−2 −1.419×10−1

−4.499×10−3 −1.419×10−1 6.631×10−1

1
CA;

ðI1Þ

and for the f4Nπ; 2sim; ẑ2g fit to (GA) given in Eq. (56) and
using the notation given in Eq. (34) is

a0 a1 a2
a0
a1
a2

0
B@

2.188×10−5 −2.238×10−5 −1.155×10−4

−2.238×10−5 8.549×10−4 2.769×10−3

−1.155×10−4 2.769×10−3 1.811×10−2

1
CA:

ðI2Þ
The variance-covariance matrices for the f4Nπ; 3�; P̂2g

fit to (GE) and (GM) given in Eq. (58) are

gV b0 b1
gV
b0
b1

0
B@

2.782×10−5 1.155×10−3 −5.206×10−3

1.155×10−3 8.260×10−2 −3.912×10−1

−5.206×10−3 −3.912×10−1 3.791

1
CA

ðI3Þ
and

μ b0 b1
μ

b0
b1

0
B@

2.271×10−3 1.413×10−2 −3.931×10−2

1.413×10−2 1.238×10−1 −4.836×10−1

−3.931×10−2 −4.836×10−1 3.157

1
CA ;

ðI4Þ
respectively, and for the f4Nπ; 3�; ẑ3g fit are

a0 a1 a2 a3
a0
a1
a2
a3

0
BBB@

6.5178 × 10−6 1.0374 × 10−5 5.9814 × 10−6 1.8014 × 10−5

1.0374 × 10−5 8.1815 × 10−4 4.6176 × 10−3 7.3053 × 10−3

5.9814 × 10−6 4.6176 × 10−3 3.4227 × 10−2 6.2428 × 10−2

1.8014 × 10−5 7.3053 × 10−3 6.2428 × 10−2 1.2394 × 10−1

1
CCCA

ðI5Þ

and

a0 a1 a2 a3
a0
a1
a2
a3

0
BBB@

1.2656 × 10−4 3.8253 × 10−4 9.5665 × 10−4 1.0035 × 10−3

3.8253 × 10−4 1.9869 × 10−2 1.3524 × 10−1 2.5216 × 10−1

9.5665 × 10−4 1.3524 × 10−1 1.3230 2.7857

1.0035 × 10−3 2.5216 × 10−1 2.7857 6.4023

1
CCCA

; ðI6Þ

respectively.
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