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Precision nucleon charges and form factors using (2 + 1)-flavor lattice QCD
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We present a high statistics study of the isovector nucleon charges and form factors using seven
ensembles of 2 + 1-flavor Wilson-clover fermions. The axial vector and pseudoscalar form factors
obtained on each of these ensembles satisfy the partially conserved axial current relation between them
once the lowest energy Nz excited state is included in the spectral decomposition of the correlation
functions used for extracting the ground state matrix elements. Similarly, we find evidence that the Nzx
excited state contributes to the correlation functions with the insertion of the vector current, consistent with
the vector meson dominance model. The resulting form factors are consistent with the Kelly para-
metrization of the experimental electric and magnetic data. Our final estimates for the isovector charges
are g4 = 1.32(6)(5)5ys» g4~ =1.06(9)(6),,,, and g&4 =0.97(3)(2)
overall analysis uncertainty and the second is an additional combined systematic uncertainty. The form
factors yield: (i) the axial charge radius squared, (r3)*~? = 0.428(53)(30),,, fm?; (ii) the induced
pseudoscalar charge, gp = 7.9(7)(9)yys; (iii) the pion-nucleon coupling, g,nn = 12.4(1.2); (iv) the electric
charge radius squared, (rz)*~* = 0.85(12)(19),,, fm?; (v) the magnetic charge radius squared, (r3,)"*~* =
0.71(19)(23),y, fm?*; and (vi) the magnetic moment, =4 = 4.15(22)(10)
with phenomenological/experimental values but with larger errors. Last, we present a Padé parametrization
of the axial, electric, and magnetic form factors over the range 0.04 < Q% < 1 GeV? for phenomenological
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I. INTRODUCTION

The success of high precision experiments such as
DUNE at Fermilab [1,2] and the T2T-HyperK in Japan
[3.4] is predicated on precise determination of the flux of
the neutrino beam, incident neutrino energy, and their cross
sections off nuclear targets. A major source of uncertainty
in the analysis of neutrino-nucleus interactions is the
axial vector form factors of the nucleon and appropriate
nuclear corrections. Steady improvements in lattice quan-
tum chromodynamics (QCD) calculations are expected to
provide first principle results with control over all system-
atics [5]. In this paper, we present high statistics results for
the matrix elements of the isovector axial and vector current
between ground state nucleons. From these we extract the
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axial, electric, and magnetic form factors and charges that
are inputs in the analysis of the charged current lepton-
nucleus scattering utilizing electron, muon, and neutrino
beams. A heuristic parametrization of the form factors
for phenomenological analyses is summarized in Egs. (55),
(56), and (58).

In previous publications, we have presented results for
the isovector charges, ¢4?, ¢4, and ¢4 [6]; axial,
G,(0Q?), induced pseudoscalar, Gp(Q?), and pseudoscalar,
Gp(Q?), form factors [7,8]; and the electric and magnetic
form factors, G(Q?) and Gy, (Q?) [9]. Those calculations
were done using the clover-on-HISQ formulation; i.e., the
Wilson-clover fermion action was used to construct corre-
lation functions on background gauge configurations
generated with 2 4+ 1 + 1 flavors of the highly improved
staggered quark (HISQ) action by the MILC Collaboration
[10]. They exposed a number of issues that require
attention: The central value for the isovector axial charge
g4™¢ =1.218(25)(30) [6], a key parameter that encapsu-
lates the strength of weak interactions of nucleons, is about
5% below the accurately measured value A= g,/gy =

1.27641(45) 4, (33) s [11-14]. Second, the axial and pesu-

doscalar form factors, G4, Gp, and Gp, did not satisfy the
relation imposed on them by the partially conserved axial
current (PCAC) relation [7], whereas the original three-point
correlation functions did. Third, the electric and magnetic
form factors, Gg and G, showed significant deviations
from the Kelly parametrization, which accurately describes
the experimental data [9]. Last, while the uncertainty in
the scalar and tensor charges, ¢%™¢ = 1.022(80)(60) and
g44 = 0.989(30)(10), was reduced to O(10%) as required
to put constraints on novel scalar and tensor interactions at
the O(1073) level [15] that can arise at the TeV scale, future
experiments targeting O(10~*) sensitivity require the reduc-
tion of errors to a few percent level.

In this paper, we revisit these issues with high-statistics
calculations on seven ensembles with similar lattice
parameters but generated using 2+ 1 flavor Wilson-
Clover fermions by the JLab/W & M/LANL/MIT
Collaborations [16]. Three important improvements are
made over those presented in our previous papers [6-9].
First, these calculations have been done using a unitary,
clover-on-clover, lattice formulation, whereas possible
systematics in the clover-on-HISQ mixed action calcula-
tions due to the nonunitarity formulation were not explored.
Second, the results are based on much higher statistics,
0(2-6 x 10°) measurements on O(2-5 x 10°) configura-
tions. The resulting smaller errors in the raw data provide
more reliable control over the systematics. Last, we
compare several analysis strategies to control excited-state
contamination (ESC) and quantify the sensitivity of the
results to different theoretically motivated values of the
mass gaps, and investigate the possible excited states that
may be contributing.

sys

Results for the nucleon charges from a subset of the
ensembles analyzed here have been presented in
Refs. [17,18]. In parts of the paper, we will drop, for
brevity, the superscripts (¢ — d) to denote isovector quan-
tities since all the analyses presented here are restricted to
this case. We will, however, include this superscript in the
final results and at appropriate places to avoid confusion for
the general reader. For the overall methodology used to
calculate the two- and three-point correlation functions, we
refer the reader to our previous work [6,7,9].

This paper is organized as follows. After a review of the
phenomenology and known results in Sec. II and the lattice
setup and error analysis strategy in Sec. III, we briefly
summarize the main systematics that need to be resolved in
Sec. IV. The analysis of excited states in the two-point
functions is discussed in Sec. V, and in three-point
functions in Sec. VI. The relations for the extraction of
form factors from ground state matrix elements are
given in Sec. VII and the results for the isovector charges
g4, in Sec. VIIL The analysis of the A, correlator,
(QIN (7)A4(1)N(0)|Q2), and the consequent description
of the strategies used for controlling ESC in the axial
channel are discussed in Sec. IX. The extraction of the axial
form factors is then presented in Sec. X followed by the
parametrization of the Q% dependence of G,(Q?) and the
extraction of g4 and (r2) in Sec. X A, and of the induced
pseudoscalar form factor Gp(Q?) and the couplings gp and
g.ny in Sec. XI. Section XII is devoted to the electromag-
netic form factors. Final estimates at the physical point
defined by a =0, M, =135 MeV, and M,L = o are
obtained wusing simultaneous chiral-continuum-finite-
volume (CCFV) fits in Sec. XIII. An alternate heuristic
parametrization of the form factors is given in Sec. XIV,
and the comparison with previous work and phenomenol-
ogy in Sec. XV. Our conclusions are presented in Sec. XVL
Further details of the data, analyses, and figures are
presented in eight appendixes.

II. PHENOMENOLOGY

One of the main uncertainties in the phenomenological
analyses of neutrino-nucleon scattering is the knowledge of
the axial form factors. Direct experiments using liquid
hydrogen (proton) targets are not being carried out due to
safety concerns. Thus, phenomenologists are looking to
lattice QCD to provide first principle estimates. A good
validation of the lattice methodology for the calculation of
form factors is to demonstrate agreement between the
simultaneously calculated isovector electric and magnetic
form factors with the Kelly (or other good) parametrization
of the accurate experimental data (see Sec. XII).
Furthermore, calculating the full set of axial and electro-
magnetic form factors is the first step in the analysis of the
charged current neutrino-nucleon cross section with all
required input taken from lattice QCD. Our results in
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Egs. (55), (56), and (58) represent significant progress
toward this goal.

The matrix element of the isovector axial vector current
A, = uy,ysd between ground state nucleons, which
describes neutron f-decay and the weak charged current
of the interaction of the neutrino with the nucleon, has the
following relativistically covariant decomposition in terms
of two form factors:

Vo 5) A @IV, 5,)
= y.57) (Ga( )+ 0y ) s
m

where G4(q?) is the axial vector form factor, Gp(g?) is
the induced pseudoscalar form factor, |[N(p,,sy)) is the
nucleon state with momentum p, and spin s;, and the
momentum transfer is ¢ = p, — p;. Throughout this paper,
all data for the form factors are presented in terms of
Q>=p*-(E-m)>=—¢* ie., the spacelike four-
momentum squared. We use the DeGrand-Rossi basis
for the gamma matrices [19] and assume isospin symmetry,
m, = my. Thus, we neglect the induced tensor form factor
G that vanishes in the isospin limit [15]. The axial charge
ga = G,(q* = 0) is obtained from both the forward matrix
element and by extrapolating G4(Q?) to Q? =0 as dis-
cussed in Secs. VIII and XIIT A, respectively.
The pseudoscalar form factor, Gp, is defined by

(Np)IP(@)IN(p:)) = tn(p)Gr(a®)rsun (i) (2)

where P = i1ysd is the pseudoscalar density.
The discrete lattice momenta are given by 2zn/La with
the components of the vector n = (n, n,, n3) taking on

TABLE L

integer values, |n;| € {0,L}. The normalization of the
nucleon spinors uy(p, s) in Euclidean space is

_E@a-iy-p+M
2E(p)

ZMN(P’SWN(P’S) (3)

The three form factors, G4(Q?), Gp(Q?), and Gp(Q?),
are not independent because of the PCAC operator identity,
0,A, —2mP = 0. By contracting Eq. (1) with ¢* and
using Eq. (2), this identity gives the following relation
between them:

2
241Gp(Q7) = 2MyGx(Q°) 50— Crl Q). (4

where m=Z,Zp(m,+my)/(2Z,) is the average bare
PCAC mass of the u and d quarks, Z,,, Zp and Z, are the
renormalization constants for the quark mass, the pseudo-
scalar and the axial currents, respectively. Table I gives the
results for /m calculated using the PCAC relation within
the pseudoscalar two-point correlation function, i.e., by
requiring that, up to lattice artifacts, the relation I'(z) =
(Q[(0,A, —2mP),Py|Q) = 0 holds for all Euclidean times
7#0. It can also be measured using the three-point
functions by inserting the operator 9,A, = 2/mP between
any state including the nucleon. Estimates of 71 from two-
and three-point correlation functions with the same bare
lattice operators should agree up to discretization artifacts.

The pseudoscalar two-point function also gives the pion
decay constant F, through the matrix element (Q[A}™™|z) =
V2M ,F ., which is obtained from a simultaneous fit to data
in the plateau region of (Q|AF™(7)P¥™(0)|Q) and
(Q| psmeared (7) psmeared () | Q) These values for F,, are given
in Table I, and their CCFV extrapolation is shown in the

Results for the PCAC quark mass 71 defined in the text and the pion decay constant /', with the two renormalization

methods defined in Sec. VIII A. The ~1% uncertainty in F, comes mainly from that in scale a given in Table XV. The combination
My g4/ F,, which is independent of Z, and dimensionless, is equal to g,yy by the Goldberger-Treiman relation. It is evaluated using
three ways of calculating g, discussed in Secs. VIII and XIIT A: {4,3*} in which g, is taken from the forward matrix element,
{4N= 2sim p.1 and {4N7,25m 22} that uses P, Padé and 7 fits to G,(Q?) given in Table IV. The last row gives the continuum result

from CCFYV fits to these data as discussed in Sec. XIII A.

Genn = Mnga/Fy

ID antpeac aFbae F2e [MeV] F,lg [MeV] Flg, [MeV] {4,3*}  {4N= 2sim p,1  [qNz osim .21
al27m285  0.009304(34) 0.07115(15) 110.5(1.8) 97.5(2.1) 95.5(2.0)  12.46(12) 12.42(28) 12.32(19)
a094m270  0.005726(29) 0.05182(12) 108.8(1.2) 96.0(1.7) 95.1(1.4)  12.92(48) 12.49(45) 12.46(30)
a094m270L 0.005724(05) 0.05204(05) 109.2(1.2) 96.8(1.9) 97.2(1.4)  12.45(09) 12.63(16) 12.55(13)
a091m170  0.002104(09) 0.04743(06) 102.8(1.1) 90.7(1.7) 90.2(1.4)  12.45(19) 12.55(37) 12.63(33)
a091m170L 0.002123(10) 0.04754(05) 103.1(1.1) 90.2(1.7) 89.8(1.3)  12.55(16) 13.19(33) 13.17(31)
a073m270  0.004328(04) 0.04016(04) 108.9(1.2) 97.9(1.6) 97.8(1.4)  12.70(14) 12.63(18) 12.58(14)
a071m170  0.001522(04) 0.03661(04) 102.2(1.2) 91.6(1.3) 91.8(1.3)  12.60(32) 13.08(39) 13.10(36)
CCFV 93.0(3.8) 95.9(3.5)  12.65(38) 13.60(65) 13.58(49)
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bottom row of Fig. 36. The result is consistent with the
experimental value. The largest contributor to the error,
lo = 4%, is the CCFV extrapolation. Since the calculations
of F, on the lattice are among the most reliable [20], it is
reasonable to expect a 4% uncertainty in results from CCFV
fits to seven points for all other quantities analyzed in
this work.

Last, Table I also gives the product My g,/ F,, which is
equal to the pion-nucleon coupling g¢g,yy by the
Goldberger-Treiman relation, for three estimates of g,
given in Table 1V, i.e., from {4,3*}, {4N7 2sm P and
{4N= 2sim 72} strategies used to control ESC that are
defined in Sec. XIII A (also see Appendix A for their
definitions). The nucleon mass, M, is given in Table XV.

A large part of the analysis presented in this work is
influenced by the recent understanding and resolution [8] of
why the axial form factors calculated in the “standard” way
do not satisfy the PCAC relation given in Eq. (4), a problem
that afflicts previous lattice calculations [7]. We show that a
much lower energy excited state, with a mass gap much
smaller than obtained from n-state fits to the two-point
nucleon correlator and used in the standard analysis of three-
point functions, contributes in the axial channel. Including
these states in the fits, with masses consistent with the
noninteracting N(p = 0)z(p) and N(—p)z(p) states on the
lattice, gives form factors that show much better agreement
with the PCAC relation, Eq. (4), and satisfy other consis-
tency checks discussed in Sec. IX A. While the need for
including such low-energy multihadron states has, so far,
been demonstrated only in the axial and pseudoscalar
channels, it behooves us to determine whether such multi-
hadron states also contribute in other channels. In this paper,
we build on the discussion in Ref. [8] and investigate the
dependence of various matrix elements on the spectrum of
excited states obtained from different fits.

The decomposition in Minkowski space of the matrix
element of the electromagnetic current VE™ =2y, u—1dy,d
within the nucleon ground state into the Dirac, F'|, and Pauli,
F,, form factors is

(N(py.sp)Vi"(@)IN(p;.si))

_ . Fy(q)
= MN(pf’ Sf) (Fl (qz)y,u + 10,9y 2

2My

)uN(pivsi)’
(5)

where 6, = i/(y,7, = 7,¥,)/2 and the induced scalar form
factor is neglected since we work in the isospin limit.
Throughout this paper, we will present results in terms of
the isovector Sachs electric, Gy, and magnetic, G,;, form
factors that are related to the Dirac and Pauli form factors in
Euclidean space as

Q2
4M3,

Gp(Q%) = F1(Q%) - 5 F2(Q%). (6)

Gu(Q?) = F,(Q%) + F»(0?). (7)

These are very well measured experimentally, and from them
one gets the vector charge

gv = GE‘QZ:O =F |Q2:0» (8)

which satisfies the conserved vector current relation
gyZy =1, where Z, is the renormalization constant for
the local vector current used on the lattice. The isovector
form factor G,; gives the difference between the magnetic
moments of the proton and the neutron:

W =" =Guylg—g=(F1+Fa)|go=14k,—K,. (9)
The anomalous magnetic moments of the proton and the
neutron, k,, and ,,, in units of the Bohr magneton, are known

very precisely [21]:

k, = 1.79284735(1)
K, = —1.91304273(45)

(proton),
(neutron). (10)

In phenomenological studies, it is customary to para-
metrize the form factors to obtain their value and slope
at Q% = 0. These give the charges, g4, gy, and y, and the
charge radii squared, (3 ), defined as

=5 (5)

(11)

0*=0

For the electromagnetic form factors, the Kelly paramet-
rization provides a good fit to the experimental data [22]
and gives

rg_"|exp =0.926(4),

p—n

v lexp = 0.872(7). (12)

In this study, we analyze various systematics and provide
results for both axial and electromagnetic form factors
over a range of Q?, especially the region <1 GeV? where
nonperturbative effects are large. These data are analyzed
using the dipole, Padé, and model-independent z-expansion
parametrizations. Control over various systematics in the
extraction of the form factors is illustrated by comparing
the lattice data for Gy, with the Kelly parametrization in
Secs. XII and XIV. For the purpose of comparison, and
given the much larger errors in the lattice data, one can
equally well use other parametrizations, for example, the
recent rational fraction discussed in Ref. [23], without a
change in our conclusions.
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III. LATTICE AND ERROR ANALYSIS
METHODOLOGY

The parameters of the seven ensembles with 2 + 1-
flavors of O(a) improved Wilson-clover fermions gener-
ated by the JLab/W & M/LANL/MIT Collaboration are
given in Table XV in Appendix B. The parameters used to
calculate the quark propagators are given in Table XVI. We
have made O(2-6 x 10°) measurements of each observable
on these ensembles using the truncated solver with bias
correction [24,25] and the coherent sequential propagator
[17,26] methods. Even with these statistics, because of the
e~ My=3M:/2)7 decay of the signal-to-noise ratio, the three-
point correlation functions are well-measured only up to
source-sink separation 7~ 1.5 fm. At these separations,
excited state contamination is significant, and we fit the
data using the spectral decomposition of the correlation
functions to isolate the ground state value as discussed in
Sec. VI. In the calculation of form factors, the signal also
degrades with momentum transfer Q2, and the errors at the
larger momentum transfers are sizable in some cases.

The central values and errors are calculated using a
single-elimination jackknife method. We make O(100)
measurements on each configuration with randomly
selected but widely separated source points to maximize
decorrelations. From these, bias corrected averages are
constructed for each configuration, which are then binned
over 5-11 configurations to further reduce correlations.
These O(500) binned values are then analyzed using the
jackknife procedure. All fits using minimization of y? are
made using the full covariance matrix calculated using the
binned values. This procedure is followed for all observ-
ables, values of momentum insertion, and ensembles.
Note that even when using a Bayesian procedure including
priors to stabilize the fits, the errors are calculated using
the jackknife method and are thus the usual frequentist
standard errors."

We use two criteria to determine whether the fits, for
example, those used to remove ESC or the CCFV fits,
are overparametrized: (i) the Akaike Information Criteria
(AIC) [27] which requires that the total y> decreases by two
units for every extra free parameter in the fit ansatz, and
(i1) whether the errors in the additional parameters intro-
duced to include, for example, the third state have more

'When priors are used, the augmented y> is defined as the
standard correlated x> plus the square of the deviation of the
parameter from the prior mean normalized by the prior width.
This quantity is minimized in the fits. In the following, we quote
this augmented »” divided by the degrees of freedom, and call it
%/ dof for brevity. In the jackknife process, we keep the prior and
its width fixed. This is a consistent strategy as the errors quoted
are frequentist errors and do not represent a Bayesian credibility
interval. The p-value listed in figures showing fits is given for
convenience only as it is calculated from the also listed y> value
using the standard y? distribution.

than 100% uncertainty. The AIC weights are calculated to
assess whether the fits are overparametrized. The actual
choice of the averaging performed to get final results is
discussed in the individual sections.

Overall, the errors in data from three ensembles need to
be reduced to improve precision: on a094m270 due to the
small volume and on a091m170L and a071m170 due to
the lighter pion mass. Of these, the latter two ensembles are
important for the chiral extrapolation, and we plan to
double their statistics in the future.

In our previous work using the clover-on-HISQ formu-
lation, we observed that some observables that should
vanish by the parity symmetry show a nonzero signal at
the 2.5-3¢ level. Even though such deviations are most
likely statistical fluctuations, we improved the realization
of parity symmetry in our clover-on-clover work by
applying a random parity transformation on each gauge
configuration as follows: For a randomly chosen direction
u € 1-4, each gauge configuration is parity transformed by
implementing

U,(x) > U,(P,(x)=0)" forv#pu, (13)
Uu(x) = Uu(P,(x)), (14)

where P, (x), the parity transformation acting on the vector
x labeling the sites, flips the sign of all components, except
for x, [17,18].

IV. SYSTEMATICS IN THE EXTRACTION
OF NUCLEON MATRIX ELEMENTS

There are four challenges to high precision calculations
of nucleon charges and form factors (or their primitives,
the ground state matrix elements) at a given value of
{a,M,, M ,L}. The first and key challenge is the exponen-
tially decreasing signal-to-noise in all nucleon correlation
functions—the signal falls off as e~(Mv~—15M2)7 with an
increase in the source-sink separation z. As shown in Fig. 1,
with O(2-6 x 10°) measurements, a good signal in the
two-point functions extends to ~2 fm. Similarly, in the
three-point functions, it extends to ~1.5 fm as illustrated in
Figs. 17-19. At~ 1.5 fm, ESC is still significant in all
three-point functions as shown in Appendixes C, E, F,
and G. As a result, for given fixed statistics, one has to
balance statistical uncertainty against a systematic bias due
to the values of 7 picked to control ESC.

The second challenge is determining all the excited states
that contribute significantly to a given three-point function
and isolating their contribution by making fits to a
truncated spectral decomposition—a sum of exponentials
as shown in Egs. (15) and (18). While the contribution of a
given excited state is exponentially suppressed by its mass
gap, we are, however, confronted by a tower of low-lying
multihadron excited states starting with N(p = 0)z(-p),
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FIG. 1.

The effective mass M plotted versus the source-sink separation z/a for five ensembles. The left panels show the standard

four-state fits, {4}, while the right panels show {47}, in which the noninteracting energy of the Nz state is input as the central value of
the prior for AM. The legends give the ground state amplitude .4, and mass aM,, the excited-state amplitude ratios R; = |.A;|*/|Ao|?
and mass gaps aAM; = a(M; — M,_,), the prior value and width (pr) used, the fit range FR, the y?/dof, and the ensemble ID. The
signal-to-noise grows rapidly after (z = 1.8-2.2) fm depending on the statistics and the ensemble. Note that for the 170 MeV ensembles,
even the ground state mass and amplitude differ by about 2-36 between the two fit strategies, and the relative contribution, R, e™2¥17, of
the low mass N(1)z(—1) state in the {4"¥*} fit is still about 3% at 7 ~ 1.8 fm.

N(p)z(-p),

N(0)z(0)z(0). On M, = 135 MeV ensem-
bles, the tower, as a function of p, starts at %1200 MeV and
gets arbitrarily dense as p — 0. Thus, the suppression of
excited-state contributions due to the mass gap is smaller
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N(1440) and N(1710), need to be evaluated.
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It is typical to reduce the contributions of excited states
by smearing the delta-function source used to generate the
quark propagators. We use the gauge-invariant Wuppertal
method [28] with parameters given in Table XVI in
Appendix B. However, in this approach, one does not
have detailed control over the size of the coupling to a given
excitation since there is only one tunable parameter, the
smearing size given by ¢ in Table XVI. Second, for a
given three-point function, couplings to certain states can
get enhanced. A case in point is the contribution of the
N(p = 0)z(—p) and N(p)zn(—p) states in the axial channel
as discussed in Sec. X.

The third issue is calculating the renormalization factor,
including operator mixing, to connect to a continuum
scheme such as MS. This systematic, for the calculations
presented in this work, is considered to be under control
to within about 2% as discussed in Ref. [20] and in
Sec. VIIT A.

Once data with control over the statistical and the above
systematic uncertainties are obtained at multiple values
of {a,M,, ML}, simultaneous CCFV fits, which include
corrections with respect to M, a, and ML, are used to
extract the physical result in the limits M, — 135 MeV,
a—0, and M,L — . Having only seven ensembles
introduces the fourth challenge: only leading order correc-
tions in each variable can be included without overpar-
ametrization; hence residual corrections may be
underestimated. The analyses performed, using appropriate
CCFV fit ansatz, are described in Sec. XIII.

Of these four issues, the most serious is excited state
contributions, which is exacerbated by the exponentially
falling signal-to-noise ratio with z. To summarize, while the
overall methodology for all the lattice calculations presented
here is well-established, a clear strategy for controlling
excited state contamination that can be applied to all nucleon
matrix elements remains elusive as discussed below. We,
therefore, analyze the data using multiple strategies, each
of which should converge and give the correct result with
perfect data. At appropriate places, we give reasons for

picking the strategy used to quote the final results and
estimates of possible remaining systematic uncertainties.

V. THE NUCLEON SPECTRUM FROM FITS
TO THE TWO-POINT FUNCTION

To determine the nucleon spectrum, we keep four states
in the spectral decomposition of the two-point functions
C?" with momentum p:

3
C¥(z;p) = Y [ Ai(p)Petilr)r, (15)
i=0

Here E; are the energies and .A; are the corresponding
amplitudes for the creation/annihilation of a given state |i)
by the interpolating operator A/ chosen to be

N = et ers 5

L“)qs’(x)]qf(x), (16)

with color indices {a,b,c}, charge conjugation matrix
C = 747, in the DeGrand-Rossi basis [19], and ¢, and ¢,
denoting the two different flavors of light Dirac quarks.
The E; and the A; are extracted from a fit to a large range,
[Tmin» Tmax)- The starting time 7,,;,/a is taken to be small,
between 1 and 4, and 7., is ~2 fm with the current
statistics as shown in Fig. 1. For brevity, throughout this
paper, it should be assumed that the values of # and 7 are in
lattice units.

There are two nagging issues with this “standard”
analysis. First the mass gaps, AE; = (E, — E;), shown in
Table I are slightly larger than even of N (1440). This could
be explained away by assuming that the lower-energy states,
such as Nz or even N(1440), do not couple significantly.
Second, the axial vector and pseudoscalar form factors
obtained using this spectrum to remove the ESC do not
satisfy the PCAC relation, Eq. (4), to a much larger
extent than observed in the original three-point correlation

TABLE II. Results for the nucleon mass in lattice units, aM ,{f} and aM ,{fN”}, obtained from the two four-state fits to the two-point
functions. The next six columns give the values of the mass gap, aAM | = a(M| — M), of the first excited state obtained from different
fits studied in this work. The notation {2} ({4}) denotes a two-state (four-state) fit to the two-point functions, ({47 }) is a four-state fit to
the two-point functions with a prior for aAM; with a narrow width corresponding to the noninteracting N(q)z(—¢q) [or the
N(0)7(0)7(0)] state (see also Appendix A). In the three {2/} cases, the mass gaps aAM are determined from fits to the three-point
functions used to extract the three charges g, g7 as explained in Sec. VIIIL.

ID aM,{f} aM,{fN”} aAMfz} aAM?} aAM?N”} aAM?me} |yA aAMfzm} ‘ys aAM{zme} ‘gr
al27m285 0.618(2) 0.617(2) 0.43(5) 0.39(5) 0.33(2) 0.15(7) 0.71(11) 0.60(10)
a094m?270 0.468(5) 0.470(2) 0.31(6) 0.22(8) 0.25(1) 0.09(13) 0.51(6) 0.54(3)
a094m270L 0.466(1) 0.465(1) 0.35(2) 0.28(5) 0.20(2) 0.13(3) 0.52(2) 0.50(1)
a091m170 0.416(2) 0.413(3) 0.34(2) 0.29(5) 0.16(1) 0.08(13) 0.39(8) 0.46(6)
a091m170L  0.4152)  0.4084)  031(3)  0.24(3) 0.14(2) 0.14(9) 0.54(9) 0.44(4)
a073m270 0.372(1) 0.372(1) 0.32(2) 0.23(4) 0.20(2) 0.06(3) 0.4002) 0.4002)
a071m170 0.326(3) 0.323(2) 0.25(3) 0.18(5) 0.12(1) 0.08(4) 0.41(7) 0.38(2)
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functions in which the size of deviation is consistent with
that expected due to discretization errors [7].

The likely reason for both issues is that standard fits to
the two-point function do not expose the lighter multi-
hadron, Nz, Nz, ..., states that are needed in the analysis
of three-point functions [8]. In Fig. 1, we show results of
four-state fits to C?'(z;p = 0) along with the data for the
effective energy defined as

2 (z)

Eq(7) = logm-

(17)

It converges to the ground state energy for 7 — oo and for
p = 0 reduces to M (7). The criteria used for judging the
quality of the fits is y?/dof. The panels on the left show fits
with the standard strategy labeled {4}, in which empirical
Bayesian priors with wide widths are used only to stabilize
the fits. The initial central values for the priors for
AM, =M, -M,, AM, =M, —M,, and for the corre-
sponding amplitude ratios, R; = |A;]*/|Ao|*, are taken
from an unconstrained three-state fit. Prior widths are set
at ~50% of the value. The fit is repeated and resulting
values are used as central values for the priors in a four-
state fit. This process is iterated one more time to adjust
the priors for the three excited states. The final fit
parameters for the p = O case, the prior value and width,
the fit range (FR), and the augmented y?/dof of the fit are
given in the labels.

The second strategy, labeled {47}, uses a prior for the
mass gap, AE;, with value given by the lowest relevant
state, N(1)z(—1) or N(0)z(0)z(0), with a narrow width.
(The priors and their widths for the five larger volume
ensembles are given in the labels in Fig. 1.) No narrow prior
is put on the amplitude R;. The rest of the procedure is the
same as for {4}.

We stress an important clarification regarding the nota-
tion AE|, and it is “representing” the first excited state that
is implicit throughout this paper. The value of AE; given by
a four-state fit is a number that minimizes y*/dof and, most
likely, represents an ‘“‘effective” combination of a set of
the lowest contributing states. Fits to different correlation
functions can, therefore, give different effective AE; (in
fact, AE;) depending on the couplings of and spacings
between the contributing states.

There are two reasons for stopping at four-state fits. First,
in the three-state fits to the three-point functions we use E,
E,, and E,. The ignored E5, which is most contaminated by
all the higher neglected states, acts as a buffer. Second,
including more than four states overparametrizes the fits.
A summary of the ground-state mass and the mass gap of
the first excited state obtained from different fits is given in

Table II. Note that in most cases, the aAM }4} is a little

larger but close to that expected for the N(1440). The one
exception is the low value on the a094m270 ensemble that

should be the same, modulo finite volume corrections, as
from a094m270L.

We find, illustrated by the zero-momentum case in
Fig. 1, that (i) the final value of AM}”" tracks the prior
in {4M} and (i) the two fits, {4} and {4Y*}, are not
distinguished on the basis of the augmented y2/dof, which
are similar. In fact, for each p there is a flat direction in E;
i.e., a whole region of parameter values between {4} and
{4N"} gives similar augmented y?/dof. Since the EN*
corresponds to roughly the value for the lowest theoreti-
cally allowed state and is much smaller than the radial

excitation N(1440) or E7, we will assume it is a good
estimate of the lower end of possible values. Similarly, the

data derived E%pl is taken to be an estimate of the upper end
when probing the sensitivity of results for the ground state
matrix elements to E;. Later we will discuss other estimates
of E; obtained from fits to the three-point functions.

The values of Q? = p*> — (E — My)? for the two strat-
egies are given in Table XVII and are essentially the same.
Nevertheless, all the analyses and plots presented use the
values of Q2 appropriate to the fits, {4} or {4N7},

An important point to note from Fig. 1 is that the M
data from the M, ~ 170 MeV ensembles do not show a
plateau over the range 1 <7 <2 fm, in contrast to what is
commonly assumed. Concomitantly, we find a systematic
difference in M, and A, between the two strategies, {4}
and {47}, with {4V} giving a 1-26 smaller value for both
M, and |Ay|*, and the relative difference growing as M, is
reduced. Note that the correlated decrease in M, and |.Ay|?
under {4} — {47} is consistent with both fits preserving
the asymptotic, 7 — oo, value of C?(z). Such a variation
implies that one has to reexamine the strategy for even
extracting M, in calculations where percent precision is
needed, such as in the calculation of the pion-nucleon
sigma term, o,y, using the Hellmann-Feynman theorem
[20,29], and in the extraction of matrix elements discussed
here. Consequently, we consider a number of strategies for
the analysis of charges and axial and vector form factors in
Secs. VI, VIII, X, and XII.

VI. CONTROLLING EXCITED-STATE
CONTAMINATION IN THREE-POINT
FUNCTIONS

The spectral decomposition of the three-point functions,
C?D"’t, truncated at three states is

2
C8(m) = Y- A APIOe B0, (18)

i.j=0

where O is the operator and A; are the amplitudes with
which the states |i) are created by the interpolating operator
N with energies E; as defined in Eq. (15). The source
point has been translated to t = 0, the operator is inserted at
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time ¢, and the nucleon is annihilated at the sink time slice .
In Eq. (18), A” and |i?) denote that these states could have
nonzero momentum p, whereas the momentum at the sink
is fixed to zero in all three-point functions. Thus, for
momentum transfer ¢ = p, the initial nucleon’s momentum
is —p.

In principle, the spectrum of the transfer matrix that
contributes to the three-point functions, Eq. (18), should be
obtainable from the two-point function, Eq. (15); however,
the relative contributions can vary significantly as men-
tioned above, particularly in different three-point functions.
As a result, their contribution may be manifest in some
correlators but not in all. This is demonstrated for the axial
channel in Sec. IX and for the vector current in Sec. XII.

It is important for the reader to note that individual
excited state amplitudes A? and A j with i, j > 0, and their

values determined from fits to two-point functions, C*(z),

are never used in fits to Cgopt(r; t). The reason is that in fits

to Cépt(r; 1), only the combinations A?.A,(|O|j) enter.
Furthermore, while these combinations are unknown
parameters in fits to Cépt(r; t) to remove ESC, they are
not used any further in the analysis.

Data for the three-point functions have been accumulated
for the 4-6 values of 7 specified in Table XV, and for each =
for all values 0 <7< 7. In much of the subsequent
analyses, we make 3*-state fits. These are three-state fits
with the term proportional to (27|0|2) set to zero as it is not
resolved with the current data and including it overpar-
ametrizes the fit.

The spectral decomposition, given in Egs. (15) and (18),
forms the basis of all analyses of excited-state contamina-
tion in two- or three-point functions. In order to extract the
ground state matrix element (0?|Or|0) for a given p using
the three-state ansatz given in Eq. (18), one has to, a priori,
resolve 16 parameters from fits to Cépt calculated as a
function of ¢ and 7. These are Ay, AP, the three each M, and
E;, and the eight products of the type |A5||A,[(0P|Op|1)
involving excited state transition matrix elements. The ideal
situation occurs when Ay, A} and the three M; and E; can
be obtained from, say, fits to the two-point functions for
then the fit ansatz reduces to a sum of terms with a linear
dependence on the unknowns. This, however, requires the
states that provide significant contributions to two- and
three-point functions at the simulated values of ¢ and 7 are
the same—naively a reasonable expectation since the same
interpolating operator A is used in both.

In Ref. [8], we showed that, operationally, this expect-
ation fails for the form factors in the axial vector and
pseudoscalar channels. In fact, taking the three M; and E;
from {4}-fits to C?P'(z;p) to extract the axial vector form

factors from Cip " and C;p " gave results that do not satisfy
p

the PCAC relation between them. Since the original
correlation functions, Ciit and CY', do satisfy PCAC up

to discretization errors, the problem was shown to be
introduced while extracting the ground state matrix ele-
ments from the correlation functions. We showed that the
lower-energy excited states N(q)z(—q) and N(0)z(—q)
contribute to the two sides of the operator insertion in the
three-point functions even though they are not manifest in
straightforward fits to the two-point function. The lesson
was, one cannot just take the spectrum obtained from the
two-point function with current statistics and apply it to all
the three-point functions. One has to explore and validate,
both numerically and theoretically, the relevant values of
M, and E; to use in the extraction of the various ground
state matrix elements.

Theoretically, N(q)z(—q) and N(0)z(—q) states have
much smaller energy, E,, compared to that obtained from
standard fits to the two-point function. (The noninteracting
energies of multiparticle states in a finite box are taken
to be the sum of lattice single particle energies assuming
a relativistic dispersion relation.) The clue to their
relevance came from fits to the three-point function with
the insertion of the time component of the axial current,
(QIN ()A4(1)N(0)|Q) [8]. Fits to it using Eq. (18) with
the E; from standard fits to C?P'(z;p) gave large y*/dof.
Consequently these data were ignored in previous works
(see Ref. [7]) because G4 and GP can be determined from
the A; correlators as defined in Eqgs. (20)—(22); i.e., the A4
data were superfluous because the system of equations,
Egs. (20)—(23), is overdetermined. The reason for the poor
signal was that the ESC in this channel is very large; in fact,
it dominates the signal. Exploiting this last fact led us to
determine the relevant mass gap(s), which are much smaller
than the standard AE, i.e., from {4}.

To analyze (QN (1)A4 ()N (0)|Q) we, instead, used the
two-state version of Eq. (18) with the excited state energy
E, left as a free parameter [8]. The resulting value, labeled
EA was close to the noninteracting Nz state, and much
smaller than what the fits to the two-point function gave
(labeled E%pt). The three form factors G,, Gp, and Gp,
extracted using Ef?, satisfied PCAC to within expected
lattice systematics. This resolution has, however, created
a conundrum for the analysis of all nucleon matrix
elements—what the relevant excited-state energies, E;,
are that contribute to a given matrix element, how to
determine them, and how to deal with the towers of
multiparticle states such as Nz, Nzz, ..., that have the
same quantum numbers as the nucleon and become
increasingly dense as the lattice size L — oo. Addressing
these questions is particularly hard for channels that do not
have an independent check such as PCAC.

The tools available include extracting the E; from fits to
the three-point functions themselves, getting guidance from
heavy baryon chiral perturbation theory, evaluating the full
tower of excited states that could contribute, and satisfying
relations such as PCAC. In this paper, we attempt to
develop a framework to determine the relevant E; for each
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matrix element considered and, if possible, associate
them with [multiJhadron states for a deeper understand-
ing of the excited states that contribute. For the axial
channel, this is done in Appendix E, and for the vector
channel in Sec. XII.

Throughout the paper, we will use M; and E; for first
excited-state energies determined from four-state fits to the
two-point functions, and M, and E, for the values obtained
from two-state fits to the three-point functions.

VII. EXTRACTING FORM FACTORS FROM
GROUND STATE MATRIX ELEMENTS

All matrix elements are obtained from fits to the three-
point correlators with the insertion of the various compo-
nents of the axial, pseudoscalar, scalar, tensor, and vector
currents. To display these three-point correlator data we
construct the ratio, R, of the three-point to the two-point
correlation functions,

Cy(1.7:p.0)
C¥\(z,p)
C2P(1,p) C2P (2, p) C2P (1 — 1,0)] /2
CP(1,0)C (2,00 C (c — 1.p)]
(19)

RO([, 7.p, 0) =

where C?"' and C*zopt are defined in Egs. (15) and (18). This
ratio gives the desired ground state matrix element in the
limits # — oo and (7 —17) — oo. For all the two-point
correlation functions in Eq. (19), we use the results of
the appropriate four-state fit instead of the measured values.
When calculating the three-point correlation functions, we
use the spin projection P = (1 +y,4)(1 + iysy3)/2. As a
result, the “3” direction is special while “1” and “2” are
equivalent under the rotational cubic symmetry. For the
axial vector current, gysy,q, the imaginary part of the A;
and real part of A4 have a signal in the following four ratios
and give the desired form factors in the limit ¢ and
(t—1) > oo

1 9193
Rsi — GEE. ) [— i GP], (20)

1 4293 ~
Rs2 = (2E,(E, + M)) [_ oM G”]’ 1)

1 q2 -
Rsz — GE ) {—ﬁcp + (M+E)GA],
(22)
q3 M—-E .

Fosa = mmm+mJ2MGﬁﬂ4 (23)

The Gp can be determined from Rs, with momenta
q = (i,0,j) x (2z/La) and from Rs, with ¢ = (0,1, j) x
(2z/La). In practice, cases equivalent under the cubic
symmetry are averaged before we make the ESC fits. The
G, can be determined uniquely from Rs; with g3 = 0. In
the other momentum channels, the coupled set of equa-
tions, Eqgs. (20)—(22), are solved for G, and Gp using the
full covariance matrix. The A, correlator gives a second,
and so far considered redundant because of the much larger
errors, linear combination of G, and Gp. As discussed
below, it will play an important role in determining the
first excited state parameters, and thus in the overall
analysis.

The pseudoscalar form factor Gp(Q?) is given by the real
part of Rs, i.e., with O = gysq in Eq. (19):

1
Rs — (ZEp(Ep M) [43Gp. (24)

For the electric and magnetic form factors, the following
quantities, with O = (2iiy,u — dy,d)/3, have a signal:

2E,(My + E,)R(R;) = —€i;39,Gu» (25)

\/2E,(My + E,)3(R;) = 4,G, (26)

2E,(My + E)R(Ry) = (My + E)Gp.  (27)

Exploiting the cubic symmetry under spatial rotations, we
construct two averages over equivalent three-point corre-
lators before doing fits to get the ground-state matrix
elements: over R(C”) and R(C) for Gy, (Q?) and over
3(CM), 3(CM), and J(CP) for G(Q?). We label these
form factors as GX,," and GZ". Together with G? extracted
from Eq. (27), they constitute the three form factors
analyzed. Each is obtained from a distinct correlation
function, and it is important to note that the discretization
artifacts and the excited-state contaminations in these can
be very different.

We remind the reader that these ratios are used only to
plot the data. Our results are obtained by making n-state fits
to the correlation functions themselves. In making these fits
we attempt to balance statistical and systematic uncertain-
ties. Data at smaller = have smaller statistical errors but
larger ESC because a larger number of states contribute.
Similarly, data close to the source and the sink have larger
ESC. Therefore, for each 7 we neglect data on 7y, time
slices at either end, and we make fits to data with the largest
7 values that have statistically precise data. By skipping
the same number of points, Zy;,, at all 7 fit, we increase the
weight of the larger 7 data to partially compensate for the
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larger statistical weight given to the lower error points at
smaller 7.

VIII. EXTRACTING NUCLEON CHARGES

This section covers the calculations of the isovector
nucleon charges, gﬁ‘d, from the forward matrix elements:

(N(p,s)|Or|IN(p,s)) = gray(p)Tu,(p).  (28)

For ¢ = 0 in the three-point functions, Eq. (19) simplifies
to R, (1.7.0,0) = C'(£.7:0,0)/C?(z,0). With the spin
projection in the “3” direction, the Dirac matrix structure of
operators used to calculate the scalar, vector, axial, and
tensor charges are I' = 1,y,4,737s, and o1,, respectively.
Since the nucleon states and all four operators, which
commute with y,, have positive parity, therefore all possible
excited states with positive parity are theoretically allowed
in all four channels: axial, scalar, tensor, and vector. Based
on conserved symmetries alone, the ones with the smallest
mass gap are N(0)z(0)z(0) or N(1)z(—1). As mentioned
above, their noninteracting energies are roughly the same
on each of the seven ensembles. The unknown is their
coupling in the various channels. Furthermore, the analysis
of the two-point function in Sec. V showed that there is a
large range of M, values with similar y?/dof in four-state
fits. This range includes the Nz and Nzz states. We will,
therefore, investigate the impact on ground state matrix
elements of choosing values of M, over this interval, the
lower end of which is taken to be the approximately
degenerate energy of these two states ignoring interactions.

The question is how to determine, nonperturbatively,
which of the possible states contribute significantly? In
chiral perturbation theory, N(1)z(—1) arises at one loop
[30] and N(0)z(0)z(0) at two loops [31] in the axial
channel. Similarly, the vector current couples to the p
meson (vector meson dominance), or equivalently the two-
pion state it decays into for sufficiently small pion mass
(see also the discussion in Ref. [32]). As will be shown
later, the contribution of these multihadron states increases
with decreasing M, (and ¢q in the case of form factors) in
both the axial and the vector channels. More generally, it is,
a priori, not straightforward to narrow down the states that
give significant contributions to a particular correlation
function. Again, the criterion we will use is the y?/dof
of the fits, input from yPT, and the sensitivity of the
observables to the value of the mass gaps used in the fit to
judge the best strategy.

To include the effect of either of the two kinds of states,
N(0)z(0)z(0) or N(1)z(—1), we use the spectrum from
the {4V*} fit noting that the fit to the three-point function
only cares about AM; and not the identity of the state(s).
So, in the current analysis, the contributions from all three
possibilities, N(0)z(0)z(0) or N(1)z(—1) or both, are
included under the same label {47},

We examine two more strategies, which we call {4, 2fre}
and {4"7 2fce} in which E; is left a free parameter
to be fixed by a two-state fit to the three-point functions.
Note that these two strategies differ only in the ground
state parameters Ay, and M, (or Ey), which are slightly
different between the {4""} and {4} fits as shown in
Fig. 1.

Furthermore, in Appendix D, we examine the ESC in
each charge from operator insertion on the u and d quarks
separately. These data provide additional understanding of
the statistical precision of the data, and how the errors and
ESC in the isovector (¥ — d) and in the connected part of
the isoscalar (u + d) combinations arise.

A comparison between fits with these four strategies is
shown in Figs. 17-19 for the three charges g, 5 7. The data
show the following common features:

(i) The symmetry of Répt (and Cg’t) about the midpoint
of the interval, t = 7/2, improves with statistics as
expected. The observed deviations, mostly in the
largest 7 data for gy, are statistical fluctuations (see
also the discussion in Appendix D).

(i) The value of ngpt at each t (especially at the
midpoint, = 7/2) converges monotonically toward
the 7 = oo value. Having a clear monotonic behav-
ior, i.e., not obscured by the errors, is important for
choosing the values of 7 to keep in the n-state fits to
remove ESC, and it improves the stability of the fits
with respect to variations in 7 and 7.

Having data with these features, hallmarks of high statistics
calculations, improves the reliability of three-state fits that
we make to the largest three (four) values of 7 listed in
Table XV to obtain results in the limit 7 — oo for g4 and g,
(gs)- To evaluate the convergence of estimates for g, g7
on each ensemble, we compared results from the two- and
3*-state fits. Using this framework, and the methodology
for statistical analysis given in Sec. III, the four charges,
gas.T.v, are analyzed next.

A. gy and operator renormalization

The data for the vector charge obtained from the correlator
(N(7,0)V4(2,0)N(0,0)) show a small (about 1%) variation
over the range of 7 values investigated as illustrated in Fig. 2
for the a091m170L and a071m170 ensembles. We show
two versions of the ratio Ry(7,7,0,0): C%,pt(t, 7;0,0)/
C¥'(z,0) |5, and CiP'(1,7;0,0)/C*'(z,0), where in the first
case we use the result of the {4} fit, C?"'(z, 0)];., while in the
second case we use the two-point function itself. In both
cases, the data are essentially flat about z/2, so for the final
value of gy, we take the average of 5-6 central points at the
largest two values of 7 using the first version. The errors in
these estimates cover the spread in the values at 7/2 for the
various 7.

A check on these estimates of gy is that the product
Zygy = 1 within O(a) discretization errors, where Zy is
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FIG. 2. Data for the ratio Ry, which give gy in the limit 7 — co, are plotted versus ¢ —7/2 for the a091m170L (left two) and
a071m170 (right two) ensembles. Panels 1 and 3 show results using the {4} -state fit for C?" in Ry,, while in panels 2 and 4 the data for
C?P are used. The final estimate shown by the gray band is the average of the five (six) central points for 7 = 14, 16 (zr = 19, 21) for the

a091m170L (a071m170) ensemble.

the renormalization constant for the local vector current
used in this study. Values of Zy gy are shown in Table III
and deviate from unity by <1%, i.e., by an amount smaller
than the errors in the product that come mainly from Zy,.

The calculation of the renormalization constants Z4 s 7.y
for the local axial, scalar, tensor, and vector quark bilinear
operators on the lattice is done using the regularization
independent symmetric momentum (RI-sMOM) scheme
[33,34]. Results are then converted to the MS scheme at
scale 2 GeV using two-loop matching and three-loop
running as described in Ref. [18]. The calculation is done
on all seven ensembles. Using these estimates, together
with the conserved vector charge relation Zygy = 1, we
present renormalized quantities calculated in two ways. In
the first method, labeled Z,, the renormalized results for
operator O are given by Z,O. In the second method,
labeled Z,, we construct the two ratios Z,/Zy and g, /gy
for the charges. For constructing Z,/Z, we start with the
ratio of the two amputated three-point functions in the RI-
sMOM scheme, and for g,/gy, the ratio of the matrix
element after making the excited-state fits for each. In both
cases, these ratios are taken within the jackknife process.
For Z,, the expectation is a cancellation of correlated
fluctuations in each of the two ratios leading to smaller
overall errors. The data summarized in Table III show
that the errors in Z,/Zy, and Z;/Z, are smaller than
in Z, 7 but not in Zg/Zy versus Zg. Furthermore, data in

TABLE III.

Tables IV and V show smaller errors from Z, for g, y and
from Z; for gg. Results from the two methods, after the
CCFV fits carried out in Sec. XIII A, differ by ~0.03. When
quoting the central values, we will choose to renormalize
ga.r using Z, and gg using Z,. The difference between the
two estimates will be used to assign an appropriate
systematic uncertainty in the three charges.

B. 8gA

The findings from the four fit strategies, {4, 3*}, {47, 3*}
(and their two-state versions {4,2}, {4"",2} to check
for overparametrization), {4, 2}, and {47, 2} are the
following:

(i) The results from the {4,2f¢} or {47, 2free} fits are
shown in Fig. 17 by the broad gray bands and given
in the labels. The output values of AM on all but the
a091m170L ensemble have large errors and are
much smaller than even those for the Nz state as
shown in Table II. The reason is that the fluctuations
between the jackknife samples are unreasonably
large. Lacking statistical control, we do not consider
these two strategies any further for g,. In future
higher precision calculations, especially on M, <
200 MeV ensembles, we will continue to check
whether estimates from the {4, 2} and {4"7, 2free}
strategies become more robust.

Results for the bare vector charge gy and the renormalization constants Z, g 7 v calculated nonperturbatively on the lattice

using the RI-sMOM scheme. The value of the product Zy gy is consistent with unity and the errors in it are dominated by those in Zy,.
Note that the errors in the ratios Z,/Zy and Z;/Z\ are smaller than those in Z, and Z;, respectively, while those in Zg/Z, are larger

than in Zg.

Ensemble ID gy ZV ngv ZA ZS ZT ZA/ZV ZS/ZV ZT/ZV
al27m?285 1.260(04) 0.806(23) 1.016(30) 0.882(13)  0.829(15) 0.892(16) 1.089(14) 1.017(40)  1.106(11)
a094m?270 1.213(05) 0.828(17) 1.005(21) 0.883(12) 0.789(11) 0.928(17) 1.065(09) 0.946(25) 1.121(08)
a094m?270L 1.203(02)  0.829(19) 0.997(23) 0.886(14)  0.796(14)  0.929(19)  1.070(10)  0.958(29)  1.122(09)
a091m170 1.210(03)  0.832(20) 1.006(24)  0.882(13)  0.790(15) 0.931(20) 1.061(11) 0.947(27) 1.122(08)
a091m170L  1211(04) 0.827(18) 1.001(22) 0.875(14) 0.783(11) 0.926(15) 1.056(09) 0.943(24)  1.120(08)
a073m270 1.171(02)  0.857(15) 1.003(17) 0.899(11) 0.779(10) 0.961(18)  1.052(09) 0.911(30) 1.124(07)
a071m170 1.169(04)  0.853(13) 0.998(16) 0.896(07) 0.767(13)  0.965(15) 1.051(09) 0.897(28)  1.132(07)
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TABLE IV. Results for g, from the seven ensembles and with the four strategies, specified in column one and defined in Appendix A,
used to control the excited state contamination. The second column gives estimates from the forward matrix element (¢ = 0) for the two
strategies {4,3*} and {4"* ,3*} in which the excited state spectrum is taken from {4} and {4"7} fits to C*. Columns 5-7 give g,
obtained by extrapolating G ,(Q? # 0) data using a dipole, P, Padé, and z? fits to all ten Q% # 0 points. The fits to {4V7,24:} data on the
a094m?270 ensemble are not stable, so no results are presented. The corresponding renormalized values using the two methods,
Z) =Z,6% and Z, = (Z,/Zy) x (g5¥¢/gb¥®), are given in columns 3—4 and 8-9.

Fit gzm|q:0 9a ‘fl:o 9a ‘52:0 gt/)\are‘dipole gy P, ggare|z2 9A|fzI 9A|fz2
al27m285

{4,3*} 1.433(13) 1.264(22) 1.238(19) 1.424(13) 1.423(14) 1.424(13) 1.255(21) 1.230(19)

{4N”, 3%} 1.445(13) 1.274(22) 1.248(19) 1.449(16) 1.459(19) 1.453(16) 1.281(23) 1.255(21)

{4N”, 2A4} e e e 1.458(18) 1.488(26) 1.465(20) 1.291(25) 1.266(23)

{4N”, 2““‘} e e e 1.429(20) 1.432(32) 1.421(22) 1.252(26) 1.227(24)
a094m?270

{4,3*} 1.431(51) 1.263(48) 1.256(45) 1.360(27) 1.390(52) 1.386(33) 1.224(34) 1.216(30)

{4N”, 3%} 1.416(21) 1.250(25) 1.242(20) 1.365(25) 1.426(42) 1.409(28) 1.244(30) 1.237(27)

{4Nn,2A4}

{4N”, 25““} e e e 1.350(25) 1.379(49) 1.375(33) 1.213(33) 1.206(31)
a094m270L

{4,3*} 1.3892(96) 1.231(21) 1.236(14) 1.387(9) 1.393(10) 1.392(9) 1.234(21) 1.239(14)

{4N7 3%} 1.413(11) 1.252(22) 1.258(15) 1.410(13) 1.424(15) 1.418(14) 1.256(23) 1.262(16)

{4N”, 2A4} e e e 1.412(10) 1.434(13) 1.426(11) 1.264(22) 1.269(15)

{4N”, 251‘“} e e e 1.397(12) 1.414(17) 1.406(14) 1.246(23) 1.251(17)
a091m170

{4,3*} 1.419(20) 1.251(25) 1.244(21) 1.399(15) 1.402(19) 1.413(19) 1.247(25) 1.240(21)

{4N”, 3%} 1.495(41) 1.319(41) 1.311(38) 1.480(40) 1.469(58) 1.488(51) 1.313(49) 1.305(47)

{4N”, 2A4} e e e 1.412(21) 1.504(36) 1.504(31) 1.327(34) 1.319(31)

{4N”, 25““} e e e 1.421(25) 1.442(41) 1.451(37) 1.280(38) 1.273(35)
a091m170L

{4,3*} 1.436(17) 1.257(25) 1.252(19) 1.426(17) 1.419(18) 1.423(19) 1.245(25) 1.241(20)

{4N”, 3%} 1.521(41) 1.331(42) 1.327(39) 1.502(44) 1.487(51) 1.496(49) 1.309(47) 1.305(45)

{4N”, 2A4} .- e e 1.441(25) 1.507(32) 1.504(30) 1.316(33) 1.312(29)

{4N”, 25““} e e e 1.499(27) 1.538(36) 1.536(33) 1.344(36) 1.339(32)
a073m270

{4,3*} 1.371(15) 1.233(20) 1.232(17) 1.358(11) 1.359(17) 1.363(14) 1.226(19) 1.226(16)

{4N”,3*} 1.384(12) 1.245(18) 1.244(15) 1.361(11) 1.402(18) 1.392(13) 1.251(19) 1.251(16)

{4N”, 2A4} e e e 1.329(12) 1.359(18) 1.348(14) 1.212(20) 1.212(16)

{4N”, 25““} e e e 1.342(12) 1.365(19) 1.360(15) 1.222(20) 1.222(17)
a071m170

{4,3*} 1.414(34) 1.267(32) 1.271(33) 1.371(21) 1.372(23) 1.377(24) 1.234(24) 1.237(24)

{4N”, 3%} 1.479(38) 1.325(36) 1.329(36) 1.448(37) 1.476(49) 1.484(46) 1.329(42) 1.333(43)

{4N”, 2A4} e e e 1.359(21) 1.469(32) 1.472(30) 1.319(29) 1.323(29)

{4N”, 251“1} e e e 1.432(29) 1.483(44) 1.485(40) 1.330(37) 1.334(38)

(i) Overall, two- and 3*-state fits, irrespective of
whether inputs of ground state parameters are
from either the {4} or the {47} fits to two-point
functions, overlap on every ensemble. The 3*-state
fits are overparametrized with respect to the two-
state fits based on both the Akaike criteria and
because the uncertainty in the two additional fit
parameters is > 100% for the following ensembles
and strategies:

() a094m270: {4,3*}, {4V" 3%}
(i) a091m170: {4N= 3%}
(ili) a091m170L: {4,3*}, {47 3*}.
The values from {4V7 3*} agree with those from {47 2}
but have larger errors. To be conservative, we choose the
{4N7 3%} results for all ensembles.
(iii) There is a roughly 26 difference between {4, 3*} and
{4N= 3*} results on the M, ~ 170 MeV ensembles,
a091m170, a091m170L, and a071m170, as shown
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TABLE V. Results for gg and g; on the seven ensembles and for the four strategies specified in column 1 and defined in Appendix A
that are used to control the excited state contamination. The second and fifth columns give the bare values. The renormalized values
using the two different methods, Z; = Zg rg8%¢ and Z, = (Zs 1/ Zy) % (g5%/ gb*), are given in columns 3—4 and 6-7. The numbers
within square brackets give the y2/dof of the ESC fits.

Fit 9" gs/» g5 g grl” grl*
al27m?285
{4,3*} 1.083(27)[0.94] 0.897(28) 0.874(41) 1.173(10)[1.16] 1.046(21) 1.029(14)
{4N= 3%} 1.091(31)[0.96] 0.904(30) 0.880(43) 1.169(12)[1.18] 1.043(22) 1.026(15)
{4, 2free} 1.036(22)[1.16] 0.858(24) 0.836(37) 1.1825(83)[1.10] 1.055(20) 1.038(13)
{aN= pfree) 1.041(21)[1.15] 0.863(23) 0.840(37) 1.1839(92)[1.16] 1.056(21) 1.039(13)
a094m270
{4,3*} 1.22(10)[1.21] 0.965(83) 0.953(84) 1.102(24)[1.12] 1.022(30) 1.019(24)
{4N= 37} 1.193(58)[1.22] 0.942(48) 0.930(51) 1.108(19)[1.12] 1.028(26) 1.024(19)
{4, 2free} 1.113(48)[1.19] 0.878(40) 0.867(44) 1.140(25)[1.02] 1.058(31) 1.054(24)
{4N= pfiee} 1.101(36)[1.21] 0.869(31) 0.858(36) 1.133(10)[1.01] 1.051(22) 1.047(12)
a094m?270L
{4,3%} 1.195(24)[1.35] 0.951(25) 0.952(35) 1.0923(86)[0.96] 1.015(22) 1.019(11)
{4N7 3%} 1.176(43)[1.33] 0.936(38) 0.937(44) 1.095(13)[0.94] 1.017(24) 1.021(15)
{4, 2free} 1.165(15)[1.44] 0.927(20) 0.928(30) 1.1110(41)[1.03] 1.032(22) 1.0364(92)
{4N= ofreey 1.178(15)[1.44] 0.938(20) 0.939(31) 1.1184(47)[1.11] 1.039(22) 1.0433(96)
a091m170
{4,3%} 1.172(60)[0.96] 0.926(51) 0.918(54) 1.054(14)[0.84] 0.981(25) 0.977(15)
{4N= 3%} 1.18(14)[0.95] 0.93(11) 0.92(11) 1.063(39)[0.89] 0.990(42) 0.985(37)
{4, 2free} 1.152(53)[0.98] 0.910(45) 0.902(48) 1.083(12)[0.88] 1.009(24) 1.004(13)
{4N= pfiee) 1.188(53)[1.00] 0.938(45) 0.930(49) 1.107(16)[0.88] 1.031(27) 1.027(17)
a091m170L
(4.3} 1.145(73)[0.84] 0.897(58) 0.892(60) 1.061(14)[0.96] 0.983(20) 0.982(15)
{4N7 3%} 1.17(14)[0.85] 0.92(11) 0.91(11) 1.031(32)[1.01] 0.955(34) 0.954(31)
{4, 2free} 1.132(43)[0.91] 0.887(36) 0.882(40) 1.0977(91)[1.04] 1.017(18) 1.016(11)
{4N= pfreey 1.223(57)[0.95] 0.958(47) 0.952(50) 1.149(26)[1.75] 1.064(29) 1.063(25)
a073m?270
{4,3*} 1.271(25)[1.13] 0.989(23) 0.989(37) 1.0627(73)[0.87] 1.021(21) 1.0201(91)
{4N= 3+} 1.272(30)[1.09] 0.990(26) 0.989(40) 1.0623(86)[0.88] 1.020(21) 1.020(10)
{4, 2free} 1.230(14)[1.00] 0.958(16) 0.957(33) 1.0823(51)[1.00] 1.040(21) 1.0389(78)
{4N= ofiee} 1.235(14)[1.00] 0.962(16) 0.961(33) 1.0853(46)[1.01] 1.042(20) 1.0418(76)
a071m170
{4,3*} 1.22(13)[0.84] 0.94(10) 0.94(10) 1.016(22)[0.92] 0.980(26) 0.983(22)
{4N= 3+} 1.24(21)[0.84] 0.95(16) 0.95(16) 1.006(34)[0.89] 0.971(36) 0.974(33)
{4, 2free} 1.182(72)[0.83] 0.907(57) 0.907(62) 1.052(15)[0.89] 1.016(21) 1.019(16)
{4N= ofiee} 1.230(72)[0.83] 0.943(57) 0.944(62) 1.083(17)[0.96] 1.045(23) 1.049(18)
in Fig. 3. The {4"*,3*} values are larger—a smaller the {4,3*} and {47, 3*} strategies as shown in
mass gap implies a larger ESC and leads to a Table XVIIL
larger 7 — oo value since the convergence is from The key issue to settle is whether the N(1)z(—1) state,
below as shown in Fig. 17. The difference is  which is seen to contribute to the axial form factors at
approximately 6% at M, = 170 MeV and becomes  the lowest Q% and whose effect grows as Q? — 0, also
~8% after the CCFV fits as shown in Table X  contributes at the approximately 5% level to the forward
in Sec. XIII. matrix element as indicated by the data. We discuss this
(iv) A similar difference of approximately 5% is also issue further in Sec. X, and in Sec. XIII A where we

present in the axial form factor G, for the lowest
nonzero momentum transfer, g = (1,0,0)2z/La,
data on the M, =~ 170 MeV ensembles between

compare these estimates of g, to the second set of values
obtained by extrapolating G4(Q?) to Q> =0 using the
dipole, Padé, and z-expansion fits defined in Sec. X A.
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FIG. 3. The difference in the renormalized (Z; method) axial

(top), scalar (middle), and the tensor (bottom) charges between
the two strategies, {47, 3*} — {4,3*}. The data are shown for all
the seven ensembles.

C.gs

The data and fits to the largest four values of 7 used to
remove ESC in gg are shown in Fig. 18. The statistical
errors in individual points are much larger compared to g,
or gr, and are sizable for the M, ~ 170 MeV ensembles.
The results after the ESC fits are collected together in
Table V. The notable features in the data, fits, and results are

the following:
(i) The {4,2fc} and {47, 2} fits give results with
smaller errors compared to the {4V*,3*} and {4, 3*}

fits. As shown in Table II, the AM, ~ 1 GeV is,
however, much larger than even AM, i.e., the result
of the {4}-fits. Even accounting for the fact that
a two-state fit typically gives a larger AM; (this
can be seen by comparing aAM iz} with aAM ?} in
Table II), the values from the {2} fits are
unexpectedly large.
(i) Estimates from the four fit strategies are consistent
on all ensembles as shown in Fig. 18 and in Table V.
No significant difference is observed between the
{4N* 3*} and {4,3*} values as shown in Fig. 3.
(iii) The y?/dof for the four fits are similar, so it cannot
be used to distinguish between them.
(iv) The 3*-state fits are not overparametrized by the
Akaike criteria.
(v) On the M, =~ 170 MeV ensembles, the 0 <> 2 tran-
sition term is not well-determined in the 3* fits.
(vi) The expected monotonic convergence in not yet
realized for the 7 = 19 or 21 data on the a071m170
ensemble as shown in Fig. 18. However, as shown in
Fig. 20 in Appendix D, the data for the connected
insertions on u and d quarks do show it. On making
the same ESC fits to each of these to get the 7 — oo
values, and then constructing the isovector combi-
nation gg‘d gave overlapping values. The errors,
however, are larger, presumably because there is a
cancellation of fluctuations when fitting to the u — d
data. The largest difference, about 0.50, is in the
a091m170L and a071m170 ensembles. Based on an
analysis of subsets of data, error reduction comes
mainly from the average over gauge configurations;
i.e., the average over multiple measurements on each
configuration is less effective as compared to that
for g, and g7.
Overall, we do not have an airtight criterion for picking
one strategy over the other. In Sec. XIII A, we perform the
CCFV extrapolation for all four cases, and the results,
summarized in Table X, show consistency within lo.
Eventually in Sec. XIII A, we will invoke the fact that
the two {2} fits give an unexpectedly large AM to focus
on the {4,3*} and {4"* 3*} values, which give consistent
results as shown in Fig. 3.

D. 8r
The magnitude of the ESC and the errors in the data for
gr are smaller than those in g, or gs. Nevertheless, we find
that using a larger 7y, improves the fits in many cases.
Other features in the data are the following:

(i) The y?/dof of fits with all four strategies are, again,
reasonable and consistent as shown in Fig. 19.

(ii) The AM, from {42} and {4V~ 2} strategies
is determined with similar precision (5%—15% error)
as from the {4V} and {4} fits to the two-point
function. It is, however, much larger and comparable
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to the values found in the gg analysis as shown in
Table II. Thus, the same argument made in the case
of gg for choosing results from {4,3*} or {47 3%}
applies.

(iii) The {4,2f} and {4V7 2} estimates are system-
atically larger by 1-2¢ as can be seen in Fig. 19 and
from Table V. This is because a larger AM leads to a
smaller 7 — oo extrapolation and thus a larger g
because convergence is from above.

(iv) We note a roughly 1 difference between {4, 3*} and
{4N7 3%} results on the a091m170L and a071m170
ensembles, as shown in Fig. 3. While this ~2%
difference is well within our error estimates, future
calculations, especially at M, = 135 MeV, are
needed to confirm whether the low-lying multihadron
states make a contribution at the few percent level
as M, — 135 MeV.

(v) For the {47 2fe} strategy, the gray band in Fig. 19
showing the 7 = co value lies above the largest =
data. This happens because the ratio data need not
converge monotonically for specific combinations
of AM, (or AM?") and the size of the ESC in the
three-point function. An example is when the con-
tribution of the excited states in the three-point
function comes with a positive sign (as for g that
converges from above) while that from the two-point
correlator always comes with a negative sign. (The
spectral decomposition of the two-point function in
the denominator is a sum of positive terms because
our source and sink interpolating operators are the
same.) We have checked that this behavior describes
our data and leads to a nonmonotonic convergence
in the ratio for gr; i.e., the ratio data go below the
gray band as 7 is increased and then turn back up at
values of 7 larger than accessible in current calcu-
lations. Our fits to the three-point correlators, which
show monotonic convergence in z, are, on the other
hand, robust.

Overall, as for g, the y>/dof of the various fits to the
data do not help us select among the strategies. We,
therefore, perform the CCFV extrapolation for all four
strategies in Sec. XIII A and then discuss our choice of
the best estimate.

IX. THE A; THREE-POINT FUNCTION AT Q% # 0
AND UNDERSTANDING ESC IN G4 (0Q?%)

In Ref. [8], we showed that the first excited state
energies M, and E|, obtained from the four-state fit {4},
are much larger than those of the noninteracting multi-
hadron states relevant for extracting axial form factors:
N(q)n(—q) or N(0)z(—gq), or Nzz or even the N(1440).
The differences are striking at small momentum transfers.
In fact, as illustrated in Fig. 1, estimates of E; have large

uncertainty, and only the ground state parameters are
determined with few percent accuracy from fits to the
two-point functions. Even for M, in spite of the seem-
ingly long plateau in the effective-mass plots starting at
7~ 1 fm, estimates from four- and 4"”-state fits differ by
1%—2%. In Ref. [8], we also showed that when E,
extracted from two-state fits to the A, three-point function

(N (7, —q)A4(t,q)N(0,0)) is used to obtain G4, Gp, and
Gp, the PCAC relation between the three form factors is
much better satisfied. That strategy, labeled Sp4 in [8], is
called {4,244} or {4¥7 244} in this paper.

With high statistics data, we further explore the two- and
three-state fits to the A, correlator at nonzero momentum
transfer. We can now make fits with the full covariance
matrix and can take the first excited state parameters from
two-point correlators or leave M; and E; free along with
the matrix elements, i.e., take only M,, E,, Ay, and A{’)
from one of the two four-state fits to the two-point function.
To quantify the sensitivity of the form factors to different
choices for the mass gaps, we investigate six strategies:
{4,3%}, {4N7 3%}, {4,244}, {4N7 24} {4,25m])  and
{4N=, 25““}. The last two involve a simultaneous fit, with
common M, and E,, to all four A, and the P three-point
functions as discussed below. A more detailed discussion of
the possible excited states and the limitations of analyses is
given in Appendix E.

The first comparison of such fits to the three-point

function (N (7)A,4(t)N(0)) is shown in Fig. 23 for the four
strategies {4,3*}, {4V7 3*}, {4N7 244} and {4N7, 28m}
Data from six ensembles are shown for momentum transfer
n=(0,0,1) as these have large ESC. For the {4,3*}
strategy, the y?/dof of the fits, given in the labels in
Fig. 23, are uniformly bad as was pointed out in Ref. [8].
Also, as shown in Fig. 4, the form factors obtained with this
strategy do not satisfy the PCAC relation rewritten as

2 Gp(Q?)
2My GA(0?)

0% Gp(Q?)
4M3, G4(Q?)

=1, (29)

with /1 given in Table I. Even though {4,3*} data fail the
PCAC test, we will continue to perform a full analyses with it
for the purpose of comparison.

The y?/dof improves significantly with {4¥7,3*} and is
the best with {47 244} as shown in Fig. 23. The y?/dof
of the {4V7,25m} fit is similar; however, recall it involves a
simultaneous fit to all five correlators. Also, estimates of
M, and E, are similar in the two cases. The same is true
with respect to satisfying PCAC as shown in Fig. 4.

Next, note that AM, and AE, decrease on going from
{4,3*} to {4V7 3*} to {4V 244}; and the difference
between AM; and AFE; also changes. Overall, the
behavior using strategy {4V7 244} is consistent with
the results in Ref. [8]; i.e., (i) the y?/dof of the fits are
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FIG. 4. The top four panels show tests of the PCAC relation between the axial form factors for four analysis strategies specified at the
bottom left corner. The middle panels show tests of the pion-pole dominance (PPD) hypothesis, and the bottom panels show the quantity
AM yinGp(Q?)/M2Gp(Q?) that should equal unity for the PPD and the PCAC relation to be simultaneously satisfied. A fit linear in Q2
is shown in the bottom right panel. The symbols and color code used to show the data from the five larger volume ensembles are
specified in the legends. Only data with Q% <1 GeV? are shown as the errors above it are large in some cases.

much reducedz; (i1) the M  and E 1, which we label as M?“

and E7*, are much smaller than those obtained from the
{4}-fits to the two-point correlation function; and
(iii) Mi” and E?“ are roughly consistent with the non-
interacting energies of N(q)z(—¢q) and N(0)z(—q) states,
respectively, as shown in Fig. 22. These features are also
consistent with the effective field theory (yPT) result that,
at leading (tree) order, the axial current inserts a pion
with momentum g, i.e., the pion-pole dominance (PPD)
hypothesis [35,36].

In contrast, fits to the A; correlators with /M, and E, left
as free parameters do not have good y?/dof; i.e., these
correlators do not constrain the excited-state parameters.
The reason is that the ground state dominates in the A;
correlators, whereas the excited state is dominant in A,.

Using the M, and E, obtained from fits to A, to also
analyze A; and P leads to form factors that are in much
better agreement with the PCAC relation as shown in
Fig. 4. This step, however, assumes that the same combi-
nation of excited states provides the dominant contribution
to all five (O = A, and P) correlation functions. If this is

The y%/dof is still large in many cases indicating that the fit
ansatz used to control ESC does not fully describe the data and
highlights the need for a more nuanced understanding of excited
states that contribute significantly. This caveat should be con-
sidered implicit throughout the paper.

the case, then, statistically, the more sound method is to fit
these five correlators simultaneously with common M, and
E,. These strategies are labeled {4,25™} and {47 2sim},
As expected, the resulting M, and E, from these simulta-
neous fits are similar to M?“ and E?“ because these are
mainly controlled by the A, correlator.

Figure 4 also shows tests of the pion-pole dominance
hypothesis, which, with the Goldberger-Treiman relation

[37], relates Gp(Q?) to G4(Q?) as

0%+ M2Gp(Q?)
AM% GA(Q%)

(30)

The behavior of the data for the combination in Eq. (29)
(PCAC) and Eq. (31) (PPD) is very similar and correlated,
and {47, 251m} gives the most consistent outcome. Noting
this strong correlation, we examine the relation

2My Gp(Q?)

2m
M2 Gp(Q)

=1, (31)

which should hold for the PCAC relation, Eq. (29), and
PPD, Eq. (30), to be simultaneously satisfied. Following
Ref. [38], and working to first order in yPT in M2 and Q?,
the left-hand side of Eq. (31) can be expanded as
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1 0> 1
1+ 8+ MG s (45 (32, (2

where A = 2d,3M?/ g, is the Goldberger-Treiman discrep-
ancy and d,g is an unknown low-energy constant. The data
for the left-hand side of Eq. (31), also presented in Fig. 4,
show that the ratio is close to unity at Q> = 0 and has a
significant, essentially linear, increase with Q? on all
seven ensembles. A linear fit to the five larger volume
ensembles, shown in the bottom right panel in Fig. 4, gives
1.033(5) + 0.272(16) Q?, with Q% in GeV?. From Eq. (32),
the quantity (A +#(rj)M32) should equal the intercept
minus one, and also the slope times M2. Using our result
(r3) = 0.43 fm? presented in Sec. XIII B, we get A ~0
from the intercept and ~ —0.02 from the slope. For
comparison, using the Goldberger-Treiman relation g4 M y =
gxnvFr(1+A) and the experimental values g, = 1.27641,
My =939 MeV, F,=0922MeV, and g,yy = 13.25
[39-41] gives A ~ —0.02. In short, we show that the ratio
defined in Eq. (31) is not unity and exhibits a linear
dependence on Q7 that is consistent with the prediction
of yPT.

The data in Fig. 4 also show that with the {4"7,25m}
strategy, the smallest Q? points on the a091m170L
ensemble start to deviate away from unity for both the
PCAC and PPD relations but not those from the a071m170
ensemble. In contrast, for the {4, 3*} strategy, the data from
both ensembles bend down at small Q> which we have
shown is due to the missed Nz states. To investigate this
difference between the a091m170L and a071m170 data
with the {4V7, 25} strategy, we show (Q% + M2)Gp(Q?)
versus O in Fig. 26 in Appendix F, and note that the data
move up as a — 0 for all but the {4, 3*} strategy; i.e., they
indicate a dependence on a when the Nz state is included.
Nevertheless, we cannot pinpoint whether the difference
in behavior is a discretization effect or a combination of
statistical and/or larger discretization effects in the
a091m170L data, or indicates the need to include addi-
tional (multihadron) low energy excited states in the fits. In
the near future, we plan to double the statistics on these two
ensembles to better quantify the difference and explore
adding a third state, i.e., a {4V7 35} fit.

A. {4V* 25im} is our preferred strategy
for analyzing the axial form factors

Data from the two strategies {4V7,244} and {4V7 2sim}
show much better agreement with the PCAC and PPD
relations as shown in Fig. 4. To choose between them, we
consider two additional checks: First, the ground state
matrix elements extracted from the A4 correlator with g # 0
should satisfy the relation 0,44 = (Eq — M)A, for all q.
Second, the value of the ground state matrix element
(N|A4|N) extracted from fits to (N'A4N') should agree
with that reconstructed by inserting G, and G calculated

from the A; correlators into the right-hand side of Eq. (23).
The first condition is satisfied by both strategies even
though (N|A4|N) is very poorly determined with
{4N= 244} The second check is satisfied within errors
only by data from {4V 25m} Based on these two con-
sistency checks and the PCAC relation, we select
{4N= 2sim} as our preferred strategy for analyzing the
axial form factors; however, we will continue to examine
all six strategies discussed above to exhibit the spread.

The obvious next step is {4"7,3%™m} fits, i.e., leaving
the first and second excited-state energy gaps as free
parameters (or using priors for them) in fits to the three-
point functions. With current data, we do not get mean-
ingful results. Much higher statistics are required.

X. AXTAL VECTOR FORM FACTORS

As discussed in Sec. IX, we compare six strategies to
extract the axial vector form factors, with our preferred one
being {4V7 25im} Tt makes the following assumption: the
excited-state contamination in all five channels, A, and P,
can, to a good approximation, be accounted for by a “single
low mass effective excited state” whose parameters can be
determined from a simultaneous two-state fit to the five
three-point functions. Only the ground state parameters are
taken from fits to the two-point functions.

We find that the two sets of estimates using {4V7, 244}
and {47, 28m1 versus {4,24} and {4,25™} fits give
overlapping results for the form factors, which satisfy
PCAC equally well. These two sets differ only in the M,
and A, obtained from the {4V7}- and {4}-state fits to the
two-point functions, and these differences do not signifi-
cantly impact the results for the form factors. It is the mass
gap of the first excited-state used in the fits to the three-point
function that is important. In both the {24+} and {25™} fits,
the output AE, is controlled by the A, correlator and
corresponds to the Nz state as discussed in Sec. IX.
Thus, the impact of including the Nz state is far more
significant in the three-point functions; however, our
approach is to consistently choose strategies in which the
mass gap in both the two- and three-point functions does or
does not include the low-lying (N7x) state. This is achieved
with the {4,3*}, {4V7 3*}, {4N7 244} and {4N7 2sim}
strategies (see Appendix A for their definition), which are,
therefore, used to present the final results. We do not discuss
estimates from the {4,244} and {4,2%™} strategies any
further since all we can add from their analysis is they give
results consistent with {47,244} and {4"7,25m},

The data for Z,G4(Q?) and Z,Gp(Q?) for the four
remaining strategies are given in Tables XVIII and XIX
and plotted in Figs. 5 and 6, where we divide them
by ¢4F = 1.277 so that the value should equal unity at
Q? = 0 in the CCFV limit. Similarly, the unrenormalized
Gp(Q?) is given in Table XX and plotted in Fig. 7.
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FIG. 5. The data for the renormalized axial form factor Z,G,(0Q?%)/ g5 ", with g37 = 1.277, are plotted versus Q? in GeV? (left) and
0?/M53, (right). Each panel shows the data from the five larger volume ensembles. The four rows show the results from four strategies,
specified at the lower left corner of each panel that are used to control ESC. The three curves show the dipole ansatz with M, = 1.026,
1.2, and 1.35 GeV, and have been drawn only to guide the eye. The agreement between the three ~270 and the two 170 MeV data

indicates that discretization errors are small.

The latter is used primarily to check the PCAC and PPD
relations as shown in Fig. 4.

A. Parametrizing the Q* behavior of G4 (Q?%)
and the extraction of g, and (r3)

Our primary goal is to calculate the axial form factors,
G, and Gp, as a function of Q? as these are needed in the
calculation of the neutrino-nucleus cross sections. These
results are shown in Figs. 5 and 6.

In most current lattice QCD calculations, the smallest
nonzero lattice momentum, which is also the gap between

the discrete momenta, is large, |gmin| =200 MeV.
Consequently, it is important to keep in mind that obtaining
the slope and the value at Q% = 0 from fits to lattice data
with 0% > 0.04 GeV? have an associated systematic uncer-
tainty. This can be estimated by comparing g, obtained
directly at Q%> = 0 from the forward matrix element with the
extrapolated value G ,(Q? — 0). In this work, we perform
this extrapolation using three parametrizations, dipole, Padé,
and z-expansion, as discussed below and in Sec. XIII A.

Historically, the dipole (D) ansatz has been used to
parametrize the Q? behavior of G,(Q?):
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FIG. 6. The data for the renormalized induced pseudoscalar form factor Z,Gp(Q?)/ 5", with gi® = 1.277, are plotted versus Q2 in
GeV? (left) and Q?/M %, (right). Each panel shows the data from the five larger volume ensembles. The four rows show the results from

four strategies for controlling ESC that are specified in the label at the bottom left corner. The difference among the three ~270 and the
two 170 MeV data is more noticeable when plotted versus Q%/M3.

G4(0) 12 G\ (0% &

Gi(@)p == () =5 (33) =L =N " az(0), 34
It is the Fourier transform of a distribution exponentially
falling in space and appealing for phenomenological
analyses because it has only one unknown parameter, 7 =
the axial mass M, since g, is known accurately from = Ve + Q2 Ve + fo_
experiments. Also, it goes to zero as Q* for large Q? as View + 0 + View + 1o
predicted by QCD perturbation theory [42,43].

The second parametrization used is the model-independent ~ In terms of z, the form factors are analytical within the
z-expansion [44,45], unit circle with the nearest singularity, a branch cut, at

where the a; are fit parameters and z is defined to be

(35)
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FIG. 7. The unrenormalized pseudoscalar form factor Gp(Q?) is plotted versus Q? in GeV? (left) and Q*/M?% (right). Each panel
shows the data from the five larger volume ensembles. The four rows show the results from four strategies for controlling ESC that
are specified in the labels. The difference among the three ~270 MeV and the two 170 MeV data is more noticeable when plotted

versus Q?/M3,.

Q? = —to = —9M?2 (or —4M?2 in the vector channel). We
choose the parameter 7,, which is the value of —Q? that is
mapped to z = 0, to be the midpoint of the range of Q? values
on each ensemble to minimize the maximum value of |z| as
discussed in Ref. [8]. For the seven ensembles listed in
Table XV, this corresponds to 7, = {0.4,0.6,0.3,0.3,0.2,
0.5,0.25} GeV?, respectively. We find no significant differ-
ence in the results on using 7, = 0.

The data for Z,G4(Q?)/1.277 are plotted versus z in
Fig. 8 for the {47, 25m} strategy and show only small
deviations from linearity. As a result, z-expansion fits with

71234} truncations give essentially identical results for both
g and (r3). As shown in Fig. 9, the augmented y? does not
decrease by two units on increasing the order of truncation
from z2 — z°> — z*. Therefore the z{3* fits are considered
overparametrized by the Akaike information criteria [27].
In Ref. [9], we had observed that fitting the precise
experimental data for the electric and magnetic form
factors stabilizes for z¥ truncated at k > 4. Our current
lattice data with ten points are well fit by the z> (z°)
truncation for the axial (vector) form factors as discussed
further in Sec. XII.
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FIG. 8. The renormalized G, plotted versus z for the seven
ensembles. The data are from the {47,255} strategy.

We also examine z-expansion fits with sum rules that
ensure that G, (Q?) falls as Q~* with Q? — oo as predicted
by perturbation theory [43] following the procedure
described in Ref. [9]. Results of analyses with and without
sum rules overlap. Our final results for g, (Table IV) and
(r3) (Table VI) are taken from fits without sum rules as
these quantities characterize the behavior at Q> = 0. To
stabilize all these z-expansion fits, we use Gaussian priors
for all the a; with central value zero and width five.

Last, we make two Padé fits, P, = P(g,0,2) and

These also incorporate the 1/Q* behavior expected at
large Q2. Since the calculation is done for spacelike Q2
and at values sufficiently far from the physical poles and
cuts, their influence is expected to be small. Therefore,
these Padé fits should provide an equally good paramet-
rization as the z-expansion.

We find that P, gives results consistent with the z>3* fits
and has the virtue of being easier to visualize in terms of
powers of Q%. In Sec. XIV we will also present a P(g, 0, 2)
and z> (or z°) parametrization of the axial, electric, and
magnetic form factors ignoring lattice artifacts, with results
given in Egs. (55), (56), and (58).

To explore systematic errors due to the limited range of
Q? points fit, we compare results obtained by fitting all ten
0? # 0 points versus the six with the smallest Q? values.
This cut, based on the number of points rather than a value
of Q7 in physical units, is chosen because, in the prob-
lematic cases in the vector channel, the errors are large in
the four largest Q2 points as can be seen in Figs. 12—14.
Based on this comparison, we selected ten-point fits for the
axial form factors and six-point fits for the vector.

Results for g4 and (r) depend on both the strategy used
to obtain the ground state matrix element and the fits

Py = P(g, 1, 3), defined as (dipole, or the z-expansion or the Padé) used to parametrize
the Q? behavior of G4(Q?). In particular, the value of the
A
P(9.0,2) = it T (36) low Q . pO}nts n G{,(Q. ) vary among the strategl.es as
L+0,0"+ b0 shown in Fig. 21, which in turn leads to differences in the
Q? parametrization, i.e., in g, and (r3). These differences
(1+a,0% els in Fig
P(g.1,3) = 9 1 (37) can be inferred from the labels in Fig. 9, where the three
g 2 4 6 . .
1+ 50"+ b, 0" + b30 panels give Q7 fits to G4(Q? # 0) data for the {4,3"},
1.6 ; ; ; ; 16 ; ; ; ‘ 1.6 ‘ ; ; ;
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FIG.9. Plot of G4 versus Q for the a091m170L (top row) and a071m170 (bottom row) ensembles. Also shown are the dipole, Padé
(94,0,2), and 71234} fits to the ten Q2 points. The results for unrenormalized g, and r, (in fm) are given in the legends: dipole (top line),
Padé (second line), and z>>* (lines 3—5). The y?/dof of the fits are given within square brackets. The error bands of the fits are shown by
dotted lines of the same color only over the range of the data for clarity.
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TABLE VI. Results for (r) from a dipole, P, Padé, and z? fits
to all ten Q% # 0 points for the seven ensembles and the four
strategies in column 1 (see Appendix A) used to control excited
state contamination. The fits to {4V7,24+} data on the a094m270
ensemble are not stable so no results are given.

Fit <r§\>|dipole <”/24>‘P2 <r,%l> 2
al27m?285

{4,3*} 0.293(13) 0.293(20) 0.297(15)

{4N= 3+} 0.315(13) 0.333(22) 0.323(15)

{4N= 244y 0.302(15) 0.349(32) 0.315(18)

{4N=, 2“"‘} 0.304(15) 0.310(42) 0.297(21)
a094m270

{4,3%} 0.255(18) 0.293(65) 0.291(29)

{4N= 3%} 0.265(14) 0.340(43) 0.314(18)

{4N7r, 2A4}

{4N=, 25““} 0.247(11) 0.280(48) 0.278(23)

a094m?270L

{4,3*} 0.290(11) 0.305(18) 0.305(13)

{4N= 3%} 0.317(11) 0.348(20) 0.336(13)

{4N= 2443} 0.312(9) 0.358(19) 0.339(12)

{4N= psim} 0.298(10) 0.333(26) 0.317(16)
a091m170

{4,3*} 0.301(15) 0.307(30) 0.340(29)

{4N= 3+} 0.376(33) 0.355(92) 0.411(69)

{4N= 244y 0.292(16) 0.459(52) 0.466(41)

{4N=, 251‘“} 0.306(16) 0.350(59) 0.378(53)

a091m170L

{4,3*} 0.341(19) 0.323(30) 0.342(30)

{4N= 37} 0.449(45) 0.426(74) 0.462(63)

{4N= 244} 0.311(20) 0.486(48) 0.484(40)

{4N= 2sim} 0.369(19) 0.478(61) 0.479(51)
a073m270

{4,3*} 0.269(12) 0.270(24) 0.280(17)

{4N= 37} 0.271(9) 0.330(22) 0.312(12)

{4N= 244y 0.242(9) 0.287(21) 0.271(14)

{4N=, 2“““} 0.253(8) 0.285(22) 0.278(13)
a071m170

{4,3*} 0.284(22) 0.288(36) 0.306(38)

{4N7 3%} 0.368(29) 0.428(66) 0.455(56)

{4N= 2443 0.271(15) 0.494(47) 0.507(39)

{4N=, 251‘“} 0.308(18) 0.424(67) 0.438(59)

{4N= 3}, and {4N7 25m} strategies for the a091m170L
and a071m170 ensembles. Recall that the difference in g,,
obtained from the forward matrix element, between the
{4,3*} and {4"7,3*} strategies was shown in Fig. 3.
Comparing results for g4 and (r}) from the seven
ensembles, summarized in Tables IV and VI, we note
the following points:
(i) With the {4,3*} strategy, results for g, from dipole,
71234 and Padé fits agree with those measured
directly from the forward matrix element on all

ensembles. The fits have reasonable y2/dof.

(ii) For the {47, 3*} strategy, similar agreement is seen
between results from the dipole, z{23*}, and Padé
fits, and from the forward matrix element. However,
these estimates are larger than those with the {4, 3*}
strategy, especially for the M, =~ 170 MeV ensem-
bles (see Fig. 3).

(iii) With the {4V* 244} and the preferred {4V7 2sim}
strategies, (i) the dipole estimates are smaller than
the z{>3# or the Padé values on all three M, =
170 MeV ensembles, and (ii) the y?/dof becomes
larger for the dipole fit to the data from all three
{4N*} strategies, mainly because it misses the low
Q? points.

A key point is that the differences observed on the M, ~
170 MeV ensembles are not evident at M, ~ 270 MeV.
This is consistent with the earlier discussion that the
difference in the mass gaps between the {4} and {47}
fits become larger as M, decreases, i.e., the mass gap of
the Nr state decreases. In short, the data shown in
Tables IV and VI indicate that estimates of g4 and (r3)
become increasingly sensitive to the ESC strategy as
M, — 135 MeV. Also, the dipole fit starts to fail. This
M, dependent behavior has a significant impact on the final
estimates obtained from the CCFV fits as discussed in
Sec. XIII and shown in Fig. 32.

XI. THE INpUCED PSEUDOSCALAR FORM
FACTOR GP(QZ) AND THE EXTRACTION
OF gp AND g.nn

The data for the renormalized induced pseudoscalar
form factor Z,Gp(Q?)/(gi") from the five larger volume
ensembles are plotted versus O and Q*/M% in Fig. 6.
Overall, the data show dependence on the pion mass; i.e.,
data fall into two bands for ensembles with M, ~ 270 and
170 MeV. This dependence is more evident when plotted
versus Q%?/M?%. On the other hand, we do not observe a
significant a dependence.

The Q? dependence of Gp(Q?), given in Table XIX, is
analyzed using the small Q? expansion of the pion-pole
dominance ansatz given in Eq. (30):

m, = 2 o 22 44
G = ,
My p(0°) aZ(M,2,+Q2)+C1 + ca"Q° + c3a*Q

(38)

where the leading term is the pion-pole term and the
polynomial approximates the dependence coming from
the small Q? behavior of G,(Q?). It is also the behavior
predicted for small Q? and M2 by the leading order chiral
perturbation theory [38]. In practice, this ansatz fits the
data over a large range of Q?, 2.5M2—50M2 in units of
M, = 135 MeV, as given in Table XVIIL.
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From these fits, we extract g; and the pion-nucleon
coupling, g,yy, using the following expressions:

Estimates from the {47,244} and the {4, 25} strategies
are consistent and larger than those from even {4"7, 3%},
In these two cases, the Q* term is an overparametrization

g = my, Gp (0.88m,%), (39) by AIC and in fits including it; even the ¢, are poorly
2My determined.
Data from all seven ensembles obtained using strategies
2+ 0 2 <o {4,3*} and {4V7, 2sm) iven for the t f
Gonn = Gp(Q?) = — . (40) , an ;2% are given for the two ways o
0>—-m2 4MyF, 2a"m,F, renormalizing the axial current in Table VIIL It shows

where g,yy is defined as the residue of Gp(Q?) at the pion
pole at Q> = —M3, m, = 105.7 MeV is the muon mass,
and F, = 92.2 MeV is the pion decay constant.

We carried out fits to Gp(Q?) versus Q to get g and
Jrnn» (1) to just the smallest six Q2 points and (ii) to all ten.
On all seven ensembles and for all four strategies (except
for the four highest momenta points with the {4V7 244}
strategy on the a094m?270 ensemble that could not be fit
reliably) the estimates from these two fits are consistent
at <lo level. For our final results, we choose the ten-
point fits.

A second issue is whether the Q* term in Eq. (38) is
needed or is an overparametrization. Results of the fits with
and without the Q* term are given in Table VII for the
a091m170L and a071m170 ensembles. We note a signifi-
cant difference between the {4,3*} and {4"7 3*} strate-
gies, and in both cases there is a large reduction in the total
x%, which justifies including the Q* term by the Akaike
information criteria [27]. The errors on ¢, are, however,
about a factor of 2 larger with the {47 3*} strategy.

m u

TABLE VII.  Results of fits to 55
N

clearly that the main difference in the estimates comes from
whether the Nz state is included in the analysis.

Our final results are presented with the {4V7 2sim}
strategy based on the discussion in Sec. IX A and with
the term proportional to c5 set to zero. The CCFV fits to the
data in Table VIII are discussed in Sec. XIII C where we
also compare our final results for g,yy with the phenom-
enological Goldberger-Treiman relation and the experi-
mental value from the zN scattering length.

XII. ELECTRIC AND MAGNETIC
FORM FACTORS

To obtain the electric and magnetic form factors, we
analyze the three sets of correlators, RV, IV;, and RV,
defined in Egs. (25)—(27) using four strategies {4,3*},
{aN= 3}, £4,25m) "and {47, 25M} to remove ESC. In the
{211 fits to the three-point functions, all three correlators
are fit simultaneously with common AM, and AE,. Only
the ground state parameters are taken from the two-point
function. Fits with different strategies are illustrated in
Figs. 27-29 using the lowest momentum transfer (n> = 1)

GP(QZ) versus Q using the ansatz and the parameters c; defined in Eq. (38). The strategies used to

remove ESC in column 1 are defined in Appendix A. Fits to a091m170L data (top) and a071m170 (bottom), with and without the finite
volume (c;) term, are compared for the four strategies listed in column one. All ten values of Q2 are used in the fits and results are given
for both renormalization methods.

ESC strategy Co Cy c 3 [*/dof] 9plz, Jannlz, 9plz, Jannlz,
Q? fits to the a091m170L data
(4,3} 0.0356(16)  0.136(37)  —2.13(30) [2038/7] 3.89(15)  7.52(39) 3.87(15)  7.50(38)
{4,3*} 0.0312(18) 0.545(93) -11.8(2.0) 65(13) [6.22/6]  3.76(16) 6.59(42) 3.75(15) 6.57(41)
{4N”, 3%} 0.0501(41)  —0.13(10) —-0.99(74) . [15.91/7] 5.19(36) 10.59(90) 5.17(36) 10.55(90)
{4N”, 3%} 0.0425(49) 0.43(23) —14.0(4.7) 87(31) [8.04/6] 4.86(38) 9.0(1.1) 4.84(38) 8.9(1.1)
{4N”, 2A4} 0.0548(23) —0.287(64) 0.86(48) [3.59/7)  5.55(21) 11.56(57) 5.53(19) 11.53(54)
{47, 2A4} 0.0530(33)  —0.18(15) -1.2(2.9) 13(18) [3.06/6] 5.45(25) 11.20(75) 5.43(23) 11.17(73)
{4N”, 25““} 0.0529(25) —0.196(83) —0.05(71) [4.02/7]  5.43(21) 11.17(60) 5.41(20) 11.13(58)
{4N=, 2“"‘} 0.0516(40) —0.11(21) —1.8(4.3) 12(28) [3.85/6] 5.36(27) 10.90(89) 5.34(26) 10.86(88)
0? fits to the a071m170 data
{4,3*} 0.0192(17) 0.116(67) —2.04(70) [10.98/7] 3.69(27) 6.89(63) 3.71(127) 6.91(63)
{4,3*} 0.0174(18) 0.47(14) —13.7(4.1) 102(36) [2.81/6] 3.66(27) 6.22(67) 3.67(127) 6.24(67)
{4N”, 3%} 0.0318(27) —0.231(94) 0.32(92) [7.43/7)  5.73(42) 11.38(99) 5.75(43) 11.4(1.0)
{4N”, 3%} 0.0271(34) 0.21(23) —12.0(5.8) 104(48) [2.82/6]  5.24(48) 9.7(1.3) 5.25(49) 9.7(1.3)
{4N”, 2A4} 0.0325(11)  —0.295(49) 1.83(59) [7.24/7) 5.81(17) 11.64(48) 5.83(17) 11.68(48)
{4N”, 2A4} 0.0359(20) —0.60(16) 10.0(4.2) —67(34) [3.34/6] 6.1926) 12.87(80) 6.21(26) 12.91(80)
{47, ZSim} 0.0342(15)  —0.295(66) 1.22(76) [2.54/7)  6.13(23) 12.24(61) 6.15(24) 12.28(62)
{4N”, 25"“} 0.0354(26)  —0.40(19) 4.1(5.0) —24(41) [2.20/6] 6.27(34) 12.69(98) 6.29(34) 12.73(98)
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TABLE VIIL  Results for g = 5 M” Gp(0.88m2) and g,yy = 2— from fits to 72 GP(Qz) using Eq. (38) with the term proportional
to c3 set to zero. Estimates from the two renormahzatlon methods and the two strategles {4,3*} and {4"7,25™} are compared.
{4’3*} {4N7r’2sim} {4’3*} {4N7r’2sim}

Ensemble 9plz, 9plz, 9plz, 9plz, 9xnnlz, 9xnnlz, 9xnnlz, 9znnlz,
al27m285 2.266(66) 2.221(61) 2.655(81) 2.602(78) 11.30(53) 11.08(51) 13.64(67) 13.37(65)
a094m?270 2.52(16) 2.50(16) 2.87(10) 2.851(96) 11.27(89) 11.20(87) 12.97(59) 12.90(57)
a094m270L 2.455(94) 2.465(89) 2.919(68) 2.931(55) 10.89(56) 10.94(54) 13.46(46) 13.51(43)
a091m170 3.93(14) 3.91(14) 5.53(22) 5.50(21) 7.77(37) 7.73(36) 11.30(56) 11.24(55)
a091m170L 3.89(15) 3.87(15) 5.43(21) 5.41(20) 7.52(39) 7.50(38) 11.17(60) 11.13(58)
a073m270 2.45(11) 2.45(10) 2.883(54) 2.883(48) 11.11(62) 11.11(62) 13.30(40) 13.30(39)
a071m170 3.69(27) 3.71(27) 6.13(23) 6.15(24) 6.89(63) 6.91(63) 12.24(61) 12.28(62)

data that have significant ESC and a good statistical signal,
and the fits are stable with respect to variations in 7 and 7.
The y?/dof of the fits and the values of AM, and AE,
entering in the fits to the three-point functions (or AM; and
AE, that are outcomes in the {2%™} fits) are given in the
legends. Note that for each strategy, the mass gaps in fits to
the three correlation functions are the same since they either
are taken from fits to two-point functions for the first two
strategies or are outputs of simultaneous fits in the two
{25im} cases.

The first issue we investigate is whether the excited
states that contribute to these three correlators can be
identified. The analog of the pion-pole dominance in the
axial channel is vector-meson dominance; i.e., the vector
current, V,(q), couples to the p-meson, the lowest excita-
tion in the vector channel, and thus to the 2z(q) state.

In this case, the dominant excited state contributing to AM;
and AE, should be N(q)27(—q) [and/or N(0)27z(0)] and
N(0)27(q), respectively, where 27z(q) is a two pion state
with total momentum gq.

In Fig. 10, the AM, and AE, from simultaneous {2™}
fits are compared to the AM; and AE; from the {4}- and
{4V} _state fits to the two-point functions and to the mass
gaps expected for a specified state (dotted lines). Our
criteria for identification of a state is when the AM, or AE,
agree with the corresponding dotted line. We remind the
readers that {4V™ }-state fits are also relevant for the vector
channel because the mass gap of the N(0)z(0)x(0) state is
close to that for the N(1)z(—1) state for our ensembles. The
data exhibit the following features:

(i) The AE, (open red triangles) for the 170 MeV

ensembles are consistent with the energy of a
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FIG. 10. Estimates, in lattice units, of AM (black filled circles) and AE; (open black diamonds) from fits to the two-point function for
four ensembles in the order a094m270L, a073m270, a091m170L, and a071m170 in each row. Each panel also shows the values of
AM, (open blue squares) and AE, (open red triangles) from the {4,25m} (top row) and the {47, 25M} (bottom row) fits to the vector
three-point functions. The mass gaps of the noninteracting N(q)27(—q) and N(0)2z(—q) states are shown by the dotted blue and red
lines. The horizontal dotted black lines show the masses of 1,2, ..., pions.
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noninteracting N(0)27z(q) state shown by the red
dotted line. This agreement is seen for both the
{4,25m} and {4N7,28m} strategies.

(ii) The AE, for the 270 MeV ensembles lie between
1 and 2 times M. The closest association would be
N(q)z(0) or N(0)z(q) or N(q)2xz(0) states but not
the N(0)27z(q) state shown by the red dotted line.

(iii) The values of AM, (blue squares) lie much below
the N(q)27(—q) state shown by the blue dotted line
for the 270 MeV ensembles; however, the difference
decreases significantly in the data from the 170 MeV
ensembles. The increase with ¢ also becomes similar
in shape to that for N(q)2z(—q).

(iv) The AM, are similar to AE, for the 170 MeV

ensembles while they lie about M, /2 above for the
270 MeV ensembles. This behavior is very different
from the axial case shown in Fig. 22.
(v) With {4V 28m} " the mass gap AM, ~ AE, and
comes close to AE; used in {4¥7 3*} for both
170 MeV ensembles. Such an agreement between
the mass gaps in the {47 25Mm} and {4V~ 3"}
strategies implies that they should give similar results.
These trends in AM, and AE, support vector meson
dominance, i.e., the insertion of 2z(gq) by the current,
which we anticipate will become even more apparent on
physical M, = 135 MeV ensembles. This is in analogy
with pion-pole dominance with the axial current inserting
7(q) as inferred from Fig. 22. The values of AM; from the
M, ~ 270 MeV ensembles lying close to 2M , suggest that
the N(0)27z(0) state and its tower also contribute on the
p = 0 side of the operator.

Next, we investigated whether the data for G from IV,
which show large ESC as illustrated in Fig. 28 and similar
to that seen in (NTA4N), provide further insight on the
identity of the excited states. We find that the y?/dof of
even the {4, 3*} fits is not unreasonably large compared to
the other strategies even though the values of AM | and AE,

are significantly different. Overall, current data for Gg" do
not help us decide which excited states give the dominant
contribution.

An important feature in the ESC fits shown in Figs. 27
and 29 in Appendix G is that while the differences in the
mass gaps between the four strategies are large, the variation
in results for Gg“ and G,‘(j is <5%. The smallness of the
variation is further highlighted in Figs. 12 and 14—all four
estimates of the form factors are consistent within errors with
the Kelly parametrization of the experimental data.

We base our choice of which strategy to choose for
presenting the final results on the trends in the mass gaps
illustrated in Fig. 10. The first is the growing agreement
between AM, and AE; in the {4V7 25™} data. Next is
their agreement with the AM, and AE; from the {4"7} fits.
Last, AM, ~2M, suggests that the lowest excited state
N(0)z(0)z(0) also contributes. These trends suggest that

the {4"7,28m} and {4V7, 3*} strategies should give similar
results for the form factors. Thus we will choose between
these when presenting the final results.

Results for the renormalized form factors from the four
strategies are given in Tables XXII-XXIV. The y?/dof of
the fits used to remove the ESC are reasonable in most
cases. The errors are the smallest in the {4, 3*} data and are
large for many of the large Q? points from the {4, 2™} and
the {4V7 25m} fits. For this reason, we choose fits to the
smallest six Q2 points for calculating the charge radii.

A comparison of the form factors, and the errors in them,
among the four strategies is shown in Fig. 11 for the five
large volume ensembles. For each strategy, the full data
from the seven ensembles are shown in Figs. 12—14. The
Gg" show significant variation between the strategies, with
the {4,25M} data being closest to the Kelly curve. Part of
this observed variation is a result of a poorer statistical
signal and part due to less control over ESC. For these
reasons, we do not include G‘E/" in our final analysis;
however, this channel influences the extraction of AM,
and AE, from the simultaneous {29™} fits.

For the two cases with the best signal, Gg from RV, and
Gy from RV;, we make the following observations from
Fig. 11 using the Kelly curve as a benchmark and to guide
the eye:

(1) No significant difference is observed between the

data from the two simultaneous fits, {4, 2™} versus
{4N= 2sim}. i e., the differences in the ground state
parameters used do not significantly affect the
results. On the four largest Q° points, the errors
are large in many cases, but the overall shape of the
data is similar for all four strategies.

(ii) Results for GZ“ and G,‘(,," lie close to the Kelly
parametrization for all four strategies, with the
{4N= 3*} data plotted versus Q*/M3 showing the
best agreement.

(iii) All four strategies give consistent results on the
M, =270 MeV ensembles.

(iv) In Fig. 11, one can notice (i) a small spread among
the four strategies in GZ“ on the M, ~ 170 MeV
ensembles, (ii) a small upward movement of data
from a091m170L to a071m170, and (iii) the {4, 3*}
and both {25™} data on a ~ 0.07 fm ensembles lie
above the Kelly curve.

(v) The GX; data also move upwards from a091m170L
to a071m170. The {4,3*} strategy data lie below
others on the two smallest Q* points.

(vi) The data plotted versus Q> show some dependence
on a and/or M2, whereas when plotted versus
Q?*/M?%, no significant dependence on either a or
M2 is observed, and the agreement with the Kelly
curve is better. The size of the observed difference
between the data plotted versus Q% or Q?/M?% can be
accounted for by discretization errors. Assuming
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FIG. 11. Each panel shows a comparison among the renormalized form factors G?Vf‘ (left), G};ivi (middle), and G?J,V" (right) obtained

using four strategies and plotted versus Q% in GeV2. The labels specify the strategy used to remove the ESC and the ensemble ID. The
solid black line shows the Kelly fit to the experimental data.

that there is a cancellation of these in the analysis  the forward matrix element has an O(1%) excited-state
versus the dimensionless quantity Q?/M3%, we  effect as shown in Fig. 2, one could use it to pick the best
choose it for presenting our final results. strategy, i.e., the one for which the extrapolation of G(Q?)

As mentioned above, the analog of the PCAC relation for ~ to Q% = 0 using the z> or Padé fit is most consistent
the electromagnetic form factors is the conserved vector  with gy,. However, data from all four strategies shown in
charge, i.e., limgy:_, Gg(Q*) =gy = 1/Zy. Since g, from  Figs. 12 and 14 are consistent within expected lattice
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FIG. 12.  Gg(Q?) from RV, plotted versus Q2 in GeV? (top panels) and versus Q% /M? (bottom panels). Each panel shows the data for
the seven ensembles, and each row compares the four strategies used to remove ESC.

1.0 1.0 1.0 1.0
al27m?285 +o- al27m285 o~ al27m285 ~o- al27m285 ~o-
2004m270 At 2004m270 At 2004m270 At 2004m270 A
08F 2094m270L +57+ 08 F 2094m270L +57 08 F 2094m270L +57 08 F 2094m270L +57
a001m170 rE 2001170 rE a001m170 rE 2001m170 rE
L 06} 2091m170L +&- L 06} 2091m170L +&- L 06f 2091m170L 6 S 06F 2001m170L +6-
S a073m270 v > a073m270 +&- A a073m270 +&- A a073m270 v
G 2071170 r>¢ o 2071m170 r>¢ o 2071m170 r>¢ o 2071m170 ¢
© 04t Kelly, 2004 — 1 © 04F Kelly, 2004 — 1 © 04F Kelly, 2004 — 1 © 04F Kelly, 2004 —
b b ® b b
02k 28 @ o + 0.2 iy e, 02k 08 0.2 imy P
e W 3 4 i Wi gsim
oo b3 oot T oo L2 — P A LA - U
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Q?[GeV?| Q?[GeV?] Q?[GeV?] Q?[GeV?]
1.0 . : : : . : 1.0 . : : : . : 1.0 . : : . : 1.0 . : : : . .
2127 m285 < a127m285 < a127m285 1o a127m285 o
2004m270 At 2004m270 A 2004m270 A 2004m270 A
08 2094m270L r 7 08¢ 2094m270L r- 08¢ 2004m270L r- 08 2004m270L r-
a091m170 v+ 2091m170 rE 2091m170 r 2091m170 r
S 06 2001m170L +6+ { s 06 F 2091m170L +&- L 06F 2091m170L +&- L 06} 2091m170L +&-
> a073m270 +o+ > a073m270 v+ > 2073m270 +&+ > 2073m270 +o+
o 2071m170 r>¢« o 2071m170 v« o 2071170 v« g 2071170 v«
© 04 Kelly, 2004 — 1 © 04F ) el 2004 — © 04t X Kelly, 2004 — 1 © 04F x Kelly, 2004 —
B
02f % 02 ™ ® 02 . 02 iy,
NS W 3 4 i Wi gsim
00 L3 00 L } 00 L ) 00 L ! !
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Q@ /My Q*/MF, Q@ /My Q@ /My

FIG. 13.  Gg(Q?) from IV, plotted versus Q% in GeV? (top panels) and versus Q?/M?%, (bottom panels). Each panel shows the data for
the seven ensembles, and each row compares the four strategies used to remove ESC.
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FIG. 14.  Gy(Q?) from RV, plotted versus Q% in GeV? (top panels) and versus O/ M%, (bottom panels). Each panel shows the data for
the seven ensembles, and each row compares the four strategies used to remove ESC.
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artifacts with the Kelly parametrization, so this check does
not help in picking among the strategies.

The reduction in scatter in the form factors under
variation in @ and M, when plotted versus Q?/M3 is
consistent with the analysis of clover-on-HISQ data pre-
sented in Ref. [9], where results by other collaborations
carried out at or near the physical pion mass were also
reviewed. On the other hand, the improvement in agree-
ment with the Kelly curve of the clover-on-clover data
presented here is striking. (See in particular the {47 3*}
strategy data plotted versus Q*/M?% in Figs. 12 and 14.)
Beyond the fact that the clover-on-clover formulation is
unitary, the only substantial change in the lattice method-
ology we have made over the clover-on-HISQ calculations
is the random parity transformation [see Eq. (14) in Sec. III]
on all the lattices [17,18]. Symmetry under parity plays an
important role in constraining the excited states that should
contribute; for example, it disallows the N(0)z(0) state. So,
while we expect improvement in the precision with which
correlation functions or contributions that should be zero
under parity transformation are indeed zero, the level of
improvement in agreement with the Kelly parametrization
calls for further study.

For the {4,3*} strategy, the data in Fig. 11 for G(Q?)
lie above the Kelly curve and the low Q2 points of Gy, (Q?)
lie below. This behavior is in accord with the deviations
pointed out in Ref. [9]. The data with the {4, 3} strategy
are more consistent with the Kelly result. We hypothesize
on the basis of the observed improvement with the Kelly
curve, the behavior of the mass gaps shown in Fig. 10, and
the vector meson dominance model that the low lying
multihadron excitations contribute. While significantly
more data, especially on M, ~ 135 MeV ensembles, are
needed to validate this conjecture, we will select between
{4N= 3} and {47, 25m} strategies for presenting results
in this paper. Of these two strategies, the statistical
precision of the current data is better for {4V%,3*}, and
it has the advantage of including three states in the fit. On
the other hand, {21™} is, statistically, better motivated if the
same set of states contribute to the three correlation
functions. For the time being, we will continue to analyze
all four strategies since it is instructive to explore the
differences.

The errors in the current lattice data are much larger than
in the Kelly parametrization of the experimental data and
cover a smaller range in Q2. It will be some time before
lattice data reach the precision of experiments even in the
range 0.04 < Q> < 1 GeV?. Nevertheless, we regard the
consistency of our results with the Kelly curve an important
and necessary step in demonstrating control over all
systematic uncertainties in the calculations of form factors.
The main thrust of future improvements will be on
increasing the statistics, designing better nucleon interpo-
lating operators to further control ESC, extending the

calculation to more values of a and M, to confirm the
observed lack of dependence on them, and obtaining data at
smaller values of Q2.

Having obtained Gg(Q?) and Gy (Q?) from the four
strategies to control ESC, we again parametrize the Q2
dependence using the dipole, z-expansion, and Padé fits.
From these fits, we extract the electric and magnetic
isovector charge radii squared, (r%) and (r%,), and the
magnetic moment u. These data are given in Table IX and
exhibit two noteworthy features: (i) the estimates with
{4N= 3*} are larger, and (ii) the intercept at Q% = 0 of fits
to G,/ gy shows the beginning of a flare-out, especially for
z-expansion fits with sum rules. This second feature
suggests that Q% = 0 is already at the edge of reliability
of extrapolation of the fits to our data, which have

2. 20.04 GeV2.

In Ref. [9], we had shown that the ratio G;/G,, exhibits
a linear behavior versus Q” and had used it to get an
estimate of Gy;(Q? = 0) = u. The clover-on-clover data
presented in this study confirms this behavior as illus-
trated in Fig. 15 for the a091m170L and a071m170
ensembles. So we use this value of Gy (Q? =0)/gy as
a prior in the fits to G,;(Q?)/gy. The error in it is <0.2 for
all ensembles, so we select 0.2 for the width. Setting the
width to 0.3 changes the estimates by <¢/3 for both (r3,)
and p. Overall, the use of the prior stabilizes the fits near
Q? =0, but does not change the results for (r3,) or u
significantly. The dipole, Padé, and z-expansion fits for
the four strategies are illustrated in Figs. 30 and 31 in
Appendix G for the a091m170L and a071m170 ensem-
bles, respectively. The values of (r%), (r3,), u obtained,
and the prior used, are given in the labels. These fits are
made to the six smallest Q% points since the errors are
large in some of the higher Q? data. For completeness, we
state that the results of fits to all ten points are essentially
the same.

Two important points: first, the current data (six or ten
values of Q?) can be fit by the z> and z3 truncations and z*
is an overparametrization. We note a change between z’
and 7> and reasonable stability between z* and z*. Thus all
subsequent results are with fits using the z> truncation.
Second, the two Padé fits give overlapping results, and the
P(g,1,3) is again an overparametrization.

To obtain the continuum limit values for (r2), (r3,), and
u, the CCFV fits to the data given in Table IX are discussed
in Sec. XIIIE.

XIII. FINAL RESULTS FROM THE
CHIRAL-CONTINUUM-FINITE-VOLUME FITS

In this section, we examine the dependence of the
isovector charges, g/‘;js‘fT, the axial charge radius (r3),
the induced pseudoscalar charge ¢j, the pion-nucleon

coupling ¢,yy, the electric and magnetic charge radii,
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TABLE IX. Results for the isovector electric charge radius squared, (r%) (top); magnetic charge radius squared, (r3,) (middle); and
magnetic moment, u” — u"* (bottom); for the seven ensembles obtained using the dipole and the z* parametrization of the Q2 behavior.
These fits were made keeping the smallest six Q2 # 0 points. In fits to G,;, we included the point G,;(0)/gy, obtained by linearly
extrapolating Gz/G,, to Q® = 0, as a prior with width 0.2. Data are compared for the four strategies ({4,3*}, {4"7,3*}, {4, 25m}, and
{4N= 2sim1y for controlling ESC (see Appendix A). Dipole estimates are not included in the final results as explained in the text.

<r2E>|dipole <r)25>‘z3
Ensemble {4_7 3*} {4N7r’ 3*} {4, Zsim} {4N7r’ zsim} {4’ 3*} {4N7r’ 3*} {4’ Zsim} {4N7r’ zsim}
al27m?285 0.738(28) 0.773(27) 0.778(36) 0.777(38) 0.734(30) 0.768(30) 0.782(39) 0.778(43)
a094m?270 0.698(37) 0.704(20) 0.705(49) 0.706(48) 0.656(52) 0.699(32) 0.692(62) 0.711(63)
a094m?270L 0.682(22) 0.734(19) 0.698(22) 0.684(23) 0.669(24) 0.737(25) 0.701(25) 0.674(26)
a091m170 0.740(27) 0.891(32) 0.767(36) 0.728(32) 0.726(41) 0.969(77) 0.847(86) 0.772(98)
a091m170L 0.768(28) 0.902(54) 0.809(40) 0.784(38) 0.737(43) 0.893(79) 0.880(83) 0.76(10)
a073m270 0.643(23) 0.681(19) 0.667(25) 0.664(24) 0.625(26) 0.662(25) 0.712(33) 0.710(33)
a071m170 0.747(42) 0.854(43) 0.737(29) 0.712(25) 0.666(76) 0.834(96) 0.883(96) 0.72(11)

<r}2vl>‘dipole <r%/[>|43
Ensemble {4’ 3*} {4N7r’ 3*} {4’ zsim} {4’N7r7 2sim} {4’ 3*} {4N7r’ 3*} {4’ zsim} {4’N7r7 2sim}
al27m?285 0.582(22) 0.613(23) 0.627(29) 0.624(29) 0.569(33) 0.627(34) 0.672(34) 0.654(35)
a094m270 0.507(25) 0.505(19) 0.544(29) 0.536(26) 0.565(36) 0.623(36) 0.634(31) 0.657(37)
a094m?270L 0.544(19) 0.613(19) 0.564(18) 0.558(17) 0.592(34) 0.642(34) 0.576(35) 0.568(34)
a091m170 0.562(23) 0.691(39) 0.592(26) 0.615(29) 0.77(11) 1.00(11) 0.765(86) 0.743(95)
a091m170L 0.630(29) 0.817(52) 0.610(27) 0.678(30) 0.61(11) 0.88(11) 0.55(10) 0.66(11)
a073m270 0.495(18) 0.514(16) 0.509(20) 0.522(18) 0.527(40) 0.545(40) 0.613(26) 0.636(36)
a071m170 0.562(31) 0.679(37) 0.581(25) 0.582(23) 0.71(12) 0.85(11) 0.89(10) 0.83(11)

</'{> ‘dipole <ﬂ> |z3
Ensemble {473*} {4N7r’3*} {4_7 2sim} {4N1r7251m} {4’3*} {4N7r’3*} {4’ zsim} {4N1r7251m}
al27m?285 4.558(51) 4.696(64) 4.753(84) 4.730(82) 4.538(56) 4.712(71) 4.823(89) 4.771(86)
a094m270 4252(84)  4.249(76)  4.421(94)  4.421(93) 4343(67)  4.452(72)  4.542(73)  4.558(75)
a094m?270L 4.369(41) 4.571(57) 4.444(44) 4.422(41) 4.419(47) 4.578(61) 4.441(53) 4.426(47)
a091m170 4.177(55) 4.598(95) 4.303(71) 4.359(72) 4.321(83) 4.749(54) 4.445(64) 4.474(77)
a091m170L 4.323(64) 4.717(99) 4.275(57) 4.494(83) 4.311(78) 4.735(85) 4.224(72) 4.484(84)
a073m270 4.273(52) 4.332(52) 4.307(65) 4.371(58) 4.301(71) 4.374(75) 4.487(70) 4.550(72)
a071m170 4.200(78) 4.526(96) 4.230(70) 4.286(74) 4.281(82) 4.560(75) 4.455(79) 4.469(80)

(r%) and (r3,), and the magnetic moment x“~? on the lattice
spacing a, the pion mass M, and the lattice size parameter
M, L. The data are shown in Figs. 32-39 in Appendix H
along with the CCFV fit results as pink bands. In cases for

FIG. 15.
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which the largest variation is versus M,zz, we also show, for
comparison, the result of just a chiral fit by a gray band.
The more these two bands overlap, the more dominant is
the chiral correction.

A linear fit to the smallest six Q2 points for G,;/Gg from the a091m170L and a071m170 ensembles obtained with the

{4N7 3*} strategy. The intercept at Q% = 0 gives p"~?. The left panel shows separate fits to the two ensembles and the right to the
combined data. Also shown, for comparison, in the right panel are the data from the other three larger volume M, ~ 270 MeV ensembles.
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The overall framework of the CCFV analysis is as
follows. A simultaneous CCFV fit in the three variables
is made to get the results at the physical point defined as
M, =135 MeV, a =0, and M,L = co. With seven data
points, we can only include leading order corrections in
each variable to avoid overparametrization. Keeping just
the leading terms, we cannot directly assess a systematic
error associated with possible higher-order corrections
to the CCFV ansatz. What we do evaluate is whether the
final error estimate from the simultaneous CCFV fit is
conservative in comparison to the observed change under
extrapolation in each parameter. In particular, for each
quantity, we compare the change between the data from
the ensemble closest to the physical point and the extrapo-
lated value. For example, when discretization errors are
dominant, we compare the difference between data at
a071m170 and the extrapolated value with the error
estimate from the CCFV fit to determine if the latter is
conservative enough.

In all cases, the discretization corrections are taken to be
linear in « as our calculation (lattice action and operators) is
not fully O(a) improved.

To evaluate possible finite volume corrections in a given
observable, we compare the data on the two pairs of
ensembles {a094m270,a094m270L} and {a091m170,
a091m170L}. Second, we also compare outputs of chiral-
continuum (CC) fits to the five larger volume data with
CCFV fits to the seven points and check for overparamet-
rization. Differences between the two fits, if significant in
comparison to the quoted error, are evaluated for whether
an additional systematic uncertainty should be assigned.
Overall, finite-volume corrections are observed to be small
for ML > 4.

The analysis so far has been carried out with a number of
strategies for removing ESC in the various quantities. As
already discussed, the overriding uncertainty in the final
analysis comes from whether the low-lying Nz or Nzx
states are relevant and included. Including them signifi-
cantly impacts the estimates from the M, =~ 170 MeV
ensembles and thus the chiral extrapolation. In many cases
the errors in the ~#170 MeV data are much larger than in the
M, ~ 270 MeV points. Thus, their weight in the CCFV fits
is small. This is a serious limitation. In subsequent sections,
we will discuss this and other issues on a case-by-case
basis, and provide our reasons for picking the strategy used
to present the final results and the assessment of the need
for an additional systematic uncertainty.

A. The CCFYV extrapolation for gﬁg‘f’T

The leading order CCFV fit ansatz used for all three
isovector charges is
M2 e—M <L
M,L

T

gla, Mz, ML) = ¢ + ca + e3M; + ¢4

(41)

Results from these CCFV and CC (¢4 set to zero) fits to
g4 are summarized in Table X, and the CCFV fits are
shown in Figs. 32-34 in Appendix H. Overall, these data
indicate possible finite-volume corrections in gﬁ‘d, but no
significant effect is observed in g4~ or g~¢. Below, just
before Eq. (42), we also discuss the change in results (i) on
assuming that the discretization errors begin at O(a?),
i.e., replacing the term c,a by c,a? and (ii) without any
discretization error term.

All averages presented in this section are averages
weighted by the inverse square of the errors. In most cases
the y? of the different fits whose results we average are very
similar, so the averages constructed using AIC weights are
also the same. Furthermore, both of these are also con-
sistent with unweighted averages. We caution the reader
that, for brevity, we use the term average to denote averages
weighted by the inverse square of the errors.

We note a number of systematic shifts of 0(0.03) in
results summarized in Table X, which, while smaller than
the individual total analysis errors in most cases, need to be
addressed. These are (i) between the two renormalization
methods Z; and Z,, (ii) between the CC and CCFYV fits, and
(iii) the variation between the various strategies.

The two methods of renormalization, Z; and Z,,
are equally well motivated, however, as discussed in
Sec. VIII A, and the errors in the renormalization constants
are better controlled with Z,; for gg and with Z, for g, and
gr. We, therefore average the gg values obtained with Z;,
given in Table X and specified below, and g, and g with
Z,. To account for the difference in results obtained using
Z, versus Z,, we assign an additional systematic uncer-
tainty for all three charges.

Second, comparing the CCFV and CC estimates, there is
a notable difference only in gj;‘d , which we discuss below.
For gg_d and g%, the CCFV fits have slightly larger errors
but in most cases the reduction in y? is not sufficient to
warrant including the finite volume correction term by the
Akaike criteria. As they are consistent, we present the
average of the CC and CCFV results.

On the third issue, for ¢4~ and ¢g4~9, the two {21}
strategies yield an unexpectedly large AM,. A larger value
is expected in a two-state fit; i.e., it constitutes an effective
mass gap representing the contribution of all excited states.
Including a third state improves the estimate for AM.
Therefore, as discussed in Sec. VIII, we will choose the
final results from the strategies that use a three-state fit,
{4,3*} and {4V7 3*}. The axial charge g4~? requires a
more extensive analysis with respect to ESC that is
presented below.

1. g4~

The axial charges, summarized in Table X for the various
strategies considered, are obtained in two different ways:
(i) from the forward matrix element, which for the {4, 3*}
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TABLE X. Results for the renormalized ¢

u—d
AS.T

used to remove the ESC listed in column one that are discussed in Secs. VIII and X, as well as in Appendix A. The results for g}

after CC (¢4 = 0) and CCFV extrapolations using Eq. (41) for the various strategies

u—d

labeled with additional z2/P,/D use g, = G,(Q* = 0) obtained by extrapolating G, (Q?) to Q% = 0 using these fits to all ten Q? # 0
points (see glossary in Appendix A). The results in rows with D/22/P, are from CC fits to data excluding the small volume a094m270

and a091m170 ensembles. The y?/dof of the CC and CCFV fits are given within the square brackets.

Strategy

947z, (ca=0)

gﬁi‘”’lz,

94z, (ca =0

g/bi_d | 7,

{4.37}
{4,3*, 7%}
{4.3%.2%}
{4.3°. P}
{4,3*,P,}
{4,3*,D}
4,3 D
%4N;z’ 3*}}
{4_N7r7 3*,22}
{4Nﬂ', 3*722}
{4N7r, 3*71_)2}
(430,22}
{4V 3+ D}
{47, 3%, D}
{47 stm’ Z2}
{4’ 2sTm7 22}
{4’ 251m’ },\)2}
{4, 2 Py}
{4,2m D}
sim
(e gim 12y
{4N7r' 2sim’ 22}
{4Nﬂ, zsim’ P2}
{4Nﬂ, zsim’ f)z}
{4N7r’ 2sim, D}
{4N7z,25im, D}

1.215(48) [0.26]
1.194(44) [0.04]
1.194(44) [0.02]
1.184(46) [0.02]
1.185(46) [0.00]
1.183(42) [0.35]
1.184(42) [0.05]
1.280(48) [0.11]
1.274(52) [0.24]
1.277(54) [0.24]
1.272(57) [0.14]
1.277(58) [0.20]
1.222(49) [0.61]
1.225(50) [0.01]
1.248(55) [0.84]
1.263(56) [0.05]
1.239(64) [0.91]
1.257(65) [0.07]
1.160(47) [1.50]
1.159(47) [0.06]
1.279(54) [0.68]
1.290(54) [0.00]
1.273(63) [0.73]
1.283(64) [0.00]
1.210(48) [1.14]
1.215(49) [0.02]

1.203(59) [0.31]
1.200(52) [0.05]

1.191(56) [0.01]
1.206(48) [0.15]

1.288(55) [0.12]
1.289(61) [0.24]

1.273(69) [0.18]
1.262(56) [0.14]
1.295(66) [0.56]
1.290(78) [0.78]
1.219(54) [0.35]
1.320(62) [0.34]
1.326(75) [0.38]

1.259(55) [0.27]

1.250(42) [0.18]
1.230(39) [0.12]
1.230(40) [0.14]
1.221(41) [0.16]
1.222(41) [0.23]
1.217(36) [0.59]
1.219(37) [0.13]
1.317(42) [0.14]
1.307(48) [0.24]
1.312(49) [0.15]
1.308(53) [0.10]
1.313(54) [0.10]
1.256(43) [0.98]
1.260(45) [0.18]
1.276(51) [1.07]
1.296(52) [0.04]
1.269(59) [1.12]
1.293(60) [0.05]
1.193(43) [2.33]
1.192(43) [0.49]
1.308(50) [1.04]
1.322(50) [0.26]
1.303(59) [1.07]
1.316(59) [0.23]
1.242(44) [1.90]
1.250(44) [0.43]

1.250(51) [0.24]
1.242(46) [0.05]

1.239(49) [0.06]
1.248(42) [0.03]

1.331(47) [0.03]
1.328(55) [0.13]

1.316(62) [0.12]
1.303(50) [0.03]
1.332(61) [0.52]
1.332(73) [0.75]
1.261(49) [0.27]
1.357(57) [0.37]
1.368(69) [0.38]

1.299(49) [0.27]

Strategy

9577, (c4 =0)

gg_d‘zl

95z, (ca =0

gg_d|z2

{4.37}
{4N7r7 3*}
{4 2free}
{4N;z 2free}

1.068(68) [0.05]
1.062(93) [0.05]
1.056(52) [0.39]
1.100(52) [1.01]

1.052(92) [0.04]
1.06(11) [0.06]
1.086(63) [0.28]
1.157(61) [0.25]

1.101(96) [0.05]
1.10(11) [0.02]

1.081(82) [0.40]
1.120(82) [0.85]

1.09(12) [0.07]
1.10(13) [0.02]
1.118(92) [0.27]
1.186(91) [0.21]

Strategy

95z, (ca =0

g?_d‘zl

95z, (ca =0)

!ﬁ_d|z2

{4.37}
{4N7r’ 3*}
{4 2free}
{4Nn 2free}

0.944(46) [0.06]
0.938(50) [0.14]
0.995(43) [0.15]
1.027(44) [0.22]

0.942(53) [0.08]
0.926(57) [0.13]
0.985(50) [0.15]
1.027(50) [0.29]

0.968(27) [0.03]
0.962(33) [0.15]
1.017(24) [0.26]
1.047(25) [0.46]

0.971(34) [0.03]
0.955(38) [0.17]
1.017(29) [0.35]
1.047(28) [0.61]

and {47 3*} strategies are given in rows one and eight,
and (i) by extrapolating the form factor G, (Q?) to Q* = 0.
To specify the parametrization used in the second case, we
introduce a third symbol, {D}/{z?}/{P,}, to represent a
dipole/z?/P(g,0,2) fit. For example, {4V*, 3*, 7>} means
form factors obtained using the {47, 3*} strategy and
extrapolated using the z* fit (the glossary in Appendix A
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describes the various fits). In many of the CCFV fits, the
data show no significant finite volume correction, espe-
cially above M,L > 4.0. The effect is much smaller than
the overall analysis error from the CCFV fit shown in
Fig. 32 in Appendix H. So we also performed CC fits to
data neglecting the two small volume ensembles,
a094m270 and a091m170. These are labeled as {D} or
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{22} or {P,}. Overall, the main issue that needs to be
resolved in both ways is whether the N(1)z(—1) state
should be included in the analysis.

With the {4,3*} strategy (first seven rows in Table X),
the AM, from a four-state fit is large, about 600 MeV,
and the 7 — oo value for g4~ is smaller, about 5% below
the experimental value. In this case, estimates from the
forward matrix element (first row) and those using the
dipole or z? or Padé parametrization of the form factors give
consistent results. Comparison of these estimates from the
Q? fits is shown in the two left panels in Fig. 9 for the two
M, ~ 170 MeV ensembles.

With the {47, 3%} strategy [uses the N(1)z(—1) as the
lowest excited state as discussed in Sec. V], we find that the
finite-volume correction term is negligible as shown by
the CCFV fit to the {4"7,3*} data in Fig. 32. Comparing
the results in rows 9-14, we note that the estimates
with the dipole fit, {4¥7,3*, D}, are smaller. The reason
is that the dipole fit misses the lowest Q° point on the
M, =~ 170 MeV ensembles as illustrated in the middle
panels in Fig. 9.

With the preferred {4V7,25™M} strategy, selected on the
basis of satisfying the PCAC relation, only results from the
extrapolation of the form factor are possible. Within errors,
the estimates in each of the four columns in Table X are
consistent, but two of the three 0(0.03) shifts discussed
above (renormalization, and finite volume indicated by
CCFV versus CC estimates) are manifest. We derive our
best estimate as follows. The finite volume systematic is not
well controlled, so we average the larger volume, M, L > 4,
CC-fit values {4V7, 25 22} and the {4"7 25 P,}. For
renormalization, we choose the Z, estimates as discussed
in Sec. VIII A. With these choices, our result is g4~ =
1.32(5). The same selection procedure applied to the
{4,3*} strategy gives g4~¢ = 1.23(4). The large difference,
~0.09, makes it clear that establishing whether the low-
mass Nz state(s) contribute is essential to the extraction
of g4

Three systematic uncertainties, summarized in Eq. (42),
are added to the above estimate. These are taken to be half
the spread in the data in Table X as follows: For renorm-
alization it is half the difference between the Z; and Z,
values, i.e., 0.02. Half the spread in results between the
strategies that include the Nz state when removing ESC
gives 0.04. For finite volume corrections, half the differ-
ence between the CC and CCFYV fit values gives 0.02. In all
these averages and error estimates, we do not consider the
dipole fit values since these fits miss the lowest Q? point on
the M, ~ 170 MeV ensembles. This is illustrated in the
right panels in Fig. 9.

Overall, in the CCFV fits we note (i) there is tiny if any a
dependence in data from any of the strategies investigated;
(i) there is almost no dependence on M2 for {4,3*} but a
significant one in the strategies that include the Nx state;

and (iii) there is an indication of a finite volume correction
with the {4V7 2sim 721 and {4N7,28m P,} strategies. Of
these three changes, the largest effect is in the slope versus
M? on including the N state. The contribution of the Nz
state grows as Q%> — 0 and M, — 135 MeV. Since G,(Q?)
is analytical and monotonic in 0%, we expect the
influence of the Nz state to persist at Q%> =0 in the
sense that the value of g, obtained directly at 9> = 0 from
the forward matrix element calculated using the Aj
correlator must agree in the continuum limit with that
extracted from a z-expansion (or Padé) fit to the
form factor. Even though our data satisfy this check
individually for both {4,3*} and {4"" 3*} strategies as
shown in Table X, the value of g,, however, is different.
The estimate from {4V7 3*} varies between 1.28(5)
and 1.33(5). This is consistent with our final result,
g4~4 =1.32(6), and the error covers the {4V7 2sim 32}
and the {4V7 25m P, estimates.

We consider {4V7,25m 22 and {4V7 25m P} as two
models because, up to some reasonably small Q%, both
the fixed order z-expansion and the Padé should give the
same intercept in the limit of perfect data. The reason we
take the weighted average and do not include the AIC
weight is because the y? of both is abnormally small as
discussed below.

2. gt

We neglect the results from the two {27} strategies,
which are somewhat larger, because the associated AM, is
larger than even that from the {4} fit as discussed in
Sec. VIIL Results from {4,3*} and {47, 3*} overlap (see
Fig. 3) and no significant finite-volume correction is
observed. Thus we average estimates from the latter two
strategies and the two fits, CCFV and CC, all with the Z,
renormalization method (see Sec. VIII A). The result is
g4~4 =1.06(9). Note that the error estimate covers the
larger but neglected {2™¢} values.

The most significant variation in the CCFV fits shown
in Fig. 33 in Appendix H is versus a. The difference
between the a = 0.071 fm and the a = 0 value is ~0.12,
so we assign, in Eq. (42), an additional systematic
uncertainty of 0.06 for possible incomplete accounting
of the discretization error in the CCFV or CC fits.
Estimates from the two renormalization methods show
a difference of ~0.04, so we assign an additional system-
atic uncertainty of 0.02.

3. gud
We again neglect the results from the two {2} fits for
the same reason as for g%~. Similarly, we take the weighted
average of the remaining four estimates in Table X with Z,
renormalization and get ¢4 = 0.97(3). The largest varia-
tion in the CCFV fits shown in Fig. 34 in Appendix H is
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versus M2, with a possible ~0.02 difference between
M, =170 and the extrapolated 135 MeV value. This
difference is covered by the overall analysis (CC or
CCFV) error. There is also a ~0.02 difference between
the two ES strategies (see Fig. 3), so we assign a 0.01
uncertainty for possible additional ES effects. Last, the
two renormalization methods give estimates that differ
by ~0.02, so we assign an additional 0.01 uncertainty
due to it.

4. Remarks on discretization errors

The discretization correction in the CC and CCFV fit
ansatz, Eq. (41), is taken to be linear in a since our action
and the axial operator are not fully O(a) improved. We
have also carried out the analysis with the errors starting at
0(a?), i.e., using c,a” instead of c,a in Eq. (41) and
assuming the linear in a correction is negligible. The y?
of the two sets of CCFV fits are essentially the same for
all three charges. The corresponding estimates for the
charges change to ¢4 = 1.34(4), ¢4 =0.97(6), and
g44 = 0.97(2). The reason for the smaller CCFV fit errors
is that the range of extrapolation to the continuum limit is
smaller in a®. We keep the larger error estimates from fits
with c,a but assign an additional discretization uncer-
tainty of 0.02 and 0.01 for g4~ and g‘}‘d, respectively.
The largest change in gg‘d is with respect to a, and the
error already assigned covers the variation between c,a
and c¢,a? fits.

We also show chiral fits (gray bands) for g4 and g7 in the
middle panels of Figs. 32 and 34. The reason for neglecting
discretization and finite volume corrections is the obser-
vation that the data on the five large volume lattices do not
show a significant dependence on a or M L. In all cases,
these results overlap with the CCFV values but have
smaller errors. The similar y> suggests that the CCFV fits
are overparametrized. Nevertheless, as discussed above, for
the final results we quote the CC values and errors for g4
and CCFV for gg and g7.

5. Remarks on low y?* values in CCFV fits

The y? of the two fits {4"7, 25 22} and {4V 2sim p,}
used to get g4~ are essentially zero as given in Table X.
The following two factors could explain such y? < I:
(1) the errors assigned to the data points are overesti-
mated, and (ii) the fits are overparametrized. The first
because the error in the multiplicative renormalization
factor Z, is of the same size as the statistical error in g5
(see Tables III and IV) and is neither normally distributed
nor independent. The second because the discretization
errors are small and including the ¢, term is an over-
parametrization. We have chosen to include it (CC fit)
but do not construct an AIC weighted average due to the
small y2.

Within this framework, our final results are

Charge | Value 6ES 6Z ba 6FV

i 1.32(6) 4) (2 (@) (2
£ | s @) © “
g 097(3) (1) (1) (1)

where the first error is the overall analysis uncertainty
and SES, 6Z, da, and OFV are the additional systematic
uncertainties due to excited states, renormalization, dis-
cretization, and finite volume artifacts. Combining these
systematic errors in quadrature, our results are

gfx_d = 132(6)(5)5)/5’
g5~ =1.06(9)(6) s
g4 =097(3)(2) (43)

Even with our high statistics data, the errors in g4~¢ are
much larger than in the experimental value ¢4 7=
1.2764(1) [12-14]. Estimates for ¢4~ and ¢4 are con-
sistent with results in Ref. [6] obtained using the clover-on-
HISQ formulation.

B. The CCFYV extrapolation for the axial
charge radius squared (r3)

The data given in Table VI show no significant difference
between the {4, 3"} and {4V* 25} strategies on the M, ~
270 MeV ensembles. However, there is a difference on the
M, ~ 170 MeV ensembles due to the inclusion of the Nz
state. We have summarized our reasons for choosing
the {4"7,28m} strategy for the analysis of the axial form
factors G, and Gp in Sec. IX A, and we will use it to obtain
the quantities derived from them, (r3), gp, and g yy-

The CCFV ansatz used to fit (r3),

—M,L

ra(a,M,, L) = c; + c;a + c3M2 + c4M,2,e—

M,L’ (44)

T

is the same as for the isovector charges given in Eq. (41).
Fits with the {4"7, 25m 72} strategy are shown in Fig. 35
and the results summarized in Table XI. We note a strong
dependence on M2 and a slight increase with both ML
and a. Most of the increase with M, L takes place for
M ,L < 4; therefore, we take the final result from the
{4N= 2sim 22} analysis

r3|.. = 0.428(53)(30) fm? = r,

2 = 0.65(4)(2) fm,
(45)

where the second, systematic, uncertainty is the difference
from the {47 2sim, 132} value. This result is consistent with
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TABLE XI. Results for the axial charge radius (ri) from (i) different strategies for removing ESC listed in column one (see
Appendix A) and (i) fits to the ten Q* # 0 points for the axial form factor G,(Q?) using the z?, P, Padé and the dipole
parameterizations. The additional { in column one denotes results from CC fits with ¢, = 0, i.e., neglecting the small volume
(@094m270 and a091m170) points. The y2/dof of the Q7 fits are given within the square brackets.

ESC strategy

Zz (C4 = 0)

Z2

Py (cy =0)

P,

Dipole (¢4, = 0)

Dipole

(4.3} 0.307(38) [0.27]  0.319(45) [0.29]
{434 0.306(40) [0.51]
{4V 37} 0.424(45) [0.34]  0.446(49) [0.10]
(4V7 3 )4 0.441(49) [0.07]
{4,25m} 0.413(47) [1.95]  0.450(53) [1.89]
{4,25m} ¢ 0.465(51) [0.42]
4Nz 2smy0.399(49) [1.01]  0.439(55) [0.47]
{4V7 2simle 0.428(53) [0.33]

0.276(48) [0.36]
0.277(48) [0.70]
0.408(62) [0.17]
0.421(65) [0.06]
0.375(75) [1.99]
0.445(80) [0.57]
0.366(80) [0.90]
0.398(83) [0.31]

0.298(58) [0.33]
0.412(72) [0.23]
0.434(90) [2.20]

0.437(93) [0.48]

0.262(29) [1.58]
0.270(29) [1.41]
0.315(30) [2.75]
0.327(33) [1.53]
0.228(25) [6.06]
0.224(26) [2.01]
0.244(27) [4.71]
0.243(28) [2.04]

0.297(34) [0.78]
0.362(34) [0.46]
0.281(28) [0.31]

0.283(29) [0.98]

the {4N7,2%Mm 22} and {4V7 2% P,} values, and the
quoted error also covers the spread in the CCFV estimates
from the {4%7, 3"}, {4,28m} {4N7 2sim} gtrategies and
both z? and P, fits.

Results for (r7) using the dipole parametrization of the
Q? behavior are significantly smaller than those from the 72
or P, fits, and the y?/dof is large in many cases. More
important, these fits miss the low Q points as illustrated in
Fig. 9. So we do not include the dipole estimates in deriving
the final results.

Our result, r, = 0.65(4)(2) fm, is consistent with the
three phenomenological/experimental values: (i) a weighted
world average of (quasi)elastic neutrino and antineutrino
scattering data [38], (ii) charged pion electroproduction
experiments [38], and (iii) a reanalysis of the deuterium
target data [46]:

ry =0.666(17) fm (M, = 1.03(2) GeV) [v, D scattering],

ry =0.639(10) fm (M, = 1.07(2) GeV) [Electroprod.],

ra = 0.68(16) fm (M, = 1.00(24) GeV) [Deuterium].
(40)

In this list, we do not quote the MiniBooNE value
My =1.35(17) GeV (r, = 0.506 fm) [47] as it is not the
outcome of an analysis, but the best value that reproduces the
double differential cross section for charged current quasie-
lastic neutrino and antineutrino scattering data off carbon
analyzed with a dipole ansatz and a relativistic Fermi gas
model of nuclear interactions [42]. It will be interesting to see
an update of the MiniBooNE analysis with our parametriza-
tion of G4 (Q?) givenin Eq. (55) and a more realistic model of
nuclear interactions [48,49].

C. The CCFYV extrapolation for gj, and g,yy

To perform the CCFV fit for g5 given in Table VIII,
we use the ansatz

d,
M2 +0.88m>
d 2
sM e MilL
M _ L

T

gp(a, M, M,L)/gs = d| + dya +

+ d;M% +

(47)

where the leading behavior in M2 is taken to be the pion-
pole term evaluated at the momentum scale of the muon
capture experiment [50,51]. The data and fit in Fig. 35 in
Appendix H show no significant dependence on either a
or M,L but a strong dependence on M2. The result of the
CCFV fit to the {4¥7,25™} data is

gp = T9(1)(9)ys- (48)

where the second systematic uncertainty is half the change
from the a071m170 point in the chiral extrapolation. The
two methods for renormalization give overlapping results,
so we do not assess an additional systematic uncertainty
due to it. To underscore the importance of including the Nz
state in the analysis of ESC, note that the analogous result
with the {4,3*} strategy is 3.9(1.1).

Experimentally, G»(Q? = 0.88m2) is determined from
muon capture by a proton, u~ + p - v, +n [50,51].
Current estimates from the MuCap experiment [50,51]
and from chiral perturbation theory [38,52] are

g}|MuCap = 806(55)’

gpl,er = 8291074 £0.52, (49)
respectively.

The CCFV fit to the pion-nucleon coupling g,yy data,
also given in Table VIII, was carried out using the ansatz
given in the right-hand side of Eq. (44). The result of the fit,
shown in Fig. 35 in Appendix H, is

Gavy = 12.4(1.2). (50)
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Again, the dominant dependence of the data is on M2 but
there is no significant change from the a071m170 value.
The variation with the renormalization method is ~0.36.
These are much smaller than the quoted 1o error, so we do
not assign an additional systematic uncertainty. For com-
parison, the result with the {4,3*} strategy that does not
include the N state is 6.8(1.3).

To summarize, results for all three quantities, (r3), gp,
and g,yy given in Egs. (44), (48), and (50) come in
reasonable agreement with phenomenological values with
the {4N7 25m} strategy that is singled out on the basis of
the axial form factors satisfying the PCAC relation.

D. Goldberger-Treiman relation and F,

The Goldberger-Treiman (GT) relation predicts
Iuvn(1 +A) = Mpygy/F, as discussed in Sec. IXA.
Three of these quantities, My (Table XV), g,
(Table IV), and F, (Table I), are calculated in this work.
Data for the product My g,/ F ,, which is independent of the
renormalization constant Z, and the lattice scale, are also
given in Table I for each ensemble. The CCFV fits to these
data for My g,/ F, and F, using the ansatz given in Eq. (44)
are shown in Fig. 36 in Appendix H. The result for
Myga/F, depends, as expected, on the strategy used to
determine g4, and for the two extreme values for g,
obtained from {4,3*} and {47 28™ 72} fits discussed
in Sec. XIII A, it is = 12.65(38) and 13.58(49), respec-
tively. We also show the CCFV fit for F, in the bottom row
of Fig. 36 and find F, = 93.0(3.9) [96.1(3.6)] MeV with
71 (Z,) renormalization. These CCFV fits to the F, and
Myga/F, data show significant variation with a and M.
Thus, to improve precision more {a, M,, ML} points are
needed.

For comparison, using the experimental values, g4 =
1.2764, My = 939 MeV, and F, = 92.2 MeV, and ignor-
ing the Goldberger-Treiman discrepancy A (see discussion
in Sec. IX) give g,yy = Mygs/F, = 13. The phenom-
enological estimate obtained from the 7N scattering length
analysis is 13.25(5) [39-41].

E. CCFV fits to the electric and magnetic radii,
(r%) and (r3;), and the magnetic moment p
The CCFYV fits to each of these three quantities have four

free parameters denoted by c;-{E'M’” }. The fit ansatz for the
electric mean-square charge radius used is

M; M2
(rE)(a. My, L) = ¢f + cfa+ c§In = + cf In= ek,

(51)

where the mass scale 4 is chosen to be M, = 775 MeV and
the form of the chiral and FV corrections are taken from
Refs. [53-55]. For the magnetic mean charge radius
squared, we use

2 M. L) = cM oM o -M,L (50
(R @ Mo L) = e+ fa+ S+ S ot ()
ya b/

where the leading dependence on M, is taken from
Refs. [53,54]. Last, the CCFV ansatz used for the magnetic
moment is

ula, M, L) = c\ + cha+ M,

2
eM-L  (53)
ML

+ cZM,,(l -

where the forms of the chiral and finite-volume correction
terms are taken from Refs. [54,56]. All masses are
expressed in units of GeV and the lattice spacing in fm.

In all three CCFV fit ansatz, Eqgs. (51)—(53), results from
the heavy baryon chiral perturbation theory (yPT) have
been used only to determine the form of the leading order
chiral correction. For example, for u, yPT predicts the
slope, 4, of the linear dependence on M, as My g3/ (4nF2)
[57] with F, = 92.2 MeV [21]; however, we leave cg‘ afree
parameter. Also, we include only the leading nonanalytical
term in Eqs. (51) and (52).

Data for (r2), (r3,), and u from the four strategies and the
CCFV fits to them are shown in Figs. 37-39. The results are
collected together in Table XII. We remind the reader that a
prior for Gy;(0)/gy = p, obtained from the linear extrapo-
lation of Gg/G), is included in the Q7 fits to Gy, to get
(r3,) and u on each ensemble.

In Sec. XII, we had presented evidence that the low-lying
multihadron Nzz state is relevant, and as M, — 135 MeV,
estimates from the {4"7,3*} and {4"7,28™} strategies
should agree. This is not manifest in Table XII for (r%)
or (r%,) and estimates from {4V7 25m} are smaller.
Furthermore, the data, and therefore the CCFV fits, have
three additional weaknesses:

(i) The errors in (r%) and (r3,) at M, ~ 170 MeV and

with the z3 and Padé fits are larger by a factor of
2-3 compared to M, =270 MeV points as can
be seen from the data in Table IX for all four
strategies, and from Figs. 37 and 38. The CCFV fits
are therefore dominated by the smaller error
M, ~270 MeV points.

(i) To a lesser extent, the same is true for the data with
the dipole fit and the {4"7,3*} strategy.

(iii) The dipole fits to the a071m170 data with the
{4N= 2siml gtrategy shown in Fig. 31 miss the
low Q? points, and the results differ from those
from the z3 or the P, analyses.

In short, these CCFV fits are not yet robust. For our best
estimate, we take the average of the 7> and P, fits to the
{4N7 3%} strategy data and the larger of the two analyses
error. The same is done for y~¢ = u”~" even though errors
in it at the two values of M, are comparable and the CCFV
fits are reasonable. In both cases we use half the spread
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TABLE XII.  Results for (r2), (r3,), and u from CC and CCFV fits to data from the four strategies, {4, 3*}, {4"7,3*}, {4,25m}, and
{4N= 2sim} ‘used to control ESC (see Appendix A). The Q? behavior of the data from each strategy is parametrized using the dipole (D),
the Padé (P,), and the 73 fits. The y?/dof of the CC/CCFV fits are given within the square brackets.

(

)

(r

)

CcC

CCFV

CcC

CCFV

ESC fit 02 fit cC CCFV
{4.3} D 0.633(60) [0.26] 0.658(75) [0.25]
P, 0.589(74) [0.07] 0.613(98) [0.04]

{4Nn’3*} D

0.562(71) [0.05]
0.792(58) [0.36]

0.577(98) [0.05]
0.843(77) [0.16]

P, 0.792(81) [0.69] 0.85(12) [0.76]

2 0.803(87) [0.43] 0.84(12) [0.52]
{4, 25m} D 0.621(64) [0.26] 0.646(85) [0.28]

P, 0.65(11) [0.53]  0.65(16) [0.71]

{4N7r’ 2sim} D

0.80(10) [0.57]

0.590(63) [0.52]
0.59(12) [0.97]
0.66(11) [0.79]

0.80(14) [0.76]

0.623(81) [0.54]
0.49(18) [1.10]
0.55(16) [0.79]

0.479(48) [1.24]
0.491(93) [0.26]
0.73(12) [0.50]

0.651(54) [5.28]
0.64(13) [0.85]
0.97(12) [0.56]

0.457(52) [0.27]
0.52(13) [2.03]
0.73(11) [2.17]

0.497(51) [1.04]
0.67(12) [1.39]
0.77(12) [1.41]

0.579(67) [0.04]
0.49(14) [0.34]
0.71(17) [0.66]

0.879(77) [1.19]
0.48(19) [0.70]
0.94(16) [0.72]

0.494(68) [0.12]
0.31(17) [1.47]
0.60(15) [2.37]

0.564(67) [0.62]
0.49(18) [1.25]
0.60(17) [1.18]

3.78(12) [1.36]
3.81(14) [0.30]
3.95(13) [0.28]

4.07(14) [3.17]
4.03(18) [0.25]
4.15(15) [0.54]

3.64(15) [0.45]
3.80(20) [2.89]
4.00(17) [3.85]

3.83(15) [0.89]
4.04(20) [2.51]
4.17(17) [2.28]

3.95(15) [0.54]
3.86(17) [0.30]
4.03(16) [0.13]

4.43(17) [0.20]
4.06(22) [0.32]
4.24(18) [0.44]

3.64(18) [0.59]
3.62(23) [2.68]
3.85(19) [4.15]

3.86(18) [1.17]
3.86(22) [2.10]
4.05(19) [2.45]

between the {47 3*} and the {4"",25™} values as an
additional systematic uncertainty for possible residual ESC
and Q7 fit ansatz dependence.

With the above selections, our final results are

(r2y=d = 0.85(12)(19)
(r3,)"= = 0.71(19)(23)
p'=d = 4.15(22)(10)

fm?> = rp = 0.92(12) fm,
fm? = ry = 0.84(18) fm,
(54)

sys
sys
sys*

These radii are consistent with values obtained from
the Kelly parametrization [22] of the experimental data
given in Eq. (12) (see our review in Appendix D in
Ref. [9]), and the more precise value of the proton charge
radius r, = 0.831 & 0.007, + 0.012,, from the PRad
experiment at Jefferson Lab [23] that claims to resolve
the “proton radius puzzle” by reconciling the values from
e — p scattering with those from muonic hydrogen. The
errors in the lattice results are, of course, much larger and
do not provide independent input on the “proton radius
puzzle.” The u?~" is about 2¢ smaller than the precisely
measured value u?~"|, = 4.7059.

XIV. PARAMETRIZING THE FORM
FACTORS G,, Gz, AND G,, USING PADE
AND z-EXPANSION FITS

The Padé and z-expansion fits to form factors presented
in this section should be considered a good heuristic; i.e.,
they serve our primary goal to provide a good but simple
parametrization of the lattice data. This is in the same spirit
as the phenomenologically useful Kelly parametrization
[22] of G and Gy, that are well measured in electron
scattering experiments, or the rational function fit used in a

recent analysis of the PRad experiment at Jefferson Lab
[23]. Note that the improvement in the precision with which
the proton radius is extracted and the likely resolution of the
proton radius puzzle in Ref. [23] has come from increasing
the range of Q? and the accuracy of the data and not from
the parametrization.

On the other hand, the axial form factors of the nucleon,
G, and Gp, that are important inputs in the analysis of
neutrino-nucleus scattering, are not well measured due to
safety concerns with the use of liquid hydrogen targets.
Traditionally, G4 has been parameterized using the dipole
ansatz, Eq. (33), with estimates of the axial mass, M,
ranging from 1 to 1.35 GeV, and G obtained from G, using
the PPD hypothesis [5]. Our analysis shows that a dipole
ansatz does not have enough free parameters to fit the
data over the range 0.04 < Q2 < 1 GeV?, nevertheless, we
include it in this section for comparison. Furthermore, as
discussed in Secs. XIIT A, XIII B and XIII E, while the data
for the form factors have small errors, the CCFV fits to
charges and charge radii derived from them are not yet
robust, a consequence of having only seven ensembles and
the relatively larger errors in the M, ~ 170 MeV data. Thus,
we did not present a {a — 0, M, = 135MeV, ML — o}
limit parameterization of the form factors in those sections.
On a positive note, the small dependence of G4, G and Gy,
on {a,M,, ML} observed in Figs. 5, 12 and 14 motivated
the following heuristic analysis.

This simple parametrization assumes that the depend-
ence on a, M, and ML can be neglected, with the intent to
subsequently include a and M, dependent corrections as
data get better. (This assumption is the least well-motivated
for G4.) To reduce the impact of the neglected finite
volume corrections, we do not include data from the two
small volume ensembles, a¢094m270 and a091m170 with
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M, L <4, which show some evidence of finite volume
corrections. With the remaining data from five ensembles
(a total of 50 Q% # 0 points for G, and 30 for Ggm), we
compare six parametrizations for each of the three form
factors: the dipole, two Padé, P(g,0,2) and P(g, 1,3), and
three z-expansion fits, z>**. For G4, we use the preferred
{4N= 2sim} data with Z, renormalization and remark that
Z, gives overlapping results. For G and G,;, we use the
{4N= 3*} data.

The data and three of the six fits are compared in Fig. 16.
The results are summarized in Table XIII. We observe the
following:

(i) The two P(g,0,2) and P(g, 1,3) Padé results are
essentially identical and stable for all three form
factors. On the basis of the Akaike criteria, P(g, 1, 3)
iS an overparametrization.

(i) The dipole fit to G, is poor and shows deviations
near Q> = 0 and at large Q7. Similar, but smaller,

1.4
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12 f& a091m170L v 7
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. 10F 2071m170 »¢ 4
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FIG. 16. Comparison of the dipole, P, Padé, and z-expansion
fits to the combined data from the five larger volume ensembles.
We selected {47, 25m} data for G, and {4"",3*} for G and G
as they show the least dependence on a and M,, which is
neglected in these fits. Result of the P, fit to G, is given in
Eq. (55), and to G and G, in Eq. (58).

deviations are seen for Gy,. The dipole is a reason-
able fit only for G.

(iii) The z"-expansion fits do not show convergence:
Table X shows variation between the 7234 estimates,
and an increase in errors. Furthermore, these esti-
mates now depend on the choice of ¢ [see Eq. (35)]
with the overall midpoint value #, = 0.5 GeV?
giving the smallest y>. As in Sec. XIII, our best
choice based on the Akaike criteria is again z> for
G4 and 23 for Gz and Gy,.

Incorporating these observations and bearing in mind

the caveats, our best parametrizations of G,, neglecting

{a,M,,M,L} dependent lattice artifacts, are (i) the
{4Nrr’ 2sim’ PZ} fit
ga
GA(QZ) = 2
Lo+ bo g + bl(%)z
1. 270 11
o ss)
T 14 36(20) ;2 W —0.22(81)(;2;)?

with y?/dof = 1.27 and My =939 MeV, and (ii) the
{4N= 2sim 221 fit that gives

GA(Q%) =0.725(5) — 1.63(3)z + 0.17(13)z%,  (56)

with y?/dof = 1.15, and z defined in Eq. (35) with
to = 0.5 GeV?. For our best results, we take the average
of these {47, 25™ P,} and {4V7 25 22} values given in
Table XIII to get

gid=1. 281(11)(22) s

(P34 = 0.391(15)(70),,, fm?, (57)

sys

which are slightly smaller than the values in Egs. (42)
and (45). The second, systematic, error is taken to be the
difference between the two estimates averaged.

Similarly, the results of the {47, 3*, P, } and {4"7 3* 23}
fits to G and Gy, are

0.999(5
GE(QZ) = QZ ( ) Q2 2’ or
1+ 11.72(29) 2%+ + 38.5(1.9) (3%)
=0.290(3) — 1.23(3)z + 1.72(19)z?
+2.48(35)2°,
4, 52(5)
1 4 9.68(35) 2 4M2 +21.3(1. 8)(4M,)
= 1.613(11) — 5.74(14)z + 6.1(1.2)z?
+11.9(2.5)2%. (58)

GM(QZ) =

Both sets of fits have very similar y?/dof: ~0.43 and ~1.65
for G and G, respectively. The variance-covariance
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TABLE XIIL

Results for the charge radii and charges obtained using the dipole, Padé, and z-expansion fits to the renormalized

form factors G, (Q?) |z,» Gk (}3—2)/ gy, and GM(IS—Z) /gy. The fits are made to the combined data from the five larger volume ensembles.
N N

The value #, = 0.5 GeV? (midpoint of the Q? range) is used in the z-expansion fits for all data. The {4"7,25™} data for G, and the
{4N= 3*} data for G and G, have been selected for this analysis as they exhibit the least dependence on a, M, and ML as shown in

Figs. 5, 12, and 14.

Fit (r3) [fm?] ga x*/dof (r) [fm?] gy y%/dof (r3,) [fm?] u y%/dof

Dipole 0.283(04) 1.232(09) 1.98 95/48 0.799(08) 1.003(04) 0.46 13/28 0.628(08)  4.499(35) 1.60 45/28
Padé (¢,0,2) 0.356(13) 1.270(11) 1.27 60/47 0.778(19) 0.999(05) 0.42 11/27 0.642(23) 4.520(48) 1.64 44/27
Padé (g, 1, 3) 0.356(13) 1.271(11) 1.17 53/45 0.778(19)  0.999(05) 0.45 11/25 0.652(24) 4.532(48) 1.54 38/25
22 0.426(15) 1.292(11) 1.15 54/47 1.081(16) 1.048(05) 2.2561/27 0.91924) 4.750(49) 2.42 65/27
2 0.454(43) 1.301(17) 1.17 54/46 0.743(54)  0.996(9) 0.43 11/26 0.48(10) 4.424(85) 1.66 43/26
24 0.67(11) 1.349(29) 1.11 50/45 0.66(18) 0.987(20) 0.44 11/25 1.04(33) 4.72(20) 1.61 40/25

matrices of the above six fits are given in Appendix I. The
results are

‘ {4Nﬂ’3*’p2} {4Nn’3*’23}

(i) fm? | 0.778(19)(50)y,,  0.743(54)(50),,

()4 fm> | 0.642(23)(80),,, 0.48(10)(8),,

pui=d 452(5)(10)y,  4.42(9)(10).
(59)

The second, systematic, error in both cases is taken to be
half the spread between the {4V7 3* P,}, {4V~ 3* 73},
{40z 2sim PV and {47 25M 23] estimates.

Next, we explored adding corrections due to {a, M} in
these combined fits by expanding all parameters in them,
for example, by — (b) + bia + bl O(M2)), where O(M2))
is log(M2) for (r2) and 1/M,, for (r3,). The result is that
the y? is reduced only marginally but the errors in the
observables jump by a factor of 6 or more with any (even
one) additional parameter. Also, in most cases the extra
parameter(s) are essentially undetermined indicating over-
parametrization. Our conclusion again is that much higher
precision data on more ensembles are needed to include
{a, M} dependent corrections in this approach.

Another estimate of 4~ is obtained from a linear fit to
the G,/ G data as shown in Fig. 15. The left panel shows
separate fits to the a091m170L and a071m170 data with
the {4V* 3*} strategy. The right panel shows the fit to the
combined data from these two ensembles. (Data from the
other three larger volume M, ~ 270 MeV ensembles are
included only for comparison.) The result from the fit to the
two M, =~ 170 MeV ensembles, u*~¢ = 4.67(12), is con-
sistent with that in Eq. (59).

This heuristic analysis has the advantage of evading the
two-step process used to get results given in Sec. XIII: first
a parametrization of the Q? behavior and then CCFV fits
to the observables with just leading order corrections in
{a,M,,M,L}. The disadvantage is assuming that the
{a,M,, ML} corrections can be neglected, even though
the data in Figs. 5, 12, and 14 suggest it. The remarkable

outcome is that the estimates from the heuristic analysis
are consistent with those given in Egs. (42), (45), and (54)
but with much smaller errors in all cases. Also note that
these fits give Gg(Q?=0)=0.999(5) and Gy, (Q? = 0) =
4.52(5), i.e., a necessary consistency check against the
precisely known values for the electric charge and the
magnetic moment.

To understand why the dipole fit does not work for G, in
this case also, we note that the errors on points at small 0?
grow as Q% — 0 because the extrapolation in 7 to remove
ESC in the {4V 25m} fits is large on the 170 MeV
ensembles as can be seen from Fig. 24. Similarly, the
errors grow as Q increases because the statistical signal-to-
noise degrades. Thus, the dipole fit in Fig. 16 with g4
and M, left as free parameters is anchored by the smaller
error points in the middle and fails at both ends as it does
not have enough degrees of freedom to fully capture the
curvature. The Padé {g,, 0,2}, with one additional degree
of freedom, is sufficient.

XV. COMPARISON WITH PREVIOUS LATTICE
QCD CALCULATIONS

In this section, we compare with results from other recent
lattice calculations done with either 24+ 1+ 1 or 2+ 1
dynamical flavors. We assume that a dynamical charm in
the lattice generation does not significantly impact the
quantities composed of light quarks that are investigated
here; i.e., the two formulations give the same results. For a
more extensive review of the calculation of the charges, we
direct the reader to the Flavor Lattice Averaging Group
(FLAG) Reviews 2019 [20] and 2021 [58].

It is important to note that all of these isovector quantities
from different calculations are expected to only agree at the
physical point, and thus a CCFV extrapolation is necessary.
We have therefore applied the following criteria in selecting
the calculations to compare. We require that (i) the results
either are obtained at M, = 135 MeV or have been
extrapolated to it, and similarly (ii) they include ensembles
with a < 0.1 fm or a continuum extrapolation has been
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performed. (iii) We find that so far no other calculation has
carried out the extensive high statistics analysis of excited
states presented in this work, so we do not apply an excited-
state criterion for inclusion, but will comment on the
method used to control ESC and the outcome.

The results compared are summarized in Table XIV. For
each collaboration, we quote the latest (or best in the words
of the authors) value for each observable, which is often
given in different publications. Overall, it is evident that a
complete control over systematic uncertainties, especially
excited-state effects, is still work under progress.

The PNDME results [6,7,9] are from a clover-on-HISQ
formulation using eleven 2 + 1 4 1-flavor HISQ ensem-
bles, including two at the physical pion mass. All the
quoted results are from CCFV fits to data with the {4,3*}
strategy; i.e., they represent the status [20] before Nz (or
Nzr) states were included in fits to remove the ESC.

The ETM Collaboration [60-62] has presented
results for most of the quantities analyzed in this work.
Their latest results are from one 2 + 1 + 1-flavor twisted
mass clover-improved ensemble with a = 0.0801(4) fm,
M, =139(1) MeV, ML = 3.62, so issues of continuum
extrapolation, finite volume corrections, and chiral behav-
ior are not addressed. (Our a071m170 ensemble provides
data at similar values of Q?.) Their statistical sample is 750
lattices separated by four trajectories each, and results for
the isovector charges [61] are taken from a two-state fit,
{2,2} in our notation. Their axial form factors [60] do not
satisfy the PCAC relation, and their estimates presented
for Gp and Gp are not the calculated values but those
obtained from G, using the pion-pole dominance relation.
Consequently, we do not quote their estimates for g and
gy~ Both the dipole and z-expansion fits to G,(Q?)
obtained from {2,2} strategy work well and give
(rZ) = 0.343(42)(16) fm?, which is consistent with our
{4,3*} value. The electric and magnetic form factors,
presented in Ref. [62], are well fit by a dipole ansatz;
however, they differ from the Kelly parametrization at small
02, as also seen in the PNDME results in Ref. [9].

The RBC-UKQCD Collaboration has analyzed two
ensembles of 2 + I-flavor domain wall (DW) fermions
with Iwasaki plus dislocation-suppressing-determinant-
ratio (DSDR) gauge action at a = 1.378(7) fm and with
M, =249.4(3) and 172.3(3) MeV. They report issues of
long autocorrelations in a statistical sample of only 700
trajectories, which may explain an underestimate of g, and
a large uncertainty in gg.

The CalLat Collaboration [64,65] reports g¢4~¢ with
percent level accuracy using the domain-wall-on-HISQ
formulation. In their calculation, the operator is already
summed over all insertion times ¢ during generation; there-
fore, they can only analyze their data versus z. They use two-
state fits to data starting at much smaller source-sink
separations, 0.2 < 7 < 0.8 fm, where many higher excited
states contribute and sensitivity to contributions from Nz

states would be small. They do not explicitly include an Nz
state in their analysis. Thus, the balance between control
over statistical versus systematic errors, especially the impact
of the inclusion of the N state(s), remains to be addressed.
The CCFV fits are made to data from 16 ensembles at three
values of a~0.09, 0.12, 0.15 fm and five values of
M, ~ 400, 350, 310, 220, 130 MeV.

The PACS Collaboration [66-68] uses a single 128*
ensemble generated with 2 + 1-flavor stout-smeared O(a)
improved Wilson-clover fermions and Iwasaki gauge
action at a =0.0846(7) fm and M, = 135(9) MeV.
While the lattice volume is large, M, L = 7.4, results have
been presented from only 20 lattices, each separated by
10 trajectories. The JLQCD [74] use 2 + 1-flavor overlap
formulations with a single value of a =0.11 fm, four
values of M, = 293, 379, 453, 540 MeV, and 50 gauge
configurations. In both calculations, even though some of
their estimates are reasonable, the control over the stat-
istical and various systematic uncertainties we have dis-
cussed is limited. For example, on the key issue of excited
states, in Ref. [67] they find no significant excited-state
effects over the range 0.84 < 7 < 1.35 fm, in contradiction
to all other calculations. Also, estimates from 96* [66] and
128* [67] lattices with the same lattice spacing but with
M, = 146 versus 135 MeV show much larger differences
than expected, presumably due to low statistics in both
calculations.

The RQCD Collaboration [59] has presented results for
the axial form factors on 37 ensembles with 2 + 1 flavors of
nonperturbatively O(a) improved Wilson-clover fermions
with a tree- level Symanzik improved gauge action gen-
erated by the CLS Collaboration [75]. These ensembles
cover five values of the lattice spacing and include two
physical pion mass ensembles. To remove excited states
they use a strategy similar to {3, 2} for the axial charge and
G,, and to {4"7 3*} for Gp and G, form factors. The
resulting form factors satisfy the PCAC relation at a level
similar to that presented in this work. They find that both
the dipole and the z-expansion ansatz fit the Q? behavior
of G,4(Q?); however, results for g4=¢, (r3)"~4, and g are
different as can be seen from the summary in Table XIV.

The Mainz Collaboration [69] analyzed 11 CLS ensem-
bles [75] that are common with the RQCD work described
above. On these ensembles, the pion mass ranges between
203 and 353 MeV. To control ESC they explore the
summation method and two-state fits with a common value
for AM, for six quantities, the three charges and three
Mellin moments that give the momentum fraction, helicity,
and transversity. Note that our data for AM, (or AM,) for
the three charges given in Table II and for the three
moments given in Ref. [76] do not support using a common
value for AM, in the analysis of all six quantities. Their
final results are also obtained with the CCFV ansatz given
in Eq. (41), which they call ABDE. For the vector form
factors [70], they analyze ten CLS ensembles including one
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with the physical pion mass; however, errors in data from it are
large. The ESC is again controlled using the summation and
two-state fit methods ({2,2} in our notation), which give
consistent values. The errors in the data with the summation
method, especially at the larger 9%, are much larger. They
employ dipole and z-expansion parametrization of the Q2
behavior, and the chiral-continuum extrapolation using heavy
baryon chiral perturbation theory (HBChPT) supplemented
with leading order corrections for lattice discretization and
finite volume. Their final estimates are obtained from a
model-agnostic average (summation, two-state fits, dipole,
z-expansion, HBChPT, and cuts on Q% and M2 values) with
weights given by the Akaike information criteria.

The LHPC Collaboration [71,72] analyzed two physical
pion mass 2 + 1-flavor ensembles generated with 2-HEX-
smeared Wilson-clover action (the Budapest-Marseille-
Wuppertal ensembles). One of their main observations
from the study of charges [71] is a significant variation in
Z¢ between the RI'-MOM and RI-sMOM renormalization
schemes which, along with the statistical errors and
extrapolation in a uncertainty, accounts for the large error
in gg. In Ref. [72], they present results for y”~" and charge
radii from two methods: traditional (z-expansion) and
derivative. In Table XIV, we quote their results from the
traditional method as recommended by them, and from the
two analyses for handling ESC: 7/a = 10 ratio data (top)
and summation (bottom), which differ. Systematic uncer-
tainties were not evaluated in either set of estimates.

The yQCD Collaboration [73] used the overlap-
on-domain-wall  formulation on three 2+ 1-flavor
domain-wall ensembles generated by the RBC/UKQCD
Collaboration. On each of these ensembles, data with 5-6
values of the valence pion mass are generated. They obtain
gﬁ“’ using a CC fit to these partially quenched data.

From the summary of results in Table XIV, we conclude
that, overall, results for g?‘d are consistent within 5%, and
for gg‘d within 10%, and sensitivity to excited states in their
extraction is small. For all other quantities such as ¢4~¢, the
charge radii, g and g,yy, results from analyses that do not
include the Nz states give smaller values compared to
phenomenology.

XVI. CONCLUSIONS

We have presented an analysis of isovector charges and
axial and electromagnetic form factors on seven 2 + 1-
flavor Wilson-clover ensembles generated by the JLab/
W&M/LANL/MIT Collaborations [16] and described in
Table XV. This unitary clover-on-clover calculation is an
improvement over our previous work using the nonunitary
clover-on-HISQ formulation [6-9]. In addition, high-
statistics data have allowed us to make significant progress
in understanding key issues in controlling other systematic
uncertainties including excited state contamination in
various nucleon matrix elements.

The excited-state contributions to each observable are
analyzed using a number of possible values of the energy
of the first excited state, which is assumed to provide the
dominant contamination. The axial form factors extracted
including the low-lying multihadron Nz state satisfy the
PCAC relation between them and are consistent with the
pion-pole dominance hypothesis. We also find evidence
that the Nzz state, theoretically supported by the vector-
meson dominance hypothesis, contributes to the electric
and magnetic form factors. They show much less sensi-
tivity to the excited state mass gap, and the results agree
with the experimental data parametrized using the Kelly
result [22].

Results of the pseudoscalar decay constant, F,, after
CCFV fits to data with two methods for renormalization are
Frlz, = 93.0(3.9) (this CCFV fit is shown in Fig. 36) and
F,|z, = 95.9(3.5). These estimates agree with the exper-
imental value to within a few percent. Noting that F', data
points have small statistical errors, the difference and the
size of the errors after CCFV fits, ~4%, should be regarded
as a measure of the overall accuracy of the CCFV fits with
seven data points, especially in observables that show
significant variations with respect to {a, M, M,L}.

The results for the three isovector charges obtained
from the forward matrix elements [see Eq. (43)] are gﬁ‘d =
1.32(6)(5),ys (this estimate includes input from the
extrapolation of the Q% # 0 data), g4~¢ = 1.06(9)(6)
and g4 = 0.97(3)(2)ys- The first overall analysis error is
conservative with respect to the variation observed under
CCFYV extrapolations. Estimation of systematic uncertain-
ties are discussed in Sec. XIII A. The scalar and tensor
charges gg}d do not show a significant dependence on the
value of the first excited state mass, so we consider their
estimate robust.

The value of gf{d has been extracted in two ways, one
from the forward matrix element and the second from an
extrapolation of the axial form factor to Q% = 0. These two
ways must give the same result in the continuum limit that
should agree with the experimental value. We find that g4~¢
is sensitive to the inclusion of the Nz state. Our results have
a ~10% spread depending on the ESC strategy and the Q?
fits used as discussed in Sec. XIII A. A snapshot of the
spread is given in Table X. The change in G,(Q?) on
including the Nz state is, in most cases, a few percent (see
Table X VIII): the largest change (3%—5%) is in the smallest
Q? point (n”> =1) on the M, ~ 170 MeV ensembles;
however, it is precisely the change in the low Q? points
that has the largest impact on the extraction of gjg‘d from fits
to G4. Similarly, the change in the forward matrix element
is about 6% (see Fig. 3). These changes are of the same
size as our overall analysis error estimate, ~5%, and the
additional systematic uncertainty included in the final result
g4~4 = 1.32(06)(05),,- Thus, this level of the possible

sys?

sys*
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contribution of the Nz state in extracting G4, and its impact
on the improvement of the PCAC relation, is just at the
level of our current resolution. Our conclusion, therefore, is
as follows: to fully resolve the issue of the size of the
contributions of the Nz states in the extraction of G4 and to
improve the precision of lattice estimates of g%4~¢ requires
more extensive data.

To fit the Q? dependence of the form factors, we explore
the z-expansion, the dipole ansatz, and Padé fits. Estimates
from the z>3* truncation of the z-expansion give consistent
results for the axial form factors, and we take final values
from the z? fits to avoid overparametrization. For the vector
form factors we use the z* truncation. The second order
Padé, P(g,0,2), with three free parameters, is found to
provide an equally good parametrization. The dipole ansatz
does not provide a good fit to G,(Q?) obtained including
the Nz state when removing the ESC. It provides a
reasonable fit to the electric form factor, and less so to
the magnetic.

We have carried out two analyses to get charge radii from
the form factors, and both sets of results are summarized
in Table XIV. In the first, the Q2 dependence of data from
each ensemble is parametrized using the dipole, Padé, and
z-expansion, and the lattice artifacts in the resulting values
of the charges and the charge radii due to discretization,
finite volume effects, and heavier than physical values
of quark masses are then removed by simultaneous CCFV
fits keeping leading order corrections in the three variables
{a,M,,M,L}. The results are the following: (i) the axial
charge radius squared, (r3) = 0.428(53)(30),,, fm?;
(ii) the induced pseudoscalar charge, gp = 7.9(7)(9)yys:
(iii) the pion-nucleon coupling, g,yy = 12.4(1.2);
(iv) the electric charge radius squared, (rZ)4 ¢ =
0.85(12)(19),y, fm?; (v) the magnetic charge radius squared,
(rin)"4 = 0.71(19)(23),,, fm* and (vi) the magnetic
moment, "~ = 4.15(22)(10)y,- At this point, we do not
consider deviations from phenomenological/experimental
results significant. In the axial channel, to obtain this
improved consistency of results and for the form factors to
satisfy the PCAC relation between them, it was crucial to
include the Nz state in the removal of ESC.

The electric and magnetic form factors Gz and Gy,
shown in Figs. 12 and 14, exhibit much less sensitivity to
the value of the mass gap of the excited state. Our results
agree with the Kelly parametrization of the experimental
data over the range 0.04 < Q% < 1.2 GeV? when plotted as
a function of Q?/M3,, and show no significant variation
with respect to either a or M2. This agreement is a major
improvement over our previous work using the clover-on-
HISQ formulation presented in Ref. [9].

A second, heuristic, analysis of form factors, presented in
Sec. XIV, explores the same set of parametrizations (see
Table XIIT) but makes a single fit to data from all five larger
volume ensembles as shown in Figs. 5, 12, and 14,

i.e., ignoring {a,M,,M,L} dependent artifacts. The
P(g,0,2) Padé does a good job of parametrizing the Q?
behavior, and the results are given in Egs. (55) and (58).

The results for g4~4, (r3)*=4, (rZ)*=4, (r3,)"~%, and p*~¢
from these two sets of analyses, summarized in Table XIV,
are consistent but the errors from the second set are smaller,
a consequence of the analysis becoming simpler on ignor-
ing {a,M,, M,L} dependent artifacts.

Our goal is to provide a parametrization of the form
factors themselves versus Q2 for input into phenomeno-
logical analyses. In the analysis method “A,” we do not
have a robust theoretical guide or adequate data for
performing CCFV extrapolations of each of the coefficients
of the z-expansion or Padé fits [the a; in Eq. (34) or the b;
in Eq. (36)] determined from fits to individual ensembles.
In method “B,” we make the assumption that the
{a,M,,M,L} dependent artifacts can be ignored (see
the data in Fig. 16). Under this assumption, Egs. (55),
(56), and (58) give our continuum limit parametrization of
the form factors.

Overall, our results for the form factors are consistent
with phenomenological/experimental values. For this
agreement, it was essential to include the low-energy Nz
(Nzr) excited state in the analysis of the axial form factors,
and to a smaller extent in the vector channel. Motivation
for including these states comes from yPT, pion-pole
dominance for axial, and vector meson dominance for
vector channels. Our data support these hypotheses, and the
estimates of AM,; are in rough agreement with those
expected with Nz (or Nzz for vector) states (see
Figs. 22 and 10 for the axial and vector cases, respectively).
The change in the axial form factors is only a few percent;
however, it is large, ~35%, in both the induced pseudo-
scalar, Gp, and the pseudoscalar, Gp, form factors. With
these changes, the resulting form factors satisfy the PCAC
relation between them. Furthermore, the estimates of the
induced pseudoscalar charge, g5 = 7.9(7)(9), and of the
pion-nucleon coupling g,yy = 12.4(1.2) become consis-
tent with phenomenology.

The change in the electric and magnetic form factors
between the four ESC strategies is small as shown in
Figs. 12 and 14. A significant reduction in the dependence
on {a, M} of both form factors is observed when plotted
versus Q% /M?%. This provided motivation for the Padé and
z-expansion parametrization presented in Sec. XIV and the
results in Egs. (55)—(59).

To increase precision, address the issue of the spread in
results due to different estimates of the relevant mass gap,
and to resolve whether additional Nz state(s) should be
included in the analysis, higher statistics data at more
values of {a, M,, M L} are needed. The benchmarks for
improvement will continue to be satisfying the PCAC
relation between the axial form factors, the agreement
with the experimental value g4~ = 1.2764(1), and the well
measured vector form factors Gy and Gy,.
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APPENDIX A: GLOSSARY OF LABELS USED TO
DESCRIBE THE VARIOUS FITS MADE

A summary of the abbreviations used to describe the
various analysis strategies and fits is given below in order
of the three entries such as in {4¥7 3* P,}.

The first entry specifies the fits to the two-point
function used to extract the spectrum. It has two
possibilities:

(i) {4} denotes that four-state fits are made to the two-
point function. Empirical Bayesian priors with wide
widths for excited state energies and amplitudes are
used only to stabilize the fits. These fits are
illustrated in the left-hand column in Fig. 1.

(ii) {4V} denotes that a prior for AE; with a narrow
width centered about the energy of the noninteract-
ing Nz (or of Nzz that is essentially degenerate)
state is used in four-state fits to the two-point
function. Priors on higher states are similar to those
in {4} fits. These fits are illustrated in the right-hand
column in Fig. 1.

The second entry specifies the four different fits made to the
three-point functions:

(i) {3*} specifies that three-state fits are made to the
three-point functions with the spectrum taken from
either {4} or {4V} fits to two-point functions, and
the (2|0|2) term in Eq. (18) is set to zero.

(ii) {24+}: This is a two-state fit to the three spatial axial
vector and the pseudoscalar three-point functions
with a common AE; determined from fits to the A,
correlator. The ground state parameters are taken
from either {4} or {47} fits.

(iii) {2¢m}: This is a two-state fit to a set of three-point
functions. In the axial channel it denotes that a
simultaneous fit to the four axial vector and the
pseudoscalar channels is made with a common AE].
In the vector channel it denotes a simultaneous fit to
the three distinct correlation functions described in
Sec. XII. The ground state parameters are taken from
either {4} or {4V} fits. In both cases, the output
mass gap is called AE,.

(iv) {2fee}: This is a two-state fit to an individual three-
point function with AE| left as a free parameter. The
output mass gap is called AE,. The ground state
parameters are taken from either {4} or {4"7} fits.

The third entry specifies the six different fits made to the
form factors to parametrize the Q? behavior:

(i) {D} and {D}: “D” stands for a dipole fit. The hat in
{D} specifies that subsequent CCFV fits to quan-
tities such as g,, (r%), (r3,), and u have been carried
out neglecting the two small volume points,
a094m270 and a091m170, and the finite-volume
correction term, i.e., only a CC fit is performed.

(i) {z*} and {2*}: These are z-expansion fits truncated
at power k. The hat in the label {2} again specifies
that subsequent CC fits have been done neglecting
the two small volume points, a094m270 and
a091m170, and the finite-volume correction term,
i.e., only a CC fit is performed.

(iii)y {P,} and {P,}: “P” stands for a Padé fit. The
subscript n specifies the order of the Padé as
discussed in Sec. X. The hat in {P} again specifies
that the two small volume points, a094m270 and
a091m170, and the finite-volume correction term,
i.e., only a CC fit is performed.
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APPENDIX B: LATTICE PARAMETERS AND THE VALUES OF Q* FROM THE TWO
FOUR-STATE FITS, {4} AND {47}

In this Appendix we give the parameters of the seven ensembles in Table XV and the corresponding parameters used in
the calculation of the clover propagators in Table XVI. The values of momentum transfer squared, Q2, obtained from the
two four-state fits, {4} and {4}, to the two-point correlation function are given in Table XVII.

TABLE XV. Parameters of the seven isotropic clover ensembles being generated by the JLab/W&M/LANL/MIT Collaboration using
the highly tuned CHROMA code. Each row gives the ensemble ID and parameters, the number of lattices analyzed, the number of high
precision, Nyp, and low precision, Nyp, measurements of isovector quantities made, and the values of source-sink separation
simulated. Each lattice is separated by 4—6 trajectories with ~#92% acceptance rate in the Hybrid Monte Carlo algorithm. The nucleon
mass, My, is given for the two fit strategies {4} and {4"7} defined in the text. The lattice spacing a is determined from the Wilson flow
parameter w, using the method proposed in Ref. [85].

M, M[{\;t} MifN”} Size
1D p a [fm] [MeV] [MeV] [MeV] L/a T/a M,L Lattices Ngp Nip T

al27m285 6.1 0.127(2) 285(5) 961(15) 958(15) 32 9% 5.87 2,002 8,008 256,256 {8,10,12, 14}
a094m270 6.3 0.094(1) 269(3) 982(15) 986(11) 32 64 4.09 2469 7407 237,024 {8,10,12,14,16}
a094m270L 6.3 0.094(1) 2693) 979(11) 976(11) 48 128 6.15 4,510 18,040 577,280 {8,10,12,14,16,18}
a091m170 6.3 0.091(1) 169(2) 903(11) 895(12) 48 96 3775 4,012 16,048 513,536  {8,10,12, 14,16}
a091m170L 6.3 0.091(1) 170(2) 901(11) 884(13) 64 128 503 2,002 10,010 320,320 {8,10,12,14,16}
a073m270 6.5 0.0728(8) 272(3) 1008(11) 1007(11) 48 128 4.81 4,720 18,880 604,160 {11,13,15,17,19}
a071lm170 6.5 0.0707(8) 166(2) 911(13) 901(12) 72 192 428 2,500 15,000 240,000 {13,15,17,19,21}

TABLE XVI. The parameters used in the calculation of the clover propagators. The hopping parameter for the light/strange quarks,
k15, in the clover action is given by 2k;, = 1/(m;; +4). csw is the Sheikholeslami-Wohlert improvement coefficient in the clover
action. The parameters used to construct Gaussian smeared sources [28], {0, Nxg}, are given in the fifth column where Nyg is the
number of applications of the Klein-Gordon operator and the width of the smearing is controlled by the coefficient ¢, both in CHROMA

convention [77]. The resulting root-mean-square radius of the smearing in lattice units, defined as \/ S drr*STS/[ drr’STS with S(r) the

value of the smeared source at radial distance r, is given in the last column.

ID my my Csw Smearing parameters RMS smearing radius
al27m285 —0.2850 —0.2450 1.24931 {5,50} 5.79(1)
a094m270 —0.2390 —0.2050 1.20537 {7,91} 7.72(3)
a094m270L —0.2390 —0.2050 1.20537 {7,91} 7.76(4)
a091m170 —0.2416 —0.2050 1.20537 {7,91} 7.64(3)
a091m170L —0.2416 —0.2050 1.20537 {7,91} 7.76(4)
a073m270 —0.2070 —0.1750 1.17008 {9,150} 9.84(1)
a071m170 —0.2091 —0.1778 1.17008 {10,185} 10.71(2)
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TABLE XVII.

Data for the momentum transfer squared, Q* = ¢> — (E — My)?, in units of GeV2, for the two strategies {4} (top) and
{4N7} (bottom) used in the analysis of the form factors.

Q? values with strategy {4}

n al27m285 a094m?270 a094m270L a091m170 a091m170L a073m270 a071m170
(1, 0, 0) 0.091(03) 0.164(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.314(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
1,1, D 0.262(08) 0.453(11) 0.215(05) 0.226(05) 0.131(03) 0.348(08) 0.169(04)
(2,0, 0) 0.341(11) 0.598(15) 0.281(06) 0.294(07) 0.172(04) 0.451(10) 0.222(05)
2,1,0 0.419(13) 0.716(18) 0.346(07) 0.361(08) 0.213(05) 0.553(12) 0.272(07)
2,1, 0.495(16) 0.839(21) 0.409(09) 0.426(10) 0.252(06) 0.652(15) 0.322(08)
2,2, 0) 0.638(21) 1.046(28) 0.530(12) 0.549(13) 0.328(07) 0.838(20) 0.413(10)
2,2, 1) 0.705(23) 1.172(30) 0.588(13) 0.609(15) 0.365(08) 0.927(22) 0.461(12)
(3,0, 0) 0.706(23) 1.186(32) 0.586(13) 0.611(16) 0.365(08) 0.923(22) 0.465(13)
(3,1,0) 0.774(25) 1.293(34) 0.642(14) 0.672(17) 0.401(09) 1.010(24) 0.506(13)
Q? values with strategy {4V*}
n al27m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170
(1, 0, 0) 0.091(03) 0.165(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.315(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
(1,1, D 0.261(08) 0.456(10) 0.215(05) 0.225(05) 0.130(03) 0.348(08) 0.168(04)
(2,0, 0) 0.341(11) 0.593(13) 0.281(06) 0.293(07) 0.171(04) 0.451(10) 0.221(05)
2,1, 0) 0.418(13) 0.715(16) 0.345(07) 0.359(08) 0.211(05) 0.552(12) 0.271(06)
2,1, 0.493(16) 0.837(19) 0.408(09) 0.424(10) 0.249(06) 0.650(15) 0.320(08)
2,2, 0) 0.636(20) 1.042(25) 0.529(11) 0.546(13) 0.325(08) 0.833(19) 0.412(10)
2,2, 1 0.704(22) 1.165(28) 0.587(13) 0.606(14) 0.361(09) 0.921(21) 0.459(11)
(3,0, 0) 0.705(23) 1.173(32) 0.586(13) 0.605(15) 0.361(09) 0.918(21) 0.461(11)
(3, 1,0 0.772(25) 1.280(33) 0.641(14) 0.665(16) 0.397(10) 1.004(23) 0.503(12)

APPENDIX C: COMPARISON OF CHARGES EXTRACTED USING FOUR STRATEGIES

In this Appendix, we show the data and the fits made to control ESC in g,, g, and g7 in Figs. 17-19, respectively, using
the four strategies, {4,3*}, {4V7 3%}, {4,2fc} and {4"7,2fre} discussed in Sec. VIIL. The results for the charges are
summarized in Tables IV and V.
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FIG. 18. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized scalar charge gf{“’ in the
limit 7 - oo, and plotted as a function of # — 7/2 for the five largest values of 7 (four for a127m285). In each panel, the data with
the four largest 7 and connected by lines of the same color are used in the fit to get the 7 — oo value (gray band). The rest is the same as in
Fig. 17.
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FIG. 19. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized tensor charge g%~ in the limit
7 — o0, and plotted as a function of r — 7/2 for the four largest values of z. The rest is the same as in Fig. 17.
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APPENDIX D: ANATOMY OF THE EXCITED-
STATE CONTAMINATION IN THE CHARGES

In this Appendix, we compare fits to the data for the
three charges, g4 g7, in Fig. 20 to highlight (i) the
differences in ESC for the u, d, u — d, and u + d quark
bilinear operator insertions and (ii) how these ESC patterns
impact the extraction of the isovector and isoscalar (con-
nected only) combinations. Data are presented for the
a071m170 ensemble, which have the largest statistical
errors. The fits are made using the {4, 3*} strategy. We also
examine the data for symmetry about (# — z/2), monotonic
convergence versus 7, and the size of errors, as well as how
these impact our ability to remove ESC.

The ESC in the axial channel is equally large in
magnitude for insertion in the u and d quarks. It adds in
the u — d combination as the data have opposite signs, but
cancel in u + d. In the case of the scalar charge, the ESC in
both the u# and d insertions are a similar fraction of the
value. Thus, it adds in u + d. In the u — d combination,
there is a large cancellation; however, significant ESC
remains as shown in Fig. 18. In the case of the tensor
charge, the value and the ESC in the insertion in the u quark
is much larger, and it dominates in both the # — d and the

u + d combinations. Overall, in the u + d axial and u — d
scalar cases, where there is a cancellation, much higher
statistical precision in the z > 1.5 fm data is needed to
demonstrate monotonic convergence and improve the

reliability of n-state fits.
Given these patterns, we made fits with the same set of

ESC strategies to data with separate insertions of u# and d
quark operators. The goal was to see whether these fits,
especially in the scalar channel, are more stable and the
gf‘g‘d combination constructed from individual ESC fits has
better precision. What we found, on all seven ensembles
and for all three charges, is that direct fits to the u — d data
gave values and errors consistent with those obtained by
combining results from separate fits to data with u and d
insertions. The largest differences are in ¢4 for the
a091m170L (about 1lo) and a071m170 (about 0.56)
ensembles. This check shows that our error estimates are
reasonable even in the worst cases. In short, examining the
separate fits did provide a better understanding of the ESC
and of the statistical precision of the fits but did not improve
the estimates for the isovector charges.
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FIG. 20. Data for the ratio defined in Eq. (19) for different operator insertions—on the u quark (left column), d quark (second column),

u — d combination (third column), and the connected part of the

u + d combination (right column)—are shown for the a071m170

ensemble. Data for g4 (top row), g (middle row), and g; (bottom row) are plotted as a function of 7 — /2 for the values of 7 specified in
the labels. All the fits to get the 7 — oo values are with the {4,3*} strategy.
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APPENDIX E: EXCITED STATES IN THE
AXTAL THREE-POINT FUNCTIONS

On a finite lattice, one has towers of eigenstates of the
transfer matrix labeled by their quantum numbers. A
strict identification with physical states such as N(0)z(q)
and N(—q)z(g) can only be done in infinite volume and in
the continuum limit. As mentioned in the text, both
N(p)n(-p) and N(0)z(0)z(0) have the right quantum
numbers (spin, parity, G-parity) to contribute to the axial
channel. It is the magnitude of their couplings that
decides the size of their contributions. These need to
be determined nonperturbatively from fits to the
three-point functions for high precision results. In such
analyses, for example in the axial channel, yPT is a
good guide.

In a series of papers, Bir has presented the predictions
of yPT [30,35,36] keeping one excited state, Nz, in the
analysis. At the tree level, consistent with the pion-pole
dominance hypothesis, the axial current A,(q) couples
through a pion with momentum g,. In our setup, for the
matrix elements of the three spatial A;, the interaction with
7(q) causes the transitions to the excited states N(0) —
N(0)z(g) and N(—q) - N(—¢q)=(q) in addition to the
desired ground state transitions N(0) — N(g) and
N(—q) = N(0). These ESC arise at tree-level, depend
on ¢, and are expected to be large in the Gp and G form
factors. In addition, at the loop-level, all states with the
right quantum numbers such as N(q)z(0), N(0)z(q),
N(0)z(0)z(0) and the full tower of N(—p)z(p) states with
all allowed values of p on the p = 0 side of the three-point
function can contribute to all three form factors. These

1.2

loop-level contributions are estimated to be a few percent
effect and show only a mild dependence on p.

The {4V7,25M} strategy analysis of the axial form factors
includes the Nz state predicted by tree-level yPT analysis
but neglects the contribution of all other states that can
contribute at loop-level. Compared to {4, 3*}, this changes
Gp and Gp by ~35% and G, by ~5% at the smallest Q2
point on the a071m170 ensemble as shown in Fig. 21. The
difference is much smaller on the M, ~ 270 MeV ensem-
bles as shown for the a073m270 ensemble; i.e., the effect of
the N state increases as Q*> — 0 and M, — 0. For the axial
charge g, obtained from As, there is no tree-level contri-
bution due to the kinematic constraint. Our analysis in
Sec. VIII, including only the lowest, N(—1)z(1) [or the
approximately degenerate N(0)z(0)z(0)], state that can
contribute at loop-level indicates that the effect could be
~8% for M, = 135 MeV. The impact of the remaining
tower of excited states in either case is unknown. In this
Appendix, we discuss these effects and how best to proceed
to remove all ESC.

First, we discuss the evidence that multihadron states
contribute. Next, we point out why it will be difficult
to resolve all relevant states from fits to the two-point
function. Last, we provide some thoughts on how the
analysis presented in this work can be extended.

The data for the energy gaps, aAM 1 and aAE 1, obtained
using three strategies {4, 25™m}, {4N7 244} and {47, 2sim}
are presented in Fig. 22 and compared against the values
obtained assuming that the excited states on the two sides
of the operator are N(q)z(—q) (blue dotted lines) and
N(0)z(q) (red dotted lines), respectively. The data exhibit
the following features:
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FIG.21. The form factors Z,G /g5, ZoGp/g", and Gp from the two strategies {4,3*} and {4"7, 2™} are compared in each panel
for the ensembles a071m170 (top row) and a073m270 (bottom row). We also show two dipole fits with M, = 1.026 and 1.35 to G4,
and a pion-pole dominance fit to Gp with G, given by the dipole ansatz to guide the eye.
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FIG. 22. Mass gaps in the axial channel from various fits plotted versus the momentum transfer in units of n> for six ensembles. The
aAM | (black filled circles) and aAE; (black diamonds) are from fits to the two-point function using strategy {4} (left panel), and {47}
that uses a prior with a narrow width for the energy of a noninteracting N (0)z(q) state (middle and right panels). The output of the {25}
(or {244} fits are aAM, (blue squares) and aAE; (red triangles). The dotted blue line is calculated assuming aAM, is given by a
noninteracting N(q)z(—q) state, while the red dotted line shows the aAE, for a noninteracting N(0)z(q) state.
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(i) The energy gaps given by the fits to the three-point
functions, aAM, (blue squares) and aAE, (red
triangles), differ significantly, depending on the mo-
mentum transfer ¢, and the difference increases with q.

(ii) The rough agreement between the blue dotted line
and blue squares and the red dotted line and red
triangles improves as M, decreases and indicates
that aAM, and aAE, correspond to N(q)z(—q) and
N(0)z(q) excited states, respectively. The agree-
ment was found to be even better for the physical
mass ensemble investigated in Ref. [8] using the
clover-on-HISQ formulation.

(iii) The values of aAM, (black filled circle) and aAE,
(black diamonds) obtained from {4} and {4""} fits
(left versus the right two panels) to the two-point
function have a smaller difference.

(iv) The agreement between the aAE; (black diamonds)
from the {4""} fits to the two-point function and the
dotted red line showing the energy of the non-
interacting N(0)z(q) state is by construction since
the latter is used as a prior for aE| in the {4V7} fit.

The identification of N(0)z(q) and N(—q)z(q) as the
leading excited states on the two sides of the operator
insertion is consistent with the predictions of chiral
perturbation theory [35,36,86].

An important consequence of the energy gaps, aAM,
and aAE,, being different and corresponding to different
momentum dependent excited states, N(q)z(—q) versus
N(0)z(q), is that their mass gaps cannot be determined
straightforwardly from fits to the two-point function. For
example, for our calculations, to get the mass gaps for the
ten N(q)n(—q) states from the p = 0 correlator is unreal-
istic, even with a variational ansatz. As shown by the onset
of the plateau in the effective mass plots in Fig. 1, the
ground state dominates at 7 2 1 fm, i.e., the plateau starts at
9 < Tya < 14 in the ensembles we have analyzed. Thus,
the number of earlier time slices sensitive to and available
for determining excited-state parameters is 6—11, which
restricts the analysis to a maximum of four states, including
radial excitations. Second, at these short times, the con-
tributions of the full set of excited states are still significant,
and even the first excited state parameters, M; and E|,
extracted from the fit are typically larger and 7,,;, depen-
dent. Third, these four-state fits (as well as the three-state
fits) have exposed flat directions in the fit parameters
leading to a large space of values with roughly similar
x*/dof as illustrated in Fig. 1. In short, fits to the data
show many equally good solutions, and the output val-
ues are heavily influenced by the priors used to stabilize
the fits.

To resolve a light excited state such as N(0)z(q), which
has a mass of about 1200 MeV as ¢ — 0, from the ground
state from fits to the two-point function requires very high
precision data at large enough 7z by which the higher states
have died out sufficiently. In our setup, this occurs for

7 2 1 fm. Isolating two (actually a whole tower as g — 0)
states from the “plateau” region at 7= 1 fm will be
challenging. In short, our work suggests that determining
the masses and amplitudes of all the needed low-lying
excited states from fits to two-point functions constructed
using a single nucleon or multihadron interpolating oper-
ator is unlikely in the foreseeable future.

One can improve the situation by working on anisotropic
lattices (setting the spacing in the time direction much finer
than in the three spatial directions to have more points to
fit within the same physical time interval) and/or by using
a variational approach with many nucleon interpolating
operators, including relevant multihadron operators with
the same quantum numbers. The two methods have been
implemented together successfully in detailed calculations
of the meson and baryon excited-state spectra [87]. For
matrix elements, however, only exploratory calculations of
nucleon charges using the variational method have been
performed [17,88]. Each of these approaches, unfortu-
nately, requires additional/new simulations that are beyond
the scope of the current work.

We are, therefore, faced with the following possibilities
to systematically include all the relevant excited states to
get percent level precision:

(i) Take only the ground state parameters from fits to
the two-point function and leave all the excited state
parameters, AM; and AE;, to be determined from
the three-point functions. This is the basis of our
strategies {47,244} and {47, 25™m}; however, so
far we have been able to include a single excited
state. To include the next, second, excited state with
the current data, one could hardwire the AM . and
AE 1, determined from a two-state fit, in a three-state
fit with only AM, and AE, free. Our attempts at this
failed—the y? does not decrease by two units for
each additional parameter as required to satisfy the
Akaike information criteria, and the parameter
values have over 100% errors. We are also not able
to estimate how precise the data need to be for this
approach to work given the large flat regions in the
2 landscape, evident already by the range of AM,
and AE, values, and the large number of possible
states that could contribute.

(i) Assume, based on chiral perturbation theory, that
N(q)n(—q) and N(0)z(q) are the relevant first
excited states and hardwire their noninteracting
energies for AM; and AE; in fits to the three-point
function. For the second and higher excited states,
one can again resort to yPT or take the estimate of
the next lowest energy level from fits to the two-
point function. This approach has recently been used
in Ref. [59]. In our case, the {4V7 3*} strategy is a
step in this direction; however, since {47,244} and
{4N= 2sim1 do a better job of satisfying PCAC, one
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could add a third state with fixed AM, and AE, to
the latter when making the fits. Our attempts at
adding a third state to the {4"7,25™} fit led to both
an overparametrization and essentially undeter-
mined values for all the extra parameters.

(iii) Determine the spectrum of (multihadron) excited
states in a finite box from a variational calculation of
two-point functions with a large enough basis of
operators and use them as priors in fits to the three-
point functions. Our contention, based on the current
analyses, is that, for the first excited state, the energy
gaps will be close to those given by {47,244} or the
{4N= 2simY gtrategies and the fits to the three-point
functions with current statistics will not be sensitive
to the higher states.

In short, determining the spectrum of multiparticle
excited states that contribute significantly is essential for
obtaining ground state matrix elements in the axial channel.
The A, correlator allows us to nonperturbatively identify
Nz as giving the leading contribution, consistent with yPT
analysis; however, more work is needed to determine
the second relevant (multiparticle) excited state, which
may be necessary to reach percent level precision. In
Sec. XII, we show that similar issues need to be addressed
in the vector channel also, but the electric and magnetic
form factors are less sensitive to the values of the excited-
state energies.

APPENDIX F: COMPARISON OF THE AXIAL
FORM FACTORS EXTRACTED
USING FOUR STRATEGIES

This Appendix contains the data for the axial form
factors obtained from four strategies used to remove ESC:
{4,3%}, {4V, 3%}, {4N7 244} and {4V" 25m}. The renor-
malized axial form factors Z,G, and Z,Gp and the
unrenormalized Gp are given in Tables X VIII-XX, respec-
tively. Data for the left-hand side of Eq. (29), which by the
PCAC relation should equal unity, are presented in
Table XXI. Figure 23 shows the data for Rs,, defined in
Eq. (23), for six ensembles and compares the fits with the
four strategies. A comparison of three matrix elements that
give Gp, G4, and G, obtained using the four strategies is
shown in Fig. 24 for the a091m170L and a071m170
ensembles. Each row in Fig. 25 compares the results of the
fits to data obtained using the four strategies to remove
ESC. The six rows show data for the a091m170L (rows
one, three, and five) and a071m170 (rows two, four, and
six) ensembles and the three ratios: Rs; defined in Egs. (22)
for two different n> = 1 momentum channels, and for Rj
defined in Eq. (24). Figure 26 shows that the data for
(Q* + M%)Gp(Q?) are almost linear and monotonic versus
Q% on all seven ensembles except at small Q> for the
{4,3*}, and to a lesser extent for {4V7 3*}, strategy on the
M, =170 MeV ensembles (data in the upper two panels).
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TABLE XVIII.  Data for the renormalized axial form factor Z, G4 (Q?) obtained using four strategies {4, 3*}, {47, 3}, {4V7 24+}
{4N= 2sim} for controlling excited-state contamination. The values of Q?, given in Table X VII, for a given value of n are different for all
seven ensembles, so only the data with the four strategies on each ensemble should be compared. No reasonable fits could be made
for the four largest Q? points for the a094m270 ensemble with the {4V7 244} strategy. The y?/dof is shown only for the {25™} fit.
In other cases, the result is obtained using a two-step process—first fits are made to remove ESC and then the overdetermined set of
equations is solved to get the form factors. The data are arranged by ensemble to facilitate comparison between the four strategies for
each Q7.

{4’3*} {4Nn’3*} {4Nn’2A4} {4Nﬂ’25im} {4,3*} {4Nn’3*} {4Nn,2A4} {4N7z’25im}
n al27m285 a094m270
(1, 0, 0) 1.128(18) 1.136(20) 1.152(20) 1.128(22) [1.54] 1.009(20) 1.008(20) 1.014(20) 1.007(21) [1.33]
(1, 1, 0) 1.021(17) 1.023(18) 1.031(17) 1.011(18) [0.95] 0.864(23)  0.866(16) 0.884(18)  0.878(17) [1.23]
(1,1, 1)  0.921(15) 0.918(16) 0.923(16)  0.915(17) [0.82] 0.743(24)  0.747(15) 0.763(26)  0.752(21) [1.19]

(2,0,0) 0.853(16) 0.848(16)  0.858(18)  0.856(19) [1.59]  0.656(40)  0.674(23)  0.714(20)  0.701(23) [1.31]
(2,1,0) 0.785(14) 0.779(14)  0.800(15)  0.786(16) [1.22]  0.589(26)  0.601(14)  0.619(28)  0.615(16) [0.98]
@,1,1) 072015 0.712(14)  0.747(16)  0.716(16) [1.25]  0.537(26)  0.549(16)  0.588(29)  0.566(15) [1.12]

(2,2,0) 0.639(15) 0.635(14) 0.641(18)  0.627(18) [1.15] 0.482(32)  0.490(24) 0.519(27) [1.36]

(2,2,1) 0.592(16)  0.585(13) 0.608(23)  0.587(21) [1.18] 0.424(27)  0.436(23) 0.460(13) [1.26]

(3,0,0) 0.61422)  0.608(25) 0.627(31)  0.618(59) [1.38] 0.542(84)  0.521(50) 0.448(19) [1.12]

(3,1,0) 0.570(16)  0.563(15) 0.585(17)  0.560(29) [1.39] 0.489(53)  0.485(33) 0.430(36) [1.19]
a094m270L a091m170

(1,0,0) 1.124(19)  1.13421)  1.13420)  1.134(20) [1.40]  1.122(19)  1.15330)  1.167(23)  1.156(25) [1.15]
(1,1,0)  1.030(17) 1.031(18)  1.027(22)  1.030(18) [1.55]  1.018(17)  1.02029)  1.028(20)  1.020(21) [1.21]
(1, 1, 1) 0951(16) 0.945(17)  0.963(17)  0.952(17) [1.57]  0.937(16)  0.932(31)  0.948(20)  0.937(21) [1.14]
(2,0,0) 0.889(16) 0.876(17)  0.886(16)  0.887(16) [1.58]  0.873(17)  0.849(32)  0.894(21)  0.893(22) [1.28]
(2,1,0) 0.828(16) 0.815(15)  0.827(14)  0.834(15) [1.48] 0.813(16) 0.789(26)  0.828(18)  0.830(19) [1.92]
2,1, 1) 0776(15) 0.761(15)  0.771(14)  0.773(15) [1.50]  0.755(16)  0.728(29)  0.764(22)  0.765(17) [1.63]
(2,2,0) 069515 0.680(15)  0.715(15)  0.699(14) [1.24]  0.660(18)  0.595(34)  0.741(34)  0.707(23) [2.15]
(2,2,1)  0.659(14)  0.647(14)  0.675(15)  0.652(14) [1.14]  0.632(17)  0.60036)  0.678(29)  0.636(18) [1.51]
(3,0,0)  0.662(15) 0.637(16)  0.687(20)  0.652(19) [1.10]  0.603(28)  0.513(49)  0.753(78)  0.627(28) [1.13]
(3,1,0)  0.627(15) 0.601(15)  0.623(16)  0.618(18) [1.44]  0.607(21)  0.55237)  0.638(22)  0.616(22) [1.23]

a091m170L a073m270
(1, 0, 0) 1.169(22) 1.208(39) 1.229(29) 1.236(30) [2.00] 1.067(14) 1.072(15) 1.061(15) 1.066(15) [1.63]
(1, 1, 0) 1.101(20) 1.119(29) 1.137(28) 1.132(29) [1.81] 0.945(13)  0.942(13) 0.941(13)  0.946(14) [1.66]
(1,1, 1) 1.048(19) 1.059(27) 1.054(23) 1.073(29) [2.18] 0.841(13)  0.834(12) 0.847(12)  0.850(12) [1.29]
(2,0,0) 0.972(19)  0.945(27) 1.013(31)  0.997(26) [1.40] 0.760(14)  0.750(13) 0.781(12)  0.774(12) [1.18]
(2, 1,0)  0.930(18)  0.900(25) 0.971(29)  0.956(20) [2.12] 0.699(13)  0.691(11) 0.725(12)  0.712(11) [2.25]
(2,1, 1) 0.889(18)  0.851(25) 0.933(29)  0.905(25) [2.68] 0.637(15)  0.637(10) 0.674(12)  0.663(10) [1.73]
(2,2,0) 0.806(18)  0.755(28) 0.855(29)  0.849(24) [2.42] 0.554(15)  0.559(11) 0.592(12)  0.577(11) [1.62]
2,2,1) 0.772(18)  0.719(29) 0.833(29)  0.787(21) [2.36] 0.518(16)  0.529(10) 0.544(13)  0.546(11) [1.35]
(3,0,0) 0.766(20)  0.700(34) 0.842(31)  0.790(21) [1.99] 0.520(17)  0.521(15) 0.540(24)  0.547(16) [1.28]
(3,1,0) 0.735(19)  0.666(31) 0.815(29)  0.773(23) [1.98] 0.483(15) 0.487(13) 0.529(24)  0.508(12) [1.57]

a071m170
(1, 0, 0) 1.154(18)  1.203(31) 1.186(23) 1.214(27) [1.48]
(1, 1,00  1.078(14)  1.099(22) 1.076(16) 1.103(22) [1.82]
(1,1, 1)  1.001(14)  0.997(19) 1.002(15) 1.018(21) [1.43]
(2,0,0) 0.941(16) 0.930(22) 0.954(19)  0.957(20) [1.47]
2,1,0) 0.897(16) 0.878(18) 0.896(14)  0.912(19) [1.92]
2,1, 1) 0.837(19) 0.812(19) 0.876(33)  0.871(18) [1.69]
(2,2,00 0.777(19)  0.737(22) 0.813(18)  0.799(17) [1.73]
(2,2, 1) 0.731(20)  0.703(21) 0.787(17)  0.768(18) [1.63]
(3,0,0) 0.697(28)  0.658(28) 0.784(21)  0.739(26) [1.67]
(3,1,0)0 0.686(24) 0.651(22) 0.763(18)  0.722(21) [1.97]
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TABLE XIX. Data for the renormalized induced pseudoscalar form factor, Z,Gp(Q?), obtained using the four strategies {4,3*},
{4N7 3%, {4N7 244)  [4N7 2simY for controlling excited-state contamination. The rest is the same as in Table X VIIL

{4’ 3*} {4N7r’ 3*} {4N7r’ 2A4} {4Nﬂ’ 2sim} {4’ 3*} {4Nﬂ’ 3*} {4N7r’ 2A4} {4Nﬂ’ 2sim}

n al27m?285 a094m?270

(1,0,0) 20.82(58) 21.99(67) 24.29(77)  23.78(76) [1.54]  14.85(88) 14.91(48)  16.46(55)  15.89(54) [1.33]

1, 1, 0) 13.22(32) 13.73(30) 14.56(38) 14.17(33) [0.95] 8.03(27) 8.26(22) 8.79(29) 8.61(23) [1.23]

1,1, D 9.29(23) 9.40(20) 9.82(29) 9.64(24) [0.82] 5.03(27) 5.23(17) 5.92(27) 5.55(22) [1.19]

2,0, 0) 7.04(21) 7.12(19) 7.65(20) 7.47(24) [1.59] 3.66(29) 3.63(18) 4.03(14) 3.83(19) [1.31]

2,1,0 5.50(14) 5.52(12) 5.95(12) 5.73(15) [1.22] 2.65(17) 2.66(10) 3.05(12) 2.82(11) [0.98]

@, 1, 1)  43513)  427(11)  476(11)  454(14) [1.25]  2.0220)  2.03(11)  2.45(14)  2.18(11) [1.12]

(2,2,0)  324(13)  3.19(10)  3.43(10)  327(13) [1.15]  1.53(19)  1.54(13) 1.74(18) [1.36]

2,2, 1 2.62(10) 2.56(10) 2.86(10) 2.82(13) [1.18] 1.01(13) 1.06(12) 1.20(09) [1.26]

(3, 0,0 2.57(13) 2.55(16) 2.91(17) 2.69(40) [1.38] 1.49(41) 1.40(27) 1.25(11) [1.12]

3, 1,0 2.28(09) 2.26(10) 2.53(12) 2.34(13) [1.39] 1.44(29) 1.37(19) 1.03(23) [1.19]
a094m?270L a091m170

(1,0,0) 24.84(84) 27.72(71) 28.51(68) 28.53(68) [1.40]  24.27(67) 28.2(1.7) 32.6(1.4) 32.0(1.3) [1.15]

(1,1,0) 16.23(50) 17.4937)  17.35(78)  17.39(36) [1.55]  14.79(42)  17.17(69)  17.53(50)  17.31(51) [1.21]

1,1, D 11.70(31) 12.26(27) 12.73(27) 12.30(26) [1.57] 10.20(27) 11.53(55) 11.65(29) 11.75(31) [1.14]

(2,0,0) 8.94(22) 9.26(23) 9.27(25) 9.34(21) [1.58] 7.52(23) 7.78(47) 8.74(23) 8.71(26) [1.28]

2,1, 0) 7.04(17) 7.14(15) 7.27(16) 7.38(16) [1.48] 5.94(17) 6.25(33) 6.63(15) 6.75(18) [1.92]

2, 1,0 5.74(15) 5.79(14) 5.82(13) 5.99(15) [1.50] 4.84(16) 4.94(36) 5.12(30) 5.37(20) [1.63]

(2,2,0)  4.08(11)  4.07(11)  453(09)  42511)[1.24]  3.22(14)  2.90(23)  4.3830)  3.84(12) [2.15]

2,2, 1 3.55(11) 3.51(11) 3.90(09) 3.70(11) [1.14] 2.95(12) 3.04(31) 3.35(14) 3.16(13) [1.51]

(3,0, 0 3.54(12) 3.57(13) 3.99(11) 3.64(12) [1.10] 2.79(16) 2.38(40) 3.97(40) 3.20(15) [1.13]

3,1,0 3.02(09) 2.97(10) 3.36(09) 3.20(12) [1.44] 2.53(13) 2.16(30) 2.81(12) 2.74(12) [1.23]
a091m170L a073m270

1, 0,0 36.3(1.3)  45.3(2.8) 46.2(2.0) 45.7(2.0) [2.00] 18.48(71)  19.98(56) 20.88(44) 21.18(39) [1.63]

(1,1,0) 2455(77) 292(1.4)  2841091)  28.5(1.0) [1.81] 10.98(36) 11.46(23)  11.89(22)  12.05(21) [1.66]

1,1, D 18.27(55)  21.45(96) 19.54(74) 20.40(62) [2.18] 7.41(21) 7.56(14) 7.98(16) 8.04(14) [1.29]

2,0,0) 13.64(42) 14.85(71) 15.20(72) 15.07(52) [1.40] 5.38(12) 5.44(11) 5.89(13) 5.87(11) [1.18]

2,1,0 11.33(29) 12.04(43) 12.32(32) 12.34(39) [2.12] 4.20(10) 4.15(08) 4.60(08) 4.52(09) [2.25]

2, 1,0 9.41(25) 9.74(38) 10.25(27) 10.23(43) [2.68] 3.35(11) 3.26(07) 3.69(07) 3.59(07) [1.73]

2,2,0 6.78(19) 6.70(30) 7.41(19) 7.55(23) [2.42] 2.35(08) 2.26(06) 2.60(05) 2.49(06) [1.62]

(2,2, 1)  595(18)  5.8031)  6.56(18)  6.35(25)[2.36]  1.99(07)  1.93(06)  2.18(05)  2.12(06) [1.35]

(3,0,0 5.58(22) 5.19(38) 6.59(24) 6.22(26) [1.99] 1.96(09) 1.90(08) 2.34(19) 2.25(08) [1.28]

3,1,0 5.08(17) 4.70(30) 5.89(18) 5.77(27) [1.98] 1.71(07) 1.65(06) 1.97(14) 1.84(08) [1.57]
a071m170

1, 0,0 31.8(1.8)  39.4(2.7) 42.5(1.6) 43.5(1.8) [1.48]

(1,1,0)  209(1.4) 243(1.3)  23.12(57)  24.46(72) [1.82]

(1,1, 1) 14.73(73)  1646(77)  15.82(45)  16.66(46) [1.43]

2,0,0) 11.37(55) 12.41(54) 12.16(54) 12.36(31) [1.47]

2,1,0 8.86(33) 9.61(35) 9.29(27) 9.79(25) [1.92]

2,1, 7.26(31) 7.57(29) 8.08(56) 8.10(23) [1.69]

2,2,0 5.17(21) 5.27(21) 5.88(14) 5.77(14) [1.73]

2,2, 1 4.50(23) 4.55(20) 5.16(12) 5.10(16) [1.63]

(3,0,0 4.44(25) 4.36(27) 5.07(14) 4.79(19) [1.67]

(3,1,0)  3.9523)  3.9519)  4.53(10)  4.31(14) [1.97]
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TABLE XX. Data for the unrenormalized pseudoscalar form factor Gp(Q?) obtained using four strategies {4,3*}, {4V7 3*},
{4N= 244} [4N7 2sim) for controlling excited-state contamination. The numbers within the square brackets are the y2/dof of the fit.

a,
a,
a,
2,
@,
@,
@,
@,
@G,

a,
a,
a,
@,

@,
@,
@,
@G,
@G,

a,
a,
a,
@,
@,
2,
@,
@,
@G,
@G,

{,
a,
a,
@,
@,
2,
2,
@,
@3,
@G,

—_ O NN == O == O

, 0) 10.5(5) [1.24]
, 00 9.2(4) [1.19]

a071m170

20.7(6) [1.64]
16.7(5) [1.08]
12.2(4) [1.24]
10.6(4) [0.57]
10.3(5) [1.17]
9.3(5) [1.16]

, 0) 66.7(4.7) [1.84] 84.4(5.2) [0.90] 91.2(3.0) [1.43]
, 0) 42.7(2.8) [1.98] 50.3(2.5) [1.28] 49.7(10) [6.23]
. 1) 31L1(1.7) [1.68] 35.2(1.5) [1.31] 34.4(7) [3.93]
, 0) 24.3(1.2) [1.60] 26.6(10) [1.47]
, 0) 19.2(6) [1.97]
, 1) 15.9(6) [1.24]
,0) 11.7(5) [1.64]
, 1) 10.4(4) [0.68]
[
[

26.4(10) [1.74]
20.7(4) [6.03]
17.9(1.2) [1.58]
13.6(3) [1.29]
11.9(3) [0.89]
11.53) [1.11]
10.5(3) [1.31]

94.2(3.5) [1.48]
52.0(1.4) [1.82]
36.0(10) [1.43]
27.6(7) [1.47]

22.4(6) [1.92]
18.2(5) [1.69]
13.5(4) [1.73]
12.13) [1.63]
11.5(4) [1.67]
10.4(4) [1.97]

{4’ 3*} {4N7!’ 3*} {4Nzr,2A4} {4_N7r’ 2sim} {4’ 3*} {4Nﬂ’ 3*} {4N;r’ 2A4} {4Nﬂ7 zsim}
al27m?285 a094m270
0, 0) 36.09) [3.89] 38.6(8) [1.89] 42.0(1.0) [4.74] 41.8(1.0) [1.54] 28.5(2.1) [1.11] 28.5(7) [1.09] 31.09) [2.48] 30.3(8) [1.33]
1, 0) 23.4(5) [2.23] 24.2(3) [1.07] 25.6(5) [2.06] 25.1(4) [0.95] 15.6(5) [1.07] 16.0(3) [0.80] 17.2(5) [0.95] 16.7(4) [1.23]
1, 1) 17.1(4) [0.98] 17.3(3) [0.87] 18.1(4) [0.55] 17.8(3) [0.82] 10.3(3) [1.00] 10.6(2) [0.95] 11.6(4) [1.14] 11.1(4) [1.19]
0, 0) 13.03) [1.25] 13.1(2) [0.98] 14.2(3) [0.62] 13.9(4) [1.59] 7.2(4) [1.10] 7.2(3) [1.16] 8.0(2) [1.38] 7.6(3) [1.31]
1,0) 103(2) [1.35]  10.3(1) [1.22] 11.1(2) [1.19] 10.8(2) [1.22]  6.1(3) [0.99]  6.0(2) [1.03]  7.03) [0.91]  6.2(3) [0.98]
L) 86(2)[1.32]1 85(1)[1.31]  93(2) [1.46] 89(2) [1.25]  4.6(4) [1.93] 4.6(2) [1.94]  52(2) [1.85]  4.8(2) [1.12]
2,0) 6.1(1)[1.08] 6.0(1) [1.05]  6.62) [1.14]  63(2) [1.15]  3.4(5) [1.08]  3.4(3) [1.09] 4.0(4) [1.36]
2,1) 55(2)[098] 5.4(1)[0.96] 59(2)[1.05] 5.82)[1.18] 2.7(5)[1.03]  2.7(3) [1.02] 2.8(2) [1.26]
0,0) 5.4(2) [0.68] 5.3(2) [0.65] 6.1(3) [0.57] 5.7(6) [1.38] 2.0(8) [0.69] 2.3(5) [0.68] 2.6(4) [1.12]
1,0) 4.82)[1.02] 472)[1.02] 55@2)[1.22] 5.03)[1.39] 2.4(3) [1.19]  2.4(5) [1.19] 2.7(7) [1.19]
a094m270L a091m170
0, 0) 44.5(1.5) [3.97] 49.9(8) [1.62]  52.1(1.1) [1.55] 52.08) [1.40]  50.8(1.5) [2.43] 65.7(1.4) [0.92] 67.9(2.6) [1.11] 66.9(2.4) [1.15]
1, 0) 29.9(8) [2.82] 32.3(4) [1.36] 33.2(2.0) [3.33] 32.5(4) [1.55] 31.4(8) [2.84] 36.5(9) [1.46] 37.7(9) [1.12] 37.1(10) [1.21]
1, 1) 21.9(5) [2.01] 23.03) [1.28] 24.0(3) [2.78] 23.3(3) [1.57] 22.0(5) [2.13] 24.6(7) [0.87] 25.7(5) [0.77] 26.2(7) [1.14]
0,0) 17.03) [1.32] 17.7(2) [0.99] 17.9(4) [1.05] 18.03) [1.58] 16.9(4) [1.05] 18.9(8) [0.61] 19.0(5) [0.72] 19.1(5) [1.28]
1,0) 13.92) [1.53] 14.1(2) [0.82] 14.4(2) [1.82] 14.6(2) [1.48] 13.3(3) [1.83] 13.6(5) [1.21] 15.3(3) [1.43] 15.5(4) [1.92]
1, 1) 11.6(2) [1.47] 11.72) [0.94] 11.9(1) [2.56] 12.1(2) [1.50] 11.1(3) [1.35] 10.9(8) [1.14] 12.0(6) [2.12] 12.3(4) [1.63]
2,0) 8.6(1)[0.59] 8.5(1) [0.44]  9.3(1)[0.84]  8.9(1) [1.24]  8.03) [1.94]  7.6(6) [1.78] 10.2(6) [2.00]  9.1(3) [2.15]
2, 1) 7.5(1)[1.26]  7.5(1) [1.07]  8.1(1)[0.96] 7.9(1) [1.14]  6.7(2) [1.32]  5.7(6) [1.13]  7.8(3) [1.85]  7.4(3) [1.51]
0, 0) 7.5(2) [0.76] 7.6(2) [0.72] 8.4(2) [0.85] 7.7(2) [1.10] 7.4(3) [1.07] 7.4(8) [1.09] 10.3(1.6) [1.43] 7.8(4) [1.13]
1,0) 6.5(1) [1.25] 6.4(3) [0.97] 7.3(2) [1.10] 7.0(2) [1.44] 6.3(3) [1.32] 6.5(7) [1.29] 6.8(3) [1.08] 6.9(3) [1.23]
a091m170L a073m270
0, 0) 73.92.3) [2.39] 95.0(5.1) [1.04] 97.7(3.2) [2.50] 97.0(3.4) [2.00] 34.2(1.4) [3.18] 37.2(9) [1.33] 39.1(6) [2.03] 40.1(5) [1.63]
1, 0) 50.3(1.5) [2.88] 61.4(3.1) [1.54] 60.6(1.4) [1.95] 60.4(1.8) [1.81] 20.8(7) [3.20] 21.8(3) [1.58] 22.6(3) [1.09] 23.02) [1.66]
1, 1) 37.5(1.0) [3.48] 44.8(1.9) [2.12] 42.1(1.1) [5.28] 44.0(1.1) [2.18] 14.7(4) [2.04] 15.02) [1.32] 15.7(2) [0.89] 15.7(2) [1.29]
0, 0) 30.1(8) [1.52]  34.2(1.4) [1.15] 33.9(1.5) [1.02] 34.1(1.1) [1.40] 10.92) [2.27] 11.1(1) [1.72] 11.7(2) [1.22] 11.8(2) [1.18]
1, 0) 24.7(6) [2.07] 27.5(10) [1.45] 27.5(6) [1.57] 27.2(8) [2.12] 8.5(1) [0.99] 8.5(1) [0.91] 9.3(1) [1.68] 9.2(1) [2.25]
1, 1) 20.7(5) [1.78] 22.7(7) [1.51] 23.0(6) [1.91] 23.3(9) [2.68] 7.0(1) [1.19] 6.9(1) [1.25] 7.7(1) [1.84] 7.5(1) [1.73]
2,0) 153(3) [2.41]  16.0(5) [1.99] 17.0(4) [1.98] 17.2(6) [2.42]  5.0(1) [1.03]  5.0(1) [0.94]  5.6(1) [1.97]  5.4(1) [1.62]
2, 1) 13.6(3) [1.85]  14.3(4) [1.71] 15.0(4) [1.54] 15.0(6) [2.36]  4.4(2) [0.75]  4.2(1) [0.77]  4.9(1) [1.36]  4.7(1) [1.35]
0,0) 13.8(3) [2.10] 14.3(6) [1.91] 15.5(5) [2.04] 14.8(5) [1.99]  4.3(2) [0.94]  4.2(2) [0.95]  5.0(3) [1.26]  4.9(2) [1.28]
1,0) 11.93) [1.74] 12.1(5) [1.58] 13.5(4) [2.00] 13.4(6) [1.98] 3.8(2) [0.78] 3.8(2) [0.79] 4.5(3) [1.14] 4.2(2) [1.57]
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TABLE XXI. Check of the PCAC relation between the axial and pseudoscalar form factors given in Eq. (29) for four strategies used to
remove ESC. Since PCAC is an operator relation, deviations from unity should only be due to discretization errors.
{4!3*} {4N7‘[’3*} {4N7t’2A4} {4Nn’2sim} {4’ 3*} {4Nﬂ,3*} {4N7r’2A4} {4Nﬂ’2sim}

7] al27m?285 a094m?270

(1,0,0) 0.876(21)  0.931(16) 1.007(20) 1.015(20) [1.54] 0.930(68) 0.931(21) 1.016(25)  0.992(21) [1.33]

(1, 1, 0)  0.926(19)  0.965(11) 1.014(17) 1.008(13) [0.95] 0.951¢41) 0.972(16) 1.016(24) 1.000(15) [1.23]

(1, 1, 1)  0.959(23)  0.980(13) 1.019(19) 1.009(13) [0.82] 0.946(35) 0.973(19) 1.074(31) 1.025(25) [1.19]

(2,0,0) 0.964(28)  0.985(15) 1.049(25) 1.027(21) [1.59] 0.982(39) 0.937(26) 0.982(18)  0.950(22) [1.31]

2,1,0) 0.970(26) 0.984(13) 1.033(14) 1.012(15) [1.22] 0.948(41)  0.923(21) 1.027(53)  0.954(26) [0.98]

2,1, 1)  0.966(31) 0.963(15) 1.021(14) 1.017(19) [1.25] 0.909(54)  0.888(30) 0.993(26)  0.921(33) [1.12]

2, 2,0 1.004(45)  0.998(18) 1.063(26) 1.036(28) [1.15] 0.936(76)  0.915(50) 0.981(69) [1.36]

(2,2,1) 0.967(42) 0.963(21) 1.029(25) 1.050(45) [1.18] 0.794(80)  0.796(63) 0.846(47) [1.26]

(3,0,0) 0.916(30) 0.919(31) 1.020(42)  0.957(64) [1.38] 0.89(17) 0.86(12) 0.905(65) [1.12]

(3,1,0) 0.947(33) 0.955(26) 1.034(36)  0.998(73) [1.39] 1.04(12) 0.984(88) 0.86(13) [1.19]
a094m270L a091m170

(1,0,0) 0.858(29) 0.957(17) 0.991(13)  0.991(10) [1.40] 0.723(19)  0.856(36) 0.945(28)  0.938(25) [1.15]

(1, 1,0)  0.91429)  0.992(14) 0.998(34)  0.989(08) [1.55] 0.824(25)  0.968(29) 0.983(21)  0.978(20) [1.21]

(1, 1, 1)  0.93926)  0.996(13) 1.017(10)  0.994(08) [1.57] 0.859(22)  0.988(36) 0.986(19) 1.007(19) [1.14]

(2,0,0) 0.947(24) 1.001(13) 0.993(15)  0.999(10) [1.58] 0.862(24)  0.937(37) 0.990(18)  0.988(19) [1.28]

(2, 1,0) 0.94925) 0.984(11) 0.988(11)  0.994(08) [1.48] 0.881(25) 0.967(39) 0.982(15)  0.996(18) [1.92]

2,1, 1) 0.952(25) 0.983(13) 0.977(12) 1.001(10) [1.50] 0.905(27)  0.965(50) 0.959(35) 1.001(26) [1.63]

(2,2,0)  0.946(27) 0.969(14) 1.022(09)  0.985(12) [1.24] 0.877(35)  0.888(56) 1.071(51)  0.983(24) [2.15]

(2,2,1) 0.951(32) 0.963(17) 1.020(12) 1.006(18) [1.14] 0.921(39) 1.001(74) 0.986(25)  0.992(36) [1.51]

(3,0,0) 0.94032) 0.992(19) 1.025(16)  0.989(23) [1.10] 0.923(51)  0.94(12) 1.058(08) 1.020(41) [1.13]

(3, 1,0) 0.92026)  0.948(18) 1.036(22)  0.998(27) [1.44] 0.908(46)  0.867(88) 0.963(27)  0.972(36) [1.23]
a091m170L a073m270

(1,0,0) 0.71022) 0.897(44) 0.903(22)  0.889(22) [2.00] 0.855(33)  0.926(21) 0.980(10)  0.993(06) [1.63]

(1, 1, 0)  0.811(25) 0.986(48) 0.947(18)  0.952(22) [1.81] 0.909(34)  0.955(16) 0.993(09) 1.001(06) [1.66]

(1,1, 1)  0.861(25) 1.034(42) 0.952(21)  0.977(17) [2.18] 0.936(33) 0.965(14) 1.002(10) 1.004(06) [1.29]

(2,0,0) 0.884(27) 1.027(51) 0.975(29)  0.985(20) [1.40] 0.935(19)  0.960(10) 0.997(12) 1.004(08) [1.18]

2, 1,0) 0.917(26) 1.041(44) 0.985(15)  0.999(21) [2.12] 0.944(25) 0.946(10) 0.998(08)  0.998(09) [2.25]

2,1,1) 0.926(25) 1.034(40) 0.988(17) 1.019(26) [2.68] 0.959(38) 0.933(14) 0.997(09)  0.987(10) [1.73]

(2,2,0) 0.934(25) 1.019(41) 0.991(17) 1.016(18) [2.42] 0.969(41)  0.925(14) 1.004(09)  0.984(15) [1.62]

(2,2,1) 0.946(27) 1.022(45) 0.992(18) 1.019(30) [2.36] 0.962(40) 0.912(17) 1.001(12)  0.974(18) [1.35]

(3,0,0) 0.90026)  0.950(45) 0.989(22)  0.994(28) [1.99] 0.939(32) 0.910(25) 1.077(76) 1.025(19) [1.28]

(3, 1,0) 0.928(25) 0.978(44) 0.994(20) 1.027(31) [1.98] 0.963(34) 0.919(22) 1.010(44)  0.980(36) [1.57]
a071m170

(1, 0,0) 0.723(46)  0.885(45) 0.968(23)  0.972(25) [1.48]

(1, 1,0) 0.833(59) 0.971(44) 0.950(14)  0.979(17) [1.82]

(1, 1, 1)  0.878(54) 1.004(43) 0.964(17)  0.998(15) [1.43]

(2,0,0) 0.915(57) 1.029(39) 0.985(28) 1.001(14) [1.47]

(2, 1,0) 0.898(41) 1.012(33) 0.961(16)  0.998(13) [1.92]

2,1, 1) 0.920(45) 1.006(33) 0.995(34) 1.004(15) [1.69]

2,2,0) 0.892(30) 0.976(29) 0.987(15)  0.987(13) [1.73]

(2,2,1) 091434) 0.976(31) 0.990(15) 1.004(15) [1.63]

(3,0,0) 0.956(61) 1.007(47) 0.981(16)  0.984(18) [1.67]

(3, 1,0) 0.934(48) 1.000(36) 0.978(16)  0.986(19) [1.97]
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4 4 4 4
{4.3"} {4"7,3*} {anm, 244} {4Nm, 2sim}
3 ®ag a127m285 3 ®ag al27m285 3 ®ag al27m285 3 ®ag al27m285
? X ® 5 X ® 4 X
2 2 2 2 x 2 2
1 1 1 1
0 0 0 0
Rsa(n? = 1) = 0.814(66) Rsa(n?=1)=0.58(17) Rsa(n? =1)=0. 0043(70) \g\§ Rsa(n?=1)=0.61(11)
1} x/19=6.34,p=0.00 ] 1| X/19=1.83,p=0.02 - .1 f x¥/15=0.91,p=0.5 Xge 1| X?/66=1.54,p=0.00 o
AE; =0.40(5), AM; = 0.39(5) 4o AF1=0.28(2), AM; = 0.33(2) A AEy =0.16(1), Aby = o 30(2) Ao AEy = 0.20(1), MMy = 0.24(1) aq
Tio — 14 124 10@ 8 Ti0 — 1l4e 124 108 8 Ti0 — 14w 124 108 8 Tio — 14w 124 10 8
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 10 -10 -5 0 5 10
t—1/2 t—1/2 t—1/2 t—1/2
4 4 4 4
3 eag {4,3*} 3 eag {4N7,3*} 3 oag {4Nm, 244} 3 eag {4Nm, 2simy
8 @094m270L ®a @094m270L ©3a @094m270L °sa 094m270L
2 2 2 *&! 2 &
1 1 1 1
0 0 \ 0 0
1 g ey 1 ae af a2
Rsa(n?=1)=0. 851(69) = § Rsa(n2=1)=0. 739(74) X g f Rsa(n? =1)=0.98(58) X g f Rsa(n?=1)=0.906(87) X g f
, L X25=1435p=0. e 5 bx¥25=172,p=00 @ 5 b X¥21=157,p=0.05 e 5 | x¥/90=1.40, p=0.01 e
"2 [ AE1=0.28(4), AM; = o 28(5) 2 F AE1=0.17(1), AM; = 0.20(2) 4 | 81 =0.16(3), AMMy =0.16(3) 4 | AEy =0.15(1), My = 0.16(1)
Tio — 18w 164 14 12 glrie— 18e 16a e 12 Ti0o — 180 164 14a 12 % Tio — 18w 16 1d@ 12 %
-10 -5 0 5 10 -10 -5 0 5 10 10 -5 0 5 10 -10 -5 0 5 10
t—1/2 t—1/2 t—1/2 t—1/2
4 4 4 4
5 QQQ {4,3*} 5 ag@ {4 3%} 5 {4Nm, 24} 5 SQQ {4Nm 2simy
é a091m170 a091m170 a091m170 a091m170
2 2 2
1 1 1
™ -
0 R 0 0
. } ab, M 1 ! M
Rsa(n? =1) = 0.88(14) 5o Rsa(n?=1)=0.35(21) a0 Rsa(n? =1)=0.008(11) Rsa(n? =1) =0.39(23) 80
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FIG. 23.

The ratio Rs,, defined in Eq. (23), is plotted versus the shifted operator insertion time ¢ — z/2 forn = (0, 0, 1). Results of the

fits with {4,3*} (left column), {4"* 3*} (second column), {47,244} (third), and {4V* 25™m} (right) strategies are shown by lines
connecting the data points. The 7 — oo value is shown by the gray band. The y-axis interval is the same for a given row to facilitate
comparison of the result and the error. The legends give the analysis strategy, the ensemble ID, the ground state value (the gray band), the
x*/dof and the p-value of the fit, and the mass gaps, AM, and AE, (or AM, and AE, for {244} or {2°™} fits), of the first excited state
on the two sides of the operator. For each 7, only the data points connected by lines with the same color as the symbols are included in the
simultaneous fits.
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FIG. 24. Matrix elements of the axial and pseudoscalar currents that give (i) Gp [from Rs; with n? = 2 defined in Eqg. (20)] in column
one, (ii) G, [from Rs; with n? = 1 and g, = 0 defined in Eq. (22)] in the second column, (iii) the combination 5 GP <Mq—+2E) G, [from Rs3
3

with g3 = (0,0, 1)2z/La] in the third column, and (iv) Gp [from Rs defined in Eq. (24)] in the right column. All data are with the
{4N= 2sim1 strategy and plotted versus the shifted operator insertion time ¢ — 7/2. The rest is the same as in Fig. 23.
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FIG. 25. Matrix elements at momentum transfer n° = 1 that give G4 [from Rs; with ¢, = 0 defined in Eq. (22)] in rows one and two,

the combination

i - (M+E G, [from Rs3 with g3 = (0,0, 1)2z/La] in rows three and four, and Gp [from Rs defined in Eq. (24)] in

rows five and six. Data from the a091m170L (rows one, three, and five) and a071m170 (rows two, four, and six) ensembles are plotted
versus the shifted operator insertion time 7 — z/2. The four panels in each row show the data and fits from the four strategies, {4, 3*}
(left), {4V7 3%} (second), {4V7, 24} (third), and {4"7,25™} (right). The y-axis interval is chosen to be the same for each row to
facilitate comparison of the result and the error. The rest is the same as in Fig. 23.
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FIG. 26. The data for (Q? + M3)Gp(Q?) from the seven ensembles are plotted versus Q%. According to the pion-pole dominance
hypothesis, Eq. (30), the result should be a smooth monotonic function that is proportional to G,(Q?). The data from the {4,3*} and
{47 3*} strategies on the M, = 170 MeV ensembles (top two panels) show deviations from this expectation at small Q2. Also, the
“lines” of data from a given ensemble move up slightly as a — 0 and down as M, — 135 MeV. The labels specity the analysis strategy
and the ensemble ID.
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APPENDIX G: COMPARISON OF ELECTRIC AND MAGNETIC FORM FACTORS
EXTRACTED USING FOUR STRATEGIES

In this Appendix, we show in Figs. 27-29 the ratios defined in Eqs. (25)~(27) that give G}*, G}/, and G);. The four
panels in each row show the results for the ground state matrix element obtained using the four ESC strategies, {4, 3"},
{aN= 3%}, {4,285} [4N7 2sim} The renormalized electric and magnetic form factors are given in Tables XXII-XXIV.
Each panel in Figs. 30 and 31 shows the dipole, Padé, and z-expansion fits to these data and gives the values of (r2), (r3,), u
obtained. Data from the four strategies are shown in the four rows in each figure, and for the a091m170L and a071m170

ensembles in the two figures.
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FIG. 27. Gg(n = (1,0,0)) obtained from the ratio R, defined in Eq. (27) for five ensembles plotted versus the shifted operator
insertion point ¢ — 7/2. The panels in the left column show the fits with {4, 3*}, the second with {4¥* 3*1, the third with {4,2%™}, and
the right column with {47, 25} strategies. The interval along the y-axis is the same for a given row to facilitate comparison of the result
and the error. The rest is the same as in Fig. 23.
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FIG. 28.
same as in Fig. 23.
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FIG.29. Gy(n = (1,0,0)), obtained from NV; [see Eq. (25)] plotted versus the shifted operator insertion point 7 — 7/2. The rest is the
same as in Fig. 23.
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TABLE XXII. Data for renormalized G?V“(QZ) /gy from the seven ensembles and with the four strategies for controlling ESC. The

%/ dof of the fits are given within square parentheses, and are the same for the three quantities G *(Q%), G;'(Q?), and G} (Q?) in
the simultaneous {29™} fits. Only data with the four strategies for a given ensemble and r can be compared.

al27m285 a094m?270 a094m270L a091m170 a091m170L a073m270 a071m170
n Strategy {4,3*}

, 0) 0.764(05) [2.05] 0.642(20) [1.18] 0.817(04) [1.03] 0.791(06) [1.06] 0.870(05) [1.07] 0.737(07) [1.29] 0.845(11) [1.10]
, 0) 0.609(06) [1.21] 0.461(21) [1.56] 0.680(06) [0.90] 0.643(08) [1.04] 0.764(06) [0.90] 0.569(11) [0.99] 0.723(15) [1.17]
, 1) 0.495(08) [1.47] 0.356(16) [0.95] 0.576(08) [1.32] 0.541(09) [0.63] 0.679(07) [0.79] 0.454(12) [1.35] 0.622(18) [1.25]
, 0) 0.417(08) [1.04] 0.245(21) [0.91] 0.499(08) [1.03] 0.464(10) [0.95] 0.607(08) [1.71] 0.376(09) [1.16] 0.548(20) [0.91]
, 0) 0.356(08) [1.01] 0.214(14) [1.02] 0.436(08) [1.44] 0.401(09) [1.44] 0.546(09) [1.24] 0.312(10) [1.42] 0.488(17) [0.88]
, 1) 0.303(10) [1.33] 0.184(11) [1.13] 0.385(08) [1.69] 0.355(09) [1.09] 0.498(09) [0.81] 0.262(11) [1.56] 0.435(18) [0.95]
, 0) 0.234(09) [0.77] 0.137(16) [1.02] 0.310(08) [1.35] 0.276(11) [1.52] 0.414(09) [1.54] 0.196(11) [1.21] 0.364(14) [0.89]
, 1) 0.208(10) [1.04] 0.128(14) [1.12] 0.278(08) [1.62] 0.251(09) [0.47] 0.385(09) [0.91] 0.176(09) [2.24] 0.333(13) [0.62]
, 0) 0.212(10) [1.23] 0.094(43) [1.33] 0.284(08) [1.31] 0.236(16) [1.11] 0.384(09) [1.26] 0.180(09) [0.97] 0.319(18) [0.52]
, 0) 0.188(09) [0.78] 0.125(24) [1.41] 0.261(07) [1.31] 0.222(11) [1.42] 0.353(09) [1.35] 0.156(08) [1.07] 0.301(14) [0.48]

Strategy {47, 3*}
, 0) 0.755(05) [1.64] 0.643(09) [1.15] 0.804(04) [1.02] 0.750(10) [0.94] 0.839(11) [1.01] 0.725(06) [0.97] 0.815(14) [1.16]
0) 0.599(05) [1.04] 0.465(07) [1.24] 0.664(05) [0.89] 0.593(09) [1.01] 0.726(13) [0.87] 0.557(06) [1.02] 0.688(14) [1.19]
, 1) 0.487(05) [1.49] 0.357(07) [0.89] 0.559(05) [1.27] 0.492(11) [0.85] 0.632(15) [0.76] 0.442(07) [1.59] 0.584(15) [1.46]
, 0) 0.409(05) [1.01] 0.268(10) [0.96] 0.481(05) [0.98] 0.416(12) [0.88] 0.562(16) [1.92] 0.364(06) [1.11] 0.507(16) [1.05]
, 0) 0.350(05) [1.03] 0.224(06) [1.04] 0.422(05) [1.19] 0.353(10) [1.18] 0.499(17) [1.43] 0.306(05) [1.58] 0.448(14) [0.96]
, 1) 0.300(05) [1.38] 0.192(07) [1.14] 0.371(05) [1.53] 0.317(12) [0.79] 0.453(17) [0.93] 0.263(05) [2.01] 0.398(14) [1.12]
, 0) 0.233(05) [0.76] 0.141(12) [1.01] 0.302(05) [1.14] 0.230(16) [1.09] 0.372(16) [1.73] 0.201(05) [1.47] 0.328(13) [0.88]
, 1) 0.207(05) [1.03] 0.131(10) [1.12] 0.271(05) [1.49] 0.228(14) [0.55] 0.346(15) [1.05] 0.184(04) [2.52] 0.305(11) [0.67]
, 0) 0.207(08) [1.20] 0.122(22) [1.37] 0.269(07) [1.24] 0.213(24) [1.03] 0.342(16) [1.33] 0.184(07) [0.97] 0.295(14) [0.55]
. 0) 0.185(07) [0.76] 0.122(27) [1.42] 0.248(06) [1.09] 0.212(17) [1.75] 0.314(15) [1.48] 0.160(06) [1.18] 0.273(12) [0.48]

Strategy {4,2%m}
0, 0) 0.749(09) [1.58] 0.603(41) [1.07] 0.810(05) [0.96] 0.778(11) [1.48] 0.856(10) [1.06] 0.713(14) [0.89] 0.811(16) [1.02]
1, 0) 0.589(14) [1.19] 0.424(52) [0.92] 0.671(07) [0.83] 0.625(19) [0.55] 0.749(12) [0.98] 0.549(11) [1.17] 0.709(10) [1.57]
1, 1) 0.481(17) [1.44] 0.362(22) [1.02] 0.562(11) [1.08] 0.539(15) [0.85] 0.658(14) [1.09] 0.450(11) [1.04] 0.625(11) [1.35]
(2, 0,0) 0.416(14) [1.19] 0.16(15) [1.31] 0.492(09) [1.11] 0.433(27) [0.82] 0.600(14) [0.93] 0.362(18) [1.35] 0.541(30) [0.91]
L,
L,

A
N bl
— O NN == O == O

A
» ol
— O NN = = O == O

0) 0.350(14) [1.03] 0.218(33) [0.92] 0.407(16) [1.06] 0.347(43) [0.77] 0.533(20) [1.27] 0.311(11) [0.97] 0.488(11) [1.31]
1) 0.294(17) [1.36] 0.104(44) [1.41] 0.349(24) [1.30] 0.322(32) [0.70] 0.477(17) [1.30] 0.254(21) [0.87] 0.444(12) [1.20]
(2,2, 0) 0.236(19) [0.90] 0.158(03) [1.28] 0.281(24) [1.13] 0.232(83) [1.24] 0.393(26) [1.29] 0.180(25) [0.76] 0.347(22) [1.10]
(2,2, 1) 0.172(61) [1.91] 0.115(24) [1.04] 0.179(60) [1.06] 0.219(47) [0.89] 0.363(23) [1.41] 0.182(17) [0.79] 0.341(11) [1.02]
(3, 0, 0) 0.08(26) [1.21] 0.062(52) [1.60] 0.242(29) [1.25] 0.224(66) [1.33] 0.368(38) [1.26] 0.177(25) [0.95] 0.322(31) [0.66]
(3, 1,0) 0.17(15) [0.91] 0.121(04) [1.74] 0.14(16) [1.01] 0.214(39) [1.04] 0.348(19) [1.29] 0.167(16) [1.13] 0.306(20) [0.70]

Strategy {4V7,2s5im}
(1, 0, 0) 0.746(11) [1.52] 0.593(43) [1.09] 0.816(06) [0.95] 0.790(15) [1.59] 0.881(27) [0.78] 0.708(13) [0.80] 0.843(18) [1.13]
(1, 1, 0) 0.590(14) [1.21] 0.427(41) [0.89] 0.676(07) [0.88] 0.641(15) [0.60] 0.771(17) [0.81] 0.551(11) [1.19] 0.724(14) [1.62]
(1, 1, 1) 0.478(19) [1.53] 0.357(21) [1.01] 0.567(15) [1.18] 0.548(11) [0.86] 0.675(14) [1.11] 0.450(10) [1.08] 0.635(12) [1.16]
(2,0, 0) 0.416(14) [1.19] 0.216(90) [1.36] 0.494(10) [1.16] 0.441(36) [0.94] 0.615(16) [0.92] 0.364(18) [1.37] 0.559(22) [0.89]
(2, 1, 0) 0.349(15) [1.06] 0.220(26) [0.93] 0.408(18) [1.14] 0.358(48) [0.80] 0.546(14) [1.27] 0.312(11) [0.96] 0.497(10) [1.29]
(2, 1, 1) 0.295(15) [1.44] 0.112(44) [1.38] 0.351(28) [1.41] 0.336(41) [0.76] 0.488(16) [1.35] 0.259(19) [0.86] 0.453(08) [1.16]
(2, 2, 0) 0.233(16) [1.00] 0.154(04) [1.50] 0.247(31) [1.07] 0.17(16) [0.89] 0.415(19) [1.36] 0.185(23) [0.76] 0.355(18) [1.11]
(2,2, 1) 0.169(63) [1.95] 0.135(08) [1.06] 0.177(51) [1.33] 0.219(48) [0.96] 0.373(23) [1.44] 0.186(14) [0.78] 0.348(09) [1.01]
(3, 0, 0) 0.127(70) [0.96] 0.076(76) [1.60] 0.246(56) [1.17] 0.224(64) [1.34] 0.375(36) [1.28] 0.181(22) [0.96] 0.329(27) [0.66]
(3, 1, 0) 0.04(28) [1.20] 0.132(72) [1.66] 0.211(30) [1.31] 0.246(13) [1.10] 0.347(22) [0.99] 0.166(17) [1.13] 0.313(15) [0.71]

—_

054505-66



PRECISION NUCLEON CHARGES AND FORM FACTORS USING ... PHYS. REV. D 105, 054505 (2022)

TABLE XXIII. Data for the renormalized G};V’ (Q?)/gy from the seven ensembles and with the four strategies for controlling ESC.
The rest is the same as in Table XXII.

al27m?285 a094m?270 a094m?270L a091m170 a091m170L a073m270 a071m170
n Strategy {4,3*}

(1, 0, 0) 0.761(17) [1.20] 0.701(89) [0.96] 0.817(19) [0.90] 0.816(46) [2.36] 0.872(35) [0.88] 0.726(30) [2.99] 0.862(81) [1.00]
(1, 1, 0) 0.620(15) [1.23] 0.534(52) [1.00] 0.690(17) [0.91] 0.679(30) [1.47] 0.788(28) [0.58] 0.583(25) [2.32] 0.749(59) [1.59]
(1, 1, 1) 0.505(16) [1.24] 0.394(25) [1.20] 0.593(18) [1.51] 0.591(26) [1.37] 0.728(27) [0.85] 0.483(23) [1.86] 0.661(57) [1.04]
(2, 0, 0) 0.436(20) [0.85] 0.296(38) [1.08] 0.531(17) [1.13] 0.518(26) [0.73] 0.635(29) [0.81] 0.412(16) [1.23] 0.611(56) [1.00]
(2, 1, 0) 0.374(16) [1.48] 0.254(25) [0.92] 0.466(14) [1.19] 0.461(22) [1.27] 0.598(24) [0.81] 0.339(16) [1.15] 0.528(34) [1.11]
(2, 1, 1) 0.318(17) [1.90] 0.185(25) [1.48] 0.419(15) [1.34] 0.418(20) [0.81] 0.564(22) [1.20] 0.295(18) [1.35] 0.484(34) [0.97]
(2, 2, 0) 0.248(20) [1.54] 0.163(27) [1.25] 0.345(13) [0.98] 0.335(21) [0.96] 0.473(25) [1.07] 0.216(16) [1.11] 0.427(27) [1.16]

2

0

1

(2,2, 1) 0.218(18) [1.90] 0.095(36) [1.04] 0.311(15) [0.99] 0.309(19) [0.77] 0.439(20) [0.69] 0.201(15) [1.42] 0.376(24) [0.78]
(3,0, 0) 0.221(17) [1.43] 0.082(66) [1.20] 0.322(16) [1.31] 0.262(34) [0.92] 0.435(28) [0.87] 0.212(16) [1.04] 0.378(38)
(3, 1, 0) 0.212(21) [0.61] 0.211(93) [1.56] 0.302(13) [1.00] 0.280(30) [1.31] 0.397(29) [1.23] 0.162(18) [0.89] 0.346(28)

Strategy {4V7 3%}

0, 0) 0.725(34) [0.91] 0.635(33) [1.00] 0.823(27) [1.38] 0.94(12) [1.74] 0.91(10) [0.58] 0.669(26) [1.21] 0.910(93) [0.96]
1, 0) 0.609(15) [0.91] 0.498(20) [1.01] 0.694(20) [0.69] 0.709(63) [1.09] 0.860(69) [0.57] 0.567(15) [1.31] 0.793(56) [1.67]
1, 1) 0.505(13) [1.09] 0.375(19) [1.20] 0.601(17) [0.97] 0.624(55) [1.36] 0.802(63) [0.74] 0.477(12) [1.52] 0.707(58) [1.26]
(2, 0, 0) 0.430(15) [0.81] 0.317(23) [1.08] 0.531(17) [1.16] 0.443(51) [0.66] 0.682(62) [0.77] 0.405(12) [1.01] 0.659(51) [0.98]
(2, 1,0) 0.371(12) [1.49] 0.259(16) [0.94] 0.471(13) [0.90] 0.490(44) [0.66] 0.639(51) [0.80] 0.343(09) [1.04] 0.528(32) [1.24]
(2, 1, 1) 0.320(11) [1.90] 0.198(18) [1.49] 0.427(13) [1.06] 0.453(45) [0.57] 0.604(44) [1.22] 0.310(09) [1.43] 0.496(35) [1.09]

2

2

0

1

0.60]
0.58]

—_——

(1,
(1,
(1,

(2, 2, 0) 0.250(12) [1.53] 0.167(21) [1.24] 0.353(11) [0.93] 0.351(42) [0.68] 0.492(48) [1.14] 0.233(08) [1.15] 0.423(29) [1.15]
(2,2, 1) 0.219(13) [1.89] 0.113(26) [1.05] 0.321(13) [0.88] 0.317(52) [0.79] 0.449(38) [0.75] 0.217(10) [1.45] 0.374(31) [0.80]
(3,0, 0) 0.217(19) [1.42] 0.095(97) [1.23] 0.319(17) [1.25] 0.198(23) [0.87] 0.432(55) [0.81] 0.220(16) [1.05] 0.402(38) [0.59]
(3, 1, 0) 0.206(23) [0.59] 0.16(12) [1.57] 0.306(18) [0.88] 0.296(72) [1.37] 0.378(54) [1.21] 0.176(17) [0.93] 0.330(42) [0.61]

Strategy {4,25m}
, 0) 0.778(27) [1.58] 0.585(78) [1.07] 0.820(19) [0.96] 0.815(42) [1.48] 0.858(36) [1.06] 0.729(32) [0.89] 0.916(89) [1.02]
, 0) 0.615(19) [1.19] 0.448(48) [0.92] 0.680(18) [0.83] 0.631(36) [0.55] 0.767(28) [0.98] 0.560(19) [1.17] 0.755(54) [1.57]
, 1) 0.488(24) [1.44] 0.379(35) [1.02] 0.569(20) [1.08] 0.550(25) [0.85] 0.690(25) [1.09] 0.458(17) [1.04] 0.653(41) [1.35]
(2,0, 0) 0.436(17) [1.19] 0.15(16) [1.31] 0.504(15) [1.11] 0.453(35) [0.82] 0.610(24) [0.93] 0.376(20) [1.35] 0.555(61) [0.91]
(2, 1, 0) 0.359(18) [1.03] 0.225(36) [0.92] 0.419(21) [1.06] 0.388(48) [0.77] 0.562(23) [1.27] 0.326(14) [0.97] 0.522(29) [1.31]

(1,0
1
1
0
1
2, 1, 1) 0.290(26) [1.36] 0.003(04) [1.41] 0.361(28) [1.30] 0.346(39) [0.70] 0.525(22) [1.30] 0.263(24) [0.87] 0.476(26) [1.20]
2
2
0
1

,
,

(2, 2, 0) 0.241(25) [0.90] 0.170(05) [1.28] 0.292(27) [1.13] 0.239(86) [1.24] 0.424(27) [1.29] 0.197(27) [0.76] 0.398(34) [1.10]
(2,2, 1) 0.152(94) [1.91] 0.002(04) [1.04] 0.202(64) [1.06] 0.270(39) [0.89] 0.406(22) [1.41] 0.194(18) [0.79] 0.360(20) [1.02]
(3,0, 0) 0.09(26) [1.21] 0.002(05) [1.60] 0.258(34) [1.25] 0.282(30) [1.33] 0.406(38) [1.26] 0.193(26) [0.95] 0.338(39) [0.66]
(3, 1, 0) 0.196(84) [0.91] 0.117(09) [1.74] 0.19(13) [1.01] 0.251(45) [1.04] 0.376(25) [1.29] 0.167(20) [1.13] 0.350(23) [0.70]

Strategy {4V7,2s5im}

(1, 0, 0) 0.747(25) [1.52] 0.527(62) [1.09] 0.804(17) [0.95] 0.818(55) [1.59] 0.830(49) [0.78] 0.694(33) [0.80] 0.825(56) [1.13]
(1, 1, 0) 0.608(17) [1.21] 0.434(41) [0.89] 0.680(17) [0.88] 0.650(34) [0.60] 0.805(45) [0.81] 0.556(17) [1.19] 0.759(37) [1.62]
(1, 1, 1) 0.486(21) [1.53] 0.365(26) [1.01] 0.576(24) [1.18] 0.566(22) [0.86] 0.732(39) [1.11] 0.456(15) [1.08] 0.676(29) [1.16]
(2, 0, 0) 0.434(14) [1.19] 0.21(10) [1.36] 0.506(16) [1.16] 0.470(49) [0.94] 0.649(33) [0.92] 0.378(20) [1.37] 0.582(28) [0.89]
2, 1, 0) 0.359(16) [1.06] 0.228(30) [0.93] 0.424(23) [1.14] 0.411(48) [0.80] 0.600(26) [1.27] 0.328(13) [0.96] 0.536(18) [1.29]
2, 1, 1) 0.298(20) [1.44] 0.003(04) [1.38] 0.367(33) [1.41] 0.369(40) [0.76] 0.560(27) [1.35] 0.270(22) [0.86] 0.490(17) [1.16]
(2, 2, 0) 0.242(20) [1.00] 0.166(03) [1.50] 0.262(33) [1.07] 0.18(17) [0.89] 0.460(25) [1.36] 0.207(23) [0.76] 0.412(25) [1.11]
(2,2, 1) 0.161(95) [1.95] 0.04(30) [1.06] 0.177(56) [1.33] 0.287(34) [0.96] 0.431(25) [1.44] 0.201(13) [0.78] 0.370(14) [1.01]
(3, 0, 0) 0.127(98) [0.96] 0.003(09) [1.60] 0.272(53) [1.17] 0.291(27) [1.34] 0.412(41) [1.28] 0.199(23) [0.96] 0.351(29) [0.66]

(3, 1, 0) 0.15(17) [1.20] 0.109(56) [1.66] 0.251(40) [1.31] 0.282(17) [1.10] 0.401(31) [0.99] 0.168(19) [1.13] 0.358(18) [0.71]
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TABLE XXIV. Data for the renormalized G'?J,V’ (0?)/gy from the seven ensembles and with the four strategies for controlling ESC.

The rest is the same as in Table XXII.

al27m?285 a094m?270

a094m270L a091m170

a091m170L

a073m270

a071m170

n

Strategy {4,3*}

(1,0, 0) 3.671(33) [1.21] 3.072(58) [0.71]
(1, 1, 0) 3.071(26) [1.21] 2.320(71) [0.42]
(1, 1, 1) 2.620(28) [1.18] 1.834(68) [0.62]
(2, 0, 0) 2.231(20) [0.97] 1.593(69) [1.35]
2, 1, 0) 1.967(25) [0.67] 1.333(48) [0.84]
@, 1, 1) 1.756(30) [1.00] 1.146(51) [1.01]
(2,2, 0) 1.419(35) [0.85] 0.88(15) [0.85]
2,2, 1) 1.312(33) [1.83] 0.817(67) [0.75]
(3, 0, 0) 1.280(39) [1.21] 0.85(20) [1.46]
3, 1, 0) 1.198(35) [0.97] 0.82(14) [1.80]

(1,
(1,
(1,

» 0)
. 0)
- D
2,0,0)
2, 1,0

0 3.711(52) [1.09] 3.054(47) [0.72]
1
1
0
1
@, 1,
2
2
0
1

3.082(33) [1.17] 2.337(40) [0.44]
2.614(31) [1.22] 1.842(38) [0.62]
2.215(29) [0.98] 1.638(51) [1.37]
1.949(24) [0.72] 1.356(25) [0.85]
1.738(24) [1.03] 1.172(31) [1.01]
1.402(25) [0.90] 0.895(50) [0.83]
1.295(27) [1.81] 0.839(43) [0.75]
1.255(39) [1.22] 0.879(99) [1.45]
1.175(32) [1.02] 0.839(80) [1.81]

2,2,
@,
(3,0,
G. L

(1,
(1,
(1,
@,
@,
@,

(=}
=

3.769(68) [1.58] 3.088(64) [1.07]
3.095(41) [1.19] 2.327(76) [0.92]
2.608(32) [1.44] 1.865(56) [1.02]
2.223(28) [1.19] 1.36(29) [1.31]
1.975(31) [1.03] 1.345(64) [0.92]
1.747(44) [1.36] 0.90(21) [1.41]

—_
~

— O NN == O == O
o
N

(2,2, 0) 1.445(62) [0.90] 0.965(21) [1.28]
2,2, 1) 1.23(18) [1.91] 0.73(15) [1.04]
(3, 0,0) 1.14(34) [1.21] 1.66(67) [1.60]
(3, 1,0) 1.15(54) [0.91] 0.825(14) [1.74]
(1, 0, 0) 3.737(67) [1.52] 3.035(88) [1.09]
(1, 1, 0) 3.086(34) [1.21] 2.312(73) [0.89]
(1, 1, 1) 2.612(35) [1.53] 1.854(58) [1.01]
2,0, 0) 2.216(28) [1.19] 1.49(16) [1.36]

@, 1,0) 1.967(32) [1.06] 1.357(49) [0.93]
@2, 1, 1) 1.741(41) [1.44] 0.98(22) [1.38]

(2,2, 0) 1.426(57) [1.00] 0.971(20) [1.50]
2,2, 1) 1.20(17) [1.95] 0.843(50) [1.06]
3, 0, 0) 1.15(16) [0.96] 2.3(1.4) [1.60]

(3, 1,0) 0.7(1.1) [1.20]  0.86(35) [1.66]

3.713(27) [1.04] 3.498(42) [1.27]
3.193(22) [0.80] 2.962(30) [0.75]
2.790(23) [0.91] 2.566(68) [0.93]
2.471(24) [1.07] 2.302(37) [0.66]
2.203(27) [0.81] 2.032(29) [0.75]
1.969(31) [1.65] 1.808(34) [1.03]
1.656(29) [1.12] 1.527(34) [0.73]
1.500(35) [1.69] 1.364(41) [1.20]
1.556(28) [1.01] 1.442(51) [1.27]
1.430(29) [1.09] 1.283(50) [0.40]

Strategy {4V7 3%}

3.787(43) [0.97] 3.69(15) [1.26]

3.214(36) [0.79] 2.960(86) [0.69]
2.785(31) [0.89] 2.535(83) [0.84]
2.447(31) [1.01] 2.260(92) [0.55]
2.162(25) [0.71] 1.983(65) [0.77]
1.917(25) [1.61] 1.714(73) [1.05]
1.617(24) [1.11] 1.439(81) [0.69]
1.447(24) [1.63] 1.187(78) [1.08]
1.516(35) [1.01] 1.44(15) [1.29]

1.369(29) [1.12] 1.182(93) [0.42]

Strategy {4,25m}
3.739(34) [0.96] 3.563(53) [1.48]
3.209(28) [0.83] 2.968(57) [0.55]
2.799(20) [1.08] 2.562(31) [0.85]
2.476(24) [1.11] 2.314(30) [0.82]
2.179(35) [1.06] 1.951(76) [0.77]
1.934(49) [1.30] 1.772(69) [0.70]
1.606(57) [1.13] 1.571(25) [1.24]
1.30(14) [1.06] 1.31(14) [0.89]
1.486(64) [1.25] 1.43(12) [1.33]
1.14(39) [1.01] 1.298(75) [1.04]

3.830(54) [1.07] 3.349(26) [1.39] 3.705(68) [0.84]

3.458(43) [1.71]
3.129(40) [1.53]
2.809(49) [1.01]
2.612(37) [1.53]
2.408(37) [1.16]
2.080(38) [1.27]
1.944(40) [1.31]
1.935(48) [1.34]
1.845(45) [1.51]

4.04(14) [0.93]

3.546(95) [1.54]
3.148(86) [1.45]
2.763(85) [0.98]
2.521(68) [1.39]
2.294(66) [1.04]
1.924(72) [1.11]
1.769(74) [1.11]
1.797(90) [1.24]
1.704(81) [1.30]

3.792(47) [1.06]
3.442(36) [0.98]
3.147(44) [1.09]
2.838(39) [0.93]
2.619(50) [1.27]
2.408(39) [1.30]
2.057(54) [1.29]
1.948(51) [1.41]
1.929(84) [1.26]
1.845(52) [1.29]

Strategy {4V7,2s5im}

3.733(29) [0.95] 3.609(56) [1.59]
3.207(26) [0.88] 3.000(35) [0.60]
2.796(25) [1.18] 2.584(32) [0.86]
2.476(24) [1.16] 2.314(52) [0.94]
2.174(35) [1.14] 1.965(82) [0.80]
1.930(54) [1.41] 1.796(80) [0.76]
1.540(68) [1.07] 1.39(27) [0.89]

1.22(15) [1.33]  1.29(15) [0.96]

1.48(11) [1.17]  1.43(13) [1.34]

1.355(63) [1.31] 1.354(32) [1.10]

3.966(78) [0.78]
3.548(65) [0.81]
3.190(54) [1.11]
2.882(55) [0.92]
2.639(41) [1.27]
2.425(41) [1.35]
2.097(48) [1.36]
1.957(56) [1.44]
1.937(95) [1.28]
1.830(64) [0.99]
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FIG. 30. Data for the renormalized electric (left) and magnetic (right) form factors from the a091m170L ensemble. All fits are made to
the lowest six Q2 points (open circles) and the remaining four points not fit are shown by the symbol cross. Error bands are shown only
over the range of the data for clarity. The prior and its width, 4P, used in the fits to G, is given in each panel and explained in the text.
The top line of the labels gives the results of the dipole fit (Mg, (rg)) or (M, p and (ry)). Lines 2-5 give (rg) or (u and (r),)) from the
P, Padé and the z{%3#! fits. In each case, the y2/dof of the fits are given within the square brackets. The four rows show data from the
four strategies {4,3*}, {4V7,3*}, {4,251}, and {47 2%} defined in the text.
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dipole, P, Padé, and z

This Appendix contains the figures showing the CCFV fits made to get the results at the physical point for various
analysis strategies. Figures 32-39 show the data and fits for the three isovector charges, gf\fs‘fT; the axial charge radius
squared, (r3); the induced pseudoscalar charge, g5 | 7,3 the pion-nucleon coupling, g,yy |Zz; the product, M g4/ F ; the pion

decay constant, F; the electric and magnetic charge radius squared, (r%) and (rﬁ); and the magnetic moment, u?~",
respectively. The extraction of the final results from the set of CCFV fits and the assessment of additional systematic
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234

The data for the renormalized electric (left) and magnetic (right) form factors from the a071m170 ensemble fit using the
ansatz. The rest is the same as in Fig. 30.

APPENDIX H: CHIRAL-CONTINUUM-FINITE-VOLUME FITS

uncertainties is presented in Sec. XIII.
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FIG. 32. The CCFV extrapolation of the renormalized (Z, method) isovector axial charge gf“d for five strategies: {4,3*} (top row),
{4N= 3*} (second row), {4,25™, 72} (third row), {47, 25™ 22} (fourth row), and {4¥7, 2™ P, 1 (fifth row). In each panel, the result of
the simultaneous fit in {a, M, M,L} is shown by the pink band and plotted versus a (left panel), M2 (middle) and M, L (right) with the
other two variables in each case set to their physical value. The result of the CCFV fit at the physical point is shown by the red star (label
Extrap) and the value and y?/dof given in the left panel. The gray band is the result of a chiral fit only with the physical point marked
with a black cross (label M2-Extrap) and the value given in the middle panel.
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FIG. 33. The CCFV extrapolation of the renormalized (Z; method) isovector scalar charge g%~ for the four strategies, to remove
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in Fig. 32.
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FIG. 35. The CCFV extrapolation of the axial charge radius squared (r3) (top row), the induced pseudoscalar charge gplz, (middle
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strategies. The bottom row shows the fit for F, renormalized using the Z; method. The rest is the same as in Fig. 32.
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P, and 2> fits to parametrize the Q% dependence as explained in the text. The rest is the same as in Fig. 37.
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FIG. 39. The CCFV extrapolation of the isovector magnetic dipole moment, y”~". A prior for G,,(0) was used when making the
dipole, P,, and Z> fits to parametrize the Q” dependence as explained in the text. The rest is the same as in Fig. 37.
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APPENDIX I: VARIANCE-COVARIANCE
MATRICES OF THE FITS

The fits versus (Q%/4M3,) and z presented in Sec. XIV
and the errors on the fit parameters, calculated by propa-
gating the errors on individual points, were done using
LSQFIT [89], which calls MULTIFIT from the GNU scientific
library [90], and GVAR [91] routines. In this Appendix we
provide the sampling variance-covariance matrices of the
fits. The errors quoted in the main text in Sec. XIV are the
square roots of the diagonal elements of these matrices.

The variance-covariance matrix for the {4V7, 25 P, } fit
to (G,) given in Eq. (55) is

9a by by
ga 1.184x10™*  1.507x1073 —4.499 x 1073
by 1.507x 1073 3.898x 1072 —1.419x 107!
by \—-4.499x107° —1.419x107" 6.631x 107!

(1)

and for the {4V7 25m 221 fit to (G,) given in Eq. (56) and
using the notation given in Eq. (34) is

ao ap ay
ag 2.188x 107 —2.238x 107> —1.155x107*
a; | =2.238x107 8549x10™* 2.769x1073

a, \—1.155x10™* 2.769x 1073 1.811x1072

(12)

The variance-covariance matrices for the {47, 3%, 132}
fit to (Gg) and (Gy,) given in Eq. (58) are

ag a
ag 6.5178 x 107 1.0374 x 1073
a 1.0374 x 10~ 8.1815 x 10~
a, 5.9814 x 107 4.6176 x 1073
as 1.8014 x 107> 7.3053 x 1073
and
ag ap
ao 1.2656 x 107+ 3.8253 x 10~
a, 3.8253 x 10™*  1.9869 x 1072
a, 9.5665 x 107 1.3524 x 107!
as 1.0035 x 1073 2.5216 x 107!
respectively.

v by b,
gy 2.782x107°  1.155x 1073 —5.206x 1073
by 1.155x 1073 8.260x 1072 —3.912x 107!
by \-5.206x107> —=3.912x 107! 3.791
(13)
and
H b b,
U 2271x107%  1.413x1072 —3.931x 1072
by 1.413x 1072 1.238x 107" —4.836x 107" |’
by \—-3.931x1072 —-4.836x 107! 3.157
(14)
respectively, and for the {4V7 3* 23} fit are
az as
5.9814 % 107°  1.8014 x 1073
4.6176 x 1073 7.3053 x 1073 (I5)
3.4227 x 1072 6.2428 x 1072
6.2428 x 1072 1.2394 x 107!
a as
9.5665 x 10~*  1.0035 x 10~
1.3524 x 107! 2.5216 x 107! |, (16)
1.3230 2.7857
2.7857 6.4023
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