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Abstract— This paper presents a reactive, actor-model and 

flow-based programming framework that we developed to 

design data-stream processing applications for HEP and 

NP. This framework encourages a functional decomposition 

of the overall data processing application into small mono-

functional artifacts that are easy to understand, develop, 

deploy and debug. The fact that these artifacts (actors) are 

programmatically independent means they can be scaled 

and optimized independently which is impossible to do for 

components of monolithic applications. One of the 

advantages of this approach is fault tolerance where 

independent actors can come and go in the data-stream 

without stopping or crashing the entire application. 

Furthermore, it is easy to locate any faulty actor in the data 

pipeline. Due to the fact that actors are loosely coupled and 

data carries context, they can run in heterogeneous 

environments and utilize varied accelerators.  This paper 

describes the main design concepts of this framework. It also 

presents a proof-of-concept application and the results of its 

processing on-beam calorimeter streaming data. 

 

I. INTRODUCTION 

The volume and complexity of data being produced at HEP 

and NP research facilities has been growing exponentially, and 

there is an increased need for new approaches to process it in  

real or near real-time. Physics data processing is mentioned as 

one of the areas that cause most concern especially in the light 

of upcoming accelerator and experiment upgrades[1]. The main 

concern is the ability to analyze, store and understand data sets 

using contemporary algorithms and technologies.  

Due to the increasing demand for high throughput computing, 

existing data processing architectures need to be reevaluated in 

terms of their adaptability to adopt new technologies and 

process streaming data. Despite success, reported by some, with 

using high throughput computing that incorporate 

heterogeneous accelerators and ML, the pace of these 

developments is rather slow. We believe that one of the reasons 

for the slow deployment of heterogeneous hardware and ML 

lies in the fact that the majority of these efforts are being 

developed on top of existing software built to fulfill unrelated 

goals. Data stream processing poses an entirely new set of 

challenges and new frameworks are needed which better fit 

them. In this paper, we consider flow-based programming[4] as 

a paradigm for developing an environment for real-time 

streaming, acquisition and processing (ERSAP) in order to 

design data-stream processing applications capable of 

incorporating new and future technologies, allowing natural 

evolution of the application and efficient data management. 

II. FLOW-BASED PROGRAMMING 

 

The flow-based programming (FBP) paradigm was first 

introduced by J. Paul Morrison in the late '60s and used a "data 

processing factory" metaphor for designing and building 

applications. FBP defines applications as networks of "black 

box" processors or actors, communicating via exchange of data 

chunks (data quanta) traveling across predefined connections 

where the connections are specified externally to the 

processors. These actors can be reconnected to form different 

applications without having to be changed internally. FBP is 

innately component-oriented. Actors are coupled by data, the 

loosest form of coupling between software components, thus 

promoting a flexible component-oriented software architecture. 

In this architecture, data and not control flows through actors to 

meet the functional requirements of a system. In essence, actors 

are asynchronous message-driven entities, where messages are 

the boundary between actors that ensure loose coupling, 

isolation and location transparency. The naturally collaborative 

form of these actors, distributed, loosely bound, very resilient, 

and independently scalable makes them ideal for streaming 

architectures. 

A notable feature of FBP is the ability to represent the whole 

data processing application as a data-flow graph. An important 

implication of the graph-like structure is the ability to reason 

about the entire application in a unique way that is often 

impossible in case of object oriented programming (OOP) or 

service oriented architectures (SOA) and allowing visual no-

code programming. 

  

III. STREAMING DATA ACQUISITION AND PROCESSING 

 

ERSAP is a reevaluation effort at JLAB to develop a 

streaming readout and data processing system that will satisfy 

future experiments at the lab. Our goal is to build a framework 

that will be used for not only streaming data acquisition, but 

also to build data-stream processing systems: a unification 

effort to use a single common framework for both. 

Our design of the streaming system assumes use of several tiers 

of data storage or data cool down stations (see Fig. 1).  Each 

tier, except the last one, will temporarily store data with data 

processors between tiers reducing data volume permanently 

stored in the final tier.   Capacity and performance of these 
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storage-tiers will depend on linked processors’ latencies and 

will provide retention or cooling of the data long enough to give 

the processors enough time to complete their tasks. 

 

 

 
Fig. 1. Tiered data storage system 

 

 

The green rectangles denote data processors or actors that 

harbor user defined algorithms including stream aggregators, 

event builders, virtual triggers, or event processors for 

calibration, reconstruction, etc. It is useful to note that the 

concepts of aggregation, building, and processing in parallel 

streams of data map very well onto a FBP based micro-services 

architecture. In such a system, well defined data types, 

encapsulated algorithms, and data driven system controls allow 

large computational tasks to be broken down into sub tasks 

between which data flows. This flexible model allows advanced 

algorithms, including ML and AI techniques, to be 

encapsulated in independent software services.  

 

 

IV. DESIGN REQUIREMENTS AND FRAMEWORK ARCHITECTURE 

 

ERSAP’s end product is a flexible data processing 
application with the ability to easily evolve over time. It is an 

environment that will encourage implementation of new ideas 

and technologies while preserving the integrity of existing data 

pipelines.  The three basic components of this framework are: a 

reactive actor, a data-stream pipe (the communication channel 

between actors), and an orchestrator or the work flow manager 

of the application (see Fig. 2). Tiered memory is considered a 

linkable actor that provides data storage and retrieval functions. 

During operation, a stream of data-quanta will flow through a 

directed graph of reactive micro-services, where the 

accumulated effect of these actors define application logic. 

The basic difference between ERSAP and other frameworks is 

that instead of instructions moving to actors or functions, the 

data moves, triggering the execution of actors on it. This makes 

actors programmatically independent. Another important 

design aspect is that data quanta messages are exchanged across 

externally predefined connections.   

 

 

 
Fig. 2 ERSAP basic components. 

 

As you can see from the Fig. 2, there are actors that have both 

inputs and outputs and there are actors that have only inputs or 

only outputs. Hence, ERSAP defines two types of actors, 

namely stream source/sync actors, and data processing actors. 

However, we use the same actor abstraction to integrate user 

algorithms for both types of components.   

ERSAP has a 3-layer structure (Fig. 3). The lowest, transport 

layer defines transient metadata and transports messages 

containing meta-data and data (data-stream pipe). The transport 

layer is data format agnostic and will transport any data 

assuming proper serialization and de-serialization routines are 

provided by the user. Currently we use ZMQ and a home grown 

shared memory library (simple off heap memory where data is 

accessed by actors) for transports. Using POSIX shared 

memory and an in-memory distributed data grid are in 

development.  

 

 

 
 

Fig.3 ERSAP structure. 
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The middle or actor layer is a repository of actors that can be 

discovered and registered using ERSAP’s registration and 

discovery service. Actors are deployed in data processing 

environments (DPE) where there is a single DPE/per 

technology on a single node. Actors are further grouped 

logically within containers in the DPE. Logical grouping allows 

separation of parallel running domains within the same DPE. In 

addition, ERSAP provides multiple normative actors that, for 

example, take care of data encryption and control access to 

actors for security reasons. The third layer is the orchestration 

layer where ERSAP based data-processing application 

orchestrators reside. 

 

V. FRAMEWORK COMPONENTS  

A. Data processing station 

 

A data-stream processing application is a network of 

interconnected actors, each abstracted as a data processing 

station. Each station provides for a running a user algorithm 

(engine) in a run-time environment and handles all data 

communication. As a result, a user engine is relieved of network 

programming, data serialization and I/O in general and always 

gets a data object as its input. The engine’s only requirement is 

that it must implement the data-in/data-out interface to be 

considered an actor in ERSAP. The station also provides a 

means for engine configuration and scaling, and potentially 

frees a user from writing multi-threaded code (see Fig. 4).   

 

B. Data-stream pipe 

 

The data-stream pipe provides asynchronous 

publish/subscribe and point-to-point communications as well as 

defining a data structure for transport.   

 

 
Fig.4 ERSAP transient data envelope. 

 

 

Note that ERSAP data transport is agnostic to user provided 

data formats, and will transfer any data, assuming proper 

serialization and de-serialization routines are provided for 

custom user data. However, the user can also use the native data 

format of the framework (currently proto-buff or flat-buffers 

which support primitive types and arrays of primitive types) to 

represent the results of their data processing. For the native data 

format the framework takes care of all serialization and de-

serialization. Figure 4 illustrates the transient data envelope 

including a data address section, a meta-data section and an 

actual serialized data section. To minimize or completely avoid 

data copying and serialization, the framework uses built-in 

shared memory.  If using shared memory, the actual serialized 

data section of the transient data envelope will be empty as a 

result of orchestrator optimizations which, in turn, are based on 

the actor deployment mechanism.  

 

C. Orchestrator 

 

The main disadvantage of FBP systems is that they can 

become a very complex directed graph of actors distributed 

across a network of heterogeneous hardware and software 

structures. In this case, the role of the application orchestration 

becomes critical. We gave considerable effort in designing a 

data-quantum level workflow orchestrator as well as an API 

allowing domain experts to design their own workflow 

orchestration systems. First, the orchestrator is responsible for 

locating user engines and presenting them as actors and 

deploying them based on a domain expert’s requirements. A 

domain expert defines the application graph or composition 

using a graphical UI or simple YAML file. 

At run-time, an orchestrator listens and reports each actor’s 

performance, status and errors. It is the contact point for users 

trying to design or expand a data-stream processing application 

by providing access to the actors’ registry and discovery 

services. Most importantly it optimizes stream quanta 

communication by optimizing actor deployment to minimize 

data copying, serialization, and deserialization. It will prefer 

deployment of the micro-services to take advantage in-process 

or intra-process shared memory infrastructures. It is able to 

adapt in order to guarantee optimum performance, and 

minimize underutilization of resources in a shared 

heterogeneous cluster. 

 

D. The dataflow model 

In the ERSAP model, a data processing application is 

represented by a directed graph. The nodes of the graph are 

actors encapsulating user data processing algorithms (engines). 

Directed arcs between the nodes represent the data 

dependencies between actors. Conceptually, data flow as tokens 

(data quanta) along the arcs and behave like unbounded first-in, 

first-out (FIFO) queues. Arcs that flow toward an actor are said 

to be input arcs to that actor, while those that flow away are said 

to be output arcs from that actor. When a program begins, 

stream source actors place data onto certain key input arcs, 
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triggering the rest of the application. Whenever a specific set of 

input arcs of an actor (called a activation set) has data in it, the 

actor is said to be active. As a result, an active node/actor reacts 

on the input data quantum, performs its operation, and places a 

new data token on some or all of its output arcs. It then ceases 

execution and waits to become active again.  The key advantage 

is that, in dataflow, more than one actor can become active at 

once. Thus, if several actors become active at the same time, 

they can be executed in parallel. This simple principle provides 

the potential for massive parallel execution at the data quantum 

level. Another advantage is that the message-passing 

mechanism in the actor model makes it easy to support both 

data computation via data messages and debugging requests via 

control messages. Streaming control messages in the same 

pipeline as data messages leads to application elasticity and 

fault tolerance. 

VI. PROOF OF CONCEPT 

 

An ERSAP based application was designed to perform an on-

beam test of the Electron Ion Collider (EIC) prototype 

calorimeter, reading its streaming data output and processing 

that in real-time. The 3 × 3 PbWO4 matrix was placed 

downstream of a secondary electron/positron beam generated 

by the primary photon beam in JLAB’s Hall-D. Leptons were 

identified and their energy measured by a pair spectrometer 
(PS) tagger. The prototype was installed in Hall-D downstream 

of the PS, as shown in the figure 5. 

 

 

 
Fig. 5 EIC prototype calorimeter beam-test setup. 

 

 

The flash ADC board (FADC250, 250 MHz sampling rate, 16 

channels) designed at JLAB was used to readout the prototype 

calorimeter. The firmware of the ADC has been adapted for 

streaming readout by utilizing the VXS serial links, which were 

previously used for trigger outputs.  The FADC250 firmware 

detects pulses using a software-defined threshold. When a 

threshold crossing is found, the pulses are integrated in a 

programmable-sized window, a pedestal is subtracted, and a 

gain is applied. The result is a calibrated charge and time for the 

found pulse, which is sent over the VXS interface to the next 

stage, a VXS Trigger Processor (VTP) module (see Fig. 6). 

When running in this mode, the FADC250 supports up to 30 

MHz of hits per channel.  

The VTP board is another custom JLAB design that is used in 

conjunction with FADC250 modules when fast readout is 

needed. This is a fairly generic and flexible module (with 

several firmware implementations to match the requirements of 

different experiments) whose conversion to streaming readout 

was a simple and natural extension. The resources on the VTP 

provide reasonable serial connectivity between the VXS and the 

optical links, as well as significant buffering capability.   

 

 

A. Application design 

 

Figure 6 shows the EIC prototype calorimeter stream readout 

and processing application design. It is represented as a directed 

graph with 3 parallel pipelines branching out from the root 

pipeline dedicated to decode VTP data frames. The common 

actor (source vertex) for these branches presents a set of 

FADC250 hits per timestamp on three outgoing edges directed 

to destination actors that perform beam and cosmic event 

identification, and persists data for the future off-line data 

analysis. Real-time event identification pipelines of the 

application include histogram actors that visualize cosmic and 

beam events online (see Fig 7 ).   
 

 

 
Fig. 6 EIC prototype calorimeter data-stream processing 

application. 

 

 

Data
Lake

VTP
File

Writer

Calorimeter

ERSAP

F
A
D
C

V
T
P

VXS Crate

VTP
Receiver

VTP
Frame 

Decoder

Beam 
Event

Identifier

Data
Lake

1 FADC250
Stream
(9 channels)

Zero
Suppression

4Gbyte 
DDR3

Frame 
Builder

10Gbps 
Ethernet 

(TCP) Stream

Cosmic 
Event

Identifier



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 

 
5 

 
Fig. 7 Real-time beam lepton identification and energy 

deposition in the calorimeter crystals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

VII. CONCLUSION 

 

We developed a reactive, actor-model and FBP paradigm 

framework to design a data-stream processing application for 

NP. This framework encourages functional decomposition of 

the overall data processing application into small mono-

functional artifacts that are easy to understand, develop, deploy 

and debug. Due to the fact that these artifacts or actors are 

programmatically independent, they can be scaled and 

optimized independently which is impossible to do for 

components of monolithic applications. One important 

advantage of this approach is fault tolerance where independent 

actors can come and go in the data-stream without causing the 

entire application to stop or crash. Furthermore, it becomes 

simple to locate any faulty actor in the data pipeline. Due the 

fact that the actors are loosely coupled and the data carries the 

context, they can run in heterogeneous environments utilizing 

different accelerators. The actors can be physically separated 

from each other, so the deployment of a new set of actors does 

not put the whole system on hold, and the updates are less 

intrusive. The development of the actors and engines handling 

specific areas of the system can be performed by independent 

development teams with their own release cycles and at their 

own pace. 
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