
IEEE TRANSACTIONS ON NUCLEAR SCIENCE

1

Abstract— This paper presents a reactive, actor-model and

flow-based programming framework that we developed to

design data-stream processing applications for HEP and

NP. This framework encourages a functional decomposition

of the overall data processing application into small mono-

functional artifacts that are easy to understand, develop,

deploy and debug. The fact that these artifacts (actors) are

programmatically independent means they can be scaled

and optimized independently which is impossible to do for

components of monolithic applications. One of the

advantages of this approach is fault tolerance where

independent actors can come and go in the data-stream

without stopping or crashing the entire application.

Furthermore, it is easy to locate any faulty actor in the data

pipeline. Due to the fact that actors are loosely coupled and

data carries context, they can run in heterogeneous

environments and utilize varied accelerators. This paper

describes the main design concepts of this framework. It also

presents a proof-of-concept application and the results of its

processing on-beam calorimeter streaming data.

I. INTRODUCTION

The volume and complexity of data being produced at HEP

and NP research facilities has been growing exponentially, and

there is an increased need for new approaches to process it in

real or near real-time. Physics data processing is mentioned as

one of the areas that cause most concern especially in the light

of upcoming accelerator and experiment upgrades[1]. The main

concern is the ability to analyze, store and understand data sets

using contemporary algorithms and technologies.

Due to the increasing demand for high throughput computing,

existing data processing architectures need to be reevaluated in

terms of their adaptability to adopt new technologies and

process streaming data. Despite success, reported by some, with

using high throughput computing that incorporate

heterogeneous accelerators and ML, the pace of these

developments is rather slow. We believe that one of the reasons

for the slow deployment of heterogeneous hardware and ML

lies in the fact that the majority of these efforts are being

developed on top of existing software built to fulfill unrelated

goals. Data stream processing poses an entirely new set of

challenges and new frameworks are needed which better fit

them. In this paper, we consider flow-based programming[4] as

a paradigm for developing an environment for real-time

streaming, acquisition and processing (ERSAP) in order to

design data-stream processing applications capable of

incorporating new and future technologies, allowing natural

evolution of the application and efficient data management.

II. FLOW-BASED PROGRAMMING

The flow-based programming (FBP) paradigm was first

introduced by J. Paul Morrison in the late '60s and used a "data

processing factory" metaphor for designing and building

applications. FBP defines applications as networks of "black

box" processors or actors, communicating via exchange of data

chunks (data quanta) traveling across predefined connections

where the connections are specified externally to the

processors. These actors can be reconnected to form different

applications without having to be changed internally. FBP is

innately component-oriented. Actors are coupled by data, the

loosest form of coupling between software components, thus

promoting a flexible component-oriented software architecture.

In this architecture, data and not control flows through actors to

meet the functional requirements of a system. In essence, actors

are asynchronous message-driven entities, where messages are

the boundary between actors that ensure loose coupling,

isolation and location transparency. The naturally collaborative

form of these actors, distributed, loosely bound, very resilient,

and independently scalable makes them ideal for streaming

architectures.

A notable feature of FBP is the ability to represent the whole

data processing application as a data-flow graph. An important

implication of the graph-like structure is the ability to reason

about the entire application in a unique way that is often

impossible in case of object oriented programming (OOP) or

service oriented architectures (SOA) and allowing visual no-

code programming.

III. STREAMING DATA ACQUISITION AND PROCESSING

ERSAP is a reevaluation effort at JLAB to develop a

streaming readout and data processing system that will satisfy

future experiments at the lab. Our goal is to build a framework

that will be used for not only streaming data acquisition, but

also to build data-stream processing systems: a unification

effort to use a single common framework for both.

Our design of the streaming system assumes use of several tiers

of data storage or data cool down stations (see Fig. 1). Each

tier, except the last one, will temporarily store data with data

processors between tiers reducing data volume permanently

stored in the final tier. Capacity and performance of these

ERSAP: Towards Better HEP/NP Data-Stream

Analytics with Flow-Based Programming
V. Gyurjyan, D. Abbott, N. Brei, M. Goodrich, G. Heyes,

E. Jastrzembski, D. Lawrence, B. Raydo, C. Timmer

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

2

storage-tiers will depend on linked processors’ latencies and

will provide retention or cooling of the data long enough to give

the processors enough time to complete their tasks.

Fig. 1. Tiered data storage system

The green rectangles denote data processors or actors that

harbor user defined algorithms including stream aggregators,

event builders, virtual triggers, or event processors for

calibration, reconstruction, etc. It is useful to note that the

concepts of aggregation, building, and processing in parallel

streams of data map very well onto a FBP based micro-services

architecture. In such a system, well defined data types,

encapsulated algorithms, and data driven system controls allow

large computational tasks to be broken down into sub tasks

between which data flows. This flexible model allows advanced

algorithms, including ML and AI techniques, to be

encapsulated in independent software services.

IV. DESIGN REQUIREMENTS AND FRAMEWORK ARCHITECTURE

ERSAP’s end product is a flexible data processing
application with the ability to easily evolve over time. It is an

environment that will encourage implementation of new ideas

and technologies while preserving the integrity of existing data

pipelines. The three basic components of this framework are: a

reactive actor, a data-stream pipe (the communication channel

between actors), and an orchestrator or the work flow manager

of the application (see Fig. 2). Tiered memory is considered a

linkable actor that provides data storage and retrieval functions.

During operation, a stream of data-quanta will flow through a

directed graph of reactive micro-services, where the

accumulated effect of these actors define application logic.

The basic difference between ERSAP and other frameworks is

that instead of instructions moving to actors or functions, the

data moves, triggering the execution of actors on it. This makes

actors programmatically independent. Another important

design aspect is that data quanta messages are exchanged across

externally predefined connections.

Fig. 2 ERSAP basic components.

As you can see from the Fig. 2, there are actors that have both

inputs and outputs and there are actors that have only inputs or

only outputs. Hence, ERSAP defines two types of actors,

namely stream source/sync actors, and data processing actors.

However, we use the same actor abstraction to integrate user

algorithms for both types of components.

ERSAP has a 3-layer structure (Fig. 3). The lowest, transport

layer defines transient metadata and transports messages

containing meta-data and data (data-stream pipe). The transport

layer is data format agnostic and will transport any data

assuming proper serialization and de-serialization routines are

provided by the user. Currently we use ZMQ and a home grown

shared memory library (simple off heap memory where data is

accessed by actors) for transports. Using POSIX shared

memory and an in-memory distributed data grid are in

development.

Fig.3 ERSAP structure.

FE
Detector 1

FE
Detector 2

FE
Detector N

FE
Buffer

FE
Buffer

FE
Buffer

Aggregator

Processor

Processor

Online
Storage

Processors
Nearline
Storage

Processors
Permanent

Storage

Tier 1

Tier 2 Tier N Final Tier

Detector DAQ

Online/nearline data processing

Processors

O
ff

lin
e

 d
at

a
p

ro
ce

ss
in

g

FE

Actor Layer

Orchestration Layer

Registration

DPE

SC SC

DPE

SC SC

DPE

SC SC

DPE

SC SC

gateway

security

Local Registration Local Registration

Local Registration Local Registration

Meta-Data Data

ZMQ(xMsg) in-Memory Data-GridPOSIX Shared Memory (FIPC)

Tr
an

sp
or

t
La

ye
r

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

3

The middle or actor layer is a repository of actors that can be

discovered and registered using ERSAP’s registration and

discovery service. Actors are deployed in data processing

environments (DPE) where there is a single DPE/per

technology on a single node. Actors are further grouped

logically within containers in the DPE. Logical grouping allows

separation of parallel running domains within the same DPE. In

addition, ERSAP provides multiple normative actors that, for

example, take care of data encryption and control access to

actors for security reasons. The third layer is the orchestration

layer where ERSAP based data-processing application

orchestrators reside.

V. FRAMEWORK COMPONENTS

A. Data processing station

A data-stream processing application is a network of

interconnected actors, each abstracted as a data processing

station. Each station provides for a running a user algorithm

(engine) in a run-time environment and handles all data

communication. As a result, a user engine is relieved of network

programming, data serialization and I/O in general and always

gets a data object as its input. The engine’s only requirement is

that it must implement the data-in/data-out interface to be

considered an actor in ERSAP. The station also provides a

means for engine configuration and scaling, and potentially

frees a user from writing multi-threaded code (see Fig. 4).

B. Data-stream pipe

The data-stream pipe provides asynchronous

publish/subscribe and point-to-point communications as well as

defining a data structure for transport.

Fig.4 ERSAP transient data envelope.

Note that ERSAP data transport is agnostic to user provided

data formats, and will transfer any data, assuming proper

serialization and de-serialization routines are provided for

custom user data. However, the user can also use the native data

format of the framework (currently proto-buff or flat-buffers

which support primitive types and arrays of primitive types) to

represent the results of their data processing. For the native data

format the framework takes care of all serialization and de-

serialization. Figure 4 illustrates the transient data envelope

including a data address section, a meta-data section and an

actual serialized data section. To minimize or completely avoid

data copying and serialization, the framework uses built-in

shared memory. If using shared memory, the actual serialized

data section of the transient data envelope will be empty as a

result of orchestrator optimizations which, in turn, are based on

the actor deployment mechanism.

C. Orchestrator

The main disadvantage of FBP systems is that they can

become a very complex directed graph of actors distributed

across a network of heterogeneous hardware and software

structures. In this case, the role of the application orchestration

becomes critical. We gave considerable effort in designing a

data-quantum level workflow orchestrator as well as an API

allowing domain experts to design their own workflow

orchestration systems. First, the orchestrator is responsible for

locating user engines and presenting them as actors and

deploying them based on a domain expert’s requirements. A

domain expert defines the application graph or composition

using a graphical UI or simple YAML file.

At run-time, an orchestrator listens and reports each actor’s

performance, status and errors. It is the contact point for users

trying to design or expand a data-stream processing application

by providing access to the actors’ registry and discovery

services. Most importantly it optimizes stream quanta

communication by optimizing actor deployment to minimize

data copying, serialization, and deserialization. It will prefer

deployment of the micro-services to take advantage in-process

or intra-process shared memory infrastructures. It is able to

adapt in order to guarantee optimum performance, and

minimize underutilization of resources in a shared

heterogeneous cluster.

D. The dataflow model

In the ERSAP model, a data processing application is

represented by a directed graph. The nodes of the graph are

actors encapsulating user data processing algorithms (engines).

Directed arcs between the nodes represent the data

dependencies between actors. Conceptually, data flow as tokens

(data quanta) along the arcs and behave like unbounded first-in,

first-out (FIFO) queues. Arcs that flow toward an actor are said

to be input arcs to that actor, while those that flow away are said

to be output arcs from that actor. When a program begins,

stream source actors place data onto certain key input arcs,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

4

triggering the rest of the application. Whenever a specific set of

input arcs of an actor (called a activation set) has data in it, the

actor is said to be active. As a result, an active node/actor reacts

on the input data quantum, performs its operation, and places a

new data token on some or all of its output arcs. It then ceases

execution and waits to become active again. The key advantage

is that, in dataflow, more than one actor can become active at

once. Thus, if several actors become active at the same time,

they can be executed in parallel. This simple principle provides

the potential for massive parallel execution at the data quantum

level. Another advantage is that the message-passing

mechanism in the actor model makes it easy to support both

data computation via data messages and debugging requests via

control messages. Streaming control messages in the same

pipeline as data messages leads to application elasticity and

fault tolerance.

VI. PROOF OF CONCEPT

An ERSAP based application was designed to perform an on-

beam test of the Electron Ion Collider (EIC) prototype

calorimeter, reading its streaming data output and processing

that in real-time. The 3 × 3 PbWO4 matrix was placed

downstream of a secondary electron/positron beam generated

by the primary photon beam in JLAB’s Hall-D. Leptons were

identified and their energy measured by a pair spectrometer
(PS) tagger. The prototype was installed in Hall-D downstream

of the PS, as shown in the figure 5.

Fig. 5 EIC prototype calorimeter beam-test setup.

The flash ADC board (FADC250, 250 MHz sampling rate, 16

channels) designed at JLAB was used to readout the prototype

calorimeter. The firmware of the ADC has been adapted for

streaming readout by utilizing the VXS serial links, which were

previously used for trigger outputs. The FADC250 firmware

detects pulses using a software-defined threshold. When a

threshold crossing is found, the pulses are integrated in a

programmable-sized window, a pedestal is subtracted, and a

gain is applied. The result is a calibrated charge and time for the

found pulse, which is sent over the VXS interface to the next

stage, a VXS Trigger Processor (VTP) module (see Fig. 6).

When running in this mode, the FADC250 supports up to 30

MHz of hits per channel.

The VTP board is another custom JLAB design that is used in

conjunction with FADC250 modules when fast readout is

needed. This is a fairly generic and flexible module (with

several firmware implementations to match the requirements of

different experiments) whose conversion to streaming readout

was a simple and natural extension. The resources on the VTP

provide reasonable serial connectivity between the VXS and the

optical links, as well as significant buffering capability.

A. Application design

Figure 6 shows the EIC prototype calorimeter stream readout

and processing application design. It is represented as a directed

graph with 3 parallel pipelines branching out from the root

pipeline dedicated to decode VTP data frames. The common

actor (source vertex) for these branches presents a set of

FADC250 hits per timestamp on three outgoing edges directed

to destination actors that perform beam and cosmic event

identification, and persists data for the future off-line data

analysis. Real-time event identification pipelines of the

application include histogram actors that visualize cosmic and

beam events online (see Fig 7).

Fig. 6 EIC prototype calorimeter data-stream processing

application.

Data
Lake

VTP
File

Writer

Calorimeter

ERSAP

F
A
D
C

V
T
P

VXS Crate

VTP
Receiver

VTP
Frame

Decoder

Beam
Event

Identifier

Data
Lake

1 FADC250
Stream
(9 channels)

Zero
Suppression

4Gbyte
DDR3

Frame
Builder

10Gbps
Ethernet

(TCP) Stream

Cosmic
Event

Identifier

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

5

Fig. 7 Real-time beam lepton identification and energy

deposition in the calorimeter crystals.

VII. CONCLUSION

We developed a reactive, actor-model and FBP paradigm

framework to design a data-stream processing application for

NP. This framework encourages functional decomposition of

the overall data processing application into small mono-

functional artifacts that are easy to understand, develop, deploy

and debug. Due to the fact that these artifacts or actors are

programmatically independent, they can be scaled and

optimized independently which is impossible to do for

components of monolithic applications. One important

advantage of this approach is fault tolerance where independent

actors can come and go in the data-stream without causing the

entire application to stop or crash. Furthermore, it becomes

simple to locate any faulty actor in the data pipeline. Due the

fact that the actors are loosely coupled and the data carries the

context, they can run in heterogeneous environments utilizing

different accelerators. The actors can be physically separated

from each other, so the deployment of a new set of actors does

not put the whole system on hold, and the updates are less

intrusive. The development of the actors and engines handling

specific areas of the system can be performed by independent

development teams with their own release cycles and at their

own pace.

REFERENCES

[1] “A Roadmap for HEP Software an Computing R&D for the 2020s”,

arXiv:1712.06982v3 [physics.comp-ph] 11 Feb 2018

[2] “ JANA2 Framework for Event Based and Triggerless Data processing”,

EPJ Web of Conferences 245, 01022, 2020

[3] “CLARA: A Contemporary Approach to Physics Data Processing”,

2011, J. Phys.: Conf. Ser. 331 032013 doi:10.1088/1742-
6596/331/3/032013

[4] “Flow-based Programming, 2nd Edition: A New Approach to

Application Development”, CreateSpace Independent Publishing

Platform, 2010

http://iopscience.iop.org/article/10.1088/1742-6596/331/3/032013/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/331/3/032013/pdf

	I. INTRODUCTION
	II. flow-based programming
	III. Streaming data acquisition and processing
	IV. Design requirements and framework architecture
	V. Framework Components
	A.
	A.
	A. Data processing station
	B. Data-stream pipe
	C. Orchestrator
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	D. The dataflow model

	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	I.
	VI. Proof of concept
	A. Application design

	I.
	I.
	I.
	VII. Conclusion
	References

