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Abstract

We present a review of recent applications of nonlocal chiral effective theory to hadron structure
studies. Starting from a nonlocal meson–baryon effective chiral Lagrangian, we show how the
introduction of a correlation function representing the finite extent of hadrons regularizes the
meson loop integrals and introduces momentum dependence in vertex form factors in a gauge
invariant manner. We apply the framework to the calculation of nucleon electromagnetic form
factors, unpolarized and polarized parton distributions, as well as transverse momentum dependent
distributions and generalized parton distributions. Assuming that the nonlocal behavior is a general
property of all interactions, we also discuss the application to the lepton anomalous magnetic
moment in nonlocal QED.
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1 Motivation

Protons and neutrons, or collectively nucleons, are the basic building blocks of nuclei and of all nuclear
matter in the universe. Their properties and structure are therefore crucial for understanding a wide
range of nuclear phenomena in applications ranging from nuclear structure to nuclear astrophysics. Ul-
timately, the structure of the nucleon must be derived from first principles in quantum chromodynamics
(QCD), the theory of the strong nuclear interactions, although in practice this remains a formidable
challenge. Tremendous progress has been made over the last few decades in unravelling the nucleon
structure through both experimental and theoretical efforts. In the following, we briefly summarize the
historical developments in the study of nucleon structure, both empirically and theoretically via lattice
QCD and other nonperturbative approaches.

1.1 Phenomenological landscape

Following in the spirit of Rutherford scattering that first established the granularity of atomic nuclei,
nucleon structure investigations using high energy electron scattering have led to many fundamental
discoveries, beginning with the 1955 observation of the finite size of the proton by Hofstadter [1]. Over
the subsequent decades elastic lepton-nucleon scattering measurements have enabled the mapping of a
detailed picture of the electric (GE) and magnetic (GM) form factors of the proton and neutron over a
wide range of kinematics. In particular, after the first elastic scattering experiments were performed at
the High Energy Physics Laboratory (HEPL) at Stanford in the 1950s, measurements were later carried
out at the Stanford Mark III accelerator [2], the Cambridge Electron Accelerator [3], the Stanford
Linear Accelerator Center (SLAC) [4, 5, 6], Bonn [7, 8], DESY [9, 10], Mainz [11, 12, 13], NIKHEF [14],
MIT-Bates [15], and at Jefferson Lab [16, 17, 18]. These covered an increasingly large range of four
momentum transfers squared, up to Q2 ≈ 9 GeV2 and 30 GeV2 for the proton electric and magnetic
form factors, respectively [19, 20], at SLAC.

The accumulated body of elastic electron-proton and electron-deuteron scattering data suggests that
at small Q2, the Q2 dependence of the proton’s electric (Gp

E) and magnetic (Gp
M) and the neutron’s

magnetic (Gn
M) form factors are well approximated by a dipole form,

Gp
E ≈

Gp
M

µp
≈ Gn

M

µn
≈ GD, (1)

where µN (N = p, n) is the nucleon magnetic moment, and GD is a dipole form factor,

GD =
1(

1 +Q2/Q2
0

)2 , (2)

with mass parameter Q2
0 = 0.71 GeV2. For the neutron electric form factor Gn

E, electric charge conserva-
tion requires this to vanish at Q2 = 0, but clear deviations above zero have been observed experimentally
for Q2 up to several GeV2, albeit within relatively large uncertainties.

In addition to the cross section measurements which have mostly constrained the magnetic form
factors, both the recoil polarization method and the asymmetry measurements using polarized targets
have been used to extract the proton and neutron electric form factors. The recoil polarization technique
was used for the first time at MIT-Bates to measure the proton form factor ratio Gp

E/G
p
M [21, 22], and

since then a number of other recoil polarization and beam-target asymmetry measurements were carried
out at MIT-Bates [23, 24, 25, 26], MAMI [27, 28, 29, 30, 31] and Jefferson Lab [32, 33, 34, 35, 36, 37, 38].
The data indicate a slow decrease of µpG

p
E/G

p
M from unity at low Q2, with a dramatic fall-off at larger

Q2 & 1 GeV2. These results are significantly different from the data extracted using the Rosenbluth
separation method from the cross section measurements, for which µpG

p
E/G

p
M remains close to 1 for
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all Q2, but with much larger uncertainties compared with the polarization data. For the neutron form
factors, since there are no free neutron targets, measurements of Gn

E and Gn
M are more difficult, and

typically utilize deuterium or (polarized) 3He targets. The data from both the double polarization
experiments and cross section experiments suggest that Gn

M/(µnGD) is close to unity.

From the form factor measurements at low Q2, the electromagnetic radii of the proton and neutron
were also extracted in a number of analyses [39, 40, 41, 42, 43]. Among them, the proton charge radius
has recently attracted the most attention. Historically, the consistency of the extracted proton charge
radius based on the scattering experiments at Orsay [44], Stanford [45], Saskatoon [46], Mainz [47, 48]
and Jefferson Lab [49] and on the various reanalyses of the world data [50, 51, 52] has been steadily
improved, with the average extracted 〈rpE〉 ≈ 0.88 fm. More recently, the proton radius was obtained
from precise measurements of the Lamb shift energies in the hydrogen atom [53, 54, 55] and in muonic
hydrogen [56, 57]. The values extracted from measurements in electronic hydrogen are consistent with
the world-averaged electron scattering results. However, the precise value of the charge radius extracted
from the muonic hydrogen data is 〈rpE〉 ≈ 0.84 fm, which is smaller than the mean value from the electron
scattering experiments – a result referred to as the “proton radius puzzle.” The puzzle has recently
motivated various lepton scattering experiments at very low momentum transfers [58, 59, 60]. In
particular, values of the proton charge radius 〈rpE〉 = 0.831 fm and 0.833 fm obtained from the electron-
proton scattering experiment and from the measurement of the electric hydrogen Lamb shift were
recently reported [40, 41], which are both consistent with the previous muonic hydrogen experiments.

The elastic scattering measurements have also stimulated considerable activity over the past two
decades in the determination of the flavor separated form factors of the up, down and strange quarks in
the nucleon. The strange quark contribution in particular is of interest because it is purely a sea quark
effect, whereas the u and d quark contributions involve both valence and sea components which cannot
be easily disentangled. In addition to the proton and neutron electromagnetic form factors, which,
under the assumption of charge symmetry, provide two sets of constraints on the quark flavors, the
neutral-weak vector form factors measured in parity-violating electron scattering (PVES) on the proton
has been used as an additional constraint with which one can then solve for each of the u, d and s quark
contributions to the form factors. While PVES measurements are challenging, a number of experiments
have been successfully performed, starting with SAMPLE at Bates [61, 62] and A4 at Mainz [63, 64],
followed by the high precision G0 [65] and HAPPEX [66, 67, 68] experiments at Jefferson Lab. The
conclusion from analyses of these experiments have been that the strange electric and magnetic form
factors Gs

E,M have rather small magnitude, with some indication that Gs
M < 0 is favored [69, 70, 71].

As well as the electromagnetic properties of the nucleon, its axial form factors are also of great
importance, since they are related to the quark spin. The isovector axial charge of nucleon the a3 ≡
gA is determined very precisely from β-decay experiments [39], while the flavor singlet axial charge
∆Σ is related to the nucleon spin carried by quarks. In 1987, the EMC measurement of the spin-
dependent g1 structure function of the proton led to the surprising conclusion that the sum of quark spins
constituted a very small fraction of the spin of the proton [72]. Subsequent polarized DIS experiments
with increasing precision have been performed at SLAC [73, 74, 75, 76], HERMES [77, 78, 79], SMC
[80, 81], COMPASS [82, 83] and Jefferson Lab [84, 85, 86, 87, 88, 89], providing a rich picture of the
proton’s spin structure. Data from these and other polarized high energy scattering processes, such
as jet and W boson production in polarized pp collisions at RHIC [90, 91, 92], have been utilized in
global QCD analyses of spin-dependent parton distribution functions (PDFs) by a number of groups
[93, 94, 95, 96, 97, 98, 99]. The latest results from the JAM Collaboration’s simultaneous analysis [100]
of helicity PDFs and fragmentation functions give a fraction ∆Σ = 0.36(9) of the proton’s spin carried
by quarks and antiquarks at a scale of Q2 = 1 GeV2.

The momentum dependence of the axial form factor has been determined in both neutrino scattering
[101, 102, 103, 104, 105, 106, 107] and in pion electroproduction [108, 109, 110, 111, 112]. There exists
a systematic small difference between these experiments, and the discrepancy may be explained with

4



chiral perturbation theory [113]. As for the electromagnetic form factors, the axial form factor GA can
also be parameterized as a dipole form with mass parameter M2

A = 1.10+0.13
−0.15 GeV2 obtained by the

MiniBooNE Collaboration [114, 115]. The corresponding axial radius of the nucleon, 〈rA〉 ≈ 0.64 fm, is
smaller than the electric and magnetic proton radii.

The nucleon form factors can also be obtained from moments of generalized parton distributions
(GPDs). Generally, GPDs are functions of 3 variables: the parton momentum fraction, x, the momen-
tum transfer squared in the process, t, and the longitudinal momentum transfer, referred to as skewness,
ξ. GPDs thus present snapshots of the three-dimensional structure of the nucleon, since they contain
both longitudinal and transverse momentum dependence in the proton. At leading twist, there are four
chiral-even (helicity conserving) GPDs: H, E, H̃, and Ẽ, and four chiral-odd (helicity flipping) GPDs:

HT , ET , H̃T , and ẼT . In the forward limit, H, H̃ and HT reduce to the unpolarized, polarized and
transversity PDFs.

The nucleon GPDs are accessible via hard exclusive processes, such as deeply-virtual Compton
scattering (DVCS) or deeply-virtual meson production (DVMP), as well as more involved processes such
as double DVCS and timelike Compton scattering (TCS). During the last twenty years, both unpolarized
and polarized experiments have been performed at Jefferson Lab Hall A [116, 117], HERMES [118, 119,
120, 121], H1 [122, 123], ZEUS [124], and CLAS [125, 126, 127] over a wide range of kinematics.
The 12 GeV program at Jefferson Lab will feature measurements of the complete set of polarization
configurations in Halls A, B and C [128, 129, 130]. Future experiments are also planned at COMPASS
[131, 132, 133] and J-PARC [134, 135], which can provide further constraints on GPDs, as well as at
the Electron-Ion Collider (EIC) [136] and the proposed Large Hadron electron Collider (LHeC) [137],
where exclusive processes are among the main goals of their experimental programs.

The description of nucleon structure in terms of PDFs that depend only on the momentum faction x
can be generalized to also take into account the parton transverse momentum, kT . At leading twist there
are eight transverse momentum dependent distributions (TMDs) for the nucleon, and after integration
over kT three of these survive and reduce to the usual collinear unpolarized, helicity and transversity
PDFs. The TMDs can be extracted from processes such as semi-inclusive deep-inelastic scattering (DIS),
where the TMD distributions enter as convolutions with TMD fragmentation functions, as well as the
Drell-Yan process and Z0/W± boson production in hadronic collisions. Semi-inclusive DIS experiments
were carried out by HERMES [138], COMPASS [139, 140, 141] and Jefferson Lab [142, 143, 144,
145], while the Drell-Yan process was studied at Fermilab [146] and RHIC. The transverse single spin
asymmetry was recently measured in Z0/W± production from pp collisions by STAR [147]. A unified
framework for accommodating the entire set of quantum correlation functions, including PDFs, TMDs
and GPDs, is the generalized transverse momentum dependent parton distributions [148, 149, 150],
although little is known about these functions phenomenologically.

The experimental studies thus far have revealed a number of intriguing and at times surprising
results, which have challenged and deepened our understanding of the rich partonic structure of the
nucleon. Among these, one of the best known is the flavor asymmetry in the light antiquark sea, d̄ > ū,
which DIS experiments from CERN, SLAC and Jefferson Lab, and Drell-Yan lepton-pair production
data from Fermilab, have now painstakingly mapped out [151, 152, 153, 154, 155]. Similarly, the analysis
of neutrino DIS data from CERN and Fermilab suggest a nonzero strange s− s̄ asymmetry, albeit with
rather large uncertainty [157, 158, 159, 160, 161]. Less well determined, but no less fundamental,
is the question of the strange quark polarization, which at one time was thought to be related to the
proton spin puzzle, but which recent inclusive and semi-inclusive DIS data analyses give as rather small,
∆s+ = −0.03(10) [100]. In the TMD sector, for time reversal odd functions such as the Sivers and Boer-
Mulders functions, the sign is predicted to change between semi-inclusive DIS and Drell-Yan reactions,
and it will be crucial to verify this experimentally. With more high precision data expected from the
12 GeV Jefferson Lab program and the future EIC, we can look forward to significant progress made
toward the resolution of these various puzzles, and a better understanding of the nucleon substructure.
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1.2 Nonperturbative models

Although QCD is the fundamental theory of the strong interactions, the direct application of QCD to
hadronic physics is extremely difficult due to its nonperturbative nature at low energies. In practice,
therefore, approximations often need to be made in the form of phenomenological models, such as
constituent quark models, chiral quark models, quark-diquark models, as well as approaches based on
Dyson-Schwinger equations.

One of the oldest and well known models is the constituent quark model (CQM), which attempts
to describe the properties of light hadrons as composite systems of u, d and s valence or constituent
quarks, into which all other degrees of freedom are absorbed [162]. In most calculations based on
the CQM, different quark wave functions [163, 164, 165, 166] or potentials between valence quarks
[167, 168] are assumed a priori. In the hypercentral CQM, a spin independent three-quark interaction
inspired by lattice QCD was introduced [169, 170, 171]. Though the meson degrees of freedom are
not explicit in the CQM, their effects are included in the potential associated with Goldstone boson
exchange [172, 173, 174]. In the chiral SU(3) quark model, apart from the confining and one-gluon
exchange potentials, the potential due to the exchange of the nonet pseudoscalar mesons and the nonet
scalar mesons were also included by Zhang et al. [175], and further extended to include the potential
from vector meson exchange by Dai et al. [176].

Meson degrees of freedom are explicitly included in the cloudy bag model (CBM) [177, 178, 179],
where meson cloud contributions are accounted for through loop diagrams. Similarly to the CBM,
explicit meson degrees of freedom are also included in the perturbative quark model, which is based
on an effective chiral Lagrangian describing valence quarks in baryons as relativistic fermions moving
in a static potential [180, 181, 182, 183, 184]. The quark-diquark model was also proposed, where, in
contrast to the CQM, two quarks in baryons were assumed to form a tight diquark state [185, 186, 187].
The CQM, CBM, quark-diquark model, and similar variants have also been extended to the light-front
formalism [188, 189, 190, 191, 192, 193, 194]. The light-front quark model based on the variational
principle has been explored for meson phenomenology [195, 196]. Note that with the quark wave
functions, the loop integrals in the quark models are convergent. In contrast, the nonlocal quark-meson
coupling model deals with ultraviolet divergences by placing the meson and quark fields at different
locations in the effective Lagrangian [197, 198, 199], and in this case the vertex function will result in a
regulator in the loop diagrams. Meson fluctuation effects can also be obtained from the Nambu-Jona-
Lasinio model starting from the four-fermion interaction, where mesons are described as bound states
with the Bethe-Salpeter amplitude [200, 201, 202, 203].

Beyond the above quark models, other approaches include the Dyson-Schwinger equations, which
form a set of coupled integral equations for QCD’s Green functions that grants access to nonperturbative
phenomena [204, 205, 206, 207], and vector meson dominance, where the photon couples to the baryon
through an intermediate vector meson [208, 209, 210, 211, 212]. The chiral quark soliton model, where
the nucleon appears as a chiral soliton of a static background pion field in the limit of a large number
of colors Nc, has been applied in various calculations [213, 214, 215, 216, 217, 218]. Most recently, the
AdS/QCD approach has been developed to the study the hadron mass spectrum, PDFs, meson and
nucleon form factors, and structure functions [219, 220, 221, 222].

1.3 Lattice QCD

Among various theoretical methods, lattice QCD is the most rigorous approach that is based directly
on the fundamental QCD theory. For technical reasons, lattice simulations are performed in Euclidean
spacetime rather than in Minkowski spacetime, and at finite values of the lattice spacing a and lattice
size L. To compare with experimental data, the lattice simulated results must be extrapolated to the
continuum (a→ 0) and infinite volume (L→∞) limits. Furthermore, if the calculations are performed
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using larger than physical quark masses, the lattice data also need to be extrapolated to the physical
mass point (mq → mphys

q ).
In the literature, the nucleon electromagnetic form factors have been studied by various lattice groups

for a number of years. Early simulations utilized the quenched approximation, in which disconnected
diagrams were neglected, and at large pion masses due to limitations in computing power [223, 224, 225,
226]. Later, form factors were evaluated within full dynamical, unquenched QCD on the lattice [227].
The unquenching effects were found to be relatively small, since the lowest pion mass in the simulation
was 380 MeV, for which the loop effects are small. Dynamical calculations were further carried out by
several lattice groups with clover improved Wilson [228], twisted mass [229] and domain wall [230, 231]
actions. With increased computational speed, lower pion masses were accessible [232, 233, 234], and
currently the electromagnetic form factors of nucleon can be calculated on the lattice dynamically at
the physical pion mass [235, 236, 237].

The progress in lattice QCD has made it possible to study the individual up, down and strange
quark contributions to the nucleon electromagnetic form factors. The s quark contribution is of special
interest, and here the disconnected diagrams are crucial. As for the electromagnetic form factor case,
advances over the past 5 years have made it possible to reduce the lowest pion mass simulations from
several hundred MeV to the physical mass [238, 239, 240]. In Refs. [239, 240], the light sea quark
contributions to the nucleon form factors were also calculated. In their simulations, no differences were
found between the contributions from ū and d̄ quarks, and it is very challenging to obtain a d̄ − ū
asymmetry on the lattice.

The axial form factor of the nucleon has also been evaluated on the lattice [241, 242]. In recent
years, with the advances in both algorithms and supercomputing hardware, the lattice data for gA at
the physical pion mass have become in excellent agreement with the phenomenological value [242, 243,
244, 245, 246, 247]. The accurate axial charge gA = 1.271(13) [247] from lattice simulation was recently
reported, which is very close to the experimental data. Many other physical quantities related to nucleon
structure, such as the nucleon scalar charge [245, 246, 248, 249], tensor charge [245, 250, 251, 252, 253],
σ term [254, 255, 256], quark spin ∆Σ [257, 258], neutron electric dipole moment [259, 260], among
others, have also been evaluated by various lattice groups.

Although considerable progress has been made with lattice QCD simulations, exploring hadron
structure with lattice QCD has until recently been limited to only the first few moments. Higher
moments, such as 〈x2〉, have not been updated using dynamical fermions for more than a decade
[261, 262]. The n-th form factors (Mellin moments) can be obtained from the PDFs by integrating
over the momentum fraction x. Since PDFs are defined in Minkowski space on the light-front, it
has not been possible to simulate PDFs directly on a Euclidean lattice. In recent years, quasi-PDFs
have been proposed to compute on the lattice, within the large momentum effective theory (LaMET)
[263]. Alternatively, the pseudo-PDF has also been suggested, which considers the ratio of equal-time
matrix elements of the Wilson line between quarks with the rest-frame density matrix element, and is
parametrized in terms of the Ioffe time [264, 265, 266, 267]. Currently, many lattice groups are engaged
in computing unpolarized PDFs [268, 269, 270], polarized PDFs [271, 272, 273] and the transversity
PDF [271, 272, 274] using either the quasi-PDF or pseudo-PDF approach, although the efforts are still
in their early stages.

1.4 Chiral effective theory

Chiral perturbation theory (χPT) is an effective field theory (EFT) which provides another systematic
method to study hadron physics. It allows the description of low energy properties and processes within
a systematic perturbative approach, emphasising the chiral symmetry aspects of QCD. In the 1970s
the concept of EFT emerged [275, 276] with the development of χPT as a model-independent way of
describing the application of QCD at low energies [277, 278]. Compared with phenomenological quark
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models, EFT works on the hadronic degrees of freedom, without specifying the nature of the internal
quark structure and dynamics, which instead is parametrized by low energy constants. The chiral EFT
can be formulated in either the heavy baryon [279, 280, 281, 282] or relativistic [283, 284, 285, 286]
framework, and has been widely applied in the study of hadron properties [287, 288, 289, 290, 291, 292].
Historically, most formulations of χPT are based on dimensional or infrared regularization [284, 287,
288, 293] and the extended on-mass-shell renormalization scheme [291, 294, 295]. Although χPT has
been a fairly successful approach, for the nucleon form factors it is only valid at relatively small Q2

values, Q2 . 0.1 GeV2 [296]. The range can be extended up to Q2 . 0.4 GeV2 by explicitly including
vector meson degrees of freedom into the theory [288, 297].

As an alternative regularization method, finite range regularization (FRR) has been argued to
achieve better convergence than dimensional regularization in the calculation of many hadronic observ-
ables [69, 298, 299]. Inspired by models that account for the finite size of the nucleon as the source of
the pion cloud, EFT with FRR has had many successful applications, ranging from extrapolating lattice
data for the vector meson mass to magnetic moments and charge radii, electromagnetic and strange
form factors, as well as moments of PDFs and GPDs [300, 301, 302, 303, 304]. The finite range can be
parametrized in terms of various functional forms, such as dipole or Gaussian, and characterized by a
mass parameter, Λ. For a heavy baryon formulation the nonrelativistic regulator is in 3-dimensional
momentum space and hence is not covariant. In a relativistic formulation, covariance can be imple-
mented by making the regulator a four-dimensional function or by using Pauli-Villars regularization,
which ensures gauge invariance [336, 343].

While the introduction of a regulator function in FRR is to some extent ad hoc, one can make the
formulation more systematic by generating the regulator function through a nonlocal generalization of
the effective Lagrangian. By imposing local gauge invariance on the nonlocal Lagrangian, a covariant
regulator is generated automatically, without reference to any specific functional form. The renormalized
charge of the nucleon is preserved with the additional diagrams obtained by expanding the gauge
link. The nonlocal interaction generates both the regulator that renders loop integral convergent and
the Q2 dependence of the form factors at tree level. The nonlocal chiral EFT has been applied to
electromagnetic and strange form factors of the nucleon [305, 306], to PDFs [359] and TMDs such as
the Sivers function [307, 308, 309], and most recently to sea quark contributions to nucleon GPDs [364].
In addition, assuming the nonlocal behavior to be a general property of all interactions, an example is
the application to the lepton anomalous magnetic moments [310].

1.5 Outline

After motivating the subject and the scope of this review, in Sec. 2 we begin the technical discussion by
introducing the basic elements of chiral perturbation theory, including both the relativistic and heavy
baryon formalisms, as well as different regularization methods. The nonlocal chiral effective theory of
baryons and pseudoscalar mesons is presented in Sec. 3, where we start from the nonlocal Lagrangian
and derive the corresponding Feynman rules, before discussing also nonlocal methods at the quark
level. Applications of the nonlocal EFT are presented in the following three sections. First, nucleon
form factors are discussed in Sec. 4, with the individual u, d and s quark contributions featured, as
well as the form factors of octet baryons. Next, contributions to parton distributions of the proton
from meson loops are presented in Sec. 5, including the unpolarized light antiquark (d̄− ū) and strange-
antistrange (s− s̄) asymmetries, and the spin dependent strange quark distribution (∆s). The extension
of the convolution framework to transverse momentum dependent PDFs, such as the Sivers function,
and GPDs is outlined in Sec. 7, where we focus in particular on the sea quark contributions. Finally,
Sec. 7 summarizes the presentation and notes future applications of the nonlocal chiral EFT. In the
Appendix, Sec. 8, we extend the nonlocal EFT to nonlocal quantum electrodynamics (QED) and discuss
the anomalous magnetic moments of leptons.
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2 Chiral effective theory

2.1 Chiral effective Lagrangian

The QCD Lagrangian obtained by the gauge principle can be written as

LQCD =
∑
f

q̄cf (iγµDµ −mf ) q
c
f −

1

4
Gaµν Gµνa , (3)

where f(= u, d, s, c, b, t) is the quark flavor index, c denotes the color index, and Dµ = ∂µ − 1
2
igλaAaµ

is the covariant derivative. The eight Gell-Mann matrices are represented by λa(a = 1, ..., 8), and the
gluon field strength tensor Gaµν is expressed as

Gaµν = ∂µAaν − ∂νAaµ + gfabcAbµAcν , (4)

where fabc are the SU(3) structure constants. The masses of the three light quarks u, d, and s are much
smaller than those of the heavier quarks. Their masses are also small in comparison with the masses of
typical light hadrons, such as the ρ meson (770 MeV) or the proton (938 MeV). In the limit where the
masses of the light quarks go to zero, the left-handed and right-handed quark fields are decoupled from
each other in the QCD Lagrangian. In other words, besides the local SU(3) color symmetry, the QCD
Lagrangian exhibits a further global SU(3)L × SU(3)R symmetry.

In order to exhibit the global symmetry of the QCD Lagrangian for u, d, and s quarks in the chiral
limit (χ lim, mf → 0), the right-handed and left-handed projection operators are introduced as

PR =
1

2
(1 + γ5) = P †R, PL =

1

2
(1− γ5) = P †L, (5)

where the subscripts R and L refer to right-handed and left-handed, respectively. With the defined
projection operators, the right-handed and left-handed quark fields are obtained as

qR = PR q, qL = PL q. (6)

The QCD Lagrangian in the chiral limit for the light quarks is written as

Lχ lim
QCD =

∑
f=u,d,s

q̄f iγ
µDµ qf −

1

4
Gaµν Gµνa , (7)

where the color indices are now omitted. It is obvious that Lχ limQCD is invariant under the following SU(3)R
× SU(3)L transformation  uL

dL
sL

′ = exp

(
− i

2

8∑
a=1

θLa λ
a

) uL
dL
sL

 , (8a)

 uR
dR
sR

′ = exp

(
− i

2

8∑
a=1

θRa λ
a

) uR
dR
sR

 , (8b)

where θLa and θRa are independent numbers.
On the other hand, the chiral SU(3)L × SU(3)R symmetry is not realized in the low-energy spectrum.

Applying one of the axial generators Qa
A (= Qa

R−Qa
L) to an arbitrary state of a given multiplet of well-

defined parity, one would obtain a degenerate state of opposite parity, which contradicts experiment. In
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other words, the ground state is not invariant under the same symmetry group of the Lagrangian, and
the symmetry is spontaneously broken. The light pseudoscalar octet mesons qualify as candidates for
these Goldstone bosons. The finite masses of the physical multiplet are interpreted as a consequence of
the explicit breaking of the chiral symmetry due to the finite values of the u, d, and s quark masses in
the QCD Lagrangian.

Because of the absence of analytical tools to derive ab initio descriptions of low-energy properties
and processes directly from QCD, EFTs based on hadronic degrees of freedom were proposed, with
the same symmetries as QCD. The starting point is the hypothesis that a perturbative description is
possible in terms of the most general effective Lagrangian containing all possible terms compatible with
the assumed symmetry principles [275, 276]. In our case, the relevant group is G = SU(3) × SU(3)
= {(L,R)|L ∈ SU(3), R ∈ SU(3)}. The pseudoscalar fields can be arranged into the SU(3) matrix
U(x) = exp(iφ(x)/f), where f is the pion decay constant, and the matrix φ(x) is given by

φ(x) =
8∑

a=1

λaφa(x) =

 φ3 + 1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8


=

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K

0 − 2√
3
η

 (9)

in terms of the pion, kaon, and η fields. Under the SU(3)L× SU(3)R group, the matrix U transforms
as U → U ′ = RUL†. The lowest-order effective Lagrangian for the pseudoscalar mesons which has the
global SU(3)L× SU(3)R symmetry is given by

L(2)
M =

f 2

4
Tr
[
∂µU∂

µU
]
. (10)

The quark mass term of QCD which explicitly breaks the chiral symmetry can be written as

LQCD
mass = −q̄RMqL − q̄LM †qR, M =

 mu 0 0
0 md 0
0 0 ms

 . (11)

Although the mass matrix M is a constant matrix and does not transform along with the quark fields,
the Lagrangian LQCD

mass would be invariant if M transformed as M → M ′ = RML†. One may construct
the general effective Lagrangian L(U,M) which is invariant if M has the same transformation property
as U . The lowest order symmetry breaking term in the effective theory is then written as

L(2)
mass =

f 2B0

2
Tr
[
MU † + UM †], (12)

where B0 is related to the chiral quark condensate by B0 = −〈q̄q〉/(3f 2).
The effective Lagrangian which has the global SU(3)L× SU(3)R symmetry can be generalized to have

a local symmetry by introducing external fields [277, 278, 311]. The matrix U in this case transforms
as U → U ′ = VR U V

†
L , where VR(x) and VL(x) are independent spacetime dependent SU(3) matrices.

As in the case of gauge theories, we define external fields raµ(x) and laµ(x) as combinations of external
vector and axial-vector fields, vaµ(x) and aaµ(x),

raµ(x) = vaµ(x) + aaµ(x), (13a)

lµ(x) = vaµ(x)− aaµ(x), (13b)

10



which transform under SU(3)L× SU(3)R as

rµ → r′µ = VR rµV
†
R + iVR ∂µV

†
R, (14a)

lµ → l′µ = VL lµ V
†
L + iVL ∂µV

†
L , (14b)

where we use the shorthand notation rµ ≡ 1
2
(λaraµ) and lµ ≡ 1

2
(λalaµ). Similarly for the mass term, the

scalar and pseudoscalar fields sa and pa can be introduced, and transform according to

(s+ ip) → (s+ ip)′ = VR (s+ ip)V †L , (15a)

(s− ip) → (s− ip)′ = VL (s− ip)V †R, (15b)

where s ≡ λasa and p ≡ λapa. We should note that the singlet fields can also be included with a = 0,
with the corresponding Gell-Mann matrix λ0 = diag(1,1,1).

For any operator A (such as U , for instance) transforming as A→ VRAV
†
L , the covariant derivative

DµA is defined as DµA = ∂µA− irµA+ iA lµ, and transforms as

(DµA) → (DµA)′ = VR (DµA)V †L .

The general effective Lagrangian for mesons at lowest order which is locally SU(3)L× SU(3)R invariant
can therefore be written as

L
(2)
M =

f 2

2
Tr
[
DµU(DµU)†

]
+
f 2

4
Tr
[
χU † + Uχ†

]
, (16)

where we define χ ≡ 2B0(s + ip). The nonzero vacuum expectation values of s0, s3 and s8 result in
nonzero quark masses, which generate the pseudoscalar meson masses.

The general chiral effective Lagrangian can be constructed order by order in terms of small external
momentum or pion mass. At O(q4), for example, this is given by [278, 311]

L(4)
M = L1

{
Tr
[
DµU(DµU)†

]}2
+ L2Tr

[
DµU(DνU)†

]
Tr
[
DµU(DνU)†

]
+ L3Tr

[
DµU(DµU)†DνU(DνU)†

]
+ L4Tr

[
DµU(DµU)†

]
Tr
[
χU † + Uχ†

]
+ L5Tr

[
DµU(DµU)†(χU † + Uχ†)

]
+ L6

{
Tr
[
χU † + Uχ†

]}2

+ L7

{
Tr
[
χU † − Uχ†

]}2
+ L8Tr

[
χU †χU † + Uχ†Uχ†

]
− iL9Tr

[
fRµνD

µU(DνU)† + fLµν(D
µU)†DνU

]
+ L10Tr

[
UfLµνU

†fµνR
]

+ L11Tr
[
fRµνf

µν
R + fLµνf

µν
L

]
+ L12Tr

[
χχ†
]
, (17)

where the coefficients Li are the low energy constants. The field strength tensors fRµν and fLµν are defined
as

fRµν = ∂µrν − ∂νrµ − i[rµ, rν ], (18a)

fLµν = ∂µ lν − ∂ν lµ − i[ lµ, lν ]. (18b)

With dimensional regularization, the divergences from loop diagrams cancel with the bare low energy
constants Li, resulting in the renormalized constants Lri (µ). The sum of the scale-dependent constants
Lri (µ) and the finite loop contributions leads to scale independent results for physical observables. The
number of free parameters increases rapidly when the order of the effective Lagrangian increases from
O(q2) to O(q4), and many more low energy constants will appear at higher orders. For the higher order
Lagrangian, see, for example, Ref. [311] and references therein.

To construct the effective Lagrangian for baryons, an appropriate transformation law for the baryon
fields is needed. There is some degree of freedom in choosing how the baryon fields transform under
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SU(3)L× SU(3)R. The specific representation of baryons does not matter, however, since the pseu-
doscalar meson matrix U can be used to transform from one representation to another [312]. Defining
the square root matrix u by u2 ≡ U , this transforms as

u → u′ =
√
RUL† ≡ RuK† ≡ KuL†, (19)

where K depends on U , L and R,

K = (
√
RUL†)†R

√
U =

√
RUL†L(

√
U)†. (20)

The octet baryons can be arranged in the traceless 3× 3 matrix B as

B =
8∑

a=1

λaBa =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 , (21)

which transforms as B → B′ = KBK†. One can construct the locally SU(3)L× SU(3)R invariant
effective Lagrangian for baryons with external fields in a similar way as for mesons. The covariant
derivative for baryons, DµB, is written as

DµB = ∂µB + [Γµ, B] , (22)

where Γµ is defined as

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, (23)

and transforms as

DµB → (DµB)′ = ∂µ(KBK†) +
1

2

[
Ku†R†(∂µ − iRrµR† +R∂µR

†)RuK†

+KuL†(∂µ − iL lµ L† + L∂µL
†)Lu†K†, KBK†

]
= K

{
(∂µB + [Γµ, B]

}
K† = K(DµB)K†, (24)

where for any unitary operator O (= L, R, u or K), one has the identity ∂µOO
† = −O∂µO†. At O(q)

there exists an axial-vector operator uµ given by

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, (25)

which transforms under SU(3)L× SU(3)R as

uµ → u′µ = KuµK
†. (26)

The locally chiral invariant Lagrangian can be constructed from the covariant derivative and uµ field,
and in the SU(3) case at the lowest order is written as

L(1)
BM = Tr

[
B̄(i /D −MB)B

]
− D

2
Tr
[
B̄γµγ5{uµ, B}

]
− F

2
Tr
[
B̄γµγ5[uµ, B]

]
, (27)

where MB is the octet baryon mass, and D and F are the meson-octet baryon-octet baryon coupling
constants.
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The decuplet baryon fields T ijkµ , which include the ∆, Σ∗, Ξ∗ and Ω− baryons, are represented by a
symmetric tensors with components,

T 111 = ∆++, T 112 = ∆+, T 122 = ∆0, T 222 = ∆−,

T 113 = 1√
3

Σ∗, T 123 = 1√
6

Σ0, T 223 = 1√
3

Σ−,

T 133 = 1√
3

Ξ∗−, T 233 = 1√
3

Ξ∗−, (28)

T 333 = Ω−.

The decuplet fields transform as tensors under SU(3)L× SU(3)R,

(T ijkµ )′ = KilKjmKknT
lmn
µ . (29)

The covariant derivative of the decuplet field is defined by

DµT
ijk
ν = ∂µT

ijk
ν + ΓilµT

ljk
ν + ΓjlµT

ilk
ν + Γklµ T

ijl
ν , (30)

and also transforms as

DµT
ijk
ν → (DµT

ijk
ν )′ = KilKjmKkn

(
∂µT

lmn
ν + Γlpµ T

pmn
ν + Γmpµ T lpnν + Γnpµ T

lmp
ν

)
= KilKjmKknDµT

lmn
ν .

The lowest order chiral invariant Lagrangian for the decuplet baryons can be written as

L(1)
TM = T

ijk

µ

(
iγµναDα −MTγ

µν
)
T ijkν −

H
2
T
ijk

µ γαγ5(uα)klT µijl −
C
2

[
εijkT

ilm

µ Θµν(uν)ljB
mk + H.c.

]
, (31)

where C and H are the meson-octet-decuplet baryon and meson-decuplet-decuplet baryon coupling
constants, respectively. The tensor operator Θµν in Eq. (31) is defined as

Θµν = gµν −
(
Z +

1

2

)
γµγν , (32)

where Z is the off-shell parameter. In practice, the lowest-order Lagrangians are mostly used in calcu-
lations, and the high order ones can be found in Refs. [313, 314]. With the effective Lagrangian, one
can proceed to calculate physical observables or processes at tree or loop level.

2.2 Heavy baryon chiral perturbation theory

In addition to the weak decay constant f , the baryonic effective Lagrangian introduces another energy
scale into the problem — the nucleon mass, which does not vanish in the chiral limit. A method
has been devised that separates an external nucleon four-momentum into a large piece, of the order
of the nucleon mass, and a small residual component. The approach is similar to the nonrelativistic
reduction of Foldy and Wouthuysen, which provides a systematic procedure to diagonalize a relativistic
Hamiltonian to any desired order in 1/MN [315].

The heavy baryon formulation of χPT involves an expansion in terms of q/(4πf) and q/MN , where q
is the (small) external momentum [279]. We can consider the nucleon in the SU(2) case, as an example,
where the relativistic Lagrangian is given by

L(1)
Nπ = Ψ

(
i /D −MN +

gA
2
γµγ5uµ

)
Ψ, (33)

where Ψ is the nucleon field, and gA = D + F is the axial-vector charge of the nucleon. The covariant
derivative Dµ and axial vector uµ are defined as above, except the Gell-Mann matrices λa are replaced
by the Pauli matrices, τa. The equation of motion for the nucleon field is written as(

i /D −MN +
gA
2
γµγ5uµ

)
Ψ = 0. (34)
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For a four vector vµ with the properties v2 = 1 and v0 ≤ 1, projection operators can be defined as

Pv+ =
1 + /v

2
, Pv− =

1− /v
2

, (35)

satisfying the relations

Pv+ + Pv− = 1, P 2
v± = Pv±, Pv±Pv∓ = 0. (36)

The nucleon field Ψ can be separated into two velocity dependent fields, Nv and Hv,

Ψ(x) = e−iMNv·x
[
Nv(x) +Hv(x)

]
, (37)

where Nv and Hv are written in terms of the projections as

Nv = eiMNv·xPv+Ψ, Hv = eiMNv·xPv−Ψ, (38)

and satisfy the properties

Pv+Nv = Nv, Pv−Hv = Hv, Pv+Hv = Pv−Nv = 0. (39)

Inserting Eq. (37) into Eq. (34), we obtain(
i /D +

gA
2
γµγ5uµ

)
Nv +

(
i /D − 2MN +

gA
2
γµγ5uµ

)
Hv = 0. (40)

Furthermore, multiplying Pv+ and Pv− on both sides of Eq. (40) and using γ matrix algebra, we have
the relations (

iv ·D +
gA
2
γµγ5u

µ
⊥

)
Nv +

(
i /D⊥ +

gA
2
v · uγ5

)
Hv = 0, (41a)(

i /D⊥ −
gA
2
v · uγ5

)
Nv +

(
−2MN − iv ·D +

gA
2
γµγ5u

µ
⊥

)
Hv = 0, (41b)

where for any vector aµ we define aµ⊥ ≡ aµ − v · a vµ. One can solve Eqs. (41) for Hv, which yields

Hv =
(

2MN + iv ·D − gA
2
γµγ5u

µ
⊥

)−1 (
i /D⊥ −

gA
2
v · uγ5

)
Nv. (42)

Since Hv is formally suppressed by powers of 1/MN relative to Nv, the fields Nv and Hv are often called
light and heavy components of the field Ψ, respectively. The equation of motion for the light component
Nv is(

iv ·D +
gA
2
γµγ5u

µ
⊥

)
Nv +

(
i /D⊥ +

gA
2
v · uγ5

)
×
(

2MN + iv ·D − gA
2
γµγ5u

µ
⊥

)−1 (
i /D⊥ −

gA
2
v · uγ5

)
Nv = 0, (43)

and the corresponding effective Lagrangian for the light component can be written as

Leff = N v

(
iv ·D +

gA
2
γµγ5u

µ
⊥

)
Nv

+ N v

(
i /D⊥ +

gA
2
v · uγ5

)(
2MN + iv ·D − gA

2
γµγ5u

µ
⊥

)−1 (
i /D⊥ −

gA
2
v · uγ5

)
Nv, (44)

where the first term is the leading order Lagrangian.
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To obtain the heavy baryon Lagrangian we can define the spin matrix Sµv according to [279, 311]

Sµv =
i

2
γ5σ

µνvν = −1

2
(γµ/v − vµ), (45)

in terms of which we can write combinations N vΓNv for various Γ as

N vγ5Nv = 0, N vγ
µNv = vµN vNv, N vγ

µγ5Nv = 2N v S
µ
v Nv,

N vσµν Nv = 2εµνρσv
ρN vS

σ
vNv, N v σ

µνγ5Nv = 2i
(
vµN vS

ν
vNv − vνN vS

µ
vNv

)
. (46)

The leading order effective Lagrangian in the heavy baryon formalism can then be written as

L(1)
v,Nπ = N v

[
iv ·D + gASv · u

]
Nv. (47)

In the SU(3) case, the lowest order Lagrangian generalizes to

L(1)
v,BM = iTrB̄v(v ·D)Bv +DTrB̄vS

µ
v {uµ, Bv}+ F TrB̄vS

µ
v [uµ, Bv]

− i T
µ

v,ijk(v ·D)T v,ijkµ + ∆T
µ

v,ijkT
v,ijk
µ +

C
2

[
εijkT

ilm

µ Θµν(uν)ljB
mk + H.c.

]
+HT ijkµ Sαv (uα)klT µijl,

(48)

where ∆ is the decuplet–octet baryon mass difference, ∆ = MT −MB.
The free propagator of the octet baryon is written as

G0
v,B(k) =

iPv+

v · k + iε
, (49)

which is the Fourier transformation of the Green function G0
v,B(x, x′), satisfying the equation

v · ∂ G0
v,B(x, x′) = −δ4(x− x′)Pv+. (50)

From Eq. (38), the derivative i∂µ acting on the light component Nv produces a residual momentum
kµ = pµ−MB vµ. The actual choice of vµ is a matter of convenience and makes the residual momentum
kµ small, since v · k �MB. Similarly, the free propagator for the decuplet baryon in the heavy baryon
formalism is given by

G0
v,T (k) =

i
[
vµvν − gµν − (4/3)Sµv S

ν
v ]Pv+

v · k −∆ + iε
. (51)

Both meson and heavy baryon χPT can be formulated with a power counting scheme, when the
external momentum of mesons, the momentum of the external sources, and the residual momentum
of the baryon are all small compared with the scale of baryon mass or 4πf . Given the number of
independent loop momenta NL in a Feynman diagram, the number of meson propagators IM , the
number of baryon propagators IB, the number of mesonic vertices N2n

M generated from L(2n)
M , the number

of baryon-meson vertices Nn
BM generated from the Lagrangian L(n)

BM , the power or chiral dimension, D,
of the diagram is given by

D = 4NL − 2IM − IB +
∞∑
n=1

2nN2n
M +

∞∑
n=1

nNn
BM . (52)

Having outlined the formulation of the χPT in the heavy baryon case, in the following we generalize
the discussion to the baryon χPT in the relativistic case.
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Figure 1: Nucleon (solid line) self-energy diagram with a pion loop (dashed line).

2.3 Infrared regularization

One qualitative difference between the meson and baryon sectors of χPT is that the baryons remain
massive in the chiral limit, while the pesudoscalar meson masses vanish. In the relativistic case, an
additional mass scale MB therefore appears and consequently covariant χPT does not naturally satisfy
the power counting scheme. Many early applications of χPT in the baryonic sector were performed
in the framework of the heavy baryon formalism. It would be desirable to have a method which, on
the one hand, is in the framework of the relativistic formalism, while, on the other hand, avoiding the
shortcomings of the absence of power counting scheme. The so-called infrared regularization method
was proposed for this purpose, which decomposes one-loop diagrams into singular and regular parts
[284]. The singular parts are shown to satisfy the power counting, while the regular parts are absorbed
into local counter terms in the Lagrangian.

As in Refs. [284, 311], we can take the nucleon self-energy diagram in Fig. 1 as an example, where the
momentum of the pion and external nucleon are k and p, respectively. We focus on the corresponding
scalar loop integral,

H(p2) = −i
∫

ddk

(2π)d
1

(k2 −m2
π + iε)

(
(p− k)2 −M2

N + iε
) . (53)

For low values of the pion momentum k, the integrand is order of O(q−3) (note that the off-shellness
p2 −M2

N = O(q)). The naive order of this integral for this part is O(qd−3). For large values of the
momentum k, such as k �MN , we expect the power counting to fail. Using the Feynman parameteri-
zation, H(p2) can be written as

H(p2) = −i
∫ 1

0

dz

∫
ddk

(2π)d
1

(k2 − A(z) + iε)2
, (54)

where
A(z) = z2p2 − z(p2 −M2

N +m2
π) +m2

π. (55)

With dimensional regularization, after the d-dimension integration the function H(p2) becomes

H(p2) =
Γ(2− d/2)

(4π)d/2

∫ 1

0

dz [A(z)− iε]d/2−2 . (56)

When the external momentum of the nucleon is at threshold, pthr = MN + mπ, A(z) reduces to the
simple form A(z) = (zpthr − mπ)2. Direct integration over z from 0 to 1 leads to mixing of the
total contributions, which destroys the power counting rule. It is preferable, therefore, to separate the
contributions into two parts: one with the expected O(qd−3) behavior, and the other failing to have the
expected order,

H(p2
thr) =

Γ(2− d/2)

(4π)d/2

∫ z0

0

dz [A(z)− iε]d/2−2 +
Γ(2− d/2)

(4π)d/2

∫ 1

z0

dz [A(z)− iε]d/2−2 . (57)
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Note that the simple integrand A(z) is independent of the nucleon mass when z = 0 or ∞, or when
z = mπ/pthr. We can choose, therefore, z0 = mπ/pthr (or ∞,) and define an infrared singular part,

I =
Γ(2− d/2)

(4π)d/2

∫ z0

0

dz
[
mπ − z pthr − iε

]d−4
(58)

and an infrared regular part,

R = H − I =
Γ(2− d/2)

(4π)d/2

∫ 1

z0

dz
[
z pthr −mπ − iε

]d−4
, (59)

the latter which can be absorbed in the low energy constants. Through analytic continuation, for
arbitrary d one can express I and R as

I =
Γ(2− d/2)

(4π)d/2(d− 3)

md−3
π

pthr

, (60)

and

R =
Γ(2− d/2)

(4π)d/2(d− 3)

Md−3
N

pthr

. (61)

In the chiral limit mπ → 0, the original integral is infrared singular for small d.
For a general external momentum which is not at threshold, we introduce two dimensionless vari-

ables,

α =
mπ

MN

, Ω =
p2 −M2

N −m2
π

2MNmπ

, (62)

in terms of which A(z) can be rewritten as

A(z) = M2
N

[
z2 − 2αΩz(1− z) + α2(1− z)2

]
. (63)

After performing the momentum integration, we have

H(p2) = κ(d)

∫ 1

0

dz [B(z)− iε]d/2−2 , (64)

where

κ(d) =
Γ(2− d/2)

(4π)d/2
Md−4

N , and B(z) =
A(z)

M2
N

. (65)

The infrared singularity originates from small values of z, where the function B(z) goes to zero as
mπ → 0. To isolate the divergent part, one scales the integration variable z = αx so that the upper
limit z = 1 in Eq. (64) corresponds to x = 1/α,

H(p2) = κ(d)αd−3

∫ 1/α

0

dx [C(x)− iε]d/2−2 , (66)

where
C(x) = (α2 + 2αΩ + 1) x2 − 2(α + Ω)x+ 1. (67)

On the one hand, when x is zero or ∞, C(x) does not depend on MN . On the other hand, changing
the upper limit of x from 1/α to ∞ does not change the behavior of infrared singularity. The infrared
singular part can therefore be written as

I(p2) = κ(d)αd−3

∫ ∞
0

dx [C(x)− iε]d/2−2 = κ(d)

∫ ∞
0

dz [B(z)− iε]d/2−2 . (68)
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The infrared regular part is then given by

R(p2) = H(p2)− I(p2) = −κ(d)

∫ ∞
1

dz [B(z)− iε]d/2−2 . (69)

When p is at threshold, we have Ω = 1 and the above expression for I becomes

I(p2
thr) = κ(d)αd−3

∫ ∞
0

dx
[(

(α + 1)x− 1
)2 − iε

]d/2−2

, (70)

which converges for d < 3. Through partial integration and analytic continuation, for arbitrary d we
then have

I(p2
thr) = κ(d)αd−3 1

(d− 3)(α + 1)
=

Γ(2− d/2)

(4π)d/2(d− 3)

md−3
π

pthr

, (71)

which is the same expression as that in Eq. (60).
The basic idea of infrared regularization is to replace the general integral H by its infrared singular

part I (changing the upper limit from 1 to ∞ after using the Feynman parameterization) and drop
the regular part R. In the low-energy region, H and I have the same nonanalytic properties, whereas
the contribution of R, which is an infinite series in the momentum, can be included by adjusting the
coefficients of the most general effective Lagrangian.

Both the heavy baryon χPT and covariant χPT in infrared regularization satisfy the power counting
scheme. To illustrate this we compare the results for the scalar loop integral, I(p2

thr). Writing the four-
momentum of the nucleon as p = MNv+r, the nucleon propagator can be expanded in terms of a series
in r2/(2MNv · r). The original loop integral can then be rewritten as

I(p2) =
∑
j

Hj
v(p

2) =
−i

2MN

∑
j

∫
ddk

(2π)d
1

(k2 −m2
π + iε)(v · (r − k) + iε)

[
−(r − k)2

2MNv · (r − k) + iε

]j
, (72)

where we have assumed that r is small so that the original H(p2) can be approximated by its infrared
part I(p2). For simplicity, we discuss the threshold result for p2 = p2

thr, or r = mπv. The first term in
Eq. (72) with j = 0 is the result in the heavy baryon limit, and is expressed as

H0
v (p2

thr) =
−i

2MN

∫
ddk

(2π)d
1

(k2 − 2mπv · k + iε)(v · k + iε)
=

Γ(2− d/2)

(4π)d/2(d− 3)

md−3
π

MN

. (73)

The higher order terms are related by a simple recursion relation,

Hj
v(p

2
thr) = −mπ

MN

Hj−1
v (p2

thr), [j ≥ 1] (74)

which implies that

Hj
v(p

2
thr) = (−1)j

(
mπ

MN

)j
H0
v (p2

thr). (75)

Consequently, we have

I(p2
thr) =

∑
j

Hj
v(p

2
thr) =

Γ(2− d/2)

(4π)d/2(d− 3)

md−3
π

pthr

, (76)

which is identical to the expression in Eq. (71). This example shows that the result with infrared
regularization is related to an infinite sum of the heavy baryon results. Note also that the leading
nonanalytic terms in the heavy baryon formalism and the relativistic baryon formalism with dimensional
regularization and infrared regularization are all the same.
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2.4 EOMS regularization

In addition to the infrared regularization scheme, another subtraction scheme which is commonly used
in the literature is the extended on-mass-shell scheme (EOMS). The basic idea of this renormalization
scheme consists of providing a rule determining which terms of a given diagram should be subtracted
in order to satisfy a “naive” power counting, and in this section we follow the discussion in Ref. [294].
Considering the same integral H(p2) as in Sec. 2.3, Eqs. (54), (56), and (66), after performing the
d-dimension integral with d→ 4, we have

H(p2) = −2λ̄+
1

16π2
− 1

8π2

α
√

1− Ω2

(1 + 2αΩ + α2)
arccos(−Ω)− 1

8π2

α(α + Ω)

(1 + 2αΩ + α2)
lnα, (77)

where

λ̄ =
Md−4

N

(4π)2

{
1

d− 4
− 1

2

[
ln(4π) + Γ′(1) + 1

]}
. (78)

Note here that Ω is of O(m0
π) for p2 6= M2

N (it is of O(mπ) for p2 = M2
N) and α is of O(mπ). We expect

H(p2) to be of O(mπ) as d→ 4. The first two terms of Eq. (77) obviously violate the power counting.
The dimensionally regularized integral contains a part which, for non-integer d, is proportional to non-
integer powers of mπ, but does not violate the power counting. On the other hand, the remaining piece
of the integral may be expanded in non-negative powers of mπ for arbitrary d, as indicated in the first
two terms discussed above. It is this contribution that is responsible for the violation of power counting.

Subtracting the first and second terms from Eq. (77), we can write for the renormalized integral,

HR(p2) = − 1

8π2

α
√

1− Ω2

(1 + 2αΩ + α2)
arccos(−Ω)− 1

8π2

α(α + Ω)

(1 + 2αΩ + α2)
lnα. (79)

It is instructive to compare Eq. (79) with the result of using infrared regularization, where the
integral H(p2) is divided into an infrared part I(p2) and a remainder R(p2) [284],

I(p2) = vλ̄− 1

8π2

α
√

1− Ω2

(1 + 2αΩ + α2)
arccos

( −α− Ω√
1 + 2αΩ + α2

)
− 1

16π2

α(α + Ω)

(1 + 2αΩ + α2)

(
2 lnα− 1

)
, (80)

and

R(p2) = −(2 + v)λ̄+
1

8π2

α
√

1− Ω2

(1 + 2αΩ + α2)
arcsin

( α
√

1− Ω2

√
1 + 2αΩ + α2

)
+

1

16π2

1 + αΩ

(1 + 2αΩ + α2)
, (81)

where v = −(p2−M2
N +m2

π)/p2. The infrared singular and regular parts need further renormalization.
The subtracted parts can both be expanded in powers of mπ and absorbed in the most general effective
Lagrangian. It is obvious that final results of infrared regularization and EOMS regularization give the
same nonanalytic term which is proportional to lnα.

After integration it will be clear which terms should be subtracted to keep the power counting scheme
valid. However, it is useful to identify those terms which we subtract from a given integral without
explicitly calculating the integral beforehand. For simplicity, we restrict ourselves for the moment to
the chiral limit, mπ = 0, in which case H(p2) can be written as

H(p2) =
Γ(2− d/2)Md−4

N

(4π)d/2

∫ 1

0

dz
[
z2 − z(1− z)δ − iε

]d/2−2

=
Md−4

N

(4π)d/2

[
Γ(2− d/2)

d− 3
F (1, 2− d/2; 4− d;−δ)

+ (−δ)d−3 Γ(d/2− 1) Γ(3− d)F (d/2− 1, d− 2; d− 2; δ)

]
, (82)
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where δ = (p2 −M2
N)/M2

N and F (a, b; c; z) is the hypergeometric function [294]. Using the expansion

F (a, b; c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

2c(c+ 1)
z2 + · · · , (83)

as d→ 4 we have

H(p2) =
Md−4

N

(4π)d/2

[
Γ(2− d/2)

d− 3
− δ ln(−δ) + δ2 ln(−δ) + · · ·

]
, (84)

where the ellipsis · · · represents terms that are at least of O(q3). The subtraction terms can therefore
be chosen as

N∑
l=0

(p2 −M2
N)l

l!

[(
pµ
2p2

∂

∂pµ

)l
1

(k2 + iε)
(
(p− k)2 −M2

N + iε
)]

p2=M2
N

=
1

(k2 + iε)(k2 − 2k · p+ iε)

∣∣∣∣
p2=M2

N

+ (p2 −M2
N)

[
1

2M2
N

1

(k2 − 2k · p+ iε)2
− 1

2M2
N

1

(k2 + iε)
(
(p− k)2 −M2

N + iε
)

− 1

(k2 + iε)(k2 − 2k · p+ iε)2

]
p2=M2

N

+ · · · , (85)

where N is determined by the requirement that the terms have no infrared singularity. These terms are
always analytic in the small parameter and do not contain infrared singularities. In the above example
we only need to subtract the first term with N = 0, while all higher-order terms contain infrared
singularities. For example, the infrared behavior of the first term is k3/k3 and this integrand has no
infrared singularity; however, the last integrand in the second term generates a behavior k3/k4 and so
is infrared singular. The integral of the first term of Eq. (85) is given by the first term of Eq. (84).
Overall, we find the renormalized integral to be

HR(p2) =
Md−4

N

(4π)d/2

[(
1− p2

M2
N

)
ln
(

1− p2

M2
N

)
+
(

1− p2

M2
N

)2

ln
(

1− p2

M2
N

)
+ · · ·

]
. (86)

For finite mπ, before explicitly calculating the integral we expand the integrand in terms of m2
π, as

in Eq. (85), and subtract those terms which have no infrared singularities. In the present case we only
need to subtract the first term to satisfy the power counting,

Hsubtr = −i
∫

ddk

(2π)d
1

(k2 + iε)(k2 − 2p · k + iε)

∣∣∣
p2=M2

N

. (87)

This integral indeed gives the first two terms of Eq. (77), Hsubtr = −2λ̄ + 1/(4π)2 + O(d − 4). The
final result will be the renormalized one which satisfies power counting, while in infrared regularization
both I and R need further renormalization. We stress that in covariant baryon χPT, when we say that
an expression is of O(qi), we refer to the minimal power is qi. This is in contrast to heavy baryon
χPT or meson χPT, where the expression exclusively consists of terms of O(qi). The results of infrared
and EOMS regularizations have the same nonanalytic behavior and the leading nonanalytic term is the
same as that in the heavy baryon formalism. The analytic terms in both methods can be expanded in
small quantities consisting of an infinite number of terms in the expansion. These analytic terms can
be different in the IR and EOMS schemes.
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2.5 Finite-range regularization

In the preceding two subsections we have discussed the infrared and EOMS regularizations, which make
the final results satisfy the conventional power counting. The subtracted terms can be absorbed in
the counter terms in the most general Lagrangian resulting in the renormalized low energy constants.
These two regularization schemes lead to similar numerical results as with the standard dimensional
regularization with proper choice of the renormalized low energy constants. Numerical calculations of
nucleon form factors indicate that the experimental data can only be described well at low momentum
transfer, say Q2 < 0.1 GeV2 in infrared, EOMS, and dimensional regularization [291, 296].

The situation is the same for the extrapolation of lattice data, where the quark (pion) masses are
larger than the physical masses. When mπ is large, the power counting scheme is not valid and high
order terms of mπ have important contributions. Some form of resummation of the chiral expansion is
therefore necessary in order to make the chiral perturbation theory applicable beyond the traditional
power counting region. The resummation of the chiral expansion induced through the introduction of
a finite range cutoff in the momentum integrals of meson-loop diagrams has been shown [298, 299] to
be a very good and effective resummation method.

Taking the nucleon mass as an example, in the usual effective field theory the nucleon mass can be
expanded in terms of the pion mass up to O(m4

π) as

MN = a0 + a2m
2
π + a4m

4
π + σπN + σπ∆ + · · · , (88)

where σπN and σπ∆ are the self-energies from the π loops with intermediate nucleon and ∆, respectively.
The coefficients ai (i = 0, 2, 4) are the low energy constants in the effective Lagrangian. In the heavy
baryon limit, the expressions for σπN and σπ∆ are given by

σπN = −3(D + F )2

16π2f 2

∫ ∞
0

dk
k4

k2 +m2
π

, (89)

and

σπ∆ = − C2

6π2f 2

∫ ∞
0

dk
k4

ω(k)
(
∆ + ω(k)

) , (90)

where ω(k) =
√
k2 +m2

π, and ∆ is the mass difference between ∆ baryon and nucleon, with the
integration measure dk ≡ d|k|. At large momentum these integrals have cubic divergences which need
to be regulated, while their infrared behavior gives the leading nonanalytic correction to the nucleon
mass.

With dimensional regularization, the nucleon mass MN can be written as [316]

MN = a0 + a2m
2
π + a4m

4
π −

3

32πf 2
(D + F )2m3

π −
C2

12π2f 2
F(mπ,∆, µ). (91)

For mπ < ∆, the function F(mπ,∆, µ) is given by

F(mπ,∆, µ) =
(
m2
π −∆2

) [√
∆2 −m2

π ln

(
∆−

√
∆2 −m2

π

∆ +
√

∆2 −m2
π

)
−∆ ln

m2
π

µ2

]
− 1

2
∆m2

π ln
m2
π

µ2
. (92)

For mπ > ∆, the first logarithm in Eq. (92) becomes an arctangent. However, this formula also cannot
describe lattice data at large pion masses. To fit lattice data at large mπ, high order analytic terms from
Lagrangian, such as a6m

6
π, are necessary to counter the large, nonanalytic contributions arising from

terms such as the order m4
π lnmπ term. Physically, when the pion mass is large the loop contribution

should be small and vanish as mπ →∞.
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In the finite range regularization (FRR), a Λ dependent functional cutoff u(k) is introduced in order
to render the integral ultraviolet finite,

σΛ
πN = −3(D + F )2

16π2f 2

∫ ∞
0

dk
k4u2(k)

k2 +m2
π

. (93)

For illustration, we choose a dipole regulator, u(k) = Λ4/(k2 + Λ2)2, which gives for the self-energy,

σΛ
πN = −3(D + F )2

32πf 2

Λ5(m2
π + 4mπΛ + Λ2)

16(mπ + Λ)4

= −3(D + F )2

32πf 2

(
Λ3

16
− 5Λ

16
m2
π +m3

π −
35

16Λ
m4
π + · · ·

)
. (94)

The leading nonanalytic term in the integral in Eq. (93) is of O(m3
π). The FRR gives the same O(m3

π)
leading nonanalytic term as for DR, namely, −3(D + F )2/(32πf 2)m3

π.
The first two terms in the parentheses of Eq. (94) which are Λ dependent can be absorbed into

the a0 and a2 terms, resulting in the renormalized low energy constants c0 and c2 [299, 317]. With
the introduction of the regulator, therefore, the loop contribution not only has the same LNA term as
in DR, but also has Λ dependent higher order terms. With these higher order terms, the total loop
contribution will vary smoothly with the pion mass, and will vanish when the pion mass is sufficiently
large. In this case the analytic terms have good convergence, and very high order terms are not needed
to fit the lattice data at large mπ. Similarly, the contribution from the ∆ intermediate states in the
heavy baryon limit can be written as

σΛ
π∆ = − C2

6π2f 2

∫ ∞
0

dk
k4u(k)

ω(k)(∆ + ω(k))
. (95)

After the direct integration and Tylor expansion, one funds the same leading nonanalytic term as in
DR, namely (C2m4

π)/(16π2f 2∆) lnmπ. Again, higher order terms make the total loop contribution from
the intermediate ∆ states decreases smoothly with increasing pion mass.

In Fig. 2, the pion mass dependence of the nucleon mass is illustrated for various regularization
schemes [317]. The simple dimensional regularization scheme (short-dashed curve) is compared with a
sophisticated dimensionally regulated approach (long-dashed curve). For the FRR, four different func-
tional forms for the ultraviolet vertex regulator are chosen, namely, sharp cutoff (SC) u(k) = θ(Λ− |k|),
monopole (MON) u(k) = Λ2/(Λ2 + k2), dipole (DIP) u(k) = Λ4/(Λ2 + k2)2, and Gaussian (GAU)
u(k) = exp(−k2/Λ2). The results for the four finite range regulators (solid curves) are indistinguish-
able. χPT with FRR can naturally describe lattice data and the linear dependence of lattice data at
large mπ indicates the smaller analytic contributions beyond the a4 term. The good convergent behavior
of the FRR result can also be seen from Table 1 [317]. For FRR, the low energy constant a4 is small
compared with the a0 and a2 terms, and there is no need to include a6 term. In contrast, for the DR
and branch point (BP) approaches, the a4 is larger than a0 and a2, so that a higher order, ∼ a6m

6
π term

is necessary to cancel the large contribution from the loop integral.
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Figure 2: Variation of the nucleon mass MN with pion mass for various regularization schemes. The
short-dash curve corresponds to the simple dimensional regularisation (DR) scheme, and the long-dash
curve to the more sophisticated dimensionally regulated (BP) approach. The solid line represents four
finite-range regularization schemes, with four kinds of regulators, which are indistinguishable. (Figure
from Ref. [317].)

Table 1: Low energy constants ai in different regularization schemes and parameters Λ in FRR. All
quantities are in units of appropriate powers of GeV. (From Ref. [317].)

Regulator a0 a2 a4 a6 Λ

DR 0.882 3.82 6.65 −4.24 —

BP 0.825 4.37 9.72 −2.77 —

FRR (SC) 1.03 1.12 −0.292 — 0.418

FRR (MON) 1.56 0.884 −0.204 — 0.496

FRR (DIP) 1.20 0.972 −0.229 — 0.785

FRR (GAU) 1.12 1.01 −0.247 — 0.616
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3 Nonlocal chiral effective theory

3.1 Nonlocal effective Lagrangian

As discussed in the previous section, the advantages of the FRR approach are that there are no explicit
ultraviolet divergences in the loop integrals, and good convergent behavior is achieved when applying
the effective field theory beyond the power counting region. This is seen when either relativistic or
nonrelativistic regulators are used, in the covariant and heavy baryon formulations, respectively. A
disadvantage, however, is that this prescription violates local gauge symmetry, which is an inevitable
feature of introducing hadronic form factors to represent the extended structure of hadrons.

The problem of preserving gauge invariance in theories with hadronic form factors can be formally
alleviated by introducing nonlocal interactions into the gauge invariant local Lagrangian, which allows
one to consistently generate a covariant regulator. Physically, nonlocal interactions are more realistic
than the local effective interactions, since hadrons are not point particles. The non-pointlike nature of
the hadrons can be taken into account by defining the baryon field at spacetime point xµ and displacing
the meson or photon by a distance aµ to spacetime point xµ + aµ, with a correlation function, F (a),
parametrizing the nonlocal interaction.

The presence of gauge links in the nonlocal Lagrangian connecting different spacetime coordinates
generates additional diagrams which are needed to ensure the local gauge invariance of the theory.
This guarantees that the proton and neutron charges, for example, are unaffected by meson loops, or
that contributions to the strangeness in the nucleon from diagrams with intermediate state kaons and
hyperons sum to zero. These basic features of the theory are not guaranteed for a local Lagrangian,
but arise automatically in the nonlocal theory in which the Ward identities and charge conservation are
necessarily satisfied.

Starting from the local effective Lagrangian, we can expand Eqs. (27) and (31) and introduce the
minimal substitution for the electromagnetic field Aµ, in which case the local Lagrangian density can
be rewritten in the form

L(local)(x) = B̄(x)(iγµDµ −MB)B(x) +
CBφ
f

[
p̄(x)γµγ5B(x) Dµφ(x) + H.c.

]
+ T µ(x)(iγµναDα −MTγ

µν)Tν(x) +
CTφ
f

[
p̄(x)ΘµνTν(x) Dµφ(x) + H.c.

]
+

iCφφ†

2f 2
p̄(x)γµp(x)

[
φ(x)(Dµφ)†(x)−Dµφ(x)φ†(x)

]
+ Dµφ(x)(Dµφ)†(x) + · · · , (96)

where for the interaction part we show only those terms that are relevant for the calculation of proton
form factors and PDFs, and we keep the dependence on the spacetime coordinate xµ explicitly. The
covariant derivatives are defined as

DµB(x) = [∂µ − ieqB Aµ(x)]B(x), (97a)

DµT
ν(x) = [∂µ − ieqT Aµ(x)]T ν(x), (97b)

Dµφ(x) =
[
∂µ − ieqφ Aµ(x)

]
φ(x), (97c)

where eqB, eqT and eqφ are the quark flavor charges of the octet baryon B, decuplet baryon T and meson

φ, respectively. For example, for the proton one has the charges eup = 2edp = 2, esp = 0, while for the Σ+

hyperon euΣ+ = 2esΣ+ = 2, edΣ+ = 0, and similarly for other baryons. For the mesons, the flavor charges
for the π+ are euπ+ = −edπ+ = 1 but eqπ0 = 0 for all q, while for the K+ these are euK+ = −esK+ = 1,
edK+ = 0, and similarly for the charge conjugate states. The coefficients CBφ, CTφ and Cφφ† in Eq. (96)
depend on the coupling constants D, F and C, and are given explicitly in Table 2.
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Table 2: Coupling constants CBφ, CTφ and Cφφ† for the pBφ, pTφ and ppφφ† interactions, respectively,
for the various allowed flavor channels.

(Bφ) (pπ0) (nπ+) (Σ+K0) (Σ0K+) (ΛK+)

CBφ
1
2
(D + F ) 1√

2
(D + F ) 1√

2
(D − F ) 1

2
(D − F ) − 1√

12
(D + 3F )

(Tφ) (∆0π+) (∆+π0) (∆++π−) (Σ∗+K0) (Σ∗0K+)

CTφ − 1√
6
C − 1√

3
C 1√

2
C 1√

6
C − 1√

12
C

(φφ†) (π+π−) (K0K
0
) (K+K−)

Cφφ†
1
2

1
2

1

Using the methods described in Refs. [199, 305, 306, 318], the nonlocal version of the local Lagrangian
in Eq. (96) can be written as

L(nonloc)(x) = B̄(x)(iγµDµ −MB)B(x) + T µ(x)(iγµναDα −MTγ
µν)Tν(x)

+ p̄(x)

[
CBφ
f
γµγ5B(x) +

CTφ
f

ΘµνTν(x)

]
Dµ

(∫
d4aGqφ(x, x+ a)F (a)φ(x+ a)

)
+ H.c.

+
iCφφ†

2f 2
p̄(x)γµp(x)

{∫
d4aGqφ(x, x+ a)F (a)φ(x+ a) Dµ

(∫
d4bGqφ(x+ b, x)F (b)φ†(x+ b)

)

− Dµ

(∫
d4aGqφ(x, x+ a)F (a)φ(x+ a)

)∫
d4bGqφ(x+ b, x)F (b)φ†(x+ b)

}
+ Dµφ(x)(Dµφ)†(x) + · · · , (98)

where

DµΨ(x) =

[
∂µ − ieqΨ

∫
d4aAµ(x− a)F (a)

]
Ψ(x) (99)

for a field Ψ. The gauge link Gqφ is introduced to preserve local gauge invariance,

Gqφ(x, y) = exp

[
−ieqφ

∫ y

x

dzµ
∫

d4aAµ(z − a)F (a)

]
, (100)

where the function F (a) is the correlation function in coordinate space. One can verify that the nonlocal
Lagrangian in Eq. (98) is invariant under the gauge transformations

B(x) → B′(x) = B(x) exp [ieqB θ(x)] , (101a)

Tµ(x) → T ′µ(x) = Tµ(x) exp [ieqT θ(x)] , (101b)

φ(x) → φ′(x) = φ(x) exp
[
ieqφ θ(x)

]
(101c)

for the matter fields, and
A µ(x) → A ′µ(x) = A µ(x) + ∂µθ′(x) (101d)

for the electromagnetic field, where θ(x) =
∫

d4a θ′(x+a)F (a) is an arbitrary function of the spacetime
coordinate x.
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The nonlocal Lagrangian density in Eq. (98) can be further decomposed by expanding the gauge
link (100) in powers of the charge eqφ,

Gqφ(x+ b, x+ a) = exp
[
− ieqφ (a− b)µ

∫ 1

0

dt Aµ

(
x+ at+ b t̄

)]
= 1 + δGqφ + · · · , (102)

where the δGqφ is

δGqφ = − ieqφ (a− b)µ
∫ 1

0

dt Aµ

(
x+ at+ b t̄

)
(103)

and we have used a change of variables zµ → xµ +aµ t+ bµ t̄, with t̄ ≡ 1− t. This allows the Lagrangian
L(nonloc) to be written as a sum of free and interacting parts, where to lowest order the latter consists
of purely hadronic (L(nonloc)

had ), electromagnetic (L(nonloc)
em ), and gauge link (L(nonloc)

link ) components. The
higher order terms in Eq. (102) contribute to higher order electromagnetic corrections, which are in
practice negligible. The higher order terms can also be related to other processes, such as those involving
two or more photons emitted in the final state.

The hadronic and electromagnetic interaction parts of the nonlocal Lagrangian arise from the co-
variant derivatives in Eq. (98), and are given by

L(nonloc)
had (x) = p̄(x)

[
CBφ
f

γµγ5B(x) +
CTφ
f

ΘµνTν(x)

]∫
d4aF (a) ∂µφ(x+ a) + H.c.

+
iCφφ†

2f 2
p̄(x)γµp(x)

∫
d4a

∫
d4b F (a)F (b)

×
[
φ(x+ a)∂µφ

†(x+ b)− ∂µφ(x+ a)φ†(x+ b)
]
, (104)

and

L(nonloc)
em (x) = eqB

∫
d4a B̄(x)γµB(x) Aµ(x+ a)F (a) + eqT

∫
d4a T µ(x)γµναTν(x) Aα(x+ a)F (a)

+ ieqφ

∫
d4a

[
∂µφ(x)φ†(x)− φ(x)∂µφ†(x)

]
Aµ(x+ a)F (a)

− ieqφ p̄(x)

[
CBφ
f

γµγ5B(x) +
CTφ
f

ΘµνTν(x)

]
×
∫

d4a

∫
d4b F (a)F (b)φ(x+ a) Aµ(x+ b) + H.c.

−
eqφCφφ†

2f 2
p̄(x)γµp(x)

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c)φ(x+ a)φ†(x+ b) Aµ(x+ c),

(105)

respectively. For the δGqφ term in Eq. (103), which explicitly depends on the gauge link, the nonlocal
interaction with the external gauge field yields the additional contribution to the Lagrangian density,

L(nonloc)
link (x) = −ieqφ p̄(x)

[
CBφ
f

γργ5B(x) +
CTφ
f

ΘρνTν(x)

]
×
∫ 1

0

dt

∫
d4a

∫
d4b F (a)F (b) aµ ∂ρφ(x+ a)Aµ(x+ at+ b t̄ ) + H.c.

+
eqφCφφ†

2f 2
p̄(x)γρp(x)

∫ 1

0

dt

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c) (a− b)µ

×
[
φ(x+ a) ∂ρφ

†(x+ b)− ∂ρφ(x+ a)φ†(x+ b)
]
Aµ

(
x+ at+ b t̄+ c

)
. (106)
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Note that compared with traditional power counting schemes in chiral perturbation theory that use
dimensional regularization, the introduction of the regulator function F (a) in the nonlocal interactions
(104)–(106) leads to the generation of higher order terms with coefficients that in general will depend on
the regulator mass parameter Λ. This is analogous to a resummation of the standard chiral perturbation
theory, which goes beyond the usual power counting regime.

3.2 Feynman rules for nonlocal Lagrangian

With the nonlocal effective Lagrangian, one can calculate hadron properties such as the nucleon electro-
magnetic form factors, strange form factors, unpolarized and polarized parton distributions, generalized
parton distribution functions, amongst others. In this subsection we will present the electromagnetic
currents and Feynman rules for the nonlocal Lagrangian which will be needed for the calculation of
these quantities.

For the nonlocal theory the contribution from quark q to the current has two parts: the usual
electromagnetic current, Jµq,em, obtained with minimal substitution from Eq. (105),

Jµq,em(x) ≡
δ
∫

d4yL(nonloc)
em (y)

δAµ(x)

=

∫
d4aF (a)

(
eqB B̄(x− a)γµB(x− a) + eqT Tα(x− a)γανµTν(x− a)

)
+ ieqφ

∫
d4aF (a)

[
∂µφ(x− a)φ†(x− a)− φ(x− a)∂µφ†(x− a)

]
− ieqφ

∫
d4a

∫
d4b F (a)F (b)

× p̄(x− b)
[
CBφ
f

γµγ5B(x− b) +
CTφ
f

ΘµνTν(x− b)
]
φ(x+ a− b) + H.c.

−
eqφCφφ†

2f 2

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c) p̄(x− c)γµp(x− c)φ(x+ a− c)φ†(x+ b− c),

(107)

and an additional term obtained from the gauge link,

δJµq (x) ≡
δ
∫

d4yL(nonloc)
link (y)

δAµ(x)

= −ieqφ
∫ 1

0

dt

∫
d4a

∫
d4b F (a)F (b) aµ p̄(x− at− b)

[
CBφ
f

γργ5B(x− at− b)

+
CTφ
f

ΘρνTν(x− at− b)
]
∂ρφ
(
x+ at̄− b

)
+ H.c.

+
eqφCφφ†

2f 2

∫ 1

0

dt

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c) (a− b)µ p̄

(
x− at− bt̄− c

)
γρ

× p
(
x− at− bt̄− c

)[
φ
(
x+ (a− b)t̄− c

)
∂ρφ

†(x− (a− b)t− c
)

− ∂ρφ
(
x+ (a− b)t̄− c

)
φ†
(
x− (a− b)t− c

)]
, (108)

respectively. As for the nonlocal Lagrangian, the nonlocal currents in Eqs. (107) and (108) include
the extra regulator function, F (a). The local limit can be obtained by taking F (a) to be a δ-function,
F (a) → δ(4)(a), which is equivalent to taking the form factor in momentum space to be unity. From
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the above equations, the currents for the u, d and s quarks can be written explicitly in terms of the
the mesonic and baryonic currents. Here, as an example, we only show the currents related to octet
baryons which have contributions to the proton form factors and PDFs. For the u quark, the current
can be written explicitly as

Jµu =

∫
d4aF (a)

[
2p̄(x− a)γµp(x− a) + n̄(x− a)γµn(x− a) + Λ̄(x− a)γµΛ(x− a)

+ 2Σ
+

(x− a)γµΣ+(x− a) + Σ
0
(x− a)γµΣ0(x− a)

]
−

∫
d4a

∫
d4b F (a)F (b) p̄(x− b)γµγ5

[
i(D + F )√

2f
n(x− b)π+(x+ a− b)

− i(D + 3F )√
12f

Λ(x− b)K+(x+ a− b)

+
i(D − F )

2f
Σ0(x− b)K+(x+ a− b) + H.c.

]
− 1

2f 2

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c)

× p̄(x− c)γµp(x− c)
[
π+(x+ a− c)π−(x+ b− c) + 2K+(x+ a− c)K−(x+ b− c)

]
−

∫ 1

0

dt

∫
d4a

∫
d4b F (a)F (b) aµ p̄(x− at− b)γργ5

[
i(D + F )√

2f
n(x− at− b)∂ρπ+

(
x+ at̄− b

)
− i(D + 3F )√

12f
Λ(x− at− b) ∂ρK+

(
x+ at̄− b

)
+
i(D − F )

2f
Σ0(x− at− b) ∂ρK+

(
x+ at̄− b

)
+ H.c.

]
+

1

2f 2

∫ 1

0

dt

∫
d4a

∫
d4b

∫
d4c F (a)F (b)F (c) (a− b)µ p̄

(
x− at− bt̄− c

)
γρp
(
x− at− bt̄− c

)
×
[
π+
(
x+ (a− b)t̄− c

)←→
∂ρ π

−(x− (a− b)t− c
)

+ 2K+
(
x+ (a− b)t̄− c

)←→
∂ρK

−(x− (a− b)t− c
)]
, (109)

where
←→
∂ρ =

−→
∂ρ −

←−
∂ρ. For d and s quarks, the currents have the same structure as Jµu , except for

different coefficients. Omitting for convenience the integral factors and arguments in Eq. (109), the d
and s quark currents can be obtained by replacing the corresponding expressions by

Jµd → p̄γµp+ 2n̄γµn+ 2Σ
−
γµΣ− + Σ

0
γµΣ0 + Λ̄γµΛ

+ p̄γµγ5

[
i(D + F )√

2f
n π+ − i(D − F )√

2f
Σ+K0

]
+

1

2f 2
p̄γµp

[
π+π− − K

0
K0
]

+ aµ p̄γργ5

[
i(D + F )√

2f
n ∂ρπ

+ − i(D − F )√
2f

Σ+ ∂ρK
0

]
− 1

2f 2
(a− b)µ p̄γρp

[(
π+∂ρπ

− − π−∂ρπ+
)
−
(
K

0
∂ρK

0 −K0∂ρK
0)]

, (110)
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Figure 3: Interaction vertices for the nonlocal Lagrangian, for interactions between octet baryon (solid
lines), decuplet baryon (double-solid lines), meson (dashed lines) and photon (wavy lines) fields. The
four-momentum of the photon is denoted by q, while that of the meson by k or k1 and k2. Vertices
generated from the additional interactions associated with the gauge link [diagrams (j), (k) and (l)] are
indicated by black circles.

and

Jµs → Σ
+
γµΣ+ + Σ

0
γµΣ0 + Λ̄γµΛ

+ p̄γµγ5

[
i(D − F )√

2f
Σ+K0 +

i(D − F )

2f
Σ0K+ − i(D + 3F )√

12f
ΛK+

]
+

1

2f 2
p̄γµp

[
2K+K− +K

0
K0
]

+ aµ p̄γργ5

[
i(D − F )√

2f
Σ+ ∂ρK

0 +
i(D − F )

2f
Σ0 ∂ρK

+ − i(D + 3F )√
12f

Λ ∂ρK
+

]
− 1

2f 2
(a− b)µ p̄γρp

[
2
(
K+∂ρK

− −K−∂ρK+
)

+
(
K

0
∂ρK

0 −K0∂ρK
0)]

. (111)

The terms involving the doubly-strange baryons Ξ0,− and Ξ∗0,− are not present because they cannot
couple to the proton initial states. The terms in each current proportional to aµ and (a − b)µ are the
additional contributions generated from the gauge link, which guarantees charge conservation.

With the nonlocal Lagrangian and currents, one can obtain the corresponding Feynman rules. The
vertices for the baryon–meson, baryon–photon, and baryon–meson–photon interactions which will be
used in the calculation of the nucleon form factors and PDFs are illustrated in Fig. 3, including con-
tributions from the additional interactions associated with the gauge link. The vertices for the photon
coupling to the meson φ, octet baryon B, and decuplet baryon T in Figs. 3(a), 3(b) and 3(c), respec-
tively, are given by

V µ
(a) = −ieqφ(kµ1 + kµ2 )F̃ (q), V µ

(b) = −ieqBγ
µF̃ (q), V µνα

(c) = −ieqTγ
µναF̃ (q), (112)

where F̃ (q) is the Fourier transformation of the correlation function F (a) and provides the momentum
dependence of the form factors at tree level, with qµ the four-momentum of the photon and kµ, kµ1 , and
kµ2 are the four-momenta of the meson fields.
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For the baryon–meson vertices in Figs. 3(d), 3(e) and 3(f), we write the vertex functions as

V(d) =
CBφ
f

/kγ5 F̃ (k), V µ
(e) =

CTφ
f

[
kµ−

(
Z+ 1

2

)
γµ/k
]
F̃ (k), V(f) =

Cφφ†

2f 2
(/k1 + /k2) F̃ (k1)F̃ (k2), (113)

where the regulator F̃ (k) associated with each meson field with momentum kµ makes the meson-loop
integral convergent. Similarly, for the standard baryon–meson–photon interactions in Figs. 3(g), 3(h)
and 3(i), using minimal substitution we obtain the vertices

V µ
(g) = −

eqφCBφ

f
γµγ5F̃ (k)F̃ (q),

V µν
(h) = −

eqφCTφ

f

[
gµν −

(
Z + 1

2

)
γµγν

]
F̃ (k)F̃ (q), (114)

V µ
(i) = −

eqφCφφ†

2f 2
γµF̃ (k1)F̃ (k2)F̃ (q),

where here the vertices depend on both the momenta q and k.
For the additional diagrams generated from the gauge link in Figs. 3(j), 3(k) and 3(l), to obtain the

expressions for the vertices we need to calculate
∫

d4aF (a) eikaI(x+ a, x). Using the identity∫
d4aF (a) eikaI(x+ a, x) =

∫
d4a

∫
d4p

(2π)4
F̃ (p2) eipa eika I(x+ a, x)

=

∫
d4a

∫
d4p

(2π)4

(
F̃ (∂2

a) e
ipa
)
eika I(x+ a, x) (115)

and partial integration, the crucial point is to calculate F̃ (∂2
a) e

ika I(x+ a, x). Following the derivation
in Ref. [199], we can show that

F̃ (∂2
a) e

ika I(x+ a, x) = eika F̃ (D2
a) I(x+ a, x), (116)

where Da = ∂a + ika. Using a Taylor expansion, we can write

F̃ (D2
a) I(x+ a, x) =

∞∑
0

F̃ (0)(0)

n!
D2n
a I(x+ a, x). (117)

Based on the path-independent definition of the derivative of I(x + a, x) [318], (∂/∂aµ)I(x + a, x) =
Aµ(x+ a), one finds that

D2
a I(x+ a, x) = L(A )− k2I(x+ a, x), (118)

where we define L(A ) ≡ ∂aAa(x+ a) + 2ikaAa(x+ a). Iterating Eq. (118), we have(
D2
a

)2
I(x+ a, x) = (D2

a − k2)L(A ) + (−k2)2 I(x+ a, x)(
D2
a

)3
I(x+ a, x) = (D4

a −D2
ak

2 + k4)L(A ) + (−k2)3 I(x+ a, x)

· · ·(
D2
a

)n
I(x+ a, x) =

n−1∑
l=0

(
D2
a

)n−1−l
(−k2)l L(A ) + (−k2)n I(x+ a, x)

= n

∫ 1

0

dt
(
D2
at− k2t̄

)n−1
L(A ) + (−k2)n I(x+ a, x), (119)
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which then allows us to write

F̃ (D2
a)I(x+ a, x) =

∫ 1

0

dt F̃ ′
(
D2
a t− k2 t̄

)
L(A ) + F̃ (−k2)I(x+ a, x)

= i

∫
d4q

(2π)4
Aµ(q) eiq(x+a) (2kµ + qµ)

∫ 1

0

dt F̃ ′
(
− (k + q)2 t− k2 t̄

)
+ F̃ (−k2) I(x+ a, x). (120)

After integrating over p and a in Eq. (115), the last term in Eq. (120) vanishes because of the δ-function,
δ(a). The vertex corresponding to Fig. 3(j) can therefore be written as

V µ
(j) = −

eqφCBφ

f
(/k + /q)γ5

2kµ + qµ

2k · q + q2

[
F̃ (k + q)− F̃ (k)

]
F̃ (q). (121)

Using the same technique, we can find the corresponding expression for the octet-decuplet transition
vertex in Fig. 3(k),

V µν
(k) = −

eqφCTφ

f

[
kµ + qµ −

(
Z − 1

2

)
γµ(/k + /q)

] 2kν + qν

2k · q + q2

[
F̃ (k + q)− F̃ (k)

]
F̃ (q). (122)

Finally, the vertex with two mesons and one photon from the gauge link in Fig. 3(l) is given by

V µ
(l) =

eqφCφφ†

2f 2
(/k1 + /k2)

{
2kµ1 + qµ

2k1 · q + q2

[
F̃ (k1 + q)− F̃ (k1)

]
F̃ (k2)F̃ (q)

+
2kµ2 + qµ

2k2 · q + q2

[
F̃ (k2 + q)− F̃ (k2)

]
F̃ (k1)F̃ (q)

}
. (123)

With the vertices in Eqs. (112) – (123), we have the complete set of Feynman rules which are needed
for the calculation of the nucleon properties in the following sections. Compared with the traditional
effective theory, for the nonlocal Lagrangian at each vertex a momentum dependent vertex function
appears, generated from the correlation function in the nonlocal Lagrangian. The correlation function
reflects the non-pointlike behavior of the particles and, in principle, is independent of the hadron type.
In our calculations we therefore set the correlation functions to be the same for all hadrons. We should
also note that the nonlocal magnetic interaction has not been included in the above, but can be easily
added within the same approach.

3.3 Nonlocal methods at the quark level

The nonlocal Lagrangian (98) is based on the framework of chiral effective field theory and is expressed
in terms of hadronic degrees of freedom. This nonlocal realization is not unique, however, and nonlocal
Lagrangians can also be constructed from quark degrees of freedom. In this subsection we will discuss
the nonlocal gauge invariant Lagrangian in the approach of Terning [318], as well as in the nonlocal
quark-meson coupling model [181, 197].

The nonlocal action for quarks interacting with photons in Ref. [318] is introduced by the nonlocal
mass term written as (omitting the FµνF

µν term)

S =

∫
d4x q̄(x)γµ(∂µ − ieqAµ) q(x) +

∫
d4x

∫
d4y q̄(x) Σ(x− y) exp

[
− ieq

∫ y

x

dων Aν(ω)
]
q(y), (124)

where Σ(x− y) is the nonlocal quark mass function. For the case when Σ(x− y)→ δ(x− y), Eq. (124)
will reduce to the local QED action. The path integral of the gauge field guarantees the action in (124)
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is invariant under the U(1) transformation

q(x) → q′(x) = exp
[
ieqθ(x)

]
q(x), (125a)

q̄′(x) → q̄′(x) = exp
[
ieqθ(x)

]
q̄(x), (125b)

Aµ(x) → A ′
µ(x) = Aµ + ∂µθ(x). (125c)

The first and second terms in Eq. (124) refer to the local (denoted by SL) and nonlocal (SNL) contri-
butions. For the local case, the vertex is obtained using minimal substitution and is given by

V µ
L = iΓµL(x, y, z) = − δ3SL

δψ(x)δψ̄(y)δAµ(z)

∣∣∣∣
Aµ=0

. (126)

Fourier transforming with the exponemt ei(p
′y−px−qz) and dropping the coefficient (2π)4δ(p′−p− q), one

has
V µ

L = −ieqγµ. (127)

The nonlocal contribution SNL can be rewritten in momentum space as

SNL =

∫
d4k

(2π)4

∫
d4p

(2π)4
q̄(k) Σ̃(p) F̃ (k − p, p), (128)

where Σ̃(p) and F̃ (k− p, p) are the Fourier transformations of Σ(x− y) and F (x, y), respectively, where

F (x, y) is defined as F (x, y) ≡ exp
[
−ieq

∫ y
x

dων Aν(ω)
]
q(y). After Taylor expanding Σ̃(p) and Fourier

transforming back to position space, we can write the nonlocal action as

SNL =

∫
d4x

∫
d4y δ(x− y) q̄(x)

[
∞∑
n=0

1

n!
Σ̃(n)(0)(−∂2

y)
n

]
exp

[
− ieq

∫ y

x

dων Aν(ω)
]
q(y). (129)

The nonlocal vertex corresponding to SNL is then given by

V µ
NL = iΓµNL(x, y, z) = − δ3SNL

δq(x)δq̄(y)δAµ(z)

∣∣∣∣
Aµ=0

= ieq

∫
d4x′ δ(y − x′)

[
∞∑
n=0

1

n!
Σ̃(n)(0)(−∂2

x′)
n

]∫ x′

y

dωµ δ(z − ω) δ(x− x′)

≡
∞∑
n=0

ΓµNL,n(x, y, z). (130)

Using a similar approach as in the last subsection and in Refs. [199, 318], the nonlocal vertex in
momentum space is expressed as

V µ
NL(p, p+ q, q) = −eq(2p+ q)µ

∞∑
n=0

1

n!
Σ̃(n)(0)

(p+ q)2n − p2n

2p · q + q2

= −eq
(2p+ q)µ

2p · q + q2

[
Σ̃(p+ q)− Σ̃(p)

]
. (131)

The total vertex V µ = V µ
L + V µ

NL satisfies the Ward-Takahashi-Green identity,

qµV
µ = eq

[
S−1(p+ q)− S−1(p)

]
= −ieq/q − eq

[
Σ̃(p+ q)− Σ̃(p)

]
, (132)
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where S−1(p) = −i/p− Σ̃(p) is the inverse of the quark propagator for the nonlocal Lagrangian.
For the quark-meson interaction, the nonlocal Lagrangian in the approach of Terning is [318]

LT(x, y) = gqm q̄2(x)γ5Σ(x− y)

[
M(x) exp

(
ieq1

∫ x

y

dων Aν

)
+ exp

(
− ieq2

∫ x

y

dων Aν

)
M(y)

]
q1(y), (133)

where M(x) is the meson field and gqm is the quark-meson coupling constant. The Lagrangian is locally
invariant under the transformation of (125) and

M(x) → M ′(x) = exp [ieMθ(x)]M(x), (134)

where eM is the meson charge. In analogy to the quark-photon vertex, the quark-meson-photon vertex
can be written as

V T(p, p+ k + q, k, q) = gqmγ5

{
eq2

2pµ + 2kµ + qµ

2(p+ k) · q + q2

[
Σ̃(p+ k + q)− Σ̃(p+ k)

]
− eq1

2pµ + qµ

2p · q + q2

[
Σ̃(p+ q)− Σ̃(p)

]}
, (135)

where p and p+ k + q are the initial and final quark momenta, and k and q are the meson and photon
momenta, respectively.

In the above nonlocal realization, the two quark fields are at spacetime points x and y, respectively.
The meson field is at the same position as one of them. In particular, the nonlocal mass term leads to
a modified propagator. In the nonlocal quark-meson coupling model [181, 197], the propagator is the
same as in the local case because the free Lagrangian is local and only the interacting Lagrangian is
nonlocal, written as

LQMC(x) = gqmM(x)

∫
d4x1

∫
d4x2H(x, x1, x2) q̄2(x2) exp

(
− ieq2

∫ x

x2

dων Aν

)
γ5

× exp
(
ieq1

∫ x

x1

dων Aν

)
q1(x1), (136)

where H(x, x1, x2) is given by

H(x, x1, x2) = δ(x− β21x1 − β12x2) Φ
(
(x1 − x2)2

)
. (137)

Here Φ ((x1 − x2)2) is the correlation function of two constituent quarks with masses m1 and m2, and
βij = mj/(mi + mj). In contrast to Terning’s Lagrangian LT(x, y) in Eq. (133), the meson field
in the nonlocal quark-meson coupling model is at the center of mass of the two-quark system. The
corresponding quark-meson-photon vertex is obtained as

V QMC(p, p+ k + q, k, q) = gqm γ5

{
eq2

2β12p
µ + 2β12β21k

µ + (1− β2
21)qµ

2β12p · q + 2β12β21k · q + (1− β2
21)q2

×
[
Φ̃
(
p+ q + β21k

)
− Φ̃

(
p+ β21(k + q)

)]
− eq1

2β21p
µ + 2β2

21k
µ + β2

21q
µ

2β21p · q + 2β2
21k · q + β2

21q
2

[
Φ̃
(
p+ β21(k + q)

)
− Φ̃

(
p+ β21k

)]}
, (138)

where Φ̃ is the Fourier transform of Φ. Comparing (138) with Eq. (135), in momentum space the vertex
in the nonlocal quark-meson coupling model is slightly different from Terning’s nonlocal vertex. Our
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nonlocal chiral effective theory is on the hadron degrees of freedom, where baryons are at coordinate
x, while the meson and photon are at coordinates x + a and x + b, respectively. As a result, the
nonlocal vertex in momentum space depends on the momentum of the meson and photon fields, while
in both Terning’s approach and the nonlocal quark-meson coupling model, the vertex is related to the
momentum of the quark fields.

For the baryon-meson-photon interaction, both the regular vertex from the minimal substitution
and the additional vertex from the expansion of the gauge link exist in the nonlocal effective theory,
whereas only the nonlocal vertex from the gauge link appears in Terning’s approach and nonlocal
quark-meson coupling model. Because of the correlation function in the vertex, the loop integrals in
both the nonlocal chiral effective theory and the nonlocal quark-meson coupling model are convergent.
However, the divergence may still exist in the loop integrals with Terning’s nonlocal Lagrangian due to
the cancellation of the regulators in the propagator and vertex.

4 Nucleon form factors

4.1 Nucleon electromagnetic form factors

In this section we will discuss the electromagnetic form factors of the proton and neutron. The Dirac
and Pauli form factors of the nucleon are defined as

Γµ ≡ 〈N(p′)|Jµ|N(p)〉 = ū(p′)

[
γµFN

1 (Q2) +
iσµνqν
2MN

FN
2 (Q2)

]
u(p), (139)

where q = p′−p and Q2 = −q2. The electric and magnetic form factors are defined as the combinations
of the Dirac and Pauli form factors as

GN
E (Q2) = FN

1 (Q2)− Q2

4M2
N

FN
2 (Q2) and GN

M(Q2) = FN
1 (Q2) + FN

2 (Q2). (140)

In terms of the electromagnetic form factors, the electric (charge) and magnetic radii of the nucleon
are, respectively, obtained via

〈r2
E〉N = −6

dGN
E (Q2)

dQ2

∣∣∣∣
Q2=0

, 〈r2
M〉N =

−6

GN
M(0)

dGN
M(Q2)

dQ2

∣∣∣∣
Q2=0

. (141)

The nucleon electromagnetic form factors have been calculated in chiral perturbation theory up to
O(q4). It was found that the experimental data can only be described well for momenta Q2 . 0.1 GeV2

in either the infrared or EOMS regularization schemes [296]. Figure 4 summarises the results for the
form factors up to O(q4) [296]. It is clear for all the electric and magnetic form factors of the proton
and neutron that the discrepancy between the theoretical calculation and experimental results rapidly
increases when Q2 > 0.1 GeV2. There is not much difference between the results in the infrared and
EOMS regularization schemes, as they have the same nonanalytic terms. The difference caused by the
different subtracted terms can be reduced by properly choosing the low energy constants. Although the
results are closer to experiment at Q2 . 0.4 GeV2 when vector mesons are explicitly included [297], it is
generally difficult for traditional χPT to describe the nucleon form factors quantitatively at relatively
large momentum transfer, Q2 & 1 GeV2.

The nonlocal Lagrangian and electric currents have been discussed in the previous section. To study
nucleon form factors within the nonlocal chiral effective theory, as in local χPT, the octet, decuplet and
octet-decuplet transition operators for magnetic interactions are needed in the one-loop calculations.
The baryon octet anomalous magnetic Lagrangian is written as [305, 319]

Loct =
e

4MB

(
c1 Tr

[
B̄σµν

{
F+
µν , B

}]
+ c2 Tr

[
B̄σµν

[
F+
µν , B

]]
+ c3 Tr

[
B̄σµνB

]
Tr
[
F+
µν

] )
, (142)
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Figure 4: The electric (top row) and magnetic (bottom row) form factors of the proton (left column)
and neutron (right column) at O(q4) in the EOMS (solid lines) and infrared (dashed lines) schemes,
compared with experimental data (points with error bars). (Figure from Ref. [296].)

where

F+
µν = −1

2

(
u†Fµν Qc u+ uFµν Qc u

†) . (143)

Here, Fµν is the external electromagnetic field strength tensor interacting with a quark of flavor q = u, d
or s. At the lowest order, the contribution of quark q with unit charge to the octet magnetic moments
can be obtained by replacing the charge matrix Qc with the corresponding diagonal quark matrices
λq = diag(δqu, δqd, δqs). Taking the nucleon as an example, after expanding Eq. (142), we find the quark
flavor decomposition for the proton and neutron magnetic moments is given by

F p,u
2 = c1 + c2 + c3, F p,d

2 = c3, F p,s
2 = c1 − c2 + c3, (144a)

F n,u
2 = c3, F n,d

2 = c1 + c2 + c3, F n,s
2 = c1 − c2 + c3. (144b)

Comparing with the results of the constituent quark model where F p,s
2 = F n,s

2 = 0, we obtain the
relation c3 = c2 − c1. On par with the octet anomalous magnetic moment operators, the decuplet
anomalous magnetic moment operator is expressed as [305, 319]

Ldec = −ieF
T
2

4MT

T
abc

µ σρλF
ρλT µ,abc, (145)

and the transition magnetic operator is written as [305, 319]

Ltrans = i
e

4MB

µTFµν

(
εijkQc,ilB̄jmγ

µγ5 T
ν,klm + εijkQc,liT

µ,klm
γνγ5Bmj

)
. (146)
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The anomalous magnetic moments of baryons can also be expressed in terms of quark magnetic mo-
ments, µq. For example, for the nucleon one has µp = (4µu−µd)/3 and µn = (4µd−µu)/3, while for the
∆++ the magnetic moment is given by µ∆++ = 3µu. Using SU(3) flavor symmetry, µu = −2µd = −2µs,
while µT and F T

2 , as well as µq, can be written in terms of c1 or c2. For example, one has µu = 2c1/3,
µT = 4c1, and F∆++

2 = µ∆++ − 2 = 2c1 − 2. The parameters c1 and c2 can then be determined by the
experimental magnetic moments of the proton and neutron.

The nonlocal electromagnetic interaction between a proton and a photon can be written as

L(nonloc)
em,p = −e

∫
d4a p̄(x)γµp(x)Aµ(x+a)F1(a)+

(c1 + 3c2)e

12MN

∫
d4a p̄(x)σµνp(x)Fµν(x+a)F2(a), (147)

where F1(a) and F2(a) are the correlation functions for the nonlocal electric and magnetic interactions.
The form factors at tree level, which are momentum dependent, can be easily obtained using a Fourier
transformation. The simplest choice is to assume that the correlation function of the nucleon electro-
magnetic vertex is the same as that of the nucleon-meson vertex, namely, F1(a) = F2(a) = F (a). For
this simple choice, however, the Dirac and Pauli form factors will have the same dependence on the
momentum transfer at tree level, and the obtained charge form factor of the proton will fall rapidly
with Q2, becoming negative at large Q2. A better choice may be to assume that the charge and mag-
netic form factors at tree level have the same momentum dependence as the nucleon-meson vertex,
Gtree
M (Q2) = µtree

p Gtree
E (Q2) = µtree

p F̃ (Q2), where F̃ (Q2) is the Fourier transform of the correlation func-
tion F (a). Here, µtree

p = 1+ 1
3
c1 +c2 is the tree level magnetic moment of the proton. The corresponding

functions F̃1(Q2) and F̃2(Q2) can then be written as

F̃1(Q2) =
4M2

N +Q2µtree
p

4M2
N +Q2

F̃ (Q2), F̃2(Q2) =
4M2

N

4M2
N +Q2

F̃ (Q2). (148)

In the heavy baryon limit, Q2/M2
N → 0, we note that the above two choices are equivalent.

According to the nonlocal Lagrangian, the one-loop Feynman diagrams which contribute to the
nucleon electromagnetic form factors can be summarized as shown in Fig. 5. Due to the gauge link, there
are additional diagrams where the vertices are represented by black dots. These additional diagrams
guarantee that the values of the electric form factors of the nucleon at Q2 = 0 are given by their charges.
To illustrate the gauge invariance in the nonlocal quantum field theory, we consider specifically the pion
loop for the external proton in Fig. 5. In particular, we may contrast the neutral pion case versus the
charged pion case for the proton form factor computation.

For the neutral pion case, we may take Fig. 5(b) which provides the expression of the allowed meson
loop contributions as

Γµ,p(b) =
(D + F )2

4f 2

4M2
N + µtree

p Q2

4M2
N +Q2

Iµ,pπ0(b) +
(D + F )2

2f 2

µtree
n Q2

4M2
N +Q2

Iµ,pπ+(b) +
(D + 3F )2

12f 2

µtree
Λ Q2

4M2
Λ +Q2

Iµ,ΛK(b)

+
(D − F )2

8f 2

8M2
Σ + (µtree

Σ0 + 2µtree
Σ+ )Q2

4M2
Σ +Q2

Iµ,ΣK(b) −
(D − F )(D + 3F )

4
√

3f 2

µtree
ΣΛ Q

2

4M2
Σ +Q2

Iµ,ΣΛ
K(b) , (149)

where the tree level magnetic moments µtree
B can be obtained from Eq. (142). Here, the generic expression

of the loop integral Iµ,BM(b) is given by

Iµ,BM(b) = eF̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

k2 −m2
M

1

/p′ − /k −MB

γµ
1

/p− /k −MB

/kγ5F̃ (k)u(p), (150)

where mM and MB are the masses of the intermediate meson and baryon. In this expression, the F̃ (q)
factor outside the integral is generated from the nonlocal baryon–photon vertex which provides the
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Figure 5: One-loop Feynman diagrams for the nucleon electromagnetic form factors. The solid, double-
solid and dashed lines are for the octet baryons, decuplet baryons and pseudoscalar mesons, respectively.
The circles denote additional gauge link interaction with the external field, while black and gray squares
represent the magnetic interactions. (Figure from Ref. [364].)
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momentum dependence of the tree level form factors of intermediate baryons. The two F̃ (k) factors
inside the integral, however, arise from the two nonlocal baryon–meson vertices, which make the loop
integral convergent. In the local effective theory, both F̃ (q) and F̃ (k) are taken as 1. Now, without
taking into account the magnetic moments µtree

B for simplicity, we can obtain the Ward identity for the
neutral pion case as

qµΓµ,pπ0(b) = e
(D + F )2

4f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

k2 −m2
π

1

/p′ − /k −MN
/q

1

/p− /k −MN

/kγ5F̃ (k)u(p),

(151)
where /q can be replaced by /p′ − /p to yield

qµΓµ,pπ0(b) = e
(D + F )2

4f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

k2 −m2
π

1

/p− /k −MN

/kγ5F̃ (k)u(p)

− e
(D + F )2

4f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

k2 −m2
π

1

/p′ − /k −MN

/kγ5F̃ (k)u(p)

= −eF̃ (q)
(
Σπ0(p′)− Σπ0(p)

)
. (152)

Here, Σπ0(p) represents the neutral pion loop correction to the proton self-energy which corresponds
to the wave function renormalization presented explicitly in the Appendix B of Ref. [320] for the local
theory derivation.

For the charged pion case, Figs. 5(a), 5(c), 5(d), 5(e) and 5(f) will provide the contributions to the
proton form factors. Without taking into account µtree

B for simplicity again, the contribution of Fig. 5(a)
can be expressed as

Γµ,p(a) =
(D + F )2

2f 2
Iµ,nπ+(a) +

(D + 3F )2

12f 2
Iµ,Λ

+

K(a) +
(D − F )2

4f 2
Iµ,ΣK+(a), (153)

where the generic expression of the loop integral Iµ,BM(a) is given by

Iµ,BM(a) = eF̃ (q) ū(p′)

∫
d4k

(2π)4
(/k+/q)γ5 F̃ (q+k)

1

(k + q)2 −m2
π

(2k+ q)µ
1

k2 −m2
π

1

/p− /k −MN

/kγ5F̃ (k)u(p).

(154)
The contribution from Figs. 5(c) and 5(d) can be expressed as

Γµ,p(c)+(d) = −(D + F )2

2f 2
Iµ,nπ+(c)+(d) −

(D + 3F )2

12f 2
Iµ,ΛK+(c)+(d) −

(D − F )2

4f 2
Iµ,ΣK+(c)+(d), (155)

where the integral Iµ,BM(c)+(d) is given by

Iµ,BM(c)+(d) = eF̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

/p′ − /k −MB

1

k2 −m2
M

γµγ5F̃ (k − q)u(p)

+ eF̃ (q) ū(p′)

∫
d4k

(2π)4
γµγ5F̃ (k + q)

1

/p− /k −MB

1

k2 −m2
M

/kγ5F̃ (k)u(p). (156)

For the additional diagrams in Figs. 5(e) and 5(f) from the nonlocal interactions, which do not exist
in the local theory, the contribution is given by

Γµ,p(e)+(f) = −(D + F )2

2f 2
Iµ,nπ+(e)+(f) −

(D + 3F )2

12f 2
Iµ,ΛK(e)+(f) −

(D − F )2

4f 2
Iµ,ΣK(e)+(f), (157)
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where the generic expression of the integral Iµ,BM(e)+(f) is given by

Iµ,BM(e)+(f) = eF̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5

2kµ − qµ

2k · q − q2

[
F̃ (k)− F̃ (k − q)

] 1

/p′ − /k −MB

1

k2 −m2
M

/kγ5F̃ (k)u(p)

+ eF̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5

2kµ + qµ

2k · q + q2

[
F̃ (k + q)− F̃ (k)

] 1

/p− /k −MB

1

k2 −m2
M

/kγ5F̃ (k)u(p).

(158)

Note here that the Iµ,Nπ0(e)+(f) term is absent as the nonlocal baryon–meson vertex is proportional to the
meson charge. For the charged pion case, we thus have the following contributions to the Ward identity,

qµ

(
Γµ,nπ+(a) + Γµ,nπ+(c)+(d) + Γµ,nπ+(e)+(f)

)
= e

(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
(/k + /q)γ5 F̃ (q + k)

1

k2 −m2
π

1

/p− /k −MN

/kγ5F̃ (k)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
(/k + /q)γ5 F̃ (q + k)

1

(k + q)2 −m2
π

1

/p− /k −MN

/kγ5F̃ (k)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

/p′ − /k −MN

1

k2 −m2
π
/qγ5F̃ (k − q)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4/qγ5F̃ (k + q)
1

/p− /k −MN

1

k2 −m2
π

/kγ5F̃ (k)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5

[
F̃ (k)− F̃ (k − q)

] 1

/p′ − /k −MN

1

k2 −m2
π

/kγ5F̃ (k)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5

[
F̃ (k + q)− F̃ (k)

] 1

/p− /k −MN

1

k2 −m2
π

/kγ5F̃ (k)u(p), (159)

where the first term can be cancelled with the fourth term and the first part of the last term. After
shifting the momentum k → k − q in the second term, we can see its cancellation with the third term
and the second part of the fifth term. The remaining terms can then be expressed as

qµ

(
Γµ,nπ+(a) + Γµ,nπ+(c)+(d) + Γµ,nπ+(e)+(f)

)
= e

(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

/p− /k −MN

1

k2 −m2
π

/kγ5F̃ (k)u(p)

−e(D + F )2

2f 2
F̃ (q) ū(p′)

∫
d4k

(2π)4
/kγ5F̃ (k)

1

/p′ − /k −MN

1

k2 −m2
π

/kγ5F̃ (k)u(p)

= −eF̃ (q)
(
Σπ+(p′)− Σπ+(p)

)
, (160)

where Σπ+(p) represents the charged pion loop contribution to the proton self-energy corresponding to
the wave function renormalization presented again explicitly in Appendix B of Ref. [320] for the local
theory derivation. We note here the cancellation of the terms among qµI

µ,B
M(a), qµI

µ,B
M(c)+(d) and qµI

µ,B
M(e)+(f),

demonstrating the gauge invariance without taking the local limit, F̃ (k) = 1. This assures that the
Ward identity is satisfied in the nonlocal theory and the values of electric form factors of the nucleon
at Q2 = 0 must be their charges with the additional diagrams generated in the nonlocal Lagrangian.

Having now established the correct Ward identity both for the neutral pion case and the charged
pion case, we briefly describe the numerical computation in the nonlocal theory. In practice, we take a
dipole form for F̃ (k),

F̃ (k) =

(
Λ2

k2 −m2
j − Λ2

)2

, (161)

39



�����

����

����

���

��� ��� ��� ��� ���

���

���

���

���

���

�� (����)

�
��

�����

����

����

���

��� ��� ��� ��� ���

���

���

���

���

���

�� (����)

�
��

Figure 6: The proton electric (left) and magnetic (right) form factors versus momentum transfer Q2

with Λ = 0.9 GeV, showing the tree (blue dotted lines), loop (green dot-dashed lines) and total (red
solid lines) contributions, compared with the empirical result (magenta dashed lines). (Figure from
Ref. [305].)

where Λ is a free parameter, while mj = mM and mj = 0 for the baryon–meson and baryon–photon
vertices, respectively. The results are found to be very close to the experimental nucleon form factors
when Λ ≈ 0.9 GeV. Further details of the numerical results for the nucleon form factors can be found
in Ref. [305].

The calculated proton electric and magnetic form factors Gp
E and Gp

M are shown in Fig. 6 as a
function of Q2. The calculation is found to describe the empirical result, Gp

M,emp = 2.79Gp
E,emp, where

Gp
E,emp = 1/(1+Q2/0.71 GeV2)2, relatively well, with the loop contributing around 30% of the total. As

noted above, the nonlocal Lagrangian generates the covariant regulator which makes the loop integral
convergent on the one hand, while also generating the Q2 dependent contribution at tree level on the
other. In contrast to the conventional χPT, the tree level contribution is not expanded in powers of
momentum transfer. As a result, both the tree and loop contributions decrease smoothly with increasing
Q2. The net results are close to the empirical values up to Q2 = 2 GeV2. For the electric form factor, at
Q2 = 0 the sum of the tree and loop contributions to the proton charge is unity, as required. The proton
magnetic radius is 0.848 fm in our calculation, which is close to the experimental value. Additional
diagrams generated from the expansion of the gauge link are crucial to attain the renormalized proton
charge 1, as explained earlier. Compared to the magnetic form factor, the charge form factor decreases
slightly faster. As a result, the obtained charge radius 0.857 fm is a little larger than the magnetic
radius.

The calculated neutron electric and magnetic form factors Gn
E and Gn

M are shown in Fig. 7 versus
Q2. For the neutron electric form factor, all the contributions are entirely from the loop diagrams.
The neutron charge radius 〈(rnM)2〉 = −0.077 fm2, which is a little smaller in magnitude than the
experimental value −0.11 fm2. The calculated electric form factor of neutron in Fig. 7 is lower than the
experimental results, but the overall behavior is qualitatively similar. Due to the introduction of the
gauge link, Gn

E(0) is automatically zero. For Gn
M , both the tree and loop contributions are important,

and the total result is very close to the empirical parametrization Gn
M,emp = −1.91/(1+Q2/0.71 GeV2)2

up to Q2 = 2 GeV2. The magnetic radius of neutron is estimated to be 0.867 fm. From Figs. 6 and
7, we can see that the loop diagrams contribute about 25%− 30% to the proton electromagnetic form
factors as well as the neutron magnetic form factor, while 70%− 75% of the form factors are provided
by the tree level contribution.

To summarize this section, we have shown the advantage of the nonlocal chiral effective theory in
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Figure 7: The neutron electric (left) and magnetic (right) form factors versus momentum transfer Q2

with Λ = 0.9 GeV for the tree (blue dotted lines), loop (green dot-dashed lines) and total (red solid lines)
contributions, and compared with the empirical result (magenta dashed lines). The tree contribution
to Gn

E is zero. (Figure from Ref. [305].)

studying the nucleon form factors. As in the local χPT, the parameters c1 and c2 are determined by the
nucleon magnetic moments, and the only free parameter, Λ, is chosen to obtain reasonable agreement
with the Q2 dependence of the nucleon form factors. Compared with the results of Fig. 4 in local χPT,
where there are four other free parameters (besides c1 and c2) that are fixed by the experimental charge
and magnetic radii of proton and neutron, the nonlocal Lagrangian clearly has fewer free parameters.
The nucleon radii in the nonlocal case are calculated instead of fitted.

We also note that since in the nonlocal Lagrangian the baryon field is at the coordinate x, while
the meson or photon field is at x + a, a Taylor series expansion of the meson field φ(x + a) at x could
lead to an expansion of the nonlocal Lagrangian as an infinite set of higher order local ones. We did
not perform such expansion, but the nonlocal effect may be understood as a form of resummation of
the higher order contributions. Effectively, the nonlocal gauge invariant Lagrangian makes it possible
to study hadron properties at the relatively larger momentum transfer compared with ordinary local
χPT. Not only are the ultraviolet divergences absent, but also the numerical results appear reasonable
for the nonlocal theory. In the following, we will apply the nonlocal chiral effective theory to study
more specific nucleon and other baryon observables.

4.2 Strange form factors

It is well known that a complete characterization of the nucleon substructure requires to go beyond the
three valence quarks. One of the great challenges of modern hadron physics is to unravel the precise role
of hidden flavors in the structure of the nucleon. In particular, the strange quark contribution to the
nucleon form factors has attracted a lot of interest because it comes purely from the sea quark sector.
Experimental measurements on the strange form factors are very challenging since the strange quark
contributions to both electric and magnetic form factors are very small. In 2006, a combined analysis of
HAPPEX, SAMPLE and A4 experiments around Q2 = 0.1 GeV2 showed that Gs

E prefers a somewhat
negative value and Gs

M prefers a somewhat positive value, although Gs
E = Gs

M = 0 was still compatible
with the data at the 95% C.L. [67]. In 2009, however, measurements of the parity-violating asymmetry
in elastic electron scattering on hydrogen at forward and backward angles for Q2 = 0.22 GeV2 indicated
that Gs

E was positive and Gs
M negative [70], opposite to the earlier experimental analysis.

In 2014, a statistical analysis of the full set of parity-violating asymmetry data for elastic electron
scattering including the high precision measurement from the Q-weak experiment was performed [71].
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Figure 8: 95% confidence level constraint ellipses in the plane Gs
E − Gs

M at Q2 = 0.1 GeV2 for var-
ious analyses: red, green, brown and blue ellipses from Refs. [71], [69], [321] and [322], respectively.
Theoretical predictions are indicated by the black and orange crosses. (Figure from Ref. [71].)

These estimates favored nonzero vector strangeness, specifically, positive (negative) values for the elec-
tric (magnetic) strange form factors. Figure 8 shows the constraint on Gs

E and Gs
M from Ref. [71].

The more recent result from Gonzalez-Jimenez et al. [71] (red ellipse) is much larger than their ear-
lier result [322] (blue ellipse) due to the presence of more free parameters in the new fit. Compared
with the analysis by Liu et al. [321] (brown ellipse) and Young et al. [69] (green ellipse), where a
total of 10 data points in the range of 0.091 ≤ Q2 ≤ 0.126 GeV2 and 19 data points in the range of
0.038 ≤ Q2 ≤ 0.299 GeV2 were used, respectively, more experimental data and free parameters were
included in the global analysis of Gonzalez-Jimenez et al. [71].

The strange form factors were also investigated in chiral perturbation theory [323]. However, there
are unknown low energy constants appearing in the chiral Lagrangian, which has limited the ability
to compute the strange magnetic form factor or the charge radius. The quantity that one wishes to
predict – the strangeness vector current matrix element – is the same quantity that one needs to know
in order to make a prediction [324, 325]. For example, from Eq. (142), one can see that the last term
has no contribution to the magnetic moments of octet baryons because the trace of the charge matrix
Qc = diag(2/3,−1/3,−1/3) is zero. The baryon magnetic moments are only related to c1 and c2, for
instance, F p

2 = (1/3)c1 + c2, F n
2 = −(2/3)c1. In the local chiral perturbation theory, the loop integrals

for the form factors are divergent and the sum of the loop and tree level contributions leads to the
renormalized cR1 and cR2 , which can be determined by fitting the magnetic moments of the nucleon or
octet baryons. However, the electromagnetic behavior of baryons cannot determine the parameter cR3 .
This can only be determined by experiments measuring directly the strange magnetic moment of the
nucleon. As a result, the calculated strange electric and magnetic form factors can be both positive and
negative with large error bars reflecting the large uncertainties in the experimental data [323].

In the nonlocal chiral effective theory, both the loop and tree level contributions are finite. Therefore,
in practice, c3 can be chosen to be c2−c1, such that the tree level contribution is zero for the bare proton
and neutron. This is impossible in the local theory, where the tree level term must be present to cancel
with the infinity from the loop integral. This is also an advantage of the nonlocal effective theory, which
can actually allow one to make predictions for the strange form factors. With the magnetic moments
of valence strange quark in bare hyperons determined by the electromagnetic moments of baryons, one
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Figure 9: The strange electric Gs
E and magnetic Gs

M form factors of the nucleon versus momentum
transfer squared Q2 for different Λ values. The three solid lines from top to bottom on the left figure
(from bottom to top on the right figure) correspond to Λ = 1, 0.9 and 0.8 GeV, respectively. The data
with error bars are from the lattice simulation of Ref. [239]. (Figure from Ref. [306].)

can obtain the strange form factors of the nucleon [306].
The strange electric and magnetic form factors Gs

E(Q2) and Gs
M(Q2) are plotted in Fig. 9. Three

solid lines from top to bottom on the left panel (from bottom to top on the right panel) represent results
with Λ = 1, 0.9 and 0.8 GeV, respectively, and the data with error bars are from the lattice simulation
at the physical pion mass from Ref. [239]. At Q2 = 0, the strange electric form factor is normalized
to Gs

E(0) = 0. This is verified only when the additional diagrams generated from the expansion of
the gauge link are included. The strange charge form factor first increases and then decreases with
increasing Q2. At finite Q2, Gs

E(Q2) is always a small positive number. The strange magnetic form
factor is negative and decreases in magnitude with increasing Q2. At zero momentum transfer, for
Λ = 0.9(1) GeV the strange magnetic moment is Gs

M(0) = −0.041
(12)
(14). From Fig. 9, one can see that

the calculated results for both the electric and magnetic form factors are in good agreement with the
lattice data. From the strange form factors, the strange radii can be obtained as

〈r2
E〉s = −6

dGs
E(Q2)

dQ2

∣∣∣∣
Q2=0

, 〈r2
M〉s = −6

dGs
M(Q2)

dQ2

∣∣∣∣
Q2=0

. (162)

For Λ = 0.9(1) GeV, one finds 〈r2
E〉s = −0.004(1) fm2 and 〈r2

M〉s = −0.028(3) fm2.
The individual contributions to the strange form factors from the baryon octet and decuplet interme-

diate states, as well as from the regular and additional diagrams, are shown in Fig. 10 for Λ = 0.9 GeV.
For the strange electric form factor at zero momentum transfer, Gs

E(0), the contributions from the
regular and additional gauge link diagrams cancel, resulting in a net zero strangeness at Q2 = 0. This
is guaranteed by the U(1) gauge symmetry of the strange quark. The octet contribution is dominant
especially at small momentum transfers, and both the regular and additional diagrams are important
numerically. For the strange magnetic form factor, Gs

M(Q2), the contributions from the octet and
decuplet intermediate states have different signs. As for the Gs

E(Q2) case, the octet contribution is
larger than the decuplet, while the regular and additional gauge link diagrams provide comparable
contributions.
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Figure 10: Individual contributions to the strange form factors of the nucleon with Λ = 0.9 GeV,
including the baryon octet (dashed lines), decuplet (dotted lines) and total (solid lines) contributions.
The contributions from the regular diagrams (red lines) and additional diagrams from the gauge link
(blue lines) are indicated. (Figure from Ref. [306].)
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Figure 11: Quark flow diagrams for the π+ (left) and K+ (right) mesons: (a) is the connected diagram;
(b) and (c) are the disconnected sea diagrams for π+ and K+, respectively. (Figure from Ref. [326].)

4.3 Light sea quark form factors

In the last two subsections we have shown that nonlocal chiral effective theory can provide good descrip-
tions of nucleon electromagnetic and strange form factors up to relatively large momentum transfers. In
this subsection we will focus on the light sea quark contributions to the nucleon form factors. Although
it is challenging experimentally to separate the contributions of sea quarks, especially the light sea
quarks, in lattice calculations it is possible to simulate these quantities directly. Early lattice calcula-
tions of the electromagnetic form factors were performed in the quenched approximation with large pion
(or quark) masses. With improvements in computing capability and algorithms, current simulations on
the lattice can also compute the disconnected contributions of light and strange quarks at the physical
pion mass [239, 240], making comparisons of results from EFT and from lattice more relevant.

To calculate the light sea quark contributions requires the coupling constants for the disconnected
diagrams. The coefficients for the connected and disconnected diagrams can be obtained as shown in
Ref. [327] using the quark flows illustrated in Fig. 11. The results are the same as those extracted
within the graded symmetry formalism in quenched chiral perturbation theory [328]. In Fig. 11 (from
Ref. [326]) we display the rainbow diagram using the quark flows to exemplify the method of separating
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Table 3: The coefficients for the π and K meson loops for the full, quenched, and sea diagrams.

meson full coefficient quenched diagram sea diagram

π0 1
2
(D + F )2 −1

3
D2 + 2DF − F 2

1
3
(D2 + 3F 2) [u]

1
2
(D − F )2 [d]

π+ (D + F )2 1
3

(D2 + 6DF − 3F 2) 2
3

(D2 + 3F 2)

π− 0 −(D − F )2 (D − F )2

K0 (D − F )2 0 (D − F )2

K+ 2
3

(D2 + 3F 2) 0 2
3

(D2 + 3F 2)
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Figure 12: Light sea quark contributions to the proton electric form factor versus Q2 for the u quark
(left) and d quark (right), for Λ = 1.0 GeV (top blue lines), 0.9 GeV (middle blue lines) and 0.8 GeV
(bottom blue lines). The strange quark contribution (red lines) corresponds to Λ = 0.9 GeV. The points
with error bars are from lattice simulations [239]. (Figure from Ref. [326].)

the quenched and sea quark contributions. The coefficient from the π+ loop diagram in full QCD
effective theory is (D+ F )2, and corresponds to the sum of the coefficients from Figs. 11(a) and 11(b).
The coefficient of Fig. 11(b) for the sea quark contribution is the same as that of Fig. 11(c) for the K+

loop from SU(3) symmetry, which can be verified directly from the chiral Lagrangian. The coefficient
of the quenched sector can thus be obtained by subtracting the coefficient of the sea diagram from the
total coefficient.

The coefficients for the π and K meson loops for both quenched and sea quark flow diagrams are
listed in Table 3. From here one can see that the coefficients for the disconnected u and d quark
diagrams of the π0 loop are only half of the corresponding coefficients of the K loop. This is due to the
fact that the η meson is not included for this estimation: if the π, K and η mesons were all degenerate,
then the loop contribution of the d-sea quark in the proton would be the same as the s quark. For the
u-sea quark, there is no octet uuu state, meaning that the mass of octet uuu state is infinite. If we set
arbitrarily the octet uuu mass to be the same as the nucleon, then the contributions of the u-sea and
d-sea quarks would be equivalent.

The sea quark form factors calculated in the nonlocal chiral effective theory can be found in Ref. [326].
In Fig. 12 we show the contributions of the light sea quarks with unit charge to the proton electric form
factor. The contributions from u and d sea quarks are shown for Λ = 1.0, 0.9, and 0.8 GeV, and
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Figure 13: Light sea quark contributions to the proton magnetic form factor versus Q2 for the u quark
(left) and d quark (right), for Λ = 1.0 GeV (bottom blue lines), 0.9 GeV (middle blue lines) and 0.8 GeV
(top blue lines). The strange quark contribution (red lines) corresponds to Λ = 0.9 GeV. The points
with error bars are from lattice simulations [239]. (Figure from Ref. [326].)

compared with the strange quark contribution for Λ = 0.9 GeV, as well as with recent lattice QCD
data [239]. Since the valence contributions of the u and d quarks are not included, the electric form
factor of sea quark is zero at Q2 = 0. From the figure, one can see that the strange quark form factor
can be described very well. The calculated u quark result is also compatible with the lattice data, while
the d quark contribution is larger than the lattice results. The larger sea contribution of the d quark
than that of the u quark is due to the fact that there is no intermediate octet contribution for the u-sea
quark. The u-sea contribution comes only from the decuplet intermediate states except the π0 loop,
where the contribution is identical for the u and d quarks. Similar results were found for the d̄ − ū
asymmetry in the proton, which will be discussed in Sec. 5 below. Compared with the light sea quark
form factors, the strange quark contribution to the electric form factor is about 5 − 10 times smaller
due to the suppression of the K meson loop.

The sea quark contributions to the proton magnetic form factor of the u and d quarks with the
unit charge are plotted in Fig. 13. As for the electric case, the calculated magnetic form factor for
strange quarks is in a good agreement with the lattice data, while the contributions from the light sea
quarks show some discrepancy with the data. The magnitude of the (negative) magnetic form factors
of all the sea quarks decrease monotonously with increasing Q2. The absolute values of the u-sea quark
contribution are smaller than the lattice results for the light sea quarks, while the absolute values of
the d-sea quark contribution are larger than the lattice data. The magnitude of magnetic moments of
both u-sea and d-sea quarks are larger than the strange quark, especially at small Q2. For Q2 = 0, the
magnetic moments of the u-sea and d-sea quarks are −0.11 and −0.39, respectively, while the strange
magnetic moment is about −0.04.

We should note, however, that the lattice results for the light sea quarks cannot distinguish between
the contributions from u-sea quark and d-sea quarks. Therefore, the lattice data on the light sea quarks
can be regarded as an average of the u-sea and d-sea quark contributions, and better agreement between
the nonlocal EFT calculation and lattice data would be obtained for the isoscalar flavor combination.
In addition, the obvious difference between the form factors of the u-sea and d-sea quarks cannot be
attributed to the mass difference between the u and d quarks; any mass difference would be associated
with charge symmetry violation, leading to differences between Gp,u

E,M and Gn,d
E,M , which are expected to

be very small. In contrast, the large difference between Gp,u
E,M and Gp,d

E,M is associated with the effects
of the nonperturbative valence quark environment.

The results calculated with the nonlocal EFT are also consistent with the lattice data from Ref. [240],
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Figure 14: The Q2 dependence of the d quark contribution to the magnetic form factor of the Σ+

hyperon for Λ = 0.6 GeV (upper line), 0.8 GeV (middle line) and 1.0 GeV (lower line). (Figure from
Ref. [329].)

where the electric and magnetic form factors of light and strange quarks have opposite signs because
the charges of light and strange quarks are included in their currents. In the nonlocal calculation of
the form factors of sea quarks with unit charge, the signs of the form factors are the same for all three
flavors. Since the contributions from the strange quark are much smaller, it is challenging both for
experiments and lattice simulations to obtained accurate values of the strange form factors. Even an
unambiguous determination of the sign of the strange quark form factors is an important step in the
quest to understand the structure of the nucleon.

In this respect, the quantity Gu
Σ− , denoting the u quark contribution to the electromagnetic form

factors of Σ− hyperon (or similarly Gd
Σ+ denoting the d quark contribution to the electromagnetic form

factors of the Σ+) could be more useful physical observables, especially for lattice simulations [329].
These are similar to the strange form factors in the sense that both of the quantities arise purely from
disconnected sea quark contributions. However, in the EFT framework, Gu

Σ− and Gd
Σ+ are generated by

the π meson loop, whose contributions should be much larger than the strange form factors generated
from the K meson loop. They can therefore serve as ideal quantities for future lattice simulations, and
help to shed light on the sign of the strange quark form factors.

In Fig. 14 the magnetic form factor Gd
Σ+(Q2) calculated with the chiral effective theory in FRR is

shown for Λ = 0.6, 0.8, and 1 GeV [329]. It is apparent that the magnetic form factor does not change
sign with increasing Q2 for any choice of Λ. This is similar to the case of the strange magnetic form
factor of the nucleon. However, the absolute value of Gd

Σ+ is about one order of magnitude larger than
the strange magnetic form factor of the nucleon. Since its absolute value decreases with increasing Q2,
it would be preferable to measure the magnetic form factor at low Q2 values. At Q2 = 0, the magnetic
moment is calculated to be µdΣ+ = Gd

Σ+(0) = −0.38 for Λ = 0.8 GeV. Varying Λ from 0.6 GeV to
1 GeV, the magnetic moment µdΣ+ changes from −0.22 to −0.55. This sensitivity suggests that it may
be feasible to study this form factor in lattice QCD simulations.

4.4 Form factors of octet baryons

In this subsection we extend the discussion of nucleon form factors to form factors of all the octet
baryons. Since the strong baryon–meson interaction and the electromagnetic interaction are included
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in the chiral SU(3) Lagrangian, it is straightforward to generalize the nucleon one-loop calculations to
the other octet baryons, without introducing any additional parameters. The only difference is that the
two parameters c1 and c2 are now determined by fitting the magnetic moments of the octet baryons,
while in the nucleon case they were constrained by the nucleon magnetic moments. The predictions for
the electromagnetic form factors and radii of octet baryons will not only shed light on their structure,
but also verify the applicability of the nonlocal chiral effective theory itself. It was found in Ref. [319]
that numerical results for the octet baryons were in close agreement with the experimental data and
comparable with the data from lattice simulations. They were also consistent with the results from
the local chiral effective field theory (at low Q2). The main results of Ref. [319] are summarized in the
following.

Table 4: Magnetic moments µB of octet baryons (in units of the nucleon magneton µN). Listed are the
results from the nonlocal theory, lattice simulations, χPT with the IR and EOMS schemes, the NJL
and PCQM models, as well as experimental data.

Nonlocal [319] Latt. [330] Latt. [331] IR [288] EOMS [332] NJL [202] PCQM [333] Exp. [39]
µp 2.644(159) 2.4(2) 2.3(3) 2.61 2.79 2.78 2.735(121) 2.793

µn −1.984(216) −1.59(17) −1.45(17) −1.69 −1.913 −1.81 −1.956(103) −1.913

µΣ+ 2.421(147) 2.27(16) 2.12(18) 2.53 2.1(4) 2.62 2.537(201) 2.458(10)

µΣ0 0.584(77) − − 0.76 0.5(2) − 0.838(91) −
µΣ− −1.253(8) −0.88(8) −0.85(10) −1.00 −1.1(1) −1.62 −0.861(40) −1.160(25)

µΛ −0.594(57) − − −0.76 −0.5(2) − −0.867(74) −0.613(4)

µΞ0 −1.380(169) −1.32(4) −1.07(7) −1.51 −1.0(4) −1.14 −1.690(142) −1.250(14)

µΞ− −0.725(77) −0.71(3) −0.57(5) −0.93 −0.7(1) −0.67 −0.840(87) −0.651(80)

In Table 4 the octet baryon magnetic moments obtained from the nonlocal chiral effective theory
are listed, with uncertainties estimated by varying Λ from 0.8 to 1.0 GeV. The results are compared
with two lattice simulations from Refs. [330, 331], χPT calculations with IR [288] and EOMS [332]
regularization, the NJL and PCQM models [202, 333], and with the experimental data [39]. From the
table, one can see that all the magnetic moments of the octet baryons are reasonably well reproduced.
The largest deviation from the experimental values is for the Ξ hyperons, where the calculated central
values of the magnetic moments µΞ0 and µΞ− are about 10% larger than the empirical ones. For the
other baryons, the deviations from the experimental values are less than ≈ 5%. Taking into account the
error estimation, the calculated magnetic moments of octet baryons are in quite good agreement with
the experimental results. The results from the lattice simulations are somewhat smaller, which may be
partially attributed to the effect from the large pion mass as well as from the quenched approximation.

The normalized magnetic form factors of the charged and neutral octet baryons are plotted in Fig. 15
as a function of the momentum transfer squared, Q2. The proton and neutron magnetic form factors,
with the Λ parameter varying from 0.8 to 1 GeV, are also plotted in the insets of Fig. 15. Considering
the uncertainty on the Λ parameter, the agreement between the calculated proton magnetic form factor
and experiment is reasonable. The other form factors of the charged baryons have a similar momentum
dependence as the proton’s magnetic form factor. Among them, the magnetic form factor of the Ξ−

hyperon decreases more slowly with increasing Q2.
For the normalized magnetic form factors of the neutral octet baryons in Fig. 15, the shapes of the

Σ0, Λ and Ξ0 magnetic from factors are similar to each other. The neutron magnetic form factor appears
to lie below the experimental data, dropping faster than the other neutral baryon form factors. Taking
the uncertainty of the Λ parameter into account, the calculated neutron magnetic form factor, shown
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Figure 15: Normalized magnetic form factors of octet baryons GB
M/µB versus Q2 for charged (left panel)

and neutral (right panel) baryons. The magnetic form factors of the proton and neutron, with Λ varying
from 0.8 to 1 GeV, are shown in the insets. (Figure from Ref. [319].)

in the inset for Λ varying from 0.8 to 1 GeV) is again in reasonable agreement with the experimental
data. The smaller normalized neutron magnetic form factor relative to the data is partially due to the
larger value of the magnetic moment µn from the theory compared with the experimental value. All
of the form factors of the octet baryons have a dipole-like momentum dependence. Since the method
of the calculation is the same for nucleons and other octet baryons, we expect the nonlocal effective
theory to provide reasonable descriptions for all the octet baryons.

Table 5: Octet baryon magnetic radii 〈r2
M〉B (in units of fm2). Listed are results from the nonlocal theory,

lattice simulations, χPT with IR and EOMS schemes, NJL and PCQM models, and experimental data.
Nonlocal [319] Latt. [334] Latt. [331] IR [288] EOMS [332] NJL [202] PCQM [333] Exp. [39]

〈r2
M〉p 0.785(132) 0.470(48) 0.71(8) 0.699 0.9(2) 0.76 0.909(84) 0.72(4)

〈r2
M〉n 0.845(148) 0.478(50) 0.86(9) 0.790 0.8(2) 0.83 0.922(79) 0.75(2)

〈r2
M〉Σ+ 0.765(131) 0.466(42) 0.66(5) 0.80(5) 1.2(2) 0.77 0.885(94) −
〈r2
M〉Σ0 0.618(124) 0.432(38) − 0.45(8) 1.1(2) − 0.851(102) −
〈r2
M〉Σ− 0.901(119) 0.483(49) 1.05(9) 1.20(13) 1.2(2) 0.92 0.951(83) −
〈r2
M〉Λ 0.620(126) 0.347(24) − 0.48(9) 0.6(2) − 0.852(103) −
〈r2
M〉Ξ0 0.657(128) 0.384(22) 0.53(5) 0.61(12) 0.7(3) 0.44 0.871(99) −
〈r2
M〉Ξ− 0.534(135) 0.336(18) 0.44(5) 0.50(16) 0.8(1) 0.26 0.840(109) −

Table 5 provides a summary of the magnetic radii determined from the slopes of the calculated
magnetic form factors in Fig. 15 at zero momentum transfer, compared with results from lattice simu-
lations, chiral perturbation theory, and phenomenological quark models. Although the central values of
the nonlocal effective theory predictions for the proton and neutron slightly larger than the experimen-
tal values, the results are reasonable within the quoted uncertainties. The magnetic radii of the octet
baryons vary from 〈r2

M〉B ≈ 0.5 fm2 to 0.9 fm2, but do not exhibit any simple dependence on the baryon
or quark mass. However, it is quite remarkable that the order of the values from largest to smallest
appears almost equivalent for each of the different methods, even though the values themselves from
the different calculations are quite different. For instance, the Σ− and Ξ− hyperons have the largest
and smallest magnetic radii, respectively, regardless of the theoretical methods. The neutron magnetic
radius appears as the second largest among the octet baryons.
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Figure 16: Electric form factors of octet baryons GB
E versus Q2 for charged baryons (left panel) and

neutral baryons (right panel). The bands on the proton and neutron electric form factors correspond
to Λ varying between 0.8 and 1 GeV. (Figure from Ref. [319].)

The electric form factors of the charged and neutral octet baryons are shown in Fig. 16. As for
the magnetic form factors, the uncertainty bands on the proton and neutron electric form factors are
shown for 0.8 ≤ Λ ≤ 1 GeV. Because of the additional interaction which makes the nonlocal Lagrangian
locally gauge invariant, the electric form factors are correctly normalized to their respective charges at
Q2 = 0. The proton charge form factor is in very good agreement with the experimental data. The
momentum dependence of the electric form factors of the other charged baryons is very similar. For the
neutral baryon electric form factors, again due to charge conservation, the form factors vanish at zero
momentum transfer. The calculated neutron electric form factor is consistent with the experimental
data, albeit with larger relative uncertainties. The form factors of the other neutral baryons are quite
small in magnitude. One should note that there are no tree level contributions to the electric form
factors of any of the neutral baryons, and the entire contributions arise from the loop diagrams. Among
them, the neutron has the largest contribution from the pion loop diagrams, with the corresponding
pion loop contributions for the other neutral baryons relatively small because of their small coupling
constants.

Finally, Table 6 summarizes the charge radii of the octet baryons. The results from the nonlocal
theory are comparable with the experimental data for the nucleon and Σ− baryon. A small proton
charge radius, 〈rE〉p = 0.831(7)(12), or equivalently, 〈r2

E〉p = 0.691(32), reported recently in Ref. [40],
is also close to the value 〈r2

E〉p = 0.729(112) from the nonlocal theory. The charge radii vary around
0.6 and 0.7 fm2 for the charged baryons, in contrast to the magnetic radii, which have a rather large
variation for different charged baryons. From the table, one can see that the predictions for the neutral
baryons (both sign and magnitude) are quite different from each other, while the calculated charge radii
of charged baryons from different models are more or less comparable to each other. Certainly, more
scrutinized investigations of the form factors as well as the radii of the octet baryons are necessary,
along with further experiments and lattice simulations.
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Table 6: Octet charge radii 〈r2
E〉B (in units of fm2). Listed are results from the nonlocal theory, lattice

simulations, χPT with IR and EOMS schemes, NJL and PCQM models, and experimental data.
Nonlocal [319] Latt. [335] Latt. [304] IR [288] EOMS [332] NJL [202] PCQM [333] Exp. [39]

〈r2
E〉p 0.729(112) 0.685(66) 0.76(10) 0.717 0.878 0.76 0.767(113) 0.707(1)

〈r2
E〉n −0.146(18) −0.158(33) − −0.113 0.03(7) −0.14 −0.014(1) −0.116(2)

〈r2
E〉Σ+ 0.719(116) 0.749(72) 0.61(8) 0.60(2) 0.99(3) 0.92 0.781(108) −
〈r2
E〉Σ0 0.010(4) − − −0.03(1) 0.10(2) − 0 −
〈r2
E〉Σ− 0.700(124) 0.657(58) 0.45(3) 0.67(3) 0.780 0.74 0.781(63) 0.61(16)

〈r2
E〉Λ −0.015(4) 0.010(9) − 0.11(2) 0.18(1) − 0 −
〈r2
E〉Ξ0 −0.015(7) 0.082(29) − 0.13(3) 0.36(2) 0.24 0.014(8) −
〈r2
E〉Ξ− 0.601(127) 0.502(47) 0.37(2) 0.49(5) 0.61(1) 0.58 0.767(113) −

5 Parton distribution functions

Based on the same nonlocal Lagrangian as in Sec. 3, we will extend in this section our study of meson
loop contributions to parton distribution functions in the proton. We will focus on the sea quark sector,
including the unpolarized ū, d̄, s and s̄ PDFs, and the polarized s quark PDF. In particular, we will
consider differences between different PDFs, or asymmetries, which allow one to isolate nonperturbative
QCD effects from the more standard perturbative gluon radiation. The framework for the calculation
of the sea quark PDFs is the convolution formalism, which combines the proton → baryon + meson
splitting functions with the valence quark and antiquark PDFs in the intermediate state mesons and
baryons. This is similar to the framework used for form factors in the previous section, where the sea
quark form factors were obtained from the one-loop calculation using the form factors of valence quarks
in the intermediate states.

5.1 Convolution formulas

The quark PDFs are defined by the nucleon matrix elements of bilocal field operators as∫
dλ

2π
e−iλxp+ 〈N(p)| q̄(1

2
λn) /n q(−1

2
λn) |N(p)〉 = ū(p) /n q(x)u(p), (163)

where nµ is the light-cone vector projection of the “plus” component of momenta, and x = k+/p+

is the nucleon light-cone momentum fraction carried by the interacting quark. Using the crossing
symmetry properties of the spin-averaged PDFs, q(−x) = −q̄(x), the n-th Mellin moment (n ≥ 1) of
the distribution for a given flavor q (q = u, d, s, . . .) is given by

Q(n−1) =

∫ 1

0

dx xn−1
[
q(x) + (−1)n q̄(x)

]
. (164)

In the operator product expansion, the moments Q(n−1) are related to matrix elements of local twist-two,
spin-n operators Oµ1···µnq between nucleon states with momentum p,

〈N(p)| Oµ1···µnq |N(p)〉 = 2Q(n−1) pµ1 · · · pµn , (165)

where the operators are given by

Oµ1···µnq = in−1 q̄γ{µ1
←→
D µ2 · · ·

←→
D µn}q , (166)
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with
←→
D = 1

2

(−→
D −

←−
D
)
, and the braces { · · · } denote symmetrization of Lorentz indices. In the ef-

fective theory, the quark operators Oq are matched to hadronic operators Oj with the same quantum
numbers [308, 336, 337],

Oµ1···µnq =
∑
j

Q
(n−1)
j Oµ1···µnj , (167)

where the coefficients Q
(n−1)
j are the n-th moments of the PDF qj(x) in the hadronic configuration j,

Q
(n−1)
j =

∫ 1

−1

dx xn−1 qj(x). (168)

The nucleon matrix elements of the hadronic operators Oµ1···µnj are given in terms of moments of the
splitting functions fj(y),

〈N(p)| Oµ1···µnj |N(p)〉 = 2 f
(n)
j p{µ1 · · · pµn}, (169)

where

f
(n)
j =

∫ 1

−1

dy yn−1fj(y), (170)

with y the light-cone momentum fraction of the nucleon carried by the hadronic state j. Assuming
Eq. (169) holds also for the off-shell nucleon states, the operator relation in Eq. (167) then gives rise to
the convolution formula for the PDFs

q(x) =
∑
j

[
fj ⊗ qvj

]
(x) ≡

∑
j

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) fj(y) qvj (z), (171)

where qvj ≡ qj − q̄j is the valence distribution for the quark flavor q in the hadron j.
The valence distributions in the intermediate state hadronic configurations are needed as input to

the calculation of the sea quark distributions in the proton. Considering intermediate octet baryon
states as an example, the most general expression for the quark vector operator Oµ1···µnq in terms of
hadronic operators is then written as

Oµ1···µnq =
[
α(n)(Bγµ1Bλq+) + β(n)(Bγµ1λq+B) + σ(n)(Bγµ1B) Tr[λq+]

]
pµ2 · · · pµn

+
[
ᾱ(n)(Bγµ1γ5Bλ

q
−) + β̄(n)(Bγµ1γ5λ

q
−B) + σ̄(n)(Bγµ1γ5B) Tr[λq−]

]
pµ2 · · · pµn

+ permutations− Tr,

(172)

where “Tr” denotes traces over Lorentz indices. The flavor operators λq± are defined by

λq± =
1

2

(
uλqu† ± u†λqu

)
, (173)

where λq = diag(δqu, δqd, δqs) are diagonal 3× 3 quark flavor matrices. The coefficients {α(n), β(n), σ(n)}
and {ᾱ(n), β̄(n), σ̄(n)} are related to moments of the spin-averaged and spin-dependent PDFs in octet
baryons, respectively. After expanding the flavor matrices, the operator Oµ1···µnq can be rearranged in
the form

Oµ1···µnq = Q
(n−1)
B Oµ1···µnB +Q

(n−1)
Bφφ O

µ1···µn
Bφφ +Q

(n−1)
Bφ Oµ1···µnBφ , (174)

where the individual vector hadronic operators are given by

Oµ1···µnB =
(
Bγµ1B

)
pµ2 · · · pµn , (175a)

Oµ1···µnBφφ =
1

f 2
φ

(
Bγµ1Bφ̄ φ

)
pµ2 · · · pµn , (175b)

Oµ1···µnBφ =
i

fφ

(
B
′
γµ1γ5Bφ−Bγµ1γ5B

′φ̄
)
pµ2 · · · pµn . (175c)
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For proton PDFs, as we have in our case, B′ corresponds to a proton. The coefficients Q
(n−1)
j of each of

the operators are defined in terms of Mellin moments of the corresponding parton distributions in the
intermediate mesons and baryons, as in Eq. (168),

Q
(n−1)
B =

∫ 1

−1

dx xn−1 qB(x), (176a)

Q
(n−1)
Bφφ =

∫ 1

−1

dx xn−1 qtad
φ (x), (176b)

Q
(n−1)
Bφ =

∫ 1

−1

dx xn−1 q
(KR)
B (x), (176c)

where the PDFs are the valence distributions in the intermediate configurations.

Table 7: Moments Q
(n−1)
B of the u, d and s quark distributions in octet baryons.

B U
(n−1)
B D

(n−1)
B S

(n−1)
B

p α(n) + β(n) + σ(n) σ(n) α(n) − β(n) + σ(n)

n σ(n) α(n) + β(n) + σ(n) α(n) − β(n) + σ(n)

Σ+ α(n) + β(n) + σ(n) α(n) − β(n) + σ(n) σ(n)

Σ0 α(n) + σ(n) α(n) + σ(n) σ(n)

Σ− α(n) − β(n) + σ(n) α(n) + β(n) + σ(n) σ(n)

Λ 1
3
α(n) + σ(n) 1

3
α(n) + σ(n) 4

3
α(n) + σ(n)

ΛΣ0 1√
3
α(n) − 1√

3
α(n) 0

Table 8: Moments Q
(n−1)
Bφφ of the u, d and s quark distributions arising from the BBφφ tadpole vertex.

B U
(n−1)
Bφφ D

(n−1)
Bφφ S

(n−1)
Bφφ

π+π− K+K− π+π− K0K
0

K0K
0

K+K−

p 1
2 (α(n) + β(n)) β(n) − 1

2 (α(n) + β(n)) − 1
2 (α(n) − β(n)) 1

2 (α(n) − β(n)) −β(n)

n − 1
2 (α(n) + β(n)) − 1

2 (α(n) − β(n)) 1
2 (α(n) + β(n)) β(n) −β(n) 1

2 (α(n) − β(n))

Σ+ β(n) 1
2 (α(n) + β(n)) −β(n) 1

2 (α(n) − β(n)) − 1
2 (α(n) − β(n)) − 1

2 (α(n) + β(n))

Σ0 0 1
2α

(n) 0 1
2α

(n) − 1
2α

(n) − 1
2α

(n)

Σ− −β(n) 1
2 (α(n) − β(n)) β(n) 1

2 (α(n) + β(n)) − 1
2 (α(n) + β(n)) − 1

2 (α(n) − β(n))

Λ 0 − 1
2α

(n) 0 − 1
2α

(n) 1
2α

(n) 1
2α

(n)

ΛΣ0 1√
3
α(n) 1

2
√

3
α(n) − 1√

3
α(n) − 1

2
√

3
α(n) 1

2
√

3
α(n) − 1

2
√

3
α(n)
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Each of the moments Q
(n−1)
j can be expressed in terms of the coefficients {α(n), β(n), σ(n)} and

{ᾱ(n), β̄(n), σ̄(n)} from Eq. (172). For example, the moments Q
(n−1)
B for u, d and s quark are listed in

Table 7. Solving for the coefficients, one can write these as linear combinations of the individual u, d
and s quark moments in the proton,

α(n) =
1

2
(U (n−1)

p + S(n−1)
p )−D(n−1)

p , (177a)

β(n) =
1

2
(U (n−1)

p − S(n−1)
p ), (177b)

σ(n) = D(n−1)
p . (177c)

The moments of Q
(n−1)
Bφφ of the tadpole diagram for u, d and s quark are also expressed in terms

of α(n), β(n) and σ(n), and are listed in Table 8. Here one can see that there is no contribution to

the u-quark moments from K0K
0
, as well as no contribution to the d-quark moments from K+K−, or

contribution to the s-quark moments from π+π−. Furthermore, the moments Q
(n−1)
Bφφ from the tadpole

diagram can also be expressed in terms of the quark moments in the proton.
The moments Q

(n−1)
Bφ of the Kroll-Ruderman terms are expressed in terms of ᾱ(n), β̄(n) and σ̄(n),

which are related to the moments of the spin-dependent PDFs in the proton. The above relationships
are only related to the flavor structure of the operators and do not depend on the structure of the
γ matrices. The coefficients ᾱ(n), β̄(n) and σ̄(n) therefore have the relationships similar to those in
Eqs. (177),

ᾱ(n) =
1

2
(∆U (n−1)

p + ∆S(n−1)
p )−∆D(n−1)

p , (178a)

β̄(n) =
1

2
(∆U (n−1)

p −∆S(n−1)
p ), (178b)

σ̄(n) = ∆D(n−1)
p . (178c)

where ∆Q
(n−1)
p is defined in terms of the spin-dependent PDFs in analogy with Eq. (164).

Because the relations for the moments are valid for any order of n, corresponding relations must
also be true for the actual PDFs in terms of which they are defined. With these relationships, the
PDFs of quarks in different hadronic configurations can be expressed in terms of spin-averaged and
soin-dependent quark distributions in the proton qp(x) and ∆qp(x), for which we use parameterizations
from Refs. [338, 339, 340]. Using the convolution form and the valence quark distributions in proton
as input, we can then calculate the sea quark distributions with the splitting functions derived from
the operators in terms of hadronic degrees of freedom. In the following subsections we will discuss the
unpolarized and polarized PDFs of sea quarks in the proton.

5.2 Unpolarized distributions

5.2.1 d̄− ū asymmetry

The observation of the d̄ − ū flavor asymmetry in the light quark sea of the proton has been one of
the seminal results in hadronic physics over the past three decades, leading to reevaluations of our
understanding of the quark structure of the nucleon. The convolution form for the d̄ − ū asymmetry
can be written explicitly as

d̄(x)− ū(x) =
[(
f

(rbw)

π+n + f
(rbw)

π+∆0 − f (rbw)

π−∆++ + f
(bub)
φ

)
⊗ qvπ

]
(x). (179)

The rainbow and bubble Feynman diagrams for the splitting functions are the same as Figs. 5(a), 5(g)
and 5(m). The splitting function corresponding to Fig. 5(a) for the intermediate state neutron is given

54



by a sum of nucleon on-shell and δ-function contributions,

f
(rbw)

π+n (y) =
2(D + F )2M2

N

(4πf)2

[
f

(on)
N (y) + f (δ)

π (y)− δf (δ)
π (y)

]
, (180)

where the explicit forms for the basis functions f
(on)
N , f

(δ)
π , and δf

(δ)
π are given in Ref. [307] for the dipole

regulator F̃ (k) with the nonlocal Lagrangian. The on-shell function f
(on)
N is nonzero for y > 0, while the

local f
(δ)
π and nonlocal δf

(δ)
π functions are proportional to δ(y) and hence have contributions to d̄ − ū

only at x = 0 [341, 342]. In the point-like limit, where the cutoff in the regulator Λ→∞, the nonlocal

function δf
(δ)
π vanishes. However, at finite Λ values it remains nonzero.

For the π∆ intermediate state contributions to the asymmetry in Eq. (179), the splitting function
for the rainbow diagram in Fig. 5(g) includes several regular and δ-function terms,

f
(rbw)

π−∆++(y) = 3f
(rbw)

π+∆0(y) =
C2M

2

2(4πf)2

[
f

(on)
∆ (y) + f

(on end)
∆ (y)− 1

18
f

(δ)
∆ (y)

+
2M2

N

(
M

2 −m2
π

)
3M2

∆M
2

(
f (δ)
π (y)− δf (δ)

π (y)
)]
, (181)

where M = MN +M∆. As for the πN case, the on-shell function for the ∆ intermediate state, f
(on)
∆ , is

nonzero for y > 0, with a shape that is qualitatively similar to f
(on)
N . The on-shell end-point function

f
(on end)
∆ also has a similar shape for finite Λ, but in the Λ → ∞ limit is associated with an end-point

singularity that gives a δ-function at y = 1. The functions f
(δ)
π and δf

(δ)
π are equivalent to those in

Eq. (180), while f
(δ)
∆ is a new function that appears only for the decuplet intermediate state.

The contribution to the d̄− ū asymmetry from the bubble diagram in Fig. 5(m) is given by the same
combination of basis δ-function contributions as for the rainbow diagrams,

f (bub)
π (y) = − 2M2

N

(4πf)2

[
f (δ)
π (y)− δf (δ)

π (y)
]
. (182)

Although the δ-function term gives a nonzero PDF only at x = 0, it contributes to the integral of d̄− ū
over x, and will therefore indirectly affect the normalization of the spitting function for x > 0. Because
experimental cross sections are in practice available only for x > 0, the δ-function pieces are difficult
to constrain directly. The advantage of the nonlocal approach employed here is that by consistently
introducing a vertex correlator in coordinate space in the nonlocal Lagrangian [307], the same regulator
function appears in all splitting functions derived from the fundamental interaction, which in our case
is parameterized through the single parameter Λ.

Because of the presence of the regulator, the end-point term δ(1− y) in the local theory turns into
a smooth function of y in the nonlocal theory, making the results more realistic. However, since the
regulator is a function of the meson momentum k, the δ(y) term still exists in the nonlocal approach. To
eliminate both δ(y) and δ(1−y) terms in the splitting functions, more complicated correlation functions
are necessary. On the other hand, the leading nonanalytic behavior of the splitting functions is the
same in both the local and nonlocal versions of the χPT.

In the numerical form factor calculations in the previous section, the parameter Λ was chosen
to be ∼ 1 GeV, and taken to be the same for all the regulators of the baryon-meson interaction.
Alternatively, Λ can also be chosen to be different for octet baryon-meson and octet-decuplet-meson
interactions, constrained by the cross sections for the inclusive baryon production processes pp → nX
and pp→ ∆++X [308, 336, 343, 344]. The results for the differential neutron production cross section
are shown in Fig. 17 versus ȳ (≡ 1− y) [308]. In Fig. 17(a) the results are compared with the neutron
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Figure 17: Differential inclusive hadron production cross section σ(y, k2
⊥) versus ȳ for (a) pp→ nX at

k2
⊥ = 0 [345]; (b) pp→ nX integrated over k2

⊥ [346]; (c) pp→ ∆++X integrated over k2
⊥ [348], compared

with the fitted nonlocal pion exchange contributions for ΛπN = 1.0(1) GeV and Λπ∆ = 0.9(1) GeV
(solid red lines and pink 1σ uncertainty bands) and with Pauli-Villars regularization (dashed red lines).
(Figure from Ref. [308].)

production data from the ISR at CERN at energies
√
s between ≈ 31 and 63 GeV for 0◦ neutron

production angles, or k2
⊥ = 0 [345]. Data from the hydrogen bubble chamber experiment at the CERN

proton synchrotron at
√
s around 5 and 7 GeV [346] are shown in Fig. 17(b) for the k⊥-integrated

neutron cross section. Because the pion-exchange processes is dominant only at large ȳ [347], only data
in the region ȳ > 0.7 are included. A good description of the single and double differential neutron
data can be achieved with the parameter ΛπN = 1.0(1) GeV. For the inclusive production of decuplet
baryons, the k2

⊥-integrated ∆++ cross section is shown in Fig. 17(c) compared with hydrogen bubble
chamber data taken at Fermilab for

√
s ≈ 20 GeV [348]. A good fit to the data is obtained with a value

of the decuplet Λπ∆ = 0.9(1) GeV, which is slightly smaller than that for the neutron production cross
sections. For comparison, the hadron production cross sections were also computed in Refs. [336, 343]
using Pauli-Villars regularization for the local effective theory.

Using the values of ΛπN and Λπ∆ for the nonlocal calculation constrained by the inclusive pp cross
sections, the flavor asymmetry d̄ − ū can be evaluated from the convolution of the splitting functions
and the pion PDF in Eq. (179) [308]. The results for x(d̄− ū) are shown in Fig. 18, compared with the
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Figure 18: The flavor asymmetry of the proton x(d̄− ū) versus x with the parameters ΛπN = 1.0(1) GeV
and Λπ∆ = 0.9(1) GeV, including nucleon on-shell (dashed blue), ∆ on-shell (dashed green), and ∆
end-point (dotted green) contributions, and compared with the asymmetry extracted from the Fermilab
E615 Drell-Yan experiment [155]. (Figure from Ref. [308].)

asymmetry extracted from the E866 Drell-Yan lepton-pair production experiment from Fermilab [155,
308]. At nonzero x values only the on-shell nucleon and ∆ and end-point ∆ terms contribute to the
asymmetry, each of which is indicated in Fig. 18. The positive nucleon on-shell term makes the largest
contribution, which is partially cancelled by the negative ∆ contributions. The end-point term is
relatively small compared with the on-shell ∆ component.

Although the δ-function contributions to the flavor asymmetry are not directly visible in Fig. 18,
their effect can be seen in the lowest moment of the asymmetry,

〈d̄− ū〉 ≡
∫ 1

0

dx
(
d̄(x)− ū(x)

)
. (183)

For the best fit values ΛπN = 1.0(1) GeV and Λπ∆ = 0.9(1) GeV, the contributions from the individual
terms in Eqs. (179)–(182) are listed in Table 9, along with the combined contributions from the x > 0
and x = 0 terms, and the local and nonlocal terms, to the total integrated result. The nucleon on-shell
term is the most important component, with a contribution that is within ≈ 20% of the total integrated
value 〈d̄− ū〉 = 0.128

(44)
(42), where the errors here reflect the uncertainties on the cutoff parameters. The

on-shell and end-point π∆ terms yield overall negative contributions, with magnitude ≈ 30% of the
on-shell πN . The various δ-function terms from all three diagrams cancel to a considerable degree, with
the x = 0 contribution making up ≈ 20% of the total. Furthermore, the breakdown into the local and
nonlocal pieces shows that the latter is negative with magnitude ≈ 20% of the local. Note that the
more recent SeaQuest experiment at Fermilab [156] found evidence for a larger, more positive d̄ − ū
asymmetry at the higher-x values, bringing the data and theory in Fig. 18 closer to agreement.
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Table 9: Contributions to the integral 〈d̄ − ū〉 ≡
∫ 1

0
dx (d̄ − ū) from the πN rainbow, π∆ rainbow

andπ bubble diagrams, for the best fit parameters ΛπN = 1.0(1) GeV and Λπ∆ = 0.9(1) GeV. The
contributions from the various terms in Eqs. (179)–(182) are listed individually, as are the combined
contributions from x > 0 and x = 0, and the local and nonlocal terms, to the total. Note that some
numbers do not sum to the totals because of rounding.

diagram 〈d̄− ū〉

πN (rbw) f
(on)
N 0.152

(32)
(30)

f
(δ)
π −0.079

(20)
(18)

δf
(δ)
π 0.044

(10)
(9)

total πN 0.116(22)

π∆ (rbw) f
(on)
∆ −0.042(12)

f
(on end)
∆ −0.008

(4)
(3)

f
(δ)
∆ 0.002(1)

f
(δ)
π 0.038(10)

δf
(δ)
π −0.021(5)

total π∆ −0.032(10)

π (bub) f
(δ)
π 0.099

(25)
(22)

δf
(δ)
π −0.054

(13)
(12)

total π bubble 0.044
(12)
(10)

total 0.128
(44)
(42)

5.2.2 s− s̄ asymmetry

Within a similar approach one can consider the contribution of meson loops to the s− s̄ asymmetry in
the proton. The contribution to the antistrange PDF in the proton from kaon loops in Fig. 5 can be
written as

s̄(x) =
[(∑

φB

f
(rbw)
φB +

∑
φT

f
(rbw)
φT +

∑
φ

f
(bub)
φ

)
⊗ s̄K

]
(x), (184)

where the sums are over the states φB = {K+Λ, K+Σ0, K0Σ+} for the kaon-octet baryon rainbow
diagram [Fig. 5(a)], φT = {K+Σ∗0, K0Σ∗+} for the kaon-decuplet baryon rainbow diagram [Fig. 5(g)],

and for the φ = K+(K−) and K0(K
0
) loop in the bubble diagram [Fig. 5(m)]. In analogy with the

light sea quark PDFs, the splitting functions for the antistrange PDF also include the on-shell and
δ-function terms. The splitting functions are the same as those in the last subsection, except for the
coefficients [308].

For the strange quark PDF, the diagrams associated with the rainbow, Kroll-Ruderman, tadpole
and additional diagrams from the gauge link shown in Fig. 5 have contributions, except the diagrams
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with magnetic interactions. Assuming that all nonperturbatively generated strangeness resides in the
intermediate state hyperons, the strange quark PDF in the proton can be written as

s(x) =
∑
Bφ

{[
f̄

(rbw)
Bφ ⊗ sB

]
(x) +

[
f̄

(KR)
B ⊗ s(KR)

B

]
(x) +

[
δf̄

(KR)
B ⊗ s(δ)

B

]
(x)
}

+
∑
Tφ

{[
f̄

(rbw)
Tφ ⊗ sT

]
(x) +

[
f̄

(KR)
T ⊗ s(KR)

T

]
(x) +

[
δf̄

(KR)
T ⊗ s(δ)

T

]
(x)
}

+
∑
φ

{[
f̄

(tad)
φ ⊗ s(tad)

φ

]
(x) +

[
δf̄

(tad)
φ ⊗ s(δ)

φ

]
(x)
}
,

(185)

where the sums are over the octet baryon–meson states Bφ = {ΛK+,Σ0K+,Σ+K0}, decuplet baryon–

meson states Tφ = {Σ∗0K+,Σ∗+K0}, and mesons φ = K+(K−) and K0(K
0
) for the tadpole contri-

butions. The splitting functions for all the one-loop diagrams in Eq. (185) use the shorthand notation
f̄j(y) ≡ fj(1− y).

For the octet hyperon rainbow diagram, Fig. 5(b), the splitting function for the intermediate Σ+

can be written in terms of the on-shell, off-shell and δ-function basis functions as

f
(rbw)

Σ+K0(y) =
(D − F )2(MN +MΣ)2

2(4πf)2

[
f

(on)
Σ (y) + f

(off)
Σ (y) + 4 δf

(off)
Σ (y)− f (δ)

K (y)
]
, (186)

where the functions f
(on)
Σ , f

(off)
Σ , δf

(off)
Σ and f

(δ)
K are given in Ref. [307]. For the octet Kroll-Ruderman

diagrams in Figs. 5(c)–(f), the local and nonlocal splitting functions f
(KR)
Σ and δf

(KR)
Σ are given by

f
(KR)

Σ+ (y) =
(D − F )2(MN +MΣ)2

2(4πf)2

[
− f (off)

Σ (y) + 2f
(δ)
K (y)

]
, (187)

and

δf
(KR)

Σ+ (y) =
(D − F )2(MN +MΣ)2

2(4πf)2

[
−4 δf

(off)
Σ (y) − δf

(δ)
K (y)

]
, (188)

respectively.
For the decuplet hyperon contributions, the respective splitting functions for the intermediate Σ∗+

are given by

f
(rbw)

Σ∗+K0(y) =
C2(MN +MΣ∗)

2

6(4πf)2

[
f

(on)
Σ∗ (y) + f

(on end)
Σ∗ (y)− 2f

(off)
Σ∗ (y)− 2f

(off end)
Σ∗ (y)

+4 δf
(off)
Σ∗ (y) +

1

18
f

(δ)
Σ∗ (y)− 1

6
δf

(δ)
Σ∗ (y)− (MN +MΣ)2[(MN +MΣ∗)

2 + 3m2
K ]

6M2
Σ∗ (MN +MΣ∗)2

f
(δ)
K (y)

]
(189)

for the decuplet rainbow diagram in Fig. 5(h),

f
(KR)

Σ∗+ (y) =
C2(MN +MΣ∗)

2

6(4πf)2

[
2f

(off)
Σ∗ (y) + 2f

(off end)
Σ∗ (y)

− 1

9

(
f

(δ)
Σ∗ (y)− δf (δ)

Σ∗ (y)
)

+
(MN +MΣ)2[(MN +MΣ∗)

2 +m2
K ]

3M2
Σ∗ (MN +MΣ∗)2

f
(δ)
K (y)

]
(190)

for the Kroll-Ruderman diagram in Figs. 5(i) and 5(j), and

δf
(KR)

Σ∗+ (y) =
C2(MN +MΣ∗)

2

6(4πf)2

[
− 4 δf

(off)
Σ∗ (y) +

1

18
δf

(δ)
Σ∗ (y)

− (MN +MΣ)2[(MN +MΣ∗)
2 −m2

K ]

6M2
Σ∗ (MN +MΣ∗)2

δf
(δ)
K (y)

]
(191)
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for the additional Kroll-Ruderman diagram in Figs. 5(k) and 5(l). The expressions for the decuplet

basis functions f
(on)
Σ∗ , f

(on end)
Σ∗ , f

(off)
Σ∗ , f

(off end)
Σ∗ and f

(δ)
Σ∗ , as well as the nonlocal functions δf

(off)
Σ∗ and δf

(δ)
Σ∗ ,

are also given in Ref. [307].
Finally, for the local and nonlocal tadpole contributions to the strange quark PDF from Figs. 5(n)

and 5(o), the splitting functions are given by

f
(tad)

K+ (y) = 2 f
(tad)

K0 (y) = −(MN +MΣ)2

(4πf)2
f

(δ)
K (y), (192)

δf
(tad)

K+ (y) = 2 δf
(tad)

K0 (y) =
(MN +MΣ)2

(4πf)2
δf

(δ)
K (y), (193)

in terms of the local and nonlocal basis functions f
(δ)
K and δf

(δ)
K .

Figure 19: Differential hadron production cross section σ(y, k2
⊥) versus ȳ for (a) pp → ΛX at k⊥ =

0.075 GeV [346]; (b) pp → ΛX integrated over k2
⊥ [349]; (c) pp → Σ∗+X integrated over k2

⊥ [350],
compared with the fitted nonlocal K exchange contributions for regulator parameters ΛKΛ = 1.1(1) GeV
and ΛKΣ∗ = 0.8(1) GeV (solid red lines and pink 1σ uncertainty bands). (Figure from Ref. [308].)

To determine the cutoff parameter in the regulator for the kaon-hyperon-nucleon vertices, inclusive
hyperon production cross sections in pp collisions are considered, in analogy with the neutron and ∆
production above [308]. Data on inclusive Λ production are from Refs. [346, 349, 350]. In Fig. 19, the
inclusive pp→ ΛX and Σ∗+X cross sections for ȳ > 0.7 are fitted with the calculated splitting functions.
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Figure 20: Kaon loop contributions to (a) antistrange PDF xs̄ from the octet and decuplet rainbow
diagrams [Fig. 5(a) and (g)]; (b) strange quark PDF xs from the octet rainbow [Fig. 5(b)], Kroll-
Ruderman [Fig. 5(c)-(f)], and tadpole [Fig. 5(n)-(o)] diagrams; (c) strange PDF xs from the decuplet
rainbow [Fig. 5(h)] and Kroll-Ruderman [Fig. 5(i)-(l)] diagrams; (d) strange asymmetry x(s − s̄),
showing the local and nonlocal (gauge) octet and decuplet contributions, along with the total asym-
metry. The PDFs are computed with the best fit regulator parameters ΛKΛ = ΛKΣ = 1.1 GeV and
ΛKΣ∗ = 0.8 GeV. (Figure from Ref. [308].)

The best fit to the CERN bubble chamber Λ production data from Ref. [346] at k⊥ = 0.075 GeV
[Fig. 19(a)] and the k⊥-integrated data from Ref. [349] [Fig. 19(b)] yields a dipole regulator mass
ΛKΛ = 1.1(1) GeV. Comparison of the singly differential decuplet Σ∗+ production data at large ȳ
[Fig. 19(c)] with the kaon exchange cross section gives a best fit for the decuplet regulator mass of
ΛKΣ∗ = 0.8(1) GeV.

The kaon loop contributions to the strange and antistrange distributions in the proton can be
calculated with the determined Λ [308]. In Fig. 20 the various octet and decuplet contributions to xs
and xs̄ are shown for the best fit parameters ΛKΛ = ΛKΣ = 1.1 GeV and ΛKΣ∗ = 0.8 GeV. For the xs̄
PDF in Fig. 20(a), the octet on-shell contribution from the rainbow diagram [Fig. 5(a)] dominates over
the decuplet on-shell and end-point terms from the decuplet rainbow diagram [Fig. 5(g)]. The resulting
xs̄ distribution peaks at x ≈ 0.1 and essentially vanishes beyond x ≈ 0.6. The δ-function terms from
the rainbow diagrams as well as from the kaon bubble diagram [Fig. 5(m)] do not appear in Fig. 20(a),
as they have contributions to s̄ only at x = 0.

For the strange quark distribution, from the convolution in Eq. (185) one finds that all terms from
each of the rainbow, Kroll-Ruderman and tadpole diagrams have nonzero contributions at x > 0.
Since there are many individual terms, we display ones involving octet+tadpole and decuplet baryons
separately in Figs. 20(b) and 20(c), respectively. In contrast to the antistrange case, where the on-shell
term is dominant, there are sizeable contributions to the strange distribution from many of the terms,
with nontrivial cancellations between them. A qualitatively similar scenario is evident in Fig. 20(c) for
the decuplet intermediate state contributions to xs, where the individual on-shell, off-shell, δ-function
and gauge link terms are shown.
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Finally, the resulting asymmetry x(s − s̄) in Fig. 20(d) reflects the interplay between the s̄ PDF,
which is dominant at low x, and the s-quark PDF, which extends to larger values of x. A key feature of
this result is the strong cancellation between positive local and negative nonlocal, gauge-link dependent
contributions, in both the octet and decuplet channels. The net effect is then a small positive x(s− s̄)
asymmetry, peaking at x ≈ 0.2 − 0.3, and about an order of magnitude smaller than the asymmetry
between the d̄ and ū PDFs resulting from pion loops.

In addition to the shape, it is instructive also to examine the contributions of the various terms
to the lowest moments of the s and s̄ PDFs, and, in particular, the average number of strange and
antistrange quarks,

〈s〉 =

∫ 1

0

dx s(x), 〈s̄〉 =

∫ 1

0

dx s̄(x), (194)

and the average momentum carried by these,

〈xs〉 =

∫ 1

0

dx xs(x), 〈xs̄〉 =

∫ 1

0

dx xs̄(x). (195)

Although the shapes of the s and s̄ distributions themselves are obviously rather different, the numbers
of s and s̄ quarks in the nucleon are the same, 〈s〉 = 〈s̄〉, which is guaranteed by the local gauge
invariance. The zero net strangeness can be verified by explicitly summing the contributions to 〈s〉 and
〈s̄〉 from the various diagrams in Fig. 5, as Table 10 indicates.

While the lowest moments of the s and s̄ are constrained to be equal, there is no such requirement
for higher moments, including the x-weighted moment corresponding to the momentum carried by s
and s̄ quarks. Since the total s− s̄ asymmetry is found to be mostly positive over the range of x relevant
in this analysis, not surprisingly the total 〈x(s− s̄)〉 moment is also positive. Including the uncertainties
on the kaon-nucleon-hyperon vertex regulator parameters, the combined asymmetry is [308]

〈x(s− s̄)〉 = 1.66
(81)
(74) × 10−3. (196)

An asymmetry of this magnitude will be challenging to determine experimentally.

5.3 Polarized distributions

For the contributions from meson loops to polarized quark distributions in the nucleon, in this section
we focus on the strange quark polarization, ∆s. Among the u, d and s flavors, the contribution to the
proton spin from the strange quark is the least well determined, and phenomenological studies often
rely on assumptions such as SU(3) flavor symmetry and equivalence of the strange and antistrange
polarizations, ∆s = ∆s̄, to simplify the analyses. In many of the studies which have made these
assumptions, the integrated strange quark polarization has typically been found to be in the vicinity
of ∆s+ ≡ ∆s + ∆s̄ ≈ −0.1. Recent direct lattice simulations of disconnected loop contributions have
yielded slightly smaller magnitudes for the strange quark polarization, ∆s+

latt = −0.046(8) [351], while
an analysis of the spin problem taking into account the angular momentum carried by the meson
cloud [352, 353, 354], suggests a value of order −0.01 [355, 356]. The recent JAM global QCD analysis,
which used inclusive and semi-inclusive DIS data in order to relax the SU(3) symmetry constraint,
also supports a smaller magnitude for the strange polarization, ∆s+

JAM = −0.03(10) [100] at a scale of
Q2 = 1 GeV2, but with a larger uncertainty. A review of the status and results from the global QCD
analysis and lattice QCD communities can be found in Ref. [357].

To calculate the polarized parton distributions, we need the axial-vector current (operator) which
couples to the external axial-vector field. Compared with the unpolarized PDF, where the vector current
for the nonlocal Lagrangian was obtained from the locally gauge invariant Lagrangian, the current for
the axial-vector current is a little simpler, since in this case no path integral of the gauge field is needed.
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Table 10: Contributions from octet Y = Λ,Σ0,Σ+ and decuplet Y ∗ = Σ∗0,Σ∗+ hyperons to the average
number (in units of 10−2) and momentum carried (in units of 10−3) by s and s̄ quarks in the nucleon,
for dipole regulator mass parameters ΛKY = 1.1(1) GeV and ΛKY ∗ = 0.8(1) GeV.

〈s̄〉 〈xs̄〉 〈s〉 〈xs〉
(×10−2) (×10−3) (×10−2) (×10−3)

KY (rbw) f
(on)
Y 1.39

(69)
(54) 1.33

(74)
(56) Y K(rbw) f

(on)
Y 1.39

(69)
(54) 1.67

(78)
(63)

f
(δ)
K −1.66

(79)
(63) 0 f

(off)
Y −4.01

(168)
(142) −5.35

(212)
(183)

δf
(δ)
K 1.12

(50)
(41) 0 δf

(off)
Y 2.70

(107)
(92) 3.12

(113)
(102)

f
(δ)
K 1.66

(79)
(63) 2.82

(135)
(107)

Y K(KR) f
(off)
Y 4.01

(168)
(142) 6.29

(250)
(215)

f
(δ)
K −3.31

(158)
(126) −6.66

(318
(253)

Y K(δKR) δf
(off)
Y −2.70

(107)
(92) −3.68

(133)
(120)

δf
(δ)
K 1.12

(50)
(41) 2.24

(101)
(82)

total octet 0.85
(40)
(32) 1.33

(74)
(56) total octet 0.85

(40)
(32) 0.46(14)

K(bub) f
(δ)
K 4.85

(232)
(184) 0 K(tad) f

(δ)
K 4.85

(232)
(184) 7.87

(376)
(298)

δf
(δ)
K −3.27

(147)
(120) 0 K(δtad) δf

(δ)
K −3.27

(147)
(120) −5.30

(238)
(194)

total bubble 1.59
(85)
(64) 0 total tadpole 1.59

(85)
(64) 2.57

(138
(104)

KY ∗(rbw) f
(on)
Y ∗ 0.09

(13)
(7) 0.06

(9)
(4) Y ∗K(rbw) f

(on)
Y ∗ 0.09

(13)
(7) 0.10

(14)
(8)

f
(on end)
Y ∗ 0.04

(7)
(3) 0.03

(6)
(3) f

(on end)
Y ∗ 0.04

(7)
(3) 0.04

(7)
(3)

f
(δ)
Y ∗ −0.01(1) 0 f

(off)
Y ∗ −0.59

(72)
(42) −0.75

(89)
(52)

f
(δ)
K −0.15

(20)
(11) 0 f

(off end)
Y ∗ 0.17

(23)
(12) 0.21

(29)
(15)

δf
(δ)
K 0.11

(14)
(8) 0 δf

(off)
Y ∗ 0.34

(45)
(24) 0.38

(47)
(27)

f
(δ)
K 0.18

(24)
(13) 0.26

(34)
(19)

f
(δ)
Y ∗ 0.01(1) 0.01

(2)
(1)

δf
(δ)
Y ∗ −0.07

(11)
(5) −0.10

(16)
(7)

Y ∗K(KR) f
(off)
Y ∗ 0.59

(72)
(42) 1.02

(121)
(71)

f
(off end)
Y ∗ −0.17

(23)
(12) −0.29

(39)
(21)

f
(δ)
K −0.34

(44)
(24) −0.65

(85)
(47)

f
(δ)
Y ∗ −0.02

(3)
(1) −0.03

(5)
(2)

δf
(δ)
Y ∗ 0.05

(8)
(3) 0.09

(15)
(7)

Y ∗K(δKR) δf
(off)
Y ∗ −0.34

(45)
(24) −0.51

(63)
(36)

δf
(δ)
K 0.11

(14)
(8) 0.22

(27)
(15)

δf
(δ)
Y ∗ 0.02

(4)
(2) 0.05

(7)
(3)

total decuplet 0.08
(12)
(6) 0.09

(15)
(7) total decuplet 0.08

(12)
(6) 0.04

(4)
(3)

total 2.51
(136)
(102) 1.42

(89)
(62) total 2.51

(136)
(102) 3.08

(155)
(120)

63



From the Lagrangian Eqs. (27) and (31) one can obtain the axial-vector current that couples to the
external axial-vector field aaµ as

Jµ,aA =
1

2
Tr
[
B̄γµ

[
uλau† − u†λau,B

]
+
D

2
Tr
[
B̄γµγ5

{
uλau† + u†λau,B

} ]
+

F

2
Tr
[
B̄γµγ5

[
uλau† + u†λau,B

] ]
+
F −D

2
Tr
[
B̄γµγ5B

]
Tr
[
uλau† + u†λau

]
+
C
2

(
T νΘ

νµ(uλau† + u†λau)B + h.c.
)

+
H
2
T νγ

ναµ
(
uλau† + u†λau, Tα

)
. (197)

The currents for given quark flavors are then expressed as combinations of the above currents with
a = 0, 3 and 8 as

Jµ,uA =
1

3
Jµ,0A +

1

2
Jµ,3A +

1

2
√

3
Jµ,8A , (198a)

Jµ,dA =
1

3
Jµ,0A −

1

2
Jµ,3A +

1

2
√

3
Jµ,8A , (198b)

Jµ,sA =
1

3
Jµ,0A −

1√
3
Jµ,8A . (198c)

Using Eqs. (197) and (198), the strange quark current Jµ,sA can be written explicitly as

Jµ,sA = (F −D) Σ
+
γµγ5Σ+ + (F −D) Σ

−
γµγ5Σ− + (F −D) Σ

0
γµγ5Σ0 +

(
F +

D

3

)
Λ̄γµγ5Λ

+
1

2f 2

(
2F p̄γµγ5pK+K− + (F −D) p̄γµγ5pK0K0

)
+
H
3

(
Σ
∗+
α gαβγµγ5Σ∗+β + Σ

∗0
α g

αβγµγ5Σ∗0β + Σ
∗−
α gαβγµγ5Σ∗−β

)
− i√

2f

(
p̄γµΣ+K0 +

1√
2
p̄γµΣ0K+ +

√
3√
2
p̄γµΛK+ + H.c.

)
+

C√
3

(
−Σ

+
ΘµνΣ∗+ν + Σ

0
ΘµνΣ∗0ν + Σ

−
ΘµνΣ∗−ν + H.c.

)
, (199)

where the terms involving the doubly-strange baryons Ξ0,− and Ξ∗0,− and the triply-strange Ω− are
omitted as they do not couple to the nucleon initial states. The current obtained from the Lagrangian
is equivalent to the operators Oµ1∆q which is expressed in terms of ᾱ(1), β̄(1), σ̄(1), α(1), β(1), σ(1) and

γ̄(1), ω̄(1) [358], with

ᾱ(1) = 2F + 2
3
D, β̄(1) = F − 5

3
D, σ̄(1) = 0,

α(1) = 2, β(1) = 1, σ(1) = 0, (200)

γ̄(1) = H, ω̄(1) = −C.

In analogy with the unpolarized case, the convolution relation for the spin-dependent PDFs in the
nucleon can be written as

∆q(x) =
∑
j

[
∆fj ⊗∆q+

j

]
(x) ≡

∑
j

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) ∆fj(y) ∆q+
j (z), (201)

where ∆q+
j = ∆qj + ∆q̄j is the spin-dependent valence quark distribution for quark flavor q in the

hadronic configuration j. For the strange quark, the splitting functions ∆fj(y) can be calculated from
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the matrix elements of the axial-vector current Jµ,sA . The Feynman diagrams including the octet rainbow,
tadpole, Kroll-Ruderman, decuplet rainbow, and octet-decuplet transition diagrams are included in
Fig. 5, without gange link diagrams. The convolution form then gives the strange quark PDF in terms
of the explicit hadronic configurations as

∆s(x) =
∑
Bφ

(
∆f̄

(rbw)
Bφ ⊗∆sB + ∆f̄

(KR)
Bφ ⊗∆s

(KR)
B

)
+
∑
φ

∆f̄
(tad)
φ ⊗∆s

(tad)
φ

+
∑
Tφ

∆f̄
(rbw)
Tφ ⊗∆sT +

∑
TBφ

∆f̄TBφ ⊗∆sTB, (202)

where for notational convenience we also define the splitting functions ∆f̄(y) ≡ ∆f(ȳ) with ȳ ≡ 1− y
the baryon momentum fraction when the meson carries momentum fraction y, as for unpolarized PDFs.

For the octet hyperon rainbow diagrams, Fig. 5(b), the splitting function for the intermediate state
Σ+ can be written in terms of the on-shell, off-shell and δ-function basis functions as

∆f
(rbw)

Σ+K0(y) =
C2
Bφ(MN +MΣ)2

(4πf)2

[
∆f

(on)
Σ (y) + ∆f

(off)
Σ (y) + ∆f

(δ)
Σ (y)

]
, (203)

where the functions ∆f
(on)
Σ , ∆f

(off)
Σ and ∆f

(δ)
Σ are given in Refs. [358, 359]. The tadpole contributions

to the splitting functions from Fig. 5(n) are given by

∆f
(tad)

K+ (y) = 2 f
(tad)

K0 (y) = −(MN +MΣ)2

(4πf)2
f

(δ)
K (y), (204)

where the tadpole function ∆f
(δ)
φ is related to the δ-function term in the rainbow diagram in Eq. (203),

∆f
(δ)
φ (y) = −∆f

(δ)
B (y). (205)

For the octet Kroll-Ruderman diagrams in Figs. 5(c) and 5(d), the splitting function is given by

∆f
(KR)

Σ+ (y) =
CBφ(MN +MΣ)2

(4πf)2

[
∆f

(off)
Σ (y) + 2∆f

(δ)
Σ (y)

]
. (206)

For the decuplet hyperon contributions, the splitting functions for the intermediate Σ∗+ are given by

∆f
(rbw)

Σ∗+K0(y) =
C2
Tφ(MN +M∗

Σ)2

(4πf)2

[
∆f

(on)
Σ∗ (y) + ∆f

(off)
Σ∗ (y) + ∆f

(δ)
Σ∗ (y)

]
(207)

for the decuplet rainbow diagram in Figs. 5(h), and

∆f
(rbw)

Σ∗+Σ+K0(y) =
CBφCTφ(MN +M∗

Σ)(MΣ +M∗
Σ)

(4πf)2

[
∆f

(on)
Σ∗Σ(y) + ∆f

(off)
Σ∗Σ (y) + ∆f

(δ)
Σ∗Σ(y)

]
(208)

for the octet-decuplet transition diagram in Figs. 5(r) and 5(s), where the external field is an axial-

vector. The expressions for the decuplet basis functions ∆f
(on)
Σ∗ , ∆f

(off)
Σ∗ , ∆f

(δ)
Σ∗ , ∆f

(on)
Σ∗Σ, ∆f

(off)
Σ∗Σ , and

∆f
(δ)
Σ∗Σ are also given in Refs. [358, 359].
With the same parameters Λ as determined for the unpolarized strange quark PDF, the contributions

to the polarized x∆s PDF from the various terms in Eq. (202) are shown in Fig. 21, for decompositions in
terms of types of diagrams and types of functions [359]. For the intermediate octet states, there are large
cancellations between the positive tadpole and negative KR diagrams, while the rainbow diagram makes
a relatively small contribution. The total octet contribution is negative for very small x and positive
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Figure 21: Contributions to the x∆s distribution in the proton at Q2 = 1 GeV2 from various meson loop
diagrams with octet intermediate states [(a), (b)] and decuplet (and decuplet-octet interference) states
[(c), (d)]. The bands for the octet and decuplet contributions correspond to the range of Λ = 1.0 GeV
to 1.2 GeV and 0.7 GeV to 0.9 GeV, respectively. (Figure from Ref. [359].)

for x > 0.1. The total on-shell, off-shell, and δ-function contributions for the octet intermediate-state
and tadpole diagrams are seen to change sign with x. The δ-function contribution is negative when
x is small, but is positive and dominant when x > 0.2. The on-shell contribution changes smoothly
with x, and is positive at small x and negative at large x. The behavior of the total contribution is
mainly determined by the δ-function contribution. For the diagrams involving intermediate states with
decuplet baryons, there are cancellations between positive decuplet rainbow and negative octet-decuplet
transition contributions, resulting in a total negative contribution. In contrast to the octet case, the
off-shell contributions are positive, but cancelled somewhat by the negative on-shell and δ-function
terms. The net result is a total negative effect, with magnitude comparable to that from the octet.

The total contribution to x∆(s) is shown in Fig. 22 [359], along with phenomenological PDFs from
the NNPDF [360, 361] and JAM [100] analyses at Q2 = 1 GeV2, and compared with results from a
calculation with Pauli-Villars regularization [358]. The magnitude of the total result in the nonlocal
effective theory is comparable to that with PV regularization, although there are quantitative differences
especially at high x. The first moment of ∆s(x), or the total spin carried by strange quarks in the
proton, is in the range [−0.0051,−0.0026] in the nonlocal theory [359]. The small magnitude of the
calculated strange polarization, in both approaches, compared with the uncertainty bands of the global
parameterizations reflects the relatively weak constraints on ∆s that exist from current experiments.
The JAM study [100], in particular, performed a dedicated analysis of the strange quark PDF using
data from inclusive and semi-inclusive DIS, without imposing the commonly used assumption about
SU(3) flavor symmetry for the axial charges, leading to a significantly larger uncertainty on ∆s.
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Figure 22: Comparison of the calculated total meson loop contributions to the polarized strange quark
PDF in the nonlocal effective theory (left) and in the local theory with PV regularization (right) with
x∆s+ from the NNPDF [360, 361] and JAM [100] global QCD analyses at Q2 = 1 GeV2. The red bands
corresponds to the ranges Λ = 1.0− 1.2 GeV for octet and 0.7− 0.9 GeV for decuplet baryons for the
nonlocal theory, and the ranges {µ1, µ2} = {545, 600}MeV to {526, 894}MeV for octet baryons and
µ = 762 MeV for decuplet baryons for PV regularization. (Figures from Refs. [358, 359].)

6 GPDs and TMDs

6.1 Convolution formulas

In this section we will extend our discussion from ordinary PDFs to generalized parton distributions and
transverse momentum dependent distributions, focusing on the sea quark GPDs and Sivers functions.
Let’s first discuss the convolution form for the generalized parton distributions. The GPDs are defined
by the matrix elements of bi-local field operators as

∫
dλ

2π
e−iλxP+〈N(p′)| q̄(1

2
λn) /n q(−1

2
λn) |N(p)〉 = ū(p′)

[
/nHq(x, ξ, t) +

iσµνnµqν
2MN

Eq(x, ξ, t)

]
u(p), (209)

where x = k+/P+ is the quark light-cone momentum fraction, P = (p+p′)/2 is the average momentum
of the initial and final state nucleons, and ξ = −q+/2P+ is the skewness parameter. Because of
Lorentz invariance, the GPDs Hq and Eq can only depend on the kinematical variables x, ξ and
t ≡ ∆2 = (p′−p)2. (Note that here we use ∆2 for the momentum transfer squared between the hadrons
rather than Q2, which is reserved for the virtuality of the incoming photon.) After integrating over x,
the electromagnetic form factors can be obtained as

F q
1 (t) =

∫ 1

−1

dxHq(x, ξ, t), F q
2 (t) =

∫ 1

−1

dxEq(x, ξ, t). (210)

The combinations of the above form factors can generate the electric and magnetic form factors. In the
following, we restrict ourselves to the case ξ = 0, and consider the GPDs in the ∆+ = 0 frame [362],
defined by

pµ =
(
P+, P−,−1

2
∆⊥
)
, p′µ =

(
P+, P−, 1

2
∆⊥
)
, ∆µ =

(
0, 0, ∆⊥

)
. (211)
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We define the n-th Mellin moments of the GPDs Hq(x, ξ, t) and Eq(x, ξ, t) by

Hn
q (ξ, t) ≡

∫ 1

−1

dx xn−1Hq(x, ξ, t) =
n−1∑

i=0,even

(−2ξ)iAniq (t) + (−2ξ)nCn
q (t)

∣∣∣
n even

, (212a)

En
q (ξ, t) ≡

∫ 1

−1

dx xn−1Eq(x, ξ, t) =
n−1∑

i=0,even

(−2ξ)iBni
q (t)− (−2ξ)nCn

q (t)
∣∣∣
n even

, (212b)

where Aniq (t), Bni
q (t) and Cn

q (t) are the generalized form factors. These form factors can be related to
the matrix elements of local twist-2 operators Oµµ1···µnq between nucleon states [363],

〈N(p′)|Oµµ1···µn−1
q |N(p)〉 = ū(p′)

n−1∑
i=0,even

Aniq (t) γ{µ∆µ1 · · ·∆µiP µi+1 · · ·P µn−1}u(p)

− i

2MN

ū(p′)
n−1∑

i=0,even

Bni
q (t) ∆νσ

ν{µ∆µ1 · · ·∆µiP µi+1 · · ·P µn−1}u(p)

+
1

MN

ū(p′)Cn
q (t)

∣∣∣
n even

∆{µ · · ·∆µn−1}u(p), (213)

where the symmetric and traceless operators are defined, in analogy with Eq. (166), as

Oµµ1···µn−1
q = in−1q̄γ{µ

←→
D µ1 · · ·

←→
D µn−1}q, (214)

with the braces {· · · } representing symmetrization over the indices µi and subtraction of traces. As for
the PDF case, in the effective theory the quark operators are matched to hadronic operators with the
same quantum numbers [337, 364],

Oµµ1···µn−1
q =

∑
j

Q
(n−1)
j Oµµ1···µn−1

j , (215)

where the subscript j labels different types of hadronic operators. The coefficients Q
(n−1)
j can be defined

through the n-th moments of the GPDs in the hadronic configuration j. Matrix elements of the hadronic
operators Oµµ1···µn−1

j are related to the moments of the hadronic splitting functions fj and gj, which are
defined by

ū(p′)

[
γ+fj(y, t) +

iσ+ν∆ν

2MN

gj(y, t)

]
u(p) =

∫
d4k Γ̃+

j (k) δ
(
y − k+

P+

)
≡ Γ+

j , (216)

where Γ+
j is the contribution to the vector vertex in Eq. (139) from hadronic configuration j, k is the

internal meson momentum, and y is the light-cone momentum fraction of the nucleon carried by the
hadronic state j. The moments of the splitting functions are then given by

f
(n)
j =

∫ 1

−1

dy yn−1fj(y, t), g
(n)
j =

∫ 1

−1

dy yn−1gj(y, t). (217)

For n = 1, the y integral of the splitting functions leads to the corresponding form factors. Inserting
Eq. (215) into the nucleon states and contracting both sides with nµnµ1 · · ·nµn−1 , we have

Hn
q ū(p′)/nu(p)+

i

2MN

En
q ū(p′)nµσ

µν∆νu(p) =
∑
j

Q
(n−1)
j

[
f

(n)
j ū(p′)/nu(p) +

i

2MN

g
(n)
j ū(p′)nµσ

µν∆νu(p)

]
,

(218)
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where the moments Hn
q and En

q are defined in Eqs. (212). Since Eq. (218) is valid for any order of n, the
operator relation in Eq. (215) then gives rise to the convolution formula for the GPDs at zero skewness,

Hq(x, t) ≡ Hq(x, ξ = 0, t) =
∑
j

[
fj ⊗ qvj

]
(x, t) ≡

∑
j

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) fj(y, t) q
v
j (z, t), (219a)

Eq(x, t) ≡ Eq(x, ξ = 0, t) =
∑
j

[
gj ⊗ qvj

]
(x, t) ≡

∑
j

∫ 1

0

dy

∫ 1

0

dz δ(x− yz) gj(y, t) q
v
j (z, t), (219b)

where qvj (x, t) = [qj − q̄j](x, t) ≡ qvj (x, ξ=0, t) is the GPDs of valence quark q in the hadron configura-
tion j at zero skewness. In our calculation, the cross symmetry q(−x, t) = −q̄(x, t) has been applied so
that the above integrals are from 0 to 1.

6.2 Valence GPDs in bare baryons

In this subsection, we derive the relationships for the input GPDs of different quark flavors. The twist-
two operators for the PDFs and GPDs were discussed in detail in Refs. [308, 336, 364]. Here, we take
the intermediate octet baryons as the hadronic configuration as an example. The most general vector
operator for an octet baryon intermediate state is written as

Oµµ1···µn−1

q,B =
n−1∑

i=0,even

(
α

(ni)
A Tr

[
B̄γµ

{
λ+
q , B

}]
+ β

(ni)
A Tr

[
B̄γµ

[
λ+
q , B

]]
+σ

(ni)
A Tr

[
B̄γµB

]
Tr
[
λ+
q

] )
∆µ1 · · ·∆µiP µi+1 · · ·P µn−1

+
n−1∑

i=0,even

i

2MB

(
α

(ni)
B Tr

[
B̄σµν

{
λ+
q , B

}]
+ β

(ni)
B Tr

[
B̄σµν

[
λ+
q , B

]]
+σ

(ni)
B Tr

[
B̄σµνB

]
Tr
[
λ+
q

] )
∆ν∆µ1 · · ·∆µiP µi+1 · · ·P µn−1

+
1

MB

(
α

(n)
C

∣∣∣
n even

Tr
[
B̄
{
λ+
q , B

}]
+ β

(n)
C

∣∣∣
n even

Tr
[
B̄
[
λ+
q , B

]]
+σ

(n)
C

∣∣∣
n even

Tr
[
B̄B

]
Tr
[
λ+
q

] )
∆µ∆µ1 · · ·∆µn . (220)

Contracting both sides with nµnµ1 · · ·nµn−1 , we have

nµnµ1 · · ·nµn−1O
µµ1···µn−1

q,B = α(n)Tr
[
B̄/n
{
λ+
q , B

}]
+ β(n)Tr

[
B̄/n
[
λ+
q , B

]]
+ σ(n)Tr

[
B̄/nB

]
Tr
[
λ+
q

]
+
iα

(n)
mag

2MB

Tr
[
B̄nµσ

µν∆ν

{
λ+
q , B

}]
+
iβ

(n)
mag

2MB

Tr
[
B̄nµσ

µν∆ν

[
λ+
q , B

]]
+
iσ

(n)
mag

2MB

Tr
[
B̄nµσ

µν∆νB
]

Tr
[
λ+
q

]
,

(221)

where X(n) and X
(n)
mag (X = α, β, σ) are expressed as

X(n) =
n−1∑

i=0,even

(−2ξ)iX
(ni)
A + (−2ξ)nX

(n)
C

∣∣∣
n even

, (222a)

X(n)
mag =

n−1∑
i=0,even

(−2ξ)iX
(ni)
B − (−2ξ)nX

(n)
C

∣∣∣
n even

. (222b)
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The coefficients {α(n), β(n), σ(n)} are related to the moments of the spin-averaged GPD Hq(x, ξ, t), while

{α(n)
mag, β

(n)
mag, σ

(n)
mag} are related to moments of the spin-flip GPD Eq(x, ξ, t). With the simplification of

the flavor matrices, the operator (221) can be rewritten as

nµnµ1 · · ·nµn−1O
µµ1···µn−1

q,B = Q
(n−1)
B OB +Q

(n−1)
B,magOB,mag +Q

(n−1)

Bφφ†
OBφφ† +Q

(n−1)

Bφφ†,mag
OBφφ†,mag, (223)

where the hadronic operators are given by

OB = B̄/nB, OB,mag =
i

2MB

B̄nµσ
µν∆νB, (224a)

OBφφ† =
1

f 2
B̄/nBφφ†, OBφφ†,mag = − i

2MBf 2
B̄nµσ

µν∆νBφφ
†. (224b)

The coefficients Q
(n−1)
j in front of each of the operators are defined in terms of Mellin moments of the

corresponding PDFs in the intermediate hadron states,∫ 1

−1

dx xn−1Hq
B(x, ξ, t) = Q

(n−1)
B , (225a)∫ 1

−1

dx xn−1Eq
B(x, ξ, t) = Q

(n−1)
B,mag, (225b)∫ 1

−1

dx xn−1Hq,tad
φφ†

(x, ξ, t) = Q
(n−1)

Bφφ†
, (225c)∫ 1

−1

dx xn−1Eq,tad
φφ†

(x, ξ, t) = Q
(n−1)

Bφφ†,mag
, (225d)

where each of the moments Q
(n−1)
j can be expressed in terms of the coefficients {α(n), β(n), σ(n)} and

{α(n)
mag, β

(n)
mag, σ

(n)
mag}. Since the relationships between the quark moments in the different configurations

Q
(n−1)
B and Q

(n−1)

Bφφ†
do not depend on the momentum transfer t, they are the same for GPDs case. For

the moments Q
(n−1)
B,mag, they have the same relationships as Q

(n−1)
B because the corresponding operators

have the same flavor structure,

α(n)
mag =

1

2

(
U (n−1)
p,mag + S(n−1)

p,mag

)
−D(n−1)

p,mag , (226a)

β(n)
mag =

1

2

(
U (n−1)
p,mag − S(n−1)

p,mag

)
, (226b)

σ(n)
mag = D(n−1)

p,mag . (226c)

Assuming the strangeness in the bare nucleon state to be zero, we have

σ(n) = β(n) − α(n), σ(n)
mag = β(n)

mag − α(n)
mag. (227)

In particular, for n = 1 the above expressions are consistent with the Lagrangian for the magnetic
interaction, where c3 = c2 − c1. Similarly, Q

(n−1)

Bφφ†
and Q

(n−1)

Bφφ†,mag
also have the same relationships.

As in the PDFs case, since the relations for the moments are valid for any order of n, those relations
must also be true for the GPDs themselves. With the relationships, the GPDs of quarks in different
hadronic configurations can be expressed in terms of quark distributions in proton Hq

p(x, ξ, t), H̃q
p(x, ξ, t)

and Eq
p(x, ξ, t), which are parameterized in Refs. [338, 339, 340]. With the similar approach as for PDFs,

in the next section we discuss the dependence of the parton distributions on the momentum transfer t
and transverse momentum kT , as well as the momentum fraction x.
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Table 11: Coefficients Cmag
B , Cmag

T , Cmag
BT , Cmag

φφ†
and C ′

φφ† for octet and decuplet baryons in the effective
Lagrangian.

B p n Σ+ Σ0 Σ− Λ ΛΣ0

Cmag
B

1
3
c1 + c2 −2

3
c1

1
3
c1 + c2

1
3
c1

1
3
c1 − c2 −1

3
c1

1√
3
c1

T ∆++ ∆+ ∆0 ∆− Σ∗+ Σ∗0 Σ∗−

Cmag
T

2
3
F T

2
1
3
F T

2 0 −1
3
F T

2
1
3
F T

2 0 −1
3
F T

2

BT p∆+ n∆0 Σ+Σ∗+ Σ0Σ∗0 ΛΣ∗0 Σ−Σ∗−

Cmag
BT − 1√

3
c4 − 1√

3
c4

1√
3
c4

1
2
√

3
c4

1
2
c4 0

φφ† π+π− K0K
0

K+K−

Cmag
φφ†

−1
2
(c1 + c2) 0 −c2

C ′
φφ† 4(b10 + b11) 4(b11 − b10) 8b11 + 2b9

6.3 Generalized parton distributions

The sea quark contributions to the unpolarized and polarized parton distributions in the proton were
discussed in Sec. 5. In the present section we extend that discussion to the case of GPDs of sea quarks
in the off-forward scattering direction. GPDs contain a wealth of information on the partonic structure
of the nucleon, which is one of the central themes in hadronic physics. They have close relationships
with electromagnetic form factors, and by integrating GPDs with different powers of the momentum
fraction x, GPDs can be transformed into Mellin moments. Since form factors and PDFs are special
cases of GPDs, in general GPDs provide more information about the internal structure of the nucleon
than either of these limiting quantities.

For unpolarized GPDs at finite t, there are two twist-two distributions, Hq(x, ξ, t) and Eq(x, ξ, t), for
each quark flavor q. Along with the electric interaction for the PDFs at zero momentum transfer, the
Lagrangian for magnetic interactions, Eqs. (142)−(146), is needed in the loop calculations. Although
they do not contribute to the PDF q(x) in the forward limit, t = 0, magnetic interactions contribute
to both Hq(x, ξ, t) and Eq(x, ξ, t) at finite values of t. For the baryon-meson interaction, in addition to
the leading order Lagrangian (96), there is a higher order contribution which is of the same order in
the power counting as the magnetic Lagrangian [288],

L′ = 2i b9 σ
µνTr

[
B̄uµ

]
Tr [uνB] + 2i b10 σ

µνTr
[
B̄{[uµ, uν ], B}

]
+ 2i b11 σ

µνTr
[
B̄[[uµ, uν ], B]

]
, (228)

where the coefficients b9, b10 and b11 are determined phenomenologically to be b9 = 1.36 GeV−1, b10 =
1.24 GeV−1 and b11 = 0.46 GeV−1 [288]. This interaction contributes to the Eq(x, ξ, t) GPDs of
antiquarks in the one-loop bubble diagram, Fig. 5(u). After expanding the flavor matrices, the total
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nonlocal Lagrangian relevant for the calculation of the GPDs can be written as [364]

L(nonloc)(x) = B̄(x)(iγµDµ −MB)B(x) + T µ(x)(iγµναDα −MTγ
µν)Tν(x)

+ p̄(x)

[
CBφ
f
γµγ5B(x) +

CTφ
f

ΘµνTν(x)

]
Dµ

(∫
d4aGqφ(x, x+ a)F (a) φ(x+ a)

)
+ H.c.

+
iCφφ†

2f 2
p̄(x)γµp(x)

∫
d4bGqφ(x, x+ a)F (a)φ(x+ a)Dµ

(∫
d4bGqφ(x+ b, x)F (b)φ†(x+ b)

)
+ H.c.

+
iC ′

φφ†

2f 2
p̄(x)σµνp(x)Dµ

(∫
d4aGqφ(x, x+ a)F (a)φ(x+ a)

)
Dν

(∫
d4bGqφ(x+ b, x)F (b)φ†(x+ b)

)
+
Cmag
B

4MB

B̄(x)σµνB(x)Fµν(x)− Cmag
T

4MT

Tα(x)σµνTα(x)Fµν(x) +
iCmag

BT

4MB

B̄(x)γµγ5T
ν(x)Fµν(x)

+
Cmag
φφ†

4MBf 2
p̄(x)σµνp(x)

∫
d4a

∫
d4b Fµν(x)Gqφ(x+ b, x+ a)F (a)F (b)φ(x+ a)φ†(x+ b)

+ Dµφ(x)(Dµφ)†(x) + · · · , (229)

where the derivative Dµ and gauge link Gqφ(x, y) are defined in Eqs. (99) and (100), respectively. The
coefficients CBφ, CTφ and Cφφ† are listed in Table 2 and Cmag

B , Cmag
T , Cmag

BT , Cmag
φφ†

and C ′
φφ† in Table 11.

From the Lagrangian (229) one can obtain the vector current interacting with the external field Aµ.

The convolution form for the unpolarized GPDs of antiquarks in the proton can be expressed as

H q̄(x, t) =
∑
φBT

[(
f rbw
φB + f rbw

φT + fbub
φ

)
⊗H q̄

φ

]
(x, t), (230a)

E q̄(x, t) =
∑
φBT

[(
grbw
φB + grbw

φT + gbub′

φ

)
⊗H q̄

φ

]
(x, t), (230b)

while for quark GPDs one has a more complicated structure,

Hq(x, t) = Z2H
q
0(x, t) +

∑
φBT

{[(
f rbw
φB + f rbw

φT + fbub
φ

)
⊗Hq

φ

]
(x, t)

+
[
f̄ rbw
Bφ ⊗H

q
B

]
(x, t) +

[
f̄KR
Bφ ⊗H

q,KR
B

]
(x, t) +

[
δf̄KR

B ⊗Hs,KR
B

]
(x, t)

+
[
f̄ rbw
Tφ ⊗H

q
T

]
(x, t) +

[
f̄KR
Tφ ⊗H

q,KR
T

]
(x, t) +

[
δf̄KR

Tφ ⊗H
q,KR
T

]
(x, t)

+
[
f̄ rbw,mag
Bφ ⊗ Eq

B

]
(x, t) +

[
f̄ rbw,mag
Tφ ⊗ Eq

T

]
(x, t) +

[
f̄ rbw,mag
BT ⊗ Eq

BT

]
(x, t)

+
[
f̄ tad
φ ⊗Hq,tad

φφ†

]
(x, t) +

[
δf̄ tad

φ ⊗Hq,tad
φφ†

]
(x, t)

}
, (231a)

Eq(x, t) = Z2E
q
0(x, t) +

∑
φBT

{[(
grbw
φB + grbw

φT + gbub′

φ

)
⊗Hq

φ

]
(x, t)

+
[
ḡrbw
Bφ ⊗H

q
B

]
(x, t) +

[
ḡKR
Bφ ⊗H

q,KR
B

]
(x, t) +

[
δḡKR

B ⊗Hq,KR
B

]
(x, t)

+
[
ḡrbw
Tφ ⊗H

q
T

]
(x, t) +

[
ḡKR
Tφ ⊗H

q,KR
T

]
(x, t) +

[
δḡKR

Tφ ⊗H
q,KR
T

]
(x, t)

+
[
ḡrbw,mag
Bφ ⊗ Eq

B

]
(x, t) +

[
ḡrbw,mag
Tφ ⊗ Eq

T

]
(x, t) +

[
ḡrbw,mag
BT ⊗ Eq

BT

]
(x, t)

+
[
ḡtad,mag
φ ⊗ Eq,tad

φφ†

]
(x, t)

}
, (231b)
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Figure 23: The 3D antiquark GPDs xH q̄ and xE q̄ for q̄ = ū and d̄ versus momentum fraction x and
momentum squared transfer −t, with Λ = 1 GeV. (Figure from Ref. [364].)

where the splitting functions are calculated with the vector current and the corresponding Feynman
diagrams include the rainbow, Kroll-Ruderman, tadpole and bubble diagrams, as in Fig. 5. The vertices
with the external field include electric, magnetic, and additional interactions arising from the gauge
link. For the u and d quarks the intermediate states baryons and mesons are the nucleon and ∆
baryons and π mesons. For the strange quark, the intermediate baryons and mesons are the octet and
decuplet hyperons and K mesons. It should be noted that both the electric and magnetic operators
make contributions to Hq(x, t) and Eq(x, t) at finite momentum transfer. At zero momentum transfer,
although the second (Pauli) term in the bracket of Eq. (209) does not contribute to the matrix element,
the function Eq(x, 0) itself is nonzero. In the numerical calculations presented here, the skewness
parameter ξ will be set to be zero. With the relations discussed in Sec. 6.2, all the input GPDs
will be expressed in terms of GPDs of valence quarks in the proton, Hq

p(x, t), Eq
p(x, t) and H̃q

p(x, t)
[336, 308, 364]. The parameterization expressions for these GPDs can be found in Refs. [338, 339, 340]
at the input scale µ0 = 1 GeV.

With the calculated splitting functions and the valence quark distributions in the bare hadrons as
input, we can compute the GPDs of sea quarks in the proton using the convolution forms (230) and
(231), as described in Ref. [364]. In Fig. 23 the 3-dimensional plots of the antiquark GPDs xH q̄ and
xE q̄ versus the momentum fraction x and momentum transfer −t are shown for q̄ = ū and d̄. For the
ū distribution, xH ū(x, t) is positive and peaks at x ∼ 0.1 for a given t, and for fixed x it decreases
with increasing −t. The magnetic GPD xEū(x, t) is negative, and peaks at slightly smaller x values
compared with xH ū. For the d̄ flavor, the shape of the xH d̄ GPD is similar to that of xH ū, but with a
larger magnitude at fixed x and t, reflective of the light antiquark flavor asymmetry. Interestingly, the
xE d̄ GPD is positive, with absolute value much larger than xEū. Note that the δ-function term in the
splitting functions gives no contribution to the xH q̄ and xE q̄ GPDs at nonzero x, but contributes to
the x integrals of H q̄ and E q̄.
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Figure 24: The 3D strange and antistrange GPDs xHs,s̄ and xEs,s̄ versus momentum fraction x and
momentum transfer squared −t, with Λ = 1 GeV. (Figure from Ref. [364].)

In Fig. 24, the strange and antistrange GPDs are shown versus x and t. Compared to the light sea
quark GPDs, the strange GPDs have significantly smaller magnitude. Both the xHs and xH s̄ GPDs
are positive, with xHs larger than xH s̄ at small x. When x is large, x & 0.5, xHs and xH s̄ are close
to each other. However, the x integrals of Hs and H s̄ at t = 0 are the same with the inclusion of the
δ-function term, which is consistent with the requirement that the nucleon has zero net strangeness. In
contrast, the behaviors of the xEs and xE s̄ GPDs are quite different. The sign of xE s̄ is the same as
that of xE d̄, while xEs is the only one among these sea quark distributions which changes sign with x.

To more clearly visualize the d̄ − ū asymmetry, in Fig. 25(a) and (b) we plot xH d̄−ū and xE d̄−ū

at t = 0 for Λ = 1.0(1) GeV. The result for xH d̄−ū is compared with that from the JAM global
QCD analysis [365], showing relatively good agreement with the phenomenological values. For the x-

integrated asymmetry we find
∫ 1

0
dxH d̄−ū(x, 0) = 0.11(2) for Λ = 1.0(1) GeV. For the xE d̄−ū asymmetry,

although the shape is similar, the magnitude is about 4 times larger than for xH d̄−ū, which suggests
it may be a good physical quantity to explore experimentally. The xH d̄−ū and xE d̄−ū asymmetries at
−t = 0.25 GeV2 are shown in Fig. 25(c) and (d). Both of these have smaller magnitude than at zero
momentum transfer, as expected, with the peaks slightly shifted to higher x.

The strange asymmetries xHs−s̄ and xEs−s̄ are shown in Fig. 26(a) and (b) at t = 0 for Λ =
1.0(1) GeV. At small x, the xHs−s̄ asymmetry is positive, but becomes negative at x & 0.5. The first

moment of the strange asymmetry is computed to be
∫ 1

0
dx xHs−s̄(x, 0) = 0.0009

(5)
(4) for Λ = 1.0(1) GeV,

which is comparable to recent estimates from Refs. [158, 308, 336]. For xEs−s̄, the situation is opposite,
with the asymmetry negative at small x and positive for x & 0.3. The analogous integrated magnetic

asymmetry is
∫ 1

0
dx xEs−s̄(x, 0) = 0.0009

(12)
(8) , while for the strange quark contribution to the proton’s

magnetic moment, one has
∫ 1

0
dxEs−s̄(x, 0) = µs = −0.033

(11)
(13). At −t = 0.25 GeV2 the strange

asymmetry in Fig. 26(c) and (d) shows that xEs−s̄ is slightly smaller while xHs−s̄ is larger than the
corresponding asymmetries at t = 0.
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Figure 25: Light antiquark asymmetries for the electric xH ū−d̄ (red bands) and magnetic xEū−d̄ (blue
bands) GPDs versus x at t = 0 [(a), (b)] and t = −0.25 GeV2 [(c), (d)], for cutoff parameter
Λ = 1.0(1) GeV. The asymmetries are shown at the input scale Q0 = 1 GeV, except for the electric
asymmetry at t = 0, which is compared with the x(d̄− ū) PDF asymmetry from the JAM global QCD
analysis [365] (yellow band) evolved to the scale Q0 = mc. (Figure from Ref. [364].)

6.4 Transverse momentum dependent distributions

In recent years the transverse partonic structure of hadrons has been the subject of growing theoretical
and experimental investigations. The transverse momentum dependent parton distributions are of great
interest, since they offer insight in the three-dimensional structure of hadrons [367], complementary to
that afforded through PDFs and GPDs. At leading twist, there is a total of eight TMDs, among
them the time-reversal odd Boer-Mulders function [368] and the Sivers distribution [369]. The Sivers
function describes the asymmetric distribution of unpolarized quarks in a transversely polarized hadron,
and has been studied in semi-inclusive DIS by the HERMES and COMPASS collaborations [370, 371].
Understanding this function is essential for explaining the single-spin asymmetries (SSAs) that were
observed in semi-inclusive DIS experiments some time ago [369, 372, 373].

In this section, we review the Sivers functions for the ū and d̄ distributions in the proton within
effective field theory, as recently discussed in Ref. [309]. For a quark flavor q, according to the Trento
convention, the unpolarized f q1 (x,k⊥) and Sivers f q1T (x,k⊥) TMD distributions can be written as [374]

f q1 (x,k⊥) +
εjiki⊥S

j
⊥

MN

f q1T (x,k⊥) =
1

2

∫
dξ−d2ξ⊥

(2π)3
e−ixP

+ξ−+ik⊥· ξ⊥ 〈P,S⊥ | Oq | P,S⊥〉, (232)

where S⊥ is the transverse spin vector of the proton. The gauge invariant bilocal operator Oq is defined
as [375]

Oq = q̄(ξ−, ξ⊥)L†ξ⊥(∞, ξ−)γ+L0(∞, 0)q(0, 0), (233)
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Figure 26: Strange quark asymmetry for the xHs−s̄ (red bands) and xEs−s̄ (blue bands) GPDs versus
x at squared momentum transfers t = 0 [(a), (b)] and −t = 0.25 GeV2 [(c), (d)], with the bands
corresponding to cutoff mass Λ = 1.0(1) GeV. The asymmetries are shown at the input scale Q0 =
1 GeV, except for the electric asymmetry at t = 0, which is compared with PDF parametrizations of
x(s − s̄) from JAM [365] (yellow band) and NNPDF [366] (green band) evolved to Q0 = mc. (Figure
from Ref. [364].)

where the path-ordered light-cone color gauge link is given by

L†ξ⊥(∞, ξ−) = P exp
[
− igc

∫ ∞
ξ−

dz−A+(z−, ξ⊥

]
. (234)

In analogy with the case of PDFs, the contribution to the antiquark TMD in the proton from pion
loops can be written as a convolution of a hadronic TMD splitting function and a valence TMD in the
pion,

q̄(x,k⊥) =
[
fπ ⊗ q̄vπ

]
(x,k⊥) ≡

∫ 1

0

dy

∫ 1

0

dz

∫
d2k⊥π

∫
d2kin

⊥ δ(x− yz) δ
(
kin
⊥ − (k⊥ − zk⊥π)

)
× fπ(y,k⊥π) q̄vπ(z,kin

⊥), (235)

where q̄vπ(z,kin
⊥) is the unpolarized valence quark TMD in the pion with intrinsic transverse momentum

k⊥ − zk⊥π. Integrating over k⊥ on both sides of Eq. (235) will lead to the usual convolution form for
PDFs, as in Eq. (171). The splitting function fπ(y,k⊥π) is calculated from the matrix element of the
twist-two hadronic operator, similar to that in Eq. (216),

fπ(y,k⊥π) ū(p)γ+u =

∫
d4k Γ̃(k) δ

(
y − k+

p+

)
δ(k⊥ − k⊥π). (236)
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For the splitting function relevant to the Sivers distribution, the vector operator

Oπ = i
[
π−∂+π+ − π+∂+π−

]
(237)

makes no contribution. To obtain a nonzero splitting function, the locally SU(2) invariant current is
introduced by including a ρ-meson field explicitly [309],

Oπ+

Sivers = gρππ

[
π−(y−,y⊥) ∂+π+(0)−π+(0) ∂+π−(y−,y⊥)

]{∫ ∞
0

dz−ρ0+(z−, 0) +

∫ y−

∞
dz−ρ0+(z−,y⊥)

}
.

(238)
The splitting function for the Sivers distribution, or the Sivers distribution function of a pion in the
proton, f

π/p
1T (z,k⊥π), can be written as

εjiki⊥πS
j
⊥

MN

f
π/p
1T (z,k⊥π) =

1

2

∫
dy−d2y⊥

(2π)3
e−i(zp

+y−−y⊥·k⊥π)〈p,S⊥ | OπSivers | p,S⊥〉. (239)

To calculate the splitting function, in addition to the chiral effective Lagrangian, the interactions be-
tween baryons and ρ mesons are necessary. The Lagrangians for the NNρ, ∆∆ρ and N∆ρ interactions
are given by [309, 376, 377, 378]

LρNN = −g N
(
γµ − κN

σµν∂ν
2MN

)
ρµ · τ N, (240a)

Lρ∆∆ = −g∆α

(
γαβµ + gαβκ∆

σµν∂ν
2M∆

)
ρµ ·Σ ∆β, (240b)

LρN∆ = −ig G
M
N∆

2MN

Nγµγ5
(
∂µρν − ∂νρµ

)
· I∆ν + H.c., (240c)

where 1 + κ∆ = (3/5)(1 + κN) and GM
N∆ = (6

√
2/5)(1 + κN) according to the quark model [379], and

the value of the coupling κN is taken as κN = 6.1(2) [380]. The operators Σ and I are the isospin-3/2
and isospin transition matrices [381].

The leading loop diagrams are illustrated in Fig. 27. For the intermediate octet baryons, the
contribution to the Sivers splitting function f

π/p
1T (z,k⊥π) is written as

εjiki⊥πS
j
⊥

MN

f
π/p
1T (z,k⊥π) =

ig2g2
A

4f 2

∫
d4k

(2π)4

∫
d4l

(2π)4
ū(p,S⊥)/kγ5Son(p− k)Vµ(l)S(p− k − l)γ5

×(/k + /l)u(p,S⊥)
(2k+ + l+)

(l+ + iε)
Sπ(k)Sµ+

ρ (l)Sπ(k + l) δ(k+ − zp+) δ(2)(k⊥ − k⊥π) + H.c., (241)

where Vµ(l) is the vertex of the interaction between nucleon and ρ meson, Vµ(l) = γµ+iκNσµνl
ν/(2MN).

The functions S, Sπ and Sµ+
ρ are the nucleon, π and ρ-meson propagators, respectively, while Son is

the on-shell nucleon propagator factor, Son(k) = 2π(/k + MN) δ(k2 −M2
N). The imaginary part of the

eikonal propagator 1/(l+ + iε) gives the real Sivers distribution function of a pion in the nucleon. The
expressions for the other diagrams with decuplet intermediate states are similar but more complicated.
With the derived splitting functions and valence q̄ distribution in the π [382], the Sivers function for
the ū and d̄ TMDs in the proton can be obtained.

In Fig. 28 we show the first moment of the sea quark Sivers function, defined as

∆Nf
(1)
q̄ (x) ≡

∫
d2k⊥

−k2
⊥

2M2
N

f
q̄/p
1T (x,k⊥), (242)

for the d̄ and ū flavors. For the d̄ flavor in the proton, the first moment is positive, with a maximum value
of x∆Nf

(1)

d̄
(x) ≈ 0.0008−0.0035 at x ∼ 0.2, which then decreases at large x and vanishes beyond x ≈ 0.6.
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Figure 27: Diagrams for the Sivers function for pseudoscalar mesons in the nucleon. The octet baryons
(solid lines), pseudoscalar mesons (dashed lines), vector mesons (double-dashed lines) and decuplet
baryons (double solid lines), as well as the eikonal propagator (thick solid lines) and the on-shell cut
(dotted lines), are as indicated. (Figure from Ref. [309].)
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Figure 28: (Left) First moment of the sea quark Sivers distribution x∆Nf
(1)
q̄ (x) versus x atQ = 0.63 GeV

for q̄ = d̄ (red) and q̄ = ū (blue), with 0.8 GeV ≤ Λπ ≤ 1.2 GeV and 1.6 GeV ≤ Λρ ≤ 2.0 GeV. (Right)

Contributions to x∆Nf
(1)

d̄
(x) from intermediate states with baryon octet (blue dashed), decuplet (green

dotted), octet-decuplet transition (purple dot-dashed) and total (red solid). (Figure from Ref. [309].)

For the ū in proton, x∆Nf
(1)
ū (x) is always negative, with maximum absolute value ≈ 0.0007 − 0.0037

at x ∼ 0.15, and similarly vanishing beyond x ≈ 0.6. As found in other phenomenological extractions,
the value of sea quark Sivers function is rather small [383, 384].

For x∆Nf
(1)
ū (x), only the diagram in Fig. 27(b) makes a contribution, whereas all four diagrams in

Fig. 27 contribute to x∆Nf
(1)

d̄
(x). To see the separate contributions explicitly, we plot in Fig. 28 the

contributions to x∆Nf
(1)

d̄
(x) from different intermediate states. The contributions from intermediate

octet and octet-decuplet transition are dominant, while the contribution from the decuplet intermediate
state is very small. The decuplet intermediate state gives negative contributions to both x∆Nf

(1)

d̄
(x) and

x∆Nf
(1)
ū (x), however, the d̄ contribution is 9 times smaller than the ū because of the smaller coupling

constants for π+ compared with the π− case.
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7 Summary and outlook

In this article we presented a brief overview of chiral effective field theory with infrared, extended-on-
mass-shell, and finite-range regularizations. While EFT has been widely applied in hadronic physics,
for the study of nucleon electromagnetic form factors, which are measured in elastic lepton-nucleon
scattering, the theory is only valid at low momentum transfers. This limited applicability of EFT
restricts investigation of form factors at larger momentum transfer, as well as of PDFs and GPDs,
which are extracted from high energy inclusive and exclusive reactions, respectively. This problem
motivates the introduction of the nonlocal chiral effective field theory, as one way to extend the study
of physical observables to larger momentum transfers.

In the nonlocal Lagrangian, baryons are placed at spacetime coordinate x, while mesons and photons
are located at coordinates x+a and x+b. To guarantee charge conservation and local gauge invariance,
the path integral of the gauge field is introduced, and expansion of the gauge link leads to the generation
of additional Feynman diagrams. The ultraviolet regulator appears naturally in the loop integrals, as
the Fourier transformation of the correlation function in the nonlocal Lagrangian. The regulator makes
the loop integrals convergent, and at the same time provides the momentum dependence of the form
factors at tree level.

In the application of the nonlocal effective theory to the the study of elastic scattering observables,
the nucleon electromagnetic form factors, strange form factors, light sea quark form factors, as well as
the form factors of octet baryons were computed. For PDFs, we reviewed the calculation of sea quark
distribution functions, including the unpolarized distributions of ū, d̄, s and s̄, and the distribution of
longitudinally polarized strange quarks. We further discussed the extension of the framework to GPDs,
where we generalized to the nonforward sector the light sea quark and strange quark distributions. To
illustrate the application to TMDs, we considered the T-odd transverse Sivers momentum dependent
distribution functions of ū and d̄ quarks. Numerical results were presented for the electromagnetic
moments, charge and magnetization radii, form factors, as well as the parton momentum fraction
dependence of the nucleon PDFs and GPDs.

As future extensions of the work summarized in this report, one can study the applications of the
nonlocal chiral effective theory to the full set of leading twist GPDs, including the four chiral-even
(helicity-conserving) GPDs H, E, H̃, Ẽ and four chiral-odd (helicity-flipping) GPDs HT , ET , H̃T ,

and ẼT , for both valence and sea quarks. Similarly, the eight leading twist TMD distributions of the
nucleon can be explored within this framework. Beyond the nucleon, it would be of tremendous interest
to consider the corresponding structures for the octet baryons, decuplet baryons and pseudoscalar
mesons. Since the chiral Lagrangian already includes the octet and decuplet baryon degrees of freedom,
the properties of these hadrons could be obtained from the existing theory without the introduction of
additional parameters. This would not only provide predictions for the properties of other hadrons that
could be measured in experiments or in lattice QCD, but also offer a valuable check on the validity of
the nonlocal theory itself.

Beyond hadronic observables, we also consider the intriguing possibility that the nonlocal behavior
could be a general property for all interactions of physical particles. As we discuss in the appendix below
for the case of nonlocal QED, the discrepancy between the lepton Pauli form factors in the (local) SM
and the corresponding nonlocal interaction could be visible at very large momentum transfer. Since
we do not know a priori the scale parameter Λ for leptons, this is chosen to reproduce the anomalous
magnetic moments of the electron and muon, and though the difference with the local values is much
smaller than the current experimental uncertainties, the relative deviation from the SM is always large
if the momentum transfer is high enough for any Λ.

Going one step further, we also discuss in the appendix a more general version of the nonlocal
theory in which the free Lagrangian is also nonlocal. The nonlocal Feynman propagator in this case
corresponds to the solid quantization, where the δ(3)(x − y) function is replaced by a finite function
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Φ(x−y). An advantage of the general version of the nonlocal Lagrangian is that for distributions such
as PDFs or GPDs, the δ-function terms in the splitting functions could become smooth functions. This
may be a fruitful direction in which to pursue future phenomenolgical applications of chiral EFT in
hadronic physics and beyond.
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8 Appendix: Generality of the nonlocal Lagrangian

8.1 Nonlocal QED

In this review we have illustrated how the nonlocal chiral effective theory provides a systematic tool
for the investigation of hadronic structure, including nucleon form factors, collinear PDFs, TMD dis-
tributions, and GPDs. In contrast to traditional EFT, the nonlocal Lagrangian involves a correlation
function F (x − y), where the baryon is located at spacetime point x and the meson or photon is at
point y. If F (x − y) is chosen to be a δ function, δ(x − y), the nonlocal Lagrangian naturally reduces
to the local one. With the presence of the correlation function, there are no ultraviolet divergences
appearing in the loop integrals.

In addition to being a useful method to deal with divergences in EFT, the nonlocal Lagrangian
may also provide insights into general properties of physical interactions. In other words, the nonlocal
regulator could exist in fundamental interactions whatever divergences are present or not. In this
respect, we may also consider along similar lines the interaction between electrons and photons as
being nonlocal. In the classical scenario (at tree level), the nonlocal effect is certainly negligible at low
momentum transfers. On the other hand, for quantum fluctuations associated with loop diagrams, the
internal photon can be sensitive to the structure of the physical particle since its momentum can be
infinite.

It is informative, therefore, to study the Pauli form factors of leptons in the framework of nonlocal
QED. The anomalous magnetic moments of the electron and muon, ae and aµ, respectively, are among
the most precisely determined observables in particle physics. The latest theoretical predictions for
ae and aµ in the Standard Model (SM) are aSM

e = 1159652182.032(720) × 10−12 [385] and aSM
µ =

116591810(43)× 10−11 [386]. The recent measurement of the muon anomalous magnetic moment in the
E989 experiment at Fermilab finds

∆aFNAL
µ = aFNAL

µ − aSM
µ = 230(69)× 10−11, (243)

which is a 3.3σ discrepancy from the SM prediction [387]. Combined with the previous E821 experiment
at BNL [388], the result leads to a 4.2σ discrepancy [387]

∆aµ = aFNAL+BNL
µ − aSM

µ = 251(59)× 10−11. (244)

For the electron, the most accurate measurement of ae has been carried out by the Harvard group, and
the discrepancy from the SM result was 2.4σ [389, 390],

∆ae = aexp
e − aSM

e = −87(36)× 10−14. (245)
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Figure 29: Feynman diagram for the one-loop vertex correction to the lepton form factors.

As SM predictions in general closely match other experimental information, the deviation in one of the
most precisely measured quantities in particle physics remains a mystery, and has inspired considerable
theoretical work. The discrepancy between the SM results and experiments could be even larger for
very large momentum transfers, where the structure of leptons could be visible. This motivates the
investigation of the anomalous form factors of the electron and muon within the nonlocal QED, in
analogy with from the nonlocal chiral effective theory [310].

The nonlocal Lagrangian for QED can be written as

Lnonloc
QED = ψ̄(x)(i/∂ −m)ψ(x)− 1

4
Fµν(x)F µν(x)− e

∫
d4a ψ̄(x)γµAµ(x+ a)ψ(x)F (a), (246)

where the lepton field ψ(x) with mass m is located at spacetime point x and the photon field Aµ(x+a)
is located at x + a. The function F (a) is the correlation function normalized as

∫
d4aF (a) = 1, and

for the case of a δ function reduces the nonlocal Lagrangian to the local one. The nonlocal Lagrangian
(246) is invariant under the gauge transformation

ψ(x)→ eiα(x)ψ(x), Aµ(x)→ Aµ(x)− 1

e
∂µ α

′(x), (247)

where α(x) =
∫

daα′(x+a)F (a). In contrast to the nonlocal Lagrangian for the chiral EFT, where the
gauge link is introduced to guarantee local gauge invariance, in this case the gauge link is not necessary
since the photon does not carry charge.

The one-loop Feynman diagram for the lepton form factors is shown in Fig. 29. In this approximation,
the vertex can be written as

ū(p′)Γµ(p′, p)u(p) = ū(p′)

∫
d4k

(2π)4
F̃ (q2)F̃ 2(k2)(ieγν)

i

/p′ − /k −m
γµ

i

/p− /k −m
(ieγρ)

−igνρ
k2

u(p). (248)

Similar to the case of the Dirac and Pauli form factors of the nucleon, one can obtain the form factors
of the lepton as

F nonloc
1 (q2) =

−ie2F̃ (q2)

(4m2 − q2)2

∫
d4k

(2π)4
F̃ 2(k2)

[−24m2
(
(k · p)2 + (k · p′)2

)
+ 8m2k2(4m2 − q2)(

(p′ − k)2 −m2
)(

(p− k)2 −m2
)
k2

+
2(2m2 − q2)(4m2 − q2)2 − 4(4m2 + 2q2)(k · p)(k · p′)− 4k · (p+ p′)(8m4 − 6m2q2 + q4)(

(p′ − k)2 −m2
)(

(p− k)2 −m2
)
k2

]
(249)

and

F nonloc
2 (q2) =

−ie2F̃ (q2)8m2

q2(4m2 − q2)2

∫
d4k

(2π)4
F̃ 2(k2)

[
(4m2 + 2q2)

(
(k · p)2 + (k · p′)2

)
− 8(m2 − q2)(k · p)(k · p′)(

(p′ − k)2 −m2
)(

(p− k)2 −m2
)
k2

+
(q4 − 4m2q2)(k · p+ k · p′ + k2)(

(p′ − k)2 −m2
)(

(p− k)2 −m2
)
k2

]
. (250)
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In Eqs. (249) and (250) the momentum dependent vertices F̃ (q) and F̃ (k) appear. For F̃ (q), if the
external momentum q is much smaller than the scale of the lepton, the size of the lepton can be
neglected and F̃ (q) ' 1. However, for F̃ (k), the internal momentum k varies from zero to infinity, and
in this case the regulator is important as it renders the loop integrals for F nonloc

1 and F nonloc
2 convergent

in the ultraviolet.
For the numerical calculation, as in the nonlocal chiral EFT case, the regulator F̃ (k2) is chosen to

be a dipole form,

F̃ (k2) =
Λ4

(k2 − Λ2)2
. (251)

The Pauli form factor at the one-loop level can then be obtained as

F nonloc
2 (Q2) =

α

2π
F̃ (Q2)

∫ 1

0

dx

∫ 1−x

0

dy
2Λ8m2(x+ y)(1− x− y)5(

Q2xy +m2(x+ y)2
)(
m2(x+ y)2 +Q2xy + (1− x− y)Λ2

)4 ,

(252)
where Q2 ≡ −q2. In the limit Λ→∞, the local result is recovered,

F local
2 (Q2) =

α

2π

∫ 1

0

dx

∫ 1−x

0

dy
2m2(1− x− y)(x+ y)

m2(x+ y)2 +Q2xy
, (253)

which gives the well known anomalous magnetic moment at the one-loop level, F local
2 (0) = α/2π. In

the nonlocal case, the anomalous magnetic moment is given by F nonloc
2 (0) = (α/2π)(1 − 8m2/3Λ2 −

65m4/3Λ4 +O(m6/Λ6)). If m� Λ, the deviation of F nonloc
2 (0) from the SM is highly suppressed. With

the results from nonlocal and local QED, we can define their discrepancy as ∆F2 = F local
2 −F nonloc

2 , and
their relative discrepancy as R = ∆F2/F

local
2 . Note that the loop integrals for the Pauli form factors

are ultraviolet convergent in both the local and nonlocal cases. The regulator is naturally generated
from the nonlocal Lagrangian with the naive idea that the interaction between the photon and lepton
is not restricted to take place at one point. For the ultraviolet divergent integral in the local case, the
regulator will render the integral convergent. For the integral which is convergent in the local case, the
regulator also exists and will give deviations from the local result at large momentum transfer.

The analytic expression of the nonlocal Pauli form factor can be expanded in orders of the lepton
mass m when the momentum transfer and Λ are � m. At leading order, F nonloc

2 (Q2) can be written as

F nonloc
2 (Q2) = αm2

[
−Λ4

πQ2(Q2 + Λ2)2
log

m2

Q2
+ C(Q2,Λ2)

]
, (254)

where the lepton mass independent function C(Q2,Λ2) is given by

C(Q2,Λ2) =
Λ4(Q4 + 3Λ2Q2 − 6Λ4) log(Λ2/Q2)

πQ4(Q2 − Λ2)(Q2 + Λ2)2
− 3Λ8 log2(Λ2/Q2)

πQ6(Q2 + Λ2)2

− 6Λ8Li2(1− Λ2/Q2)

πQ6(Q2 + Λ2)2
− πΛ8

Q6(Q2 + Λ2)2
+

3Λ4(Q2 + 4Λ2)

2πQ4(Q2 + Λ2)2
. (255)

The first term in the bracket of Eq. (254) is the leading nonanalytic term. For the local case with
Λ→∞, one has C(Q2,∞) = 0 and F local

2 (Q2) at leading order is given by

F local
2 (Q2) = −αm

2

πQ2
log

m2

Q2
. (256)

In the numerical calculation, the one free parameter, Λ, in the regulator needs to be determined.
For the nucleon case, Λ is of the order of 1 GeV. For leptons, however, Λ could be much larger given
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Figure 30: Pauli form factor F l
2(Q2) of the electron (left) and muon (right) versus momentum transfer

squared Q2 for Λ = 0.2 TeV (solid), 0.5 TeV (dashed), and the local limit (dotted lines). The insets
show F l

2(Q2) at low Q2 up to Q2 = 0.001 TeV2. (Figure from Ref. [310].)

the much smaller lepton size. Certainly, on the one hand, the smaller the value of Λ, the larger the
deviation from the SM. On the other hand, Λ should be large enough to make the nonlocal results
consistent with the experiments at the same level as the SM. When Λ = 0.2 TeV, the calculated anonloc

e

in nonlocal QED is 0.00116171491307, which is a 2.0 × 10−14 deviation from the corresponding SM
value. Considering the experimental accuracy 2.6× 10−13 [39] and the discrepancy between experiment
and the SM prediction of 8.7× 10−13, the choice of Λ = 0.2 TeV seems reasonable.

For the muon, aµ in nonlocal QED has some 8.6 × 10−10 deviation from the local or SM case.
Comparing with ∆aµ = 2.5 × 10−9, the value Λ = 0.2 TeV also appears reasonable to take for the
muon. In the numerical calculations, we therefore show the results with Λ = 0.2 TeV and 0.5 TeV. In
principle, QED itself cannot determine the form of the regulator and the value of Λ, which can only
be inferred from experimental data, especially at finite Q2. One can show, however, that whatever the
value of Λ, the relative discrepancy between the local and nonlocal QED results is always significant if
the momentum transfer Q2 is large enough [310].

The Pauli form factors of the electron and muon, F e
2 (Q2) and F µ

2 (Q2), are shown in Fig. 30 versus Q2.
The form factors of the leptons are seen to decrease rapidly with increasing Q2 due to the small size of
the lepton mass. When Q2 is small, the discrepancy between the nonlocal QED and the local SM QED
is much smaller than the form factors themselves. For instance, at Q2 = 0 the discrepancy ∆F e

2 is at
least 1011 times smaller than the anomalous magnetic moments. With increasing Q2, the discrepancy
is more clearly visible when it becomes comparable with the form factors. Since the mass of the muon
is larger than that of the electron, its form factor drops more slowly than that for the electron. Due
to the nonlocal effect, the form factors in nonlocal QED are smaller than those in the SM at any value
of Q2.

The relative deviation R, plotted in Fig. 31 versus Q2, clearly shows the discrepancy between the
nonlocal QED and the SM for both the values of Λ = 0.2 TeV and 0.5 TeV. For a given Q2, the
discrepancy ∆F2 and the form factor F2 are both much larger for the muon than for the electron.
However, the relative deviations R are almost the same for the electron and muon. At Q2 = 0, the
relative deviation R is very small, of order 10−11 and 10−7 for the electron and muon, respectively,
which is of the same order for the relative deviation of the SM from the experiments. To confirm this
discrepancy for the electron, the experiment should therefore be very accurate in order to attain an
additional 10 effective digits. The relative deviation R increases with the increasing Q2. For example,
at Q2 = 0.01 TeV2, R ≈ 0.37 and 0.08 for Λ = 0.2 and 0.5 TeV, respectively. When Q2 & 0.1 TeV2,
R is larger than 0.5 for both Λ values. For even larger Q2 & 0.2 TeV2, F nonloc

2 could be one order of
magnitude smaller than the SM value.
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Figure 31: Relative deviation R(Q2) for the electron and muon versus Q2, for Λ = 0.2 TeV (dashed
blue line) and 0.5 TeV (solid red line). (Figure from Ref. [310].)
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Figure 32: Relative deviation R(Λ) for the electron and muon versus Λ, for Q2 = 0.01 (solid line), 0.05
(dashed), 0.2 (dotted), and 0.5 TeV2 (dot-dashed line). The inset is for R at Q2 = 0 for the muon (solid
line) and electron (dashed line). (Figure from Ref. [310].)

The relative deviation R is also sensitive to the parameter Λ. In Fig. 32, the Λ dependence of
R is plotted at different Q2 values between Q2 = 0.01 and 0.5 TeV2. For any given Q2, R clearly
decreases with increasing Λ. The relative deviations are very similar for electrons and muons, with the
differences only visible on a logarithmic scale. The exact value of Λ can only be determined from future
experiments. Regardless of the specific value of Λ, the relative deviation R is always significant as
long as the momentum transfer Q2 is sufficiently large. Although the absolute value of the form factor
is small, the relative deviation of nonlocal QED from the SM is very large. Even if the experiment
can only measure the form factor to one significant digit at finite Q2, one may still be able to draw
conclusions about physics beyond the SM. Since the deviation is so large at finite Q2, the conclusion is
not changed by higher order QED corrections or hadronic effects, as these are typically less than one
percent for both electrons and muons.
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8.2 Solid quantization

In this report we have applied nonlocal EFT and nonlocal QED to the study of hadron and lepton
properties, choosing dipole regulators for the correlation functions in the numerical calculations. In this
section, we will focus on the generality of the nonlocal Lagrangian without referring to a specific form
for the correlation function. In the previous nonlocal Lagrangians, the fermion (baryon or lepton) is
placed at spacetime coordinate x, while the boson (meson or photon) is at a different coordinate, x+a.
The free Lagrangian as well as the propagator is the same as the local one. Here, we make the nonlocal
Lagrangian more general and assign each field to be at different spacetime points. For illustration, we
consider the U(1) gauge theory; however, it will be straightforward to generalize this to other types of
interactions.

The most general nonlocal Lagrangian which is locally U(1) gauge invariant can be written as
[391, 392]

L =

∫
d4a ψ̄

(
x+

a

2

)
eiI(x+a/2,x)γµ i(Dµ +m)e−iI(x−a/2,x)ψ

(
x− a

2

)
G1(a), (257)

where the covariant derivative is

Dµ = ∂µ − ig
∫

d4bAµ(x+ b)G2(a, b), (258)

and I(y, x) is the path integral of the gauge field,

I(y, x) = g

∫ y

x

dzµ
∫

d4bAµ(z + b)G2(a, b). (259)

The Lagrangian (257) is invariant under the transformations

ψ
(
x− a

2

)
→ ψ

(
x− a

2

)′
= exp

[
igθ
(
x− a

2

)]
ψ
(
x− a

2

)
, (260a)

ψ̄
(
x+

a

2

)
→ ψ̄

(
x+

a

2

)′
= exp

[
igθ
(
x+

a

2

)]
ψ̄
(
x+

a

2

)
, (260b)

Aµ(x+ b) → Aµ
′(x+ b) = Aµ(x+ b) + ∂µθ

′(x+ b), (260c)

where the functions θ′(x), θ(x) and G2(a, b) are constrained by the relation

θ(x) =

∫
d4b θ′(x+ b)G2(a, b). (261)

In previous calculations, the simplification was made that G1(a) = δ(a) and G2(a, b) = F (b). As for the
chiral EFT, the general version of the Lagrangian in Eq. (257) includes both the normal interaction from
the minimal substitution and additional interactions from the expansion of gauge link. The difference
from the previous calculations is that the free Lagrangian is also nonlocal.

The free part of the nonlocal Lagrangian in Eq. (257) is

L0(x) =

∫
d4a ψ̄

(
x+

a

2

)
γµi(∂µ +m)ψ

(
x− a

2

)
G1(a). (262)

Using the translation operator to move the position to the same point, the free Lagrangian can be
written as

L0(x) = ψ̄(x)γµi(∂µ +m)G̃1(i∂µ)ψ(x), (263)

where G̃1(i∂µ) is the Fourier transform of G1(a), G̃1(i∂µ) =
∫

d4a eia·i∂G1(a). In the nonlocal free
Lagrangian, the fermion propagator is modified correspondingly as

S(x′ − x) =

∫
d4p

(2π)4

ieip·(x
′−x)

(/p−m+ iε) G̃1(p2)
. (264)
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The propagator is related to the quantization of the field, and for a point particle one has

ψ(x) =
∑
s=±

∫
d4p

(2π)4
δ(p2 −m2)

[
bsp us(p) e−ip·x + ds†p vs(p) eip·x

]
, (265)

where bsp (dsp) and ds†p (bs†p ) are annihilation and creation operators satisfying

{bsp, br†p } = {dsp, dr†p } = (2π)3 2ωp δ
(3)(p− q) δsr, (266)

with us(p) and vs(p) the Dirac spinors. For a non-point particle with propagator in Eq. (264), the field
can be written as

ψ(x) =
∑
s=±

∫
d4p

(2π)4
H(p2)

[
αsp us(p) e−ip·x + βs†p vs(p) eip·x

]
, (267)

where αsp (βsp) and βs†p (αs†p ) are the new annihilation and creation operators for the non-point particle.
The creation and annihilation operators have the anticommutation relations

{αsp, αr†q } = {βsp, βr†q } = (2π)4 δ(4)(p− q) δsr, (268)

with all other anticommutators vanishing. The corresponding anticommutation relation for the fermion
field at equal time t is

{ψ(x, t), ψ†(y, t)} =

∫
d4p

(2π)4
H2(p2) 2p0γ

0 eip·(x−y) =

∫
d3p

(2π)3
γ0Ψ(p) eip·(x−y) ≡ γ0Φ(x− y), (269)

where

Ψ(p) =

∫
dp0

π
H2(p2) p0. (270)

The key difference from the quantization condition for a point particle is that the δ(x− y) is replaced
by the function Φ(x− y) in Eq. (269).

To derive the relations between H(p2) and G̃1(p2), we rewrite the fermion field as

ψ(x) =
∑
s=±

∫
d4p

(2π)4

∫
dM2H(M2) δ(p2 −M2)

[
αsp us(p) e−ip·x + βs†p vs(p) eip·x

]
=

∑
s=±

∫
d3p

(2π)4 2ωM

∫
dM2H(M2)

[
αsp,ωM us(p) eip·x−iωM t + βs†p,ωM vs(p) e−ip·x+iωM t

]
. (271)

By definition, the Feynman propagator can then be written as

S(x′ − x) =

∫
d3p

4(2π)4ωMωM ′

∫
dM2

∫
dM ′2H(M2)H(M ′2) δ(ωM ′ − ωM)

×
[
θ(t′ − t)(/p+m) e−ip·(x

′−x) − θ(t− t′)(/p−m) eip·(x
′−x)
]

=

∫
d4p

(2π)4

∫
dM2

2π

iH2(M2)(/p+m)

p2 −M2 + iε
e−ip·(x

′−x). (272)

Comparing Eqs.(264) and (272), we then have [392]∫
dM2

2π

H2(M2)

p2 −M2
=

1

(p2 −m2)G̃1(p2)
, (273)

for general G̃1(p2), H(p2), or G2(a, b).
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For a point particle, with

H2(p2) = 2πδ(p2 −m2), G1(a) = δ(a), G2(a, b) = δ(b), (274)

the solid quantization will revert back to the point quantization, and the nonlocal Lagrangian will
reduce to the local one. For Pauli-Villars type regularization, one would have

H2(p2) = 2π
[
δ(p2 −m2)− δ(p2 − Λ2)

]
, G̃1(p2) =

p2 − Λ2

m2 − Λ2
, G2(a, b) = δ(b). (275)

For the nonlocal Lagrangian used in the calculation of the nucleon form factors and PDFs in this report,
we have

H2(p2) = 2πδ(p2 −m2), G̃1(p2) = 1
[
G1(a) = δ(a)

]
, G2(a, b) = F (b), (276)

where F (b) is the correlation function in the nonlocal Lagrangian. For a non-point physical particle, the
δ(p2−m2) for the point case is replaced by the general function H(p2), and the creation and annihilation
operators bsp (dsp) and ds†p (bs†p ) are replaced by αsp (βsp) and βs†p (αs†p ).

The solid quantization is easy to be understood in the nonrelativistic case. For example, for a
non-point scalar field we can write [391, 392]

φ(x, t) =

∫
d3p

(2π)32ωp
ψ(p)

[
ap e

ip·x−iωpt + a†p e
−ip·x+iωpt

]
, (277)

where ψ(p) is the wave function of the particle in momentum space. The commutation relations of the
scalar field in this case are

[φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0,

[φ(x, t), π(y, t)] = iΦ(x− y), (278)

where π(x, t) is the conjugate field of φ(x, t) and

Φ(x− y) =

∫
d3p

(2π)3
ψ2(p) eip·(x−y). (279)

Again, the function δ(3)(x − y) in the point case is replaced by the function Φ(x − y) in the case of
solid quantization.
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