
Resolution of 100 photons and quantum generation of unbiased random 

numbers 

 

Miller Eaton 1,6 , Amr Hossameldin 1,6 , Richard J. Birrittella 2,3, Paul M. Alsing2, Christopher C. 

Gerry 4, Hai Dong5, Chris Cuevas5 & Olivier Pfister1 

1Department of Physics, University of Virginia, Charlottesville, VA, USA.  

2Information Directorate, Air Force Research Laboratory, Rome, NY, USA.  

3National Academy of Sciences, Washington DC, USA.  

4Department of Physics and Astronomy, Lehman College, The City University of New 

York, Bronx, NY, USA. 

5Thomas Jefferson National Accelerator Facility, Newport News, VA, USA.  

6These authors contributed equally: Miller Eaton, Amr Hossameldin. 

e-mail: me3nq@virginia.edu; ah6sr@virginia.edu 

Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have 

led to promising technological advancements and some of the most important tests of 

fundamental physics. At present, quantum detection of light is mostly relegated to the 

microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon 

events from vacuum but cannot differentiate between larger photon-number events. Beyond 

this, the ability to perform measurements to resolve photon numbers is highly desirable for a 

variety of quantum information applications, including computation, sensing and cryptography. 

True photon-number resolving detectors do exist, but they are currently limited to the ability to 

resolve on the order of 10 photons, which is too small for several quantum-state generation 

methods based on heralded detection. Here we extend photon measurement into the 

mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-

efficient transition-edge sensors to accurately resolve photon numbers between 0 and 100. We 

then demonstrate the use of our system by implementing a quantum random-number generator 

with no inherent bias. This method is based on sampling a coherent state in the photon-number 

basis and is robust against environmental noise, phase and amplitude fluctuations in the laser, 

loss and detector inefficiency as well as eavesdropping. Beyond true random-number 

generation, our detection scheme serves as a means to implement quantum measurement and 

engineering techniques valuable for photonic quantum information processing.  

 

The nature of quantum mechanics dictates a fundamental wave–particle duality for 

physical systems, which was first recognized by Einstein through the understanding that light is 

composed of individual energy quanta known as photons1. The ability to accurately measure 

photons has led to checking the validity of the notion of ‘spooky action at a distance’2 and 



tremendous technological advancement in quantum communication3, quantum metrology4–6 

and quantum computation7,8. Much of this progress relies on the ability to measure single 

photons, such as through the use of avalanche photodiodes9; however, the ability to resolve 

arbitrary numbers of photons beyond simply distinguishing vacuum from non-vacuum is highly 

desirable for many quantum information applications8,10–12. The process of projecting a subset of 

modes of an entangled state onto the Fock basis can allow for engineering non-Gaussian 

quantum states with negative Wigner functions13–15—a requirement for any quantum speed-up 

in continuous-variable quantum information16. Recent claims of quantum supremacy with 

Gaussian boson sampling devices7 can be challenged with substantially greater ease when 

threshold detectors are used in place of photon-number-resolving detectors (PNRDs) 17. Finally, 

sampling the photon number of a wave-like superposition such as a coherent state reveals 

fundamentally random outcomes that can be used to generate true random numbers18–20.  

The transition-edge sensor (TES), which is based on a calorimeter formed from a 

superconducting wafer held just below the critical temperature, has arisen as a viable PNRD with 

quantum efficiency approaching unity and entirely negligible dark counts21–23. Previous results 

with TES systems show the ability to measure non-classical systems with high mean photon 

numbers24,25; however, these experiments were based on methods requiring extensive post-

processing that give generally good estimates of photon-number measurements but relatively 

low distinguishability between individual photon counts above 10 photons26. For demanding 

applications requiring photon-number resolution, even a single-photon discrepancy destroys 

quantum correlations. Current methods demonstrate the potential to accurately count photons 

in the low double digits (~16)27, but certain proposals necessitate considerably higher detection 

events for conditional-state preparation. One particularly salient example is the preparation of a 

cubic-phase state to complete a universal gate set for continuous-variable quantum 

computation28. For the numerical approximations used in this formalism to hold, one must detect 

a large number of photons—simulations suggest 50 or more29. The detection scheme we 

demonstrate here now easily surpasses this previously unreachable milestone. 

In this Article, we extend the resolving capabilities of individual TES detectors to a 

maximum of 37 photons per detection channel with on-the-fly signal processing. We then 

multiplex three detectors into a system capable of resolving 0–100 photons with detector 

quantum efficiencies above 90%. Furthermore, we illustrate the utility of our scheme towards 

quantum cryptography applications by creating a quantum random-number generator (QRNG). 

The need for random numbers arises in many applications including cryptography, simulation 

and games of chance. Pseudo-random-number generators are not truly random and can, for 

example, lead to erroneous results in Monte Carlo simulations30. The stochastic nature of 

quantum mechanics leads to true randomness, but many current implementations sample 

random events from a non-uniform distribution, which can lead to bias that must be corrected 

classically31,32. Our method to implement a QRNG is based on sampling the photon statistics of a 

coherent state and is fundamentally unbiased, robust to experimental and environmental noise, 

and invulnerable to eavesdropping. 



The detection system used here is constructed by splitting a laser pulse equally across 

three paths and sending each to a TES as shown in Fig. 1a. Each TES is a PNRD that makes use of 

the extremely temperature-dependent resistance of a superconductor near the phase transition. 

Our TESs are composed of superconducting tungsten wafers that operate with a critical 

temperature near 100 mK. When light is incident on a chip, the thermal energy of an absorbed 

photon acts to locally break the superconducting state and induce a spot of non-zero resistance, 

which increases nearly linearly with absorbed energy21. This change in resistance is detected by 

a series of highly sensitive superconducting quantum interference devices (SQUIDs) and is then 

amplified and converted to an output voltage that is sent to an external field-programmable gate 

array (FPGA) to extract key signal parameters on the fly (system details in Methods). The 

detectors used were optimized to be highly absorptive at the desired wavelength, and while our 

detectors achieve above 90% quantum efficiency at the target wavelength of 1,064 nm (details 

in Methods), TES systems have achieved efficiencies of η = 0.98 (ref. 22) and show the potential 

to reach η > 0.99 (ref. 33).  

True photon-number-resolving measurements  

To resolve the absorbed photon number, information to distinguish different outputs 

must be extracted from the signal received by the FPGA. An example signal is depicted in Fig. 1b. 

Traditionally, peak height has been used for an indicator as the magnitude of the voltage is 

proportional to the energy absorbed for low-photon numbers23. However, this technique limits 

individual detector resolution due to the saturation of the peak magnitudes beyond several 

photons, so recently, alternative methods have been explored for extracting useful 

information27. Although the maximum voltage of the peak saturates, the electrical resistance of 

the TES continues to change as it re-cools back to the superconducting state, suggesting useful 

information is contained beyond the peak as the cooling time will also depend on the energy 

absorbed. Integrating the signal in the region above a pre-defined noise threshold yields 

information about both the maximum voltage and the time to cool the TES; this peak area thus 

allows the resolution of many more photons than height alone.  

For a single TES channel, the histogram of areas for 108 measurement events of a pulsed 

coherent state is shown in Fig. 1c. As the pulse area monotonically increases with absorbed 

energy, the distinctly separated bins correspond exactly to the quanta of energy detected and 

can be used to inform the number of photons measured. The location of these bins can be 

determined by fitting the obtained histogram to a sum of Gaussian functions (red dotted line in 

the figure), where the intersection of each normalized Gaussian gives the location of the bin edge. 

The reason for a Gaussian distribution within each bin is due to variations in the peak areas 

resulting from electronic and thermal noise on the cooling tail of signal peaks. The Gaussian fitting 

breaks down for large areas beyond the black dashed line in Fig. 1c, indicating that the photon 

number can no longer be accurately determined for this detector. The number of events beyond 

the detector resolution across all three TES channels accounts for less than 0.3% of events.  



The normalized Gaussian fits to the histogram are shown in Fig. 1d, where it can be seen 

that the overlap of neighbouring Gaussian peaks is quite small for the majority of bins, indicating 

high confidence in correctly determining the true photon number for a given area measurement. 

The confidence rate decreases with photon number but remains above 90% for photon numbers 

from 0 to 20 in Fig. 1d. If one is willing to post-select and slightly reduced count rates, the accuracy 

of a given photon-number assignment can be substantially increased by defining regions of 

uncertainty near the bin edges. If an event area is recorded in this uncertainty region, then the 

event is discarded and not considered in the statistics. Provided the regions of uncertainty are 

scaled in terms of the fitted Gaussian widths, σn, then the measured probability distribution will 

not deviate from the true distribution and the accuracy of individual photon-number assignment 

will increase. If the regions of uncertainty are defined beyond ±σn, then 32% of the data is 

discarded, but the confidence rates increase to 99% or higher for the first 20 photons. If area 

events are only kept within ± 1/2 σn of each peak, then confidence rates further increase to 99% 

out to 31 photons. The area histograms, Gaussian fits and quantitative overlap errors for each of 

the three detection channels are given in the Extended Data.  

 

Post-selection of data was not necessary for the QRNG experiment performed in this 

work as the results only required random parity measurements, as will be described in the next 

section. Fortunately, the well-centred Gaussian distributions in each histogram bin mean that the 

probability to improperly count an n photon event as an n + 1 event is approximately the same 



as the probability to mistake an n + 1 event for an n photon count for all events away from the 

edge of the detector range. Due to this effect and the predominance of detection events away 

from the upper edge of the TES range, the statistical error for the QRNG experiment was 

dominated by finite sampling.  

Quantum random-number generation 

The prototypical photonic QRNG is based on sending a single photon to a balanced 

beamsplitter and placing detectors on the output to determine whether the photon was 

transmitted or reflected34,35. This is a truly random coin flip in the ideal case, but it comes with 

limitations, such as the need for on-demand single photons, a perfectly balanced beamsplitter 

and ideal detectors. Other optical techniques, such as homodyne measurements to detect 

random vacuum fluctuations36 or a variation on the first method where weak light is spread 

across a sensor array37 can also be used, but these methods also suffer from physical limitations 

and noise that lead to randomness with bias. The randomness achieved is not sampled from a 

uniform distribution and therefore systematic bias must be removed with classical 

algorithms38,39. Beyond reducing data and requiring vulnerable classical schemes, systems with 

inherent bias are at risk to quantum hacking40, where an adversary can effectively change the 

calibrated bias and use this to their advanced to break encryption.  

Here we implement a QRNG making use of the inherent randomness present in the parity 

of the Poissonian distribution of a coherent state19,20. When sampling the parity of the photon-

number distribution, the inherent bias vanishes exponentially quickly with increasing coherent 

state intensity and asymptotically approaches a true coin flip. To generate the random numbers, 

we simply convert a photon number detection to a binary output, where each even photon-

number event is assigned an outcome of ‘0’ and odd photon numbers are assigned a ‘1’. This 

method is unaffected by experimental imperfections such as photon loss, detector inefficiency, 

phase and amplitude noise, and contamination by environmental noise.  

For the parity operator given  where  is the photon-number 

operator and the operators â† and a ̂are the respective bosonic creation and annihilation 

operators, we can examine the expectation value of parity for a coherent state 

 

If n̄ = ⟨n̂⟩ is the mean photon number of the coherent state, then the expectation of parity is 

given by 

 



where Pe and Po are the probabilities to detect either even or odd photon numbers, respectively. 

In Fig. 2, we show the experimentally measured probability distribution for a large coherent state 

with n̄ = 57, which allows us to make full use of our PNRD and clearly resolve out to 100 photons. 

Although the theoretical parity of this state is e−114 ≈ 10−50, we cannot hope to reach this precision 

due to finite sampling. With 108 measurement events, we achieve a parity of zero to within 

uncertainty, with the measured value of −7 × 10−5 ± 10−4. In addition, we first verify the parity of 

weaker coherent states as shown in the inset of Fig. 2. As expected, the parity of vacuum is 1, 

and we are clearly able to match the trend of e−2n ̄ for increasing n.̄  

 

One unfortunate downside of TES detection systems is the slow detector response 

leading to lower generation rates. Recent advances show that superconducting nanowire single-

photon detectors have the potential to be used as PNRDs that are orders of magnitude faster 

than TESs41, but until this technology matures, we implement an alternative method to increasing 

random-bit generation rates. As opposed to binning the photon number result by parity, a 

uniformly random distribution can also be obtained by taking the measurement result and 

binning according to photon-number modulo 2d where d ∈ ℤ. In this way, we can generate a bit 

string of size d for each measurement. As d increases, the residual bias of the QRNG still 

asymptotes to zero with increasing n, ̄but a larger coherent state amplitude is needed to achieve 

a similarly negligible bias. In this work with a maximum detection of 100 photons, we find that 

the residual bias for a coherent state with n̄ = 57 is equivalent for d ∈ {1, 2, 3}, so we use modulo 

8 binning to generate random numbers. 

We subject the ~3 × 108 random bits generated by our protocol to a series of tests taken 

from the NIST suite of randomness tests. The proportion (that is, the percentage of tests that 

pass a given test) is plotted in Fig. 3 for each test, given a significance level of α = 0.01.  In 

computing the confidence interval for Fig. 3 (dashed blue lines), we do not make the standard 

approximation that the distribution of error about the binomially weighted observation is given 

by that of a normal distribution, as our sample size is small enough that such an approximation 

will be unreliable. Instead, we use the Wilson score (confidence) interval42, which has been 

shown to be reliable for smaller sample sizes. The findings in Fig. 3 demonstrate that our 

measurements indicate randomness across all tests considered (all proportions lie above the 



lower confidence bound). We additionally show the results of randomness measures for binning 

with d ∈ [1, 5] in the Extended Data.   

Robust nature of proposed method 

On closer examination, we can see how our method here proves to be quite robust 

against various sources of error. First, we can consider phase and amplitude fluctuations 

originating either from the laser or from any other experimental instability. This can be modelled 

by assuming that a statistical mixture of coherent states impinges upon the detector. We find 

that phase fluctuations have absolutely no bearing on the randomness and still lead to the same 

residual bias of e−2n,̄ which we experimentally verify as shown in the Extended Data. Amplitude 

fluctuations similarly provide negligible impact. Suppose the coherent state has mean photon 

number of n and there is a small intensity fluctuation of δ. The expectation of parity becomes 

e−2(n̄±δ) ≈ e−2n̄(1 ± δ), which tends to zero for sufficiently large n.̄  

Next, we can consider the effects of loss, detector inefficiency and uneven splitting 

between the TES channels with imperfect beamsplitters. We can always model an inefficient 

detector by inserting a loss channel in the form of a beamsplitter of transmittivity η before a 

perfect detector and performing a partial trace over the unmeasured output port (Methods). As 

the coherent state, |α⟩, maps to the smaller coherent state, ||√ηα⟩, after this loss, an imperfect 

detector still measures a Poissonian photon-number distribution. Thus, to achieve quality 

randomness with low residual bias, the coherent state used must be chosen such that n̄′ = ηn is 

sufficiently large. As for uneven splitting or differing ̄detector efficiencies between channels, we 

can equivalently model the process of measuring a single coherent state distribution as the 

discrete convolution of three smaller coherent state distributions. As all beamsplitter outputs are 

still detected, changing the beamsplitter reflectivities just acts to redistribute the photons among 

the TES channels. Provided no single channel saturates, which is easily recognizable through 

monitoring area measurements, sampling the summed output of all channels will still yield a 

Poissonian distribution.  

An additional concern of any quantum mechanical experiment is that of unintentional 

coupling to the environment. One possible effect of such coupling is photon loss as addressed in 

the previous paragraph. Another effect is the addition of photons, such as coupling to an external 

thermal bath, or some malicious observer attempting to inject light. In place of measuring a 

coherent state, suppose that the detector is sent the density operator ρ = ρα ⊗ ρenv, where ρα = 

|α⟩ ⟨α| is the density operator for the coherent state and ρenv is the density operator for some 

unknown quantum state, not necessarily pure, originating from the environment. The 

expectation value of parity for the whole system is given by , where subscript k denotes 

the different subsystems. This leads to an overall parity of  

 



where ⟨Π̂⟩env is the parity of the environment alone and is bounded between 1 and −1. Thus 

environmental mixing will not degrade the quality of the QRNG. 

As a final concern, consider an eavesdropper attempting to determine information about 

the random numbers. Suppose an eavesdropper uses a beamsplitter to sample the coherent light 

in an attempt to predict the random number measured by the user. Due to the nature of coherent 

states, the two beamsplitter outputs remain in a product state, hence are not correlated. Thus 

no information about the results at one output port can be used to determine the results at the 

other, preventing the eavesdropper from attaining useful information. Other side-channel 

attacks, such as the insertion of different quantum states by a nefarious party, can be readily 

mitigated as well. Although the QRNG method utilizes only higher-order parity measurements, 

we still have access to the full photon-number distribution from the TES, which can be monitored 

to ensure that Poissonian statistics are still obtained. This rules out any external manipulation as 

replacing or interspersing the coherent state with a different state will yield a different 

distribution. In addition, the TES waveform response can be concurrently monitored and 

frequently recalibrated to rule out signal manipulation. Finally, as a coherent state is simply a 

laser output, the source and detector can be fabricated in near proximity to one another and 

protected from any realistic attack through appropriate shielding.  

Recently, there has been some emphasis on the use of Bell inequality violations to certify 

the quantum nature of a device and ensure private randomness 31,32,43. Although this concept has 

merit, it requires closing all experimental loopholes to eliminate a local hidden variable theory 

before it can truly validate a black box as a quantum device. Furthermore, trust must be given at 

some point during any realistic experiment as the classical signal used to enact Bell 

measurements may itself be spoofed. In our implementation, the quantum nature of the 

experiment is verified by the area histograms shown in Fig. 1c. The origin of the separation 

between area measurements is the fundamental energy quantization of photons. An entirely 

classical signal would yield a single broad Gaussian peak centred about the average energy of the 

beam of light spanning a swath of areas due to classical noise fluctuations as opposed to the 

multiple Gaussian fits for each TES channel.  

In this Article, we have demonstrated drastic improvement to the photon-number 

resolving capabilities of high-quantum-efficiency TES systems and can accurately resolve 0–

100 photons. By post-selecting data, one can achieve error rates below 1% on photon-number 

measurements beyond 30 photons per detection channel without impacting the measurement 

distribution. These results have far-reaching implications for quantum information applications 

by opening up avenues in quantum sensing, such as reaching the Heisenberg limit with large 

photon-number parity detection44, or through uses in photonic quantum computation, such as 

efficiently simulating interactions in quantum field theory45. Furthermore, we demonstrated the 

utility of our detection scheme to make an unbiased QRNG by sampling the parity of a coherent 

state. This technique is robust to a variety of experimental imperfections, and bit generation 

rates can be improved through binning with photon-number modulo 2d. 
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Methods 

Theoretical background 

Origin of randomness. The photon-number parity of a coherent state tends towards a uniform 

distribution as the energy of the state increases. For a coherent state given by 

 and a parity operator given by where n̂= â†â is the photon-

number operator, we can derive 



 

where n̄= ⟨α| n̂|α⟩ = |α|2. 

From this, we see that for large n, the parity expectation value can ̄be arbitrarily close to 

zero. To generate the random numbers we simply output ‘0’ whenever we measure an even 

number or ‘1’ whenever we measure odd. 

Phase and amplitude fluctuations. First, we consider phase fluctuations. Suppose we do not have 

a pure coherent state, but a statistical mixture of coherent states with the same amplitude and 

a random phase 

 

where  

This yields 

 



which shows that phase noise does not affect the parity expectation value. 

Second, we consider amplitude fluctuations. Changes in the amplitude of the coherent 

state amount to changes in the mean photon number n. For a change ̄ δ in the mean photon 

number, the parity expectation value becomes e−2(n̄±δ) which is approximately e−2n̄ for small δ. 

Environmental noise. We now look at the expectation value of the parity operator on the whole 

system where ρ = ρcoh ⊗ ρenv with ρcoh = |α⟩ ⟨α|. Deriving the expectation value of the new parity 

operator,  where subscript i denotes the different subsystems, we obtain 

 

where ⟨Π̂⟩env is bounded between 1 and −1. For large enough n, the whole expectation value goes 

to zero regardless of the form of ρenv. 

Loss and detector inefficiency. Consider an imperfect detector with quantum efficiency η < 1. 

This can be modelled by placing a fictitious ‘loss beamsplitter’ with reflectivity and 

transmittivity  such that r2 + t2 = 1 in front of a perfect detector and performing a partial 

trace over the reflected mode. The beamsplitter operator acting on bosonic modes a and b is 

given by 

 

where r = cos θ and t = sin θ. Sending a coherent state, |α⟩, to an imperfect detector is then the 

same as sending the density operator 

 

to a perfect detector. Thus, for coherent states, all measurements made with PNRDs having η < 1 

can instead be treated as ideal detectors where the measured state is just a different coherent 

state. 



Unbalanced splitting and efficiency. Suppose we send the coherent state |α⟩ to our three-

detector system. Due to unbalanced splitting between different paths or small variations in 

detector efficiency, each TES may see a different signal. Together, the statistics of the photon 

number summed across all three channels will still be that of a coherent state but with 

potentially different effective amplitude. 

For an input coherent state and vacuum in the unused beamsplitter ports, |α⟩a|0⟩b|0⟩c, 

the beamsplitter system shown in Fig. 1a transforms the state to 

 

where rk and tk are the beamsplitter coefficients for beamsplitter k. Suppose now that the three 

detectors have quantum efficiencies ηa, ηb and ηc. Using equation (6) for each mode, the effective 

state sent to three perfect detectors is then 

 

where 

 

The probability to measure the total photon number summed across all detectors, 

m = na + nb + nc, is given by 

 

 



which is the same probability distribution that would be obtained by measuring a coherent state 

of amplitude with a single detector of efficiency η = 1. 

Experimental methods 

The coherent state sent to the PNRD is generated by pulsing a continuous-wave 1,064 nm laser 

using an acousto-optical modulator as an optical switch. The pulse duration is set to be less than 

100 ns, which is well within the rising-edge time of the detection signal. The pulses are sent at a 

repetition rate of 12.5 kHz to ensure that the detector has re-cooled and thermal noise is at a 

minimum. This rate can be increased to 50 kHz without incurring substantial ill effects. Each split 

pulse is coupled to a TES channel through standard single-mode optical fibre. Details on TES 

operation within a cryostat can be found in refs. 6,23. In this work, we additionally filter the output 

signal to remove the d.c. component and implement a low-noise external amplifier to bring the 

signal to within a 500 mV range. 

Data acquisition. The amplified output signal is sent to a custom-built Ethernet-based flash 

analogue-to-digital converter (EFADC) capable of collecting and processing TES signals for up to 

eight channels. The device is based on an FPGA, which samples a signal with 12-bit resolution at 

a rate of 250 MHz. The internal memory and processing speed allow the device to collect up to 

32 μs worth of signal points, perform rudimentary calculations on the data to determine key 

parameters, and transfer the calculated parameters to a hard disk all before the next signal pulse 

arrives.  

The EFADC is triggered by an external pulse signal corresponding to the arrival time of 

each coherent state pulse. If the incoming signal rises above a user-defined noise threshold, the 

EFADC begins integrating the waveform until the signal falls below a second threshold that can 

be set to account for hysteresis. The integrated signal area, maximum peak height, signal 

duration, time stamp of signal start and time stamp of signal maximum are all recorded. All 

parameters can be used for additional signal characterization in post-processing, but we find that 

pulse area is sufficient to achieve large photon-number resolution. 

Efficiency calibration. Transition-edge sensors have managed to reach up to 98% quantum 

efficiency22, but it is important to characterize the precise response of our detection system at 

1,064 nm. The power in a given pulse sent to each TES detector is on the order of several 

picowatts, so care must be taken to accurately calibrate the quantum efficiency. First, we 

constructed and characterized a high-amplification photodetection circuit with a low-power 

sensitivity threshold at approximately 200 pW. Calibration for this detector was based on a 

Scientech pyroelectric calorimeter and a series of precision attenuators. The home-build 

photodetector was then used in conjunction with the attenuators to calibrate each TES channel 

individually. Laser light was split at a 95:5 beamsplitter where the stronger portion was sent to 

the photodetector and the weaker portion was further attenuated and sent to the TES. This 



calibrated attenuation included the effects of imperfect fibre coupling so the TES quantum 

efficiency could be directly measured. 

For each detector, 106 pulses were sent simultaneously to the photodetector and the 

TES channel under test. The mean photon number was extracted from the PNRD and compared 

with the classical signal power to determine the quantum efficiency. We measured a quantum 

efficiency of 97(5)% for channel 1, 93(5)% for channel 2 and 91(5)% for channel 3. The 5% 

uncertainly originates from the absolute error on the Scientech pyroelectric calorimeter, 

uncertainty on splitting ratio and error on the attenuation calibration. All channels used were 

thus measured to have a quantum efficiency above 90%. 

Phase randomization. Extended Data Fig. 1 shows the randomness tests for data where phase 

noise has been introduced to the coherent state. This is achieved by driving a mirror-mounted 

piezoelectric actuator to change the optical path length over a range of one wavelength, or 

1,064 nm. The piezoelectric actuator was driven with a 100 Hz triangle-wave function, which was 

chosen to be much slower than the pulse repetition rate to ensure all phases over the range from 

0 to 2π were equally represented among the entire dataset. 

Randomness characterization. Here we follow the work detailed in ref. 20 on how the photon-

number counts were binned to generate multiplicatively longer bit sequences as well as how the 

bit sequence was tested for randomness. We start with the case of mod(2) binning, in which each 

detection event corresponds to an outcome of even(0) or odd(1), the measurement probabilities 

are given by 

 

where  is the average photon number of the coherent state and 

 

are the even (k = 0) and odd (k = 1) projection operators. For large average photon numbers, the 

balancement between even/odd probabilities is maintained (that is, e−2n̄→ 0). In terms of these 

projectors, the corresponding parity operator is given by Π ̂= P̂(2)
0 − P̂(2)

1 . Similarly, we can define 

projectors for the case of mod(4) binning 

 

where each mod(2) bin is further broken down into bins containing every other even/odd photon 

count. For example, the k = 0 bin is composed of the photon number counts {0, 4, 8, ...} while the 

k = 2 bin counts {2, 6, 10, ...} and likewise for the odd counts. In this sense, mod(4) binning is akin 



to a higher-order parity measurement. It is clear then that the parity operator can be expressed 

as 

 

and the binning probabilities are in turn given by 

 

The length of the bit sequence can then be made longer by taking the remainders and mapping 

them to the dual-bit values according to {0, 1, 2, 3} → {00, 01, 10, 11} . This same form of mapping 

holds for higher-modulo binning. Note the largest biasing term in equation (21) is larger than the 

mod(2) biasing term by a square root. This implies a trade-off when binning the data: larger bit 

sequence generation comes at the cost of requiring a higher coherent state average photon 

number. This procedure can be generalized for mod(Q) where the projectors are given by 

 

and the corresponding parity operator can in turn be constructed as 

 

The tested data is based off of 107,911,769 photon-number counts from a coherent source of 

average photon number n̄≈ 57. For a trial size of 7.5 × 105, this corresponds to 

n = {143, 287, 431, 575, 719} trials for mod{2, 4, 8, 16, 32}, respectively. We subject this data to a 

suite of randomness tests outlined by NIST SP800-2246 to demonstrate that the generated bit 

sequence is truly random. We note that our methodology for determining randomness is the 

same as that employed in testing the randomness of bit sequences generated using the protocols 

of the NIST encryption standard competition finalists, detailed in ref. 47, utilized in the verification 

of new randomness tests by ref. 48 and implemented in the cryptographically secure Intrinsic ID 

Zign software-based RNG49. In Extended Data Fig. 2, we plot the results of these tests for 

mod{2, 4, 16, 32}. Note that the mod(8) result can be found within the main text. Due to the large 

number of tests available for judging whether a sequence is random or not, there is no ‘complete’ 

or systematic approach to proving randomness. Instead, one relies on providing sufficient 

evidence that a given sequence is indeed random. For each trial, a series of tests are performed 

and a P value is obtained for each test corresponding to the probability that a perfect random-



number generator would produce a sequence less random than the sequence being tested. If 

this P value is greater than the chosen significance level of α = 0.01 (1%), the test is considered 

passed (successful) and the trial is accepted as random. The proportion is then defined as the 

ratio of successful trials to the total number of trials (that is, the success rate). Included in our 

analysis is the confidence interval (CI), that is, the range of estimation for the success rate of a 

particular test given a 99% confidence level. Typically, the CI for a set of Bernoulli trials with a 

success rate of p̂ can be fairly approximated by that of the normal distribution 

 

where n is the total number of trials and z is the  quantile probit function (that is, the inverse 

cumulative distribution function for the normal distribution). However, this approximation to the 

binomial distribution, which is more representative of a set of Bernoulli trials, is only valid when 

the number of trials is on the order of n ≳ 104 and/or where the success rates are sufficiently far 

away from the boundary values of 0, 1. This proves to be an insufficient approximation for our 

data. We instead turn to the asymmetric Wilson score approximation42 to the normal distribution 

given by 

 

The Wilson score confidence interval, CIws, for a 99% confidence level are represented by 

horizontal dashed blue lines in Fig. 3, and Extended Data Figs. 1 and 2. In addition, we plot for 

each test the equivalent definition of the CIws 

 

where ns, nf = n − ns are the number of successful and failed trials, respectively. The success rate 

is then given by p̂= ns/n. This measure provides a range for each test in which the mean 

proportion is likely to fall given repeated testing of the bit generation method (that is, more 

trials performed) and is represented by red error bars in Fig. 3, and Extended Data Figs. 1 and 2. 

Sufficient evidence of randomness exists if the proportion lies above the lower bound of the 

CIws for all tests considered. By this criterion, we conclude that the generated bit sequences for 

the cases of mod{2, 4, 8} binning are random while the generated bit sequences for 

mod{16, 32, ...} binning are not random. 

To further validate our results, we reiterate that for the case of a coherent state with 

average photon number n̄≈ 57, we expect the balancement of binning probabilities to hold for 

up to mod(8) binning. Higher-modulo binning will introduce larger degrees of bias into the 



binning probabilities, as seen in equation (21). An approximate trend is that the largest biasing 

term in the binning probabilities for the case of mod(Q) binning is , such that if one 

wanted to maintain the same degree of bias as the mod(2) binning case, one would need a 

coherent state with an average photon number -times larger. For a static  higher-modulo 

binning will subsequently result in a generated ̄bit sequence that does not display randomness 

as there will be a significant amount of bias in the higher-modulo binning probabilities. For 

reference, the impact of bias on the randomness of the bit sequence is reflected in Extended 

Data Fig. 2, where as predicted the mod(16) and mod(32) binning cases show evidence that the 

generated bit sequence is not random as for both cases several test proportions fall outside of 

the CIws. Even more specifically, only a few tests fail for the mod(16) case and most fail for the 

mod(32), reflecting that more bias is introduced as a function of the modulo binning size. 

Likewise, this also further strengthens the argument that the mod{2, 4, 8} cases result in a 

random-bit sequence, as our experimental data align perfectly with theoretical predictions. 

Additional data 

Further analyses of experimental data are shown in Extended Data. Full characterization of the 

randomness tests on all data is shown in Extended Data Figs. 1 and 2. The effect of error-rate 

reduction through binning modifications is shown in Extended Data Fig. 3 with the normalized 

Gaussian fitting for all three TES channels shown in Extended Data Fig. 4. Specific error rates for 

different photon-number measurements on each channel based on different histogram binning 

are shown in Extended Data Fig. 5. Theoretical residual bias for photon-number measurements 

modulo d with an upper limit of 100 resolvable photons are shown in Extended Data Fig. 6. 

Data availability 

The data supporting plots within this paper are available at 

https://doi.org/10.6084/m9.figshare.21304524.v1 and 

https://doi.org/10.6084/m9.figshare.21291318. Additional data used for detector calibration 

can be obtained from the corresponding authors on reasonable request. 

Code availability 

The codes used to process and analyse the data can be obtained from the corresponding 

authors on reasonable request. 
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