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We investigate the mechanical structure of a spin-1 particle. Introducing three different frameworks,
i.e., the three-dimensional (3D) Breit frame, the two-dimensional (2D) Breit frame, and the 2D infinite
momentum frame (equivalently the two-dimensional Drell-Yan frame), we scrutinize the 2D and 3D energy-
momentum tensor (EMT) distributions in these frames.We first derive the EMT distributions in the 2D Breit
frame by performing the Abel transformation. The mass distribution in the 2D Breit frame contains an
additionalmonopole contribution induced geometrically. The pressure distribution in the 2DBreit frame also
gets an induced monopole structure. When the Lorentz boost is carried out, the mass distribution in the 2D
infinite-momentum frame acquires the induced dipole term. Similarly, we also have the induced dipole
contributions to the pressure and shear-force densities.Wevisualize the 2Dmass distributions when the spin-
1 particle is polarized along the x- and z-axes. We observe that the 2D mass distribution in the infinite
momentum frame exhibit clearly the induced dipole structure when the spin-1 particle is polarized along the
x-axis. We also discuss the strong force fields inside a polarized spin-1 particle.

DOI: 10.1103/PhysRevD.107.054007

I. INTRODUCTION

The gravitational form factors (GFFs) or energy-
momentum tensor (EMT) form factors of a hadron show
its mechanical structure (see a recent review [1]). They
carry essential information on how its mass and spin are
distributed inside, how its stability is acquired, and how
the internal force fields are laid out. It implies that the
gravitational form factors are equally important as the
electromagnetic (EM) form factors. In the modern under-
standing of hadronic form factors, the gravitational form

factors can be understood as the second Mellin moments
of the generalized parton distributions (GPDs) [2–6]. The
GFFs can also be defined from the matrix element of the
EMToperator that comes from the response of the hadron to
a variation of the external space-timemetric tensor [7,8]. The
two-dimensional (2D) inverse Fourier transforms of the
GFFs provide the mass and angular momentum probability
distributions in the transverse plane [9–11]. These proba-
bility distributions in the transverse plane are called the
transverse densities [12]. However, the most intriguing form
factor among the GFFs is the D-term (Druck-term) form
factor, which furnishes the pressure and shear-force den-
sities. They describe the stability mechanism andmechanics
of the hadron. In contrast with spin-0 (pion) and spin-1=2
particles (nucleon), higher multipole form factors emerge
for the spin-1 particle, as was shown in the case of the EM
form factors of the deuteron and spin-1 particle [13–18]. A
similar situation can also be found for the EMT form factors
of the Δ isobar [19].
Since the ρ meson is a resonance particle, it is compli-

cated to extract its GFFs experimentally. However, the spin
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structure functions gd1ðxÞ and gd2ðxÞ of the deuteron have
already been studied experimentally, although with large
errors (see Fig. 4 in Ref. [20]). In spite of the experimental
difficulty, the deuteron will be considered as a candidate
target in the upcoming US Electron-Ion Collider (EIC)
experiment [21] and the planing Electron-Ion Collider in
China [22], its properties such as the parton distribution
functions (PDFs), the structure functions, the generalized
parton distributions (GPDs), the Compton form factors are
anticipated to be measured in the near future. Because of
the polynomiality sum-rules with the above quantities, the
GFFs can also be indirectly measured by experiments [23].
Note that the EMT densities of the nucleon were exper-
imentally studied [24,25] and the Δ → N transition GFFs
are under investigation at the Jefferson laboratory.
Traditionally, the EM form factors of the nucleon have

been used for exhibiting how the charge and magnetization
distributions are spatially distributed inside a nucleon in the
Breit frame (BF) [26]. Similarly, the nucleon EMT form
factors yield the three-dimensional (3D) mass, angular
momentum, pressure, and shear-force densities for the
nucleon [27,28]. However, there have been serious criti-
cisms on the 3D densities of the nucleon [9,11,12,26,29],
because the 3D densities can only be probabilistically
meaningful for atoms and nuclei, not for the nucleon.
The reasoning of the criticism lies in the fact that the
intrinsic size of the nucleon (RN) is comparable to the
corresponding Compton wavelength [30], ƛ ¼ ℏ=mc
(RN ∼ 4ƛ), which may bring about relativistic corrections

up to δðNÞ
rel ¼ 1=ð2m2R2

NÞ ≈ 2.8% [31]. For spin-1 cases, the

ρmeson has δðρÞrel ≈ 6.3% and the deuteron has δðdÞrel ≈ 0.12%
[31,32]. As expected, the relativistic corrections to the
distributions for the deuteron are known to be negligible
[13,14], whereas those for the ρ meson are rather strong.
Thus, it is necessary to resolve this problem for the ρmeson.
Choosing the infinite-momentum frame (IMF), one can
avoid the relativistic corrections but obtain the 2D transverse
densities, which suffer from a deficiency of losing informa-
tion on the longitudinal direction. As proposed in
Refs. [13,33], however, one can view the 3D densities as
the quasiprobabilistic ones defined in phase space, taking
them fully relativistically. From this perspective, the 3D
distributions in the BF provide the intuitive and physical
meaning. Then the Abel transformation allows one to
project the 3D densities in the BF to the 2D transverse
densities [34–36], which was already introduced in describ-
ing deeply virtual Compton scattering [37,38]. The 2D BF
EM distributions for the ρ meson have been studied [16]
where a wave packet is applied to the localized ρ-meson
state. Note that, very recently, a novel prescription of
defining the 3D distribution was studied in Refs. [39,40].
In Refs. [34,35], it was shown that the Abel trans-

formation projects the 3D BF distributions onto the 2D IMF
densities. The Abel images of the 3D BF distributions
without any nonrelativistic approximation are exactly

identified as the 2D IMF densities that can be obtained
from the 2D Fourier transform of the corresponding form
factors. To find the Abel images of the 3D distributions in
the BF, one should know the hadronic matrix element in the
IMF or the expressions for the 2D distributions in the IMF.
In Ref. [35], the four different 3D BF EMT distributions are
related to the 2D IMF ones and a complete set of the
2D IMF distributions were determined. The 2D IMF
distributions for the transversely polarized nucleon can
be found by using the obtained Abel images from the
3D BF distributions.
Meanwhile, Freese and Miller [41] criticized the Abel

transformation from the 3D BF distributions to the 2D IMF
ones. They argued that the Abel transformation is merely
defined as the integral of a spherical symmetric 3D dis-
tribution over z-axis. Having performed the integral of the
nucleon EMT distributions T00ðrÞ or TijðrÞ over z, they
obtained the Abel images in the BF. However, this integral
merely projects the 3D BF distribution onto the 2D BF one
without any relativistic effects. So, their Abel images are
different from those defined in Refs. [34,35]. Knowing this
difference is essential to understand the physical implica-
tions of the Abel images. Though we have technical
difficulties to construct the Abel images in the IMF from
the 3D distributions in the BF for higher-spin particles such
as the ρ meson and Δ isobar, we can formally establish the
Abel images in the IMF for these particles [34,35]. The only
trouble arises from the fact that relativistic contributions
bring about a number of kernels composed of the Laplacians
into theAbel transformation [14]. Depending on the order of
the differential equations, we need to provide additional
boundary conditions on the distributions so that we can
perform the integrals. An easy way to circumvent such
complexities is to project 3DBF distributions to 2DBF ones
as done in Ref. [41]. Then, we can proceed to the IMF by
increasing the z-component of the momentum (Pz) to
infinity. In the case of the spin-1 particle, however, the
procedure from Pz ¼ 0 to Pz ¼ ∞ is very complicated as
shown in Ref. [14]. Nevertheless, we want to emphasize the
following point: in Ref. [36] it was explicitly shown that by
introducing the kernel for relativistic effects, the 2D IMF
transverse charge densities of both the proton and neutron
were derived from the nonrelativistic charge and magneti-
zation distributions in 3D space. The results for the trans-
verse charge densities are exactly the same as those obtained
in Ref. [12]. Thus, the IMF Abel images directly obtained
from the 3D distributions [34–36] are immune to the
criticism raised in Ref. [41].
Interpolating the EMT densities from the 2D BF to the

2D IMF sheds light on how the spin-1 particle receives
relativistic effects. Lorcé demonstrated ingeniously how the
charge and magnetic distributions undergo changes from
the 2D BF to the 2D IMF, introducing the elastic frame
(EF), where the temporal component of the momentum
transfer is set to be null [33]. As the momentum of the

KIM, SUN, FU, and KIM PHYS. REV. D 107, 054007 (2023)

054007-2



neutron increases from zero to infinity, a large contribution
induced by the magnetization competes with the convective
charge distribution, and it finally overturns the sign of the
neutron transverse charge density at the center of the
neutron. Actually, the neutron charge density in the IMF
reported in Ref. [12] has triggered bafflement for a while,
was removed finally by Ref. [33]. In the same manner, we
will show in the current work how the EMT densities, in
particular, pressure and shear-force densities, are developed
when we proceed from the 2D BF to the 2D IMF.
The D-term form factor mentioned above is subtly

connected to the pressure and shear-force densities.
However, as discussed in Ref. [42], this relation should
be cautiously discussed. In the case of the nucleon, the local
stability condition is a necessary condition for stability but
not a sufficient condition.Moreover, while the local stability
condition requires the negative D-term but the inverse is
not validated. When it comes to a spin-1 particle, the local
stability condition is even more tricky and complicated,
since the multipole expansion of the pressure and shear-
force densities reveal rich structure, specially, in the IMF.
On the other hand, the pressure and shear-force densities
demonstrate an essential feature of how the nucleon is
mechanically shaped [24]. Thus, the pressure and shear-
force densities of a spin-1 particle will pave the way for
understanding its internal structure from a newpoint of view.
As will be shown in this work, their multipole expansion in
the 2D IMF exhibits relativistic effects dramatically, as will
be shown later. Note that in the presence of the Coulomb
interactoin the D-term of charged particles is divergent and
that of the hydorgen atom becomes positive [43,44]. We do
not consider the long-range interactions in the present work.
In the current work, we want to investigate the EMT

densities of a spin-1 particle, focusing on the mechanical
structure of the GFFs and the corresponding densities of
the spin-1 particle instead of describing the GFFs of the
spin-1 particle [13,14,45] quantitatively. The outline of the
current work is given as follows: In the next section we
define the GFFs of a spin-1 particle in three different
frames such as the 3D BF, 2D BF, and 2D IMF. In Sec. III,
we show how to obtain the densities in the three different
frames. In Sec. IV we formulate the Abel transformation
for the EMT densities. In Sec. V we introduce a toy model,
where the GFFs are parametrized as simple quadrupole
types, and derive the 2D EMT densities. We discuss the

physical implications of the numerical results and 2D force
fields inside a spin-1 particle. In the final section, we
summarize the current work and draw conclusions.

II. GRAVITATIONAL FORM FACTORS
OF A SPIN-1 PARTICLE

The EMT operator of quantum chromodynamics (QCD)
can be derived either by varying the action of QCD under
the Poincaré transformation with the symmetrization
imposed [46–48] or by taking variation of the QCD action,
which is coupled to the weak classical torsionless gravi-
tational background field, with respect to the metric tensor
of this curved background field [1,49]. The total EMT
operator consisting of the quark (q) and gluon (g) parts are
then written by

T̂μν ¼
X
q

T̂μν
q þ T̂μν

g ; ð1Þ

where the quark and gluon parts are expressed respectively
as

T̂μν
q ¼ 1

4
ψ̄qð−iD⃖μγν − iD⃖νγμ þ iD⃗μγν þ iD⃗νγμÞψq

− gμνψ̄q

�
−
i
2
=⃖Dþ i

2
=⃗D −mq

�
ψq;

T̂μν
g ¼ Fa;νηFa;

η
ν þ 1

4
gμνFa;κηFa;

κη: ð2Þ

Here, D⃗μ ¼ ∂⃗μ þ igtaAa
μ and D⃖μ ¼ ∂⃖μ − igtaAa

μ are covar-
iant derivatives. ta stand for the SU(3) color group gen-
erators that satisfy the commutation relations ½ta; tb� ¼
ifabctc and are normalized as trðtatbÞ ¼ 1

2
δab. ψq is the

quark operator with flavor index q and mq represents
the corresponding current quark mass. Fa;μη denotes the
gluon field strength expressed as Fa

μν ¼ ∂μAa
ν − ∂νAa

ν−
gfabcAb

μAc
ν. The total EMT operator is a conserved current,

∂
μT̂μν ¼ 0.
The matrix element of the total EMT current operator for

a massive spin-1 particle is parametrized in terms of the six
different form factors [23,50,51] (see also Ref. [52] for a
massless spin-1 particle)

hp0; λ0jT̂μνð0Þjp; λi ¼
�
2PμPν

�
−ϵ0� · ϵA0ðtÞ þ

ϵ0� · Pϵ · P
m2

A1ðtÞ
�
þ 2½Pμðϵ0�ν ϵ · Pþ ϵνϵ

0� · PÞ þ Pνðϵ0�μ ϵ · Pþ ϵμϵ
0� · PÞ�JðtÞ

þ 1

2
ðΔμΔν − ημνΔ2Þ

�
ϵ0� · ϵD0ðtÞ þ

ϵ0� · Pϵ · P
m2

D1ðtÞ
�
þ
�
1

2
ðϵμϵ0�ν þ ϵ0�μ ϵνÞΔ2 − ðϵ0�μ Δν þ ϵ0�ν ΔμÞϵ · P

þ ðϵμΔν þ ϵνΔμÞϵ0� · P− 4ημνϵ
0� · Pϵ · P

�
EðtÞ

�
; ð3Þ
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where the one-particle state for the spin-1 particle is
normalized as hp0; λ0jp; λi ¼ 2p0ð2πÞ3δλ0λδð3Þðp0 − pÞ with
the spin polarizations of the initial λ and final λ0 states.
P ¼ ðpþ p0Þ=2 designates the average of the four-mo-
menta p and p0, and Δ ¼ p0 − p represents the four-
momentum transfer with Δ2 ¼ t. P and Δ are orthogonal
each other, i.e., P · Δ ¼ 0. The polarization vectors are
defined as ϵ0μ ¼ ϵ0μðp0; λ0Þ, ϵμ ¼ ϵμðp; λÞ for simplicity. In
this work, we choose canonical spin states (see relevant
discussions [33,53,54]). It can be obtained by applying the
rotationless boost operator to the spin-1 polarization vector
ϵμð0; λÞ ¼ ð0; ϵ̂λÞ in the rest frame. The explicit expression
of the spin-1 vector ϵμ in any frame is defined by

ϵμðp; λÞ ¼
�
p · ϵ̂λ
m

; ϵ̂λ þ
p · ϵ̂λ

mðmþ p0Þ
p

�
ð4Þ

with

ϵ̂x ¼ ð1; 0; 0Þ; ϵ̂y ¼ ð0; 1; 0Þ; ϵ̂z ¼ ð0; 0; 1Þ; ð5Þ

in the Cartesian basis. ημν is the metric tensor
ημν ¼ diagð1;−1;−1;−1Þ. A0ðtÞ, A1ðtÞ, JðtÞ, D0ðtÞ,
D1ðtÞ, and EðtÞ are the six independent GFFs of the
spin-1 particle. Since the total (quarkþ gluon) current is
conserved, we do not consider the nonconserving terms
arising from the quark and gluon parts separately (see
Ref. [23] for the separate quark and gluon GFFs). While the
decomposition in Eq. (3) is valid for the deuteron, there is
one caveat for the ρmeson because it is a resonance particle
with a broad width. However, the decomposition in Eq. (3)
is still approximately legitimate, as we are interested in the
GFFs of a spin-1 particle in the spacelike region.
Since the GFFs of a spin-1 particle reveal higher multi-

pole structures, it is useful to define the quadrupole
operator Q̂ij. It is defined in terms of the spin operator
Ŝi as

Q̂ij ¼ 1

2

�
ŜiŜj þ ŜjŜi −

2

3
SðSþ 1Þδij

�
; ð6Þ

where the indices i and j run over 1, 2, and 3. Q̂ij

is a symmetric irreducible tensor operator. The components
of the spin operators can be expressed in terms of the
SU(2) Clebsch-Gordan coefficients CSσ0

Sσ1a in the spherical
basis

Ŝaσ0σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
CSσ0
Sσ1a with

ða ¼ 0;�1.σ; σ0 ¼ 0; � � � ;�SÞ: ð7Þ

A. Gravitational form factors of the spin-1 particle
in the 3D Breit frame

We first examine the matrix element of the EMT
operators (3) in the 3D BF. To examine the multipole
structure of the GFFs, we need to define the n-rank
irreducible Cartesian tensors, which are expressed respec-
tively in coordinate and momentum spaces

Yi1i2…in
n ðΩrÞ ¼

ð−1Þn
ð2n − 1Þ!! r

nþ1
∂
i1∂i2 � � � ∂in 1

r
;

Yi1i2…in
n ðΩΔÞ ¼

ð−1Þn
ð2n − 1Þ!!Δ

nþ1
∂
i1∂i2 � � � ∂in 1

Δ
; ð8Þ

where the first three of Yi1i2…in
n ðΩrÞ are explicitly written as

Y0ðΩrÞ ¼ 1; Yi
1ðΩrÞ ¼

ri

r
; Yij

2 ðΩrÞ ¼
rirj

r2
−
1

3
δij:

ð9Þ

In the BF, the four-momenta of the initial and final states
are respectively expressed as p ¼ ðp0; pÞ and
p0 ¼ ðp0;−pÞ, which yield Δ0 ¼ 0 and P ¼ 0. Then we
consider the matrix element of each component of the EMT
current:

hp0; λ0jT̂00ð0Þjp; λi ¼ 2m2E0ðtÞδλ0λ þ 4m2τE2ðtÞQ̂klYkl
2 ðΩΔÞ;

hp0; λ0jT̂0ið0Þjp; λi ¼ 2m2
ffiffiffi
τ

p
iϵijkSkYk

1ðΩΔÞJ 1ðtÞ;

hp0; λ0jT̂ijð0Þjp; λi ¼ 2m2τ

�
Yij
2 ðΩΔÞ −

2

3
δij

�
D0ðtÞδλλ0 þ 8τ2m2

�
Yij
2 ðΩΔÞ −

2

3
δij

�
Ykl
2 ðΩΔÞQ̂klD3ðtÞ

þ 4m2τ

�
Yjk
2 ðΩΔÞQ̂ik þ Yik

2 ðΩΔÞQ̂jk −
1

3
Q̂ij − δijYkl

2 ðΩΔÞQ̂kl

�
D2ðtÞ; ð10Þ

where τ ¼ − t
4m2 and Q̂ij

λλ0 ¼ hλ0jQ̂ijjλi. For brevity, we define Q̂ij ≔ Q̂ij
λλ0 from now on. Examining these expressions for

each component of the matrix element, one can easily relate the multipole form factors E0ðtÞ, E2ðtÞ, J 1ðtÞ, D0ðtÞ, D2ðtÞ,
and D3ðtÞ to the GFFs in Eq. (3)

KIM, SUN, FU, and KIM PHYS. REV. D 107, 054007 (2023)

054007-4



E0ðtÞ ¼ A0ðtÞ −
1

3
τ½−5A0ðtÞ þ 3D0ðtÞ þ 4JðtÞ − 2EðtÞ þ A1ðtÞ�

−
2

3
τ2
�
−A0ðtÞ þD0ðtÞ þ 2JðtÞ − 2EðtÞ þ A1ðtÞ þ

1

2
D1ðtÞ

�
−
1

3
τ3½A1ðtÞ þD1ðtÞ�;

E2ðtÞ ¼ −A0ðtÞ þ 2JðtÞ − EðtÞ þ 1

2
A1ðtÞ þ τ

�
−A0ðtÞ þD0ðtÞ þ 2JðtÞ − 2EðtÞ þ A1ðtÞ þ

1

2
D1ðtÞ

�

þ 1

2
τ2½A1ðtÞ þD1ðtÞ�;

J 1ðtÞ ¼ JðtÞ þ τðJðtÞ − EðtÞÞ;

D0ðtÞ ¼ −D0ðtÞ þ
4

3
EðtÞ − 1

3
τ½2D0ðtÞ − 2EðtÞ þD1ðtÞ� −

1

3
τ2D1ðtÞ;

D2ðtÞ ¼ −EðtÞ;

D3ðtÞ ¼
1

4
½2D0ðtÞ − 2EðtÞ þD1ðtÞ� þ

1

4
τD1ðtÞ: ð11Þ

B. Gravitational form factors of the spin-1 particle in the 2D Breit frame

In Refs. [33,55], the EF was introduced to study how the hadronic matrix element undergoes changes under the Lorentz
boost. It was shown that this frame naturally interpolates between the 2D BF and 2D IMF for both the nucleon [33] and the
deuteron [13]. The EF also allows one to define a quasiprobabilistic distribution for a moving hadron in theWigner sense. To
trace down the origin of both the geometrical and relativistic effects, we scrutinize how the multipole structure of the EMT
matrix element emerges in 2D space. If we restrict ourselves to 2D space, we have to define the 2D n-rank irreducible tensors
respectively in 2D coordinate and momentum spaces as follows:

Xi1…in
n ðθx⊥Þ ¼

ð−1Þnþ1

ð2n − 2Þ!! x
n⊥∂i1…∂

in ln x⊥; Xi1…in
n ðθΔ⊥Þ ¼

ð−1Þnþ1

ð2n − 2Þ!!Δ
n⊥∂i1…∂

in lnΔ⊥ ð12Þ

with n > 0 and in ¼ 1; 2. x⊥ is the radial distance from the center of the 2D plane. The first three of Xi1���in
n ðθx⊥Þ are

given as

X0ðθx⊥Þ≔ 1; Xi
1ðθx⊥Þ ¼

xi⊥
x⊥

; Xij
2 ðθx⊥Þ ¼

xi⊥x
j
⊥

x2⊥
−
1

2
δij: ð13Þ

In the EF, the spacelike momentum transferΔ ¼ ðΔ⊥; 0Þ lies in the 2D transverse plane. The frame satisfies the following
conditions: P ¼ ð0; PzÞ and Δ0 ¼ 0. If we take the 2D BF, i.e., Pz ¼ 0, the matrix element for each component of T̂μν is
derived as

hp0; λ0jT̂00ð0Þjp; λi ¼ 2m2Eð0;1ÞðtÞδσ0σ þ 2m2Eð0;0ÞðtÞδλ03δλ3 þ 4m2τE2ðtÞQ̂klXkl
2 ðθΔ⊥Þ;

hp0; λ0jT̂0ið0Þjp; λi ¼ 2m2
ffiffiffi
τ

p
iϵ3liŜ3λ0λX

l
1ðθΔ⊥ÞJ 1ðtÞ;

hp0; λ0jT̂ijð0Þjp; λi ¼ 2m2τ

��
1

3
D2ðtÞ −

1

2
D0ðtÞ

�
δσ0σ þ

�
−
2

3
D2ðtÞ −

1

2
D0ðtÞ

�
δλ03δλ3

�
δij

þ 2m2τXij
2 ðθΔ⊥Þδλ0λD0ðtÞ þ 4m2τ½Q̂ikXjk

2 ðθΔ⊥Þ þ Q̂jkXikðθΔ⊥Þ − Q̂lmXlm
2 ðθΔ⊥Þδij�D2ðtÞ

þ 8m2τ2Q̂lm

�
Xlm
2 ðθΔ⊥Þ þ

1

2
δlm

��
Xij
2 ðθΔ⊥Þ −

1

2
δij

�
D3ðtÞ ð14Þ

with

Eð0;0ÞðtÞ ¼ E0ðtÞ þ
2

3
τE2ðtÞ; Eð0;1ÞðtÞ ¼ E0ðtÞ −

1

3
τE2ðtÞ; ð15Þ

where the definition of the multipole form factors is the same as Eq. (11) and the indices run over i, j ¼ 1; 2. We use the
following short-hand notation δσ0σ ¼ δσ0σδλ0σ0δλσ with σ0; σ ¼ 1, 2. We want to mention that the 2D multipole form factors
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exhibit a distinctive feature in contrast to those in the 3D
BF. As shown in Eq. (15), the mass form factors in the 2D
BF, Eð0;0Þ and Eð0;1Þ, acquire the positive and negative
contributions, respectively, from the quadrupole mass form
factor E2 defined in the 3D BF. It originates from the
presence of the quadrupole structure and the geometrical
difference between the 2D and 3D spaces. This feature has
been already observed in the charge distributions of a
higher-spin particle (S ≥ 1) such as the ρ meson [14].

We want to emphasize that they do not come from
relativistic effects.

C. Gravitational form factors of the spin-1 particle in
the infinite-momentum frame

If we take the value of the Pz as infinity in the EF, we
arrive naturally at the IMF. Thus, by taking Pz → ∞, we
obtain the matrix element in the IMF:

hp0; λ0jT̂00ð0Þjp; λi ¼ 2P2
zEIMF

ð0;0ÞðtÞδλ03δ3λ þ 2P2
zEIMF

ð0;1ÞðtÞδσ0σ þ 2P2
z

ffiffiffi
τ

p
EIMF
1 ðtÞiϵ3jkŜjλ0λXk

1ðθΔ⊥Þ þ 4P2
zτEIMF

2 ðtÞQ̂klXkl
2 ðθΔ⊥Þ;

hp0; λ0jT̂0i
a ð0Þjp; λi ¼ 2mPz

ffiffiffi
τ

p
iϵ3liŜ3λ0λX

l
1ðθΔ⊥ÞJ IMF

1 ðtÞ þ 4mPzτ

�
Xik
2 ðθΔ⊥Þ −

1

2
δik

�
J IMF

2 ðtÞQ̂3k;

hp0; λ0jT̂ijð0Þjp; λi ¼ 2m2τ

��
1

3
DIMF

2 −
1

2
DIMF

ð0;1Þ

�
δσ0σ þ

�
−
2

3
DIMF

2 −
1

2
DIMF

ð0;0Þ

�
δλ03δλ3

�
δij

þ 2m2τXij
2 ðθΔ⊥Þ½δσ0σDIMF

ð0;1ÞðtÞ þ δλ03δλ3DIMF
ð0;0ÞðtÞ� þ 4m2τ½Q̂ikXjk

2 ðθΔ⊥Þ þ Q̂jkXik
2 ðθΔ⊥Þ

− Q̂lmXlm
2 ðθΔ⊥Þδij�DIMF

2 ðtÞ þ 8m2τ3=2iϵlm3ŜlXm
1 ðθΔ⊥Þ

�
Xij
2 ðθΔ⊥Þ −

1

2
δij

�
DIMF

1 ðtÞ

þ 8m2τ2Q̂lm

�
Xlm
2 ðθΔ⊥Þ þ

1

2
δlm

��
Xij
2 ðθΔ⊥Þ −

1

2
δij

�
DIMF

3 ðtÞ; ð16Þ

where the multipole form factors are related to the GFFs in Eq. (11),

EIMF
ð0;0ÞðtÞ ¼

1

3ð1þ τÞ2 ½12τJ 1 − 3ðτ − 1ÞE0 þ τð2þ 4τÞE2 þ τðτ − 1Þð3D0 − 2D2Þ − 4τ2ð1þ 2τÞD3�;

EIMF
ð0;1ÞðtÞ ¼

1

3ð1þ τÞ2 ½6τJ 1 þ 3E0 − τE2 − 3τD0 − τD2 − 3τ2D2 þ 2τ2D3�;

EIMF
1 ðtÞ ¼ 1

3ð1þ τÞ2 ½−6ðτ − 1ÞJ 1 − 6E0 þ 2τE2 þ 6τD0 − 4τðD2 þ τD3Þ�;

EIMF
2 ðtÞ ¼ −

1

3ð1þ τÞ2 ½6J 1 − 3E0 − ð3þ 2τÞE2 þ 3τD0 þ ðτ þ 3ÞD2 þ 2τð3þ 2τÞD3�;

J IMF
1 ðtÞ ¼ J 1 − τD2

1þ τ
; J IMF

2 ðtÞ ¼ J 1 þD2

1þ τ
;

DIMF
ð0;1ÞðtÞ ¼ D0 þ

τ

3
GW; DIMF

ð0;0ÞðtÞ ¼ D0 þ
4τ

3
GW;

DIMF
1 ðtÞ ¼ 1

4
GW; DIMF

2 ðtÞ ¼ D2; DIMF
3 ðtÞ ¼ D3 −

1

4
GW; ð17Þ

with

GWðtÞ ¼ −
2ð3D0 þD2 − 2τD3Þ

3ð1þ τÞ : ð18Þ

It is straightforward to understand the meaning of each term
in Eq. (17). In the case of the 00 and 0k-components, they
are subjected to both the Wigner spin rotation and get
mixed with the other components of the EMT current under
the Lorentz boost, so that they vary as shown in Eq. (17).

It is remarkable to see that the dipole and quadrupole
contributions are respectively induced by the Lorentz boost
as shown in Eq. (16). When it comes to the matrix element
of T̂ij, the D-term form factors undergo changes by the
Wigner spin rotation under the Lorentz boost except for
DIMF

2 ðtÞ. Interestingly, it was found that this effect of the
Wigner spin rotation can be parametrized in terms of one
combination of the form factors, GW , as done for the EM
form factors in Ref. [13]. In addition to that, the monopole
form factors acquire the geometrical contribution in the
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presence of the quadrupole form factors. As shown in
Eq. (14) there was no term such as DIMF

1 in the ij-
component of the EMT current in the BF. It implies that
the form factor GWðtÞ only appears by the Wigner spin

rotation under the Lorentz boost. Thus, the induced dipole
form factor DIMF

1 is solely due to the relativistic effect.
The multipole form factors at t ¼ 0 in the IMF can be

given as follows:

EIMF
ð0;1Þð0Þ ¼ EIMF

ð0;0Þð0Þ ¼ E0ð0Þ; EIMF
1 ð0Þ ¼ 2J 1ð0Þ − 2E0ð0Þ; EIMF

2 ð0Þ ¼ −2J 1ð0Þ þ E0ð0Þ þ E2ð0Þ −D2ð0Þ;
J IMF

1 ð0Þ ¼ J 1ð0Þ; J IMF
2 ð0Þ ¼ J 1ð0Þ þD2ð0Þ;

DIMF
ð0;1Þð0Þ ¼ DIMF

ð0;0Þð0Þ ¼ D0ð0Þ; DIMF
1 ð0Þ ¼ −

1

2
D0ð0Þ −

1

6
D2ð0Þ;

DIMF
2 ð0Þ ¼ D2ð0Þ; DIMF

3 ð0Þ ¼ D3ð0Þ þ
�
1

2
D0ð0Þ þ

1

6
D2ð0Þ

�
: ð19Þ

The results from the light-front formalism should coincide
with those from the IMF. As a cross-check, we have carried
out the same calculation in the light-front formalism (See
Appendix A).

III. DEFINITION OF THE EMT DISTRIBUTIONS

While the 3D EMT distributions of a spin-1 particle can
not be interpreted as a probability densities because of the
ambiguous relativistic corrections, we can understand it as
a quasiprobabilistic distribution by the Wigner distribution.
This quasiprobabilistic distribution conveys information on
the internal structure of a hadron in a fully relativistic
picture. The matrix element of the EMT current for a
physical state jψi can be expressed in terms of the Wigner
distribution as [33]

hT̂μνðrÞi ¼
Z

d3P
ð2πÞ3

Z
d3RWðR;PÞhT̂μνðrÞiR;P; ð20Þ

whereWðR;PÞ represents the Wigner distribution given by

WðR;PÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·Rψ̃�
�
Pþ Δ

2

�
ψ̃

�
P −

Δ
2

�

¼
Z

d3ze−iz·Pψ�
�
R −

z
2

�
ψ

�
Rþ z

2

�
: ð21Þ

The average position R and momentum P are defined as
R ¼ ðr0 þ rÞ=2 and P ¼ ðp0 þ pÞ=2, respectively. Δ ¼ p0 −
p denotes the momentum transfer, which enables us to get
access to the internal structure of a particle. The variable
z ¼ r0 − r stands for the position separation between the
initial and final particles. The Wigner distribution contains
information on the wave packet of a particle

ψðrÞ ¼ hrjψi ¼
Z

d3p
ð2π3Þe

ip·rψ̃ðpÞ; ψ̃ðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2p0

p hpjψi;

ð22Þ

with the plane-wave states jpi and jri respectively nor-
malized as hp0jpi ¼ 2p0ð2πÞ3δð3Þðp0 − pÞ and hr0jri ¼
δð3Þðr0 − rÞ. The position state jri localized at r at time
t ¼ 0 is defined as a Fourier transform of the momentum
eigenstate jpi

jri ¼
Z

d3p

ð2πÞ3
ffiffiffiffiffiffiffiffi
2p0

p e−ip·rjpi: ð23Þ

If we integrate over the average position and momentum,
then the probabilistic density in either position or momen-
tum space is recovered to be

Z
d3P
ð2πÞ3WNðR;PÞ ¼ jψNðRÞj2;
Z

d3RWNðR;PÞ ¼ jψ̃NðPÞj2: ð24Þ

Given P and R, the matrix element hT̂μνðrÞiR;P conveys
information on the internal structure of the particle local-
ized around the average position R and average momentum
P. This can be expressed as the 3D Fourier transform of the
matrix element hp0; λ0jT̂μνð0Þjp; λi,

hT̂μνðrÞiR;P ¼ hT̂μνð0Þi−x;P ¼
Z

d3Δ
ð2πÞ3 e

−ix·Δ

×
1ffiffiffiffiffiffiffiffi

2p0
p ffiffiffiffiffiffiffiffiffi

2p00p hp0; λ0jT̂μνð0Þjp; λi; ð25Þ

with the shifted position vector x ¼ r − R. Thematrix element
hp0; λ0jT̂μνð0Þjp; λi was discussed in the previous section.

A. EMT distributions in the 3D Breit frame

Having integrated over P of Eq. (20), we find that the
part of the wave packet can be factorized. Thus, the target in
the BF is understood as a localized state around R from the
Wigner perspective. In this frame, Eq. (25) is reduced to
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Tμν
BFðx;λ0;λÞ¼hT̂μνð0Þi−x;0

¼
Z

d3Δ
2P0ð2πÞ3

e−ix·Δhp0;λ0jT̂μνð0Þjp;λi: ð26Þ

From now on we use r instead of x, i.e., x ¼ r − R → r. We
expand the temporal component of the EMT distributions
in terms of the multipole distributions as follows:

T00
BFðr; λ0; λÞ ¼ ε0ðrÞδλ0λ þ ε2ðrÞQ̂ijYij

2 ðΩrÞ; ð27Þ

where

ε0ðrÞ ¼ mẼ0ðrÞ; ε2ðrÞ ¼ −
1

2m
r
d
dr

1

r
d
dr

Ẽ2ðrÞ; ð28Þ

with

Ẽ0;2ðrÞ ¼ 2m
Z

d3Δ
2P0ð2πÞ3

e−iΔ·rE0;2ðtÞ: ð29Þ

Note that since the angle integration of Yij
2 vanishes, i.e.,R

dΩrY
ij
2 ðΩrÞ ¼ 0, we have the normalization of the mass

distribution E0ð0Þ as follows:
Z

d3rT00
BFðr; λ0; λÞ ¼

Z
d3rε0ðrÞδλ0λ ¼ mE0ð0Þδλ0λ; ð30Þ

which gives E0ð0Þ ¼ 1.
We can get the spin distribution by contracting T0k

BF
by ϵijkrj

Jiðr; λ0; λÞ ¼ ϵijkrjT0k
BFðr; λ0; λÞ

¼ Ŝjλ0λ

Z
d3Δ
ð2πÞ3 e

−ir·Δ
��

J̄ 1ðtÞ þ
2

3
t
dJ̄ 1ðtÞ

dt

�
δij

þ
�
ΔiΔj −

1

3
Δ2δij

�
dJ̄ 1ðtÞ

dt

�
ð31Þ

with J̄ 1 ≔ mJ 1=P0. Integrating the angular-momentum
distribution Ji over r yields

R
d3rJiðr; λ0; λÞ ¼ Ŝiλ0λJ 1ð0Þ,

so that we have the obvious normalization for spin,
i.e., J 1ð0Þ ¼ 1.
The spatial component of the EMT distributions can be

parametrized in terms of the elastic pressure and shear
forces, given by [23]

Tij
BFðr; λ0; λÞ ¼ p0ðrÞδij þ s0ðrÞYij

2 ðΩrÞ þ p2ðrÞQ̂ij

þ s2ðrÞ2½Q̂ipYpj
2 ðΩrÞ þ Q̂jpYpi

2 ðΩrÞ
− δijQ̂pqYpq

2 ðΩrÞ�

−
1

m2
Q̂pq

∂
p
∂
q½p3ðrÞδij þ s3ðrÞYij

2 ðΩrÞ�;
ð32Þ

where

pnðrÞ ¼
1

6m
1

r2
d
dr

r2
d
dr

D̃nðrÞ;

snðrÞ ¼ −
1

4m
r
d
dr

1

r
d
dr

D̃nðrÞ ð33Þ

with

D̃nðrÞ ¼ 2m
Z

d3Δ
2P0ð2πÞ3

e−iΔ·rDnðtÞ: ð34Þ

The conservation of the EMT current furnishes the equi-
librium conditions as

p0
nðrÞ þ

2

3
s0nðrÞ þ

2

r
snðrÞ ¼ 0; ðn ¼ 0; 2; 3Þ: ð35Þ

The pressures given in Eq. (33) satisfy the von Laue
conditions,

Z
d3rpnðrÞ ¼ 0: ð36Þ

Note that all the monopole and quadrupole distributions are
related to the dimensionless constant D-terms

Dnð0Þ ¼ m
Z

d3rr2pnðrÞ ¼ −
4

15
m
Z

d3rr2snðrÞ;

ðn ¼ 0; 2; 3Þ: ð37Þ

B. EMT distributions in the 2D Breit frame

The EF distributions depend on the impact parameter x⊥
(r ¼ ðx⊥; xzÞ) and momentum P ¼ ð0; PzÞ where a spin-1
particle moves along the z-direction without loss of gen-
erality. In this frame, Eq. (25) is reduced to

Tμν
EFðx⊥; Pz; λ0; λÞ ≔

Z
dxzhT̂μνð0Þi−r;0

¼
Z

d2Δ⊥
2P0ð2πÞ2

e−ix⊥·Δ⊥

× hp0; λ0jT̂μνð0Þjp; λijΔz¼0: ð38Þ
Before investigating the EMT distributions in the IMF, one
should first separate the geometrical contributions from the
relativistic ones. By doing that, we can explicitly show
that the relativistic corrections are different from the
geometrical ones.
In this subsection, we examine the distributions in the 2D

BF by taking Pz → 0. The temporal component of the EMT
current in the 2D EF is given by

T00
EFðx⊥; 0; λ0; λÞ ¼ δ3λδλ03ε

ð2DÞ
ð0;0Þðx⊥Þ þ δσ0σε

ð2DÞ
ð0;1Þðx⊥Þ

þ Q̂ijXij
2 ðθx⊥Þεð2DÞ2 ðx⊥Þ: ð39Þ
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The mass distribution is defined by

εð2DÞð0;lÞ ðx⊥Þ ¼ mẼð0;lÞðx⊥Þ;

εð2DÞ2 ðx⊥Þ ¼ −
1

2m
x⊥

d
dx⊥

1

x⊥
d

dx⊥
Ẽ2ðx⊥Þ; ð40Þ

where

Ẽð0;lÞ;2ðx⊥Þ¼2m
Z

d2Δ
2P0ð2πÞ2

e−iΔ⊥·x⊥Eð0;lÞ;2ðtÞ; ðl¼0;1Þ:

ð41Þ

At the zero momentum transfer t ¼ 0, the normalizations of
the form factors in the 2D BF are found to be

Eð0;lÞð0Þ¼
1

m

Z
d2x⊥ε

ð2DÞ
ð0;lÞ ðx⊥Þ;

E2ð0Þ¼−
m
4

Z
d2x⊥x2⊥ε

ð2DÞ
2 ðx⊥Þ; with ðl¼0;1Þ: ð42Þ

One can see that the newly introduced form factors Eð0;lÞ are
normalized to be Eð0;0Þð0Þ ¼ Eð0;1Þð0Þ ¼ Eð0Þ ¼ 1 from
Eq. (15). These features will be revisited in Sec. IV.
We obtain the spin distribution as

J3ð2DÞðx⊥; λ0; λÞ ¼ ϵ3jkxj⊥T0k
EFðx⊥; 0; λ0; λÞ

¼ Ŝ3λ0λ

Z
d2Δ
ð2πÞ2 e

−ix⊥·Δ⊥
�
J̄ 1ðtÞ þ t

dJ̄ 1ðtÞ
dt

�

ð43Þ

with J̄ 1ðtÞ ≔ mJ 1ðtÞ=P0. Integrating the 2D angular-
momentum distribution J3ð2DÞ over x⊥ yieldsR
d2x⊥J3ð2DÞðx⊥; λ0; λÞ ¼ Ŝ3λ0λJ 1ð0Þ, so that we get the

normalization for spin, i.e., J 1ð0Þ ¼ 1. It gives exactly
the same constraint given in Eq. (31).
As done in the 3D case, the spatial component

of the EMT distributions in the EF can be constructed
as follows:

Tij
EFðx⊥; 0; λ0; λÞ ¼

Z
d2Δ

2P0ð2πÞ2
e−iΔ⊥·x⊥hp0; λ0jT̂ijð0Þjp; λi

¼
�
pð2DÞ
0 ðx⊥Þ −

2

3
pð2DÞ
2 ðx⊥Þ

�
δijδσ0σ þ sð2DÞ0 ðx⊥ÞXij

2 ðθx⊥Þδσ0σ þ
�
pð2DÞ
0 ðx⊥Þ þ

4

3
pð2DÞ
2 ðx⊥Þ

�
δijδλ03δλ3

þ sð2DÞ0 ðx⊥ÞXij
2 ðθx⊥Þδλ03δλ3 þ 2sð2DÞ2 ðx⊥Þ½Q̂ipXpj

2 ðθx⊥Þ þ Q̂jpXpi
2 ðθx⊥Þ − δijQ̂pqXpq

2 ðθx⊥Þ�

−
1

m2
Q̂pq

∂
p
∂
qðsð2DÞ3 ðx⊥ÞXijðθx⊥Þ þ pð2DÞ

3 ðx⊥ÞδijÞ; ð44Þ

where pð2DÞ
n ðx⊥Þ and sð2DÞn ðx⊥Þ are expressed as

pð2DÞ
n ðx⊥Þ ¼

1

8m
1

x⊥
d

dx⊥
x⊥

d
dx⊥

D̃nðx⊥Þ;

sð2DÞn ðx⊥Þ ¼ −
1

4m
x⊥

d
dx⊥

1

x⊥
d

dx⊥
D̃nðx⊥Þ ð45Þ

with

D̃nðx⊥Þ ¼ 2m
Z

d2Δ
2Eð2πÞ2 e

−iΔ⊥·x⊥DnðtÞ: ð46Þ

A remarkable difference between 2D BF and 3D BF

distributions is that the pð2DÞ
2 distribution is induced to the

monopole structure as shown in the mass distribution, which
should be distinguished from the relativistic effects that will
be discussed later. One can find the monopole term of Tij

EF in
Eq. (44). As previously shown, we obtain the equilibrium
conditions by the conservation of the EMT current

pð2DÞ0
n ðx⊥Þþ

1

2
sð2DÞ0n ðx⊥Þþ

1

r
sð2DÞn ðx⊥Þ¼0; ðn¼0;2;3Þ;

ð47Þ

which results in the von Laue stability conditions for all the
monopole and quadrupole pressures,Z

d2x⊥p
ð2DÞ
n ðx⊥Þ ¼ 0: ð48Þ

They are related to the dimensionless constant D-terms

Dnð0Þ¼2m
Z

d2x⊥x2⊥p
ð2DÞ
n ðx⊥Þ

¼−
1

2
m
Z

d2x⊥x2⊥s
ð2DÞ
n ðx⊥Þ; ðn¼0;2;3Þ: ð49Þ

Once we have the spatial component of the EMT
distributions, we can look into how the 2D stress tensor
provides information on the internal forces that make a
hadron stable. It would be interesting to investigate the
strong force fields and visualize them in 2D space. The
internal local force fields are given by

x̂i⊥T
ij
EFðx⊥; 0; λ0; λÞ ¼

dFr

dSr
x̂j⊥ þ dFθ

dSr
θ̂j⊥;

θ̂i⊥Tij
EFðx⊥; 0; λ0; λÞ ¼

dFr

dSθ
x̂j⊥ þ dFθ

dSθ
θ̂j⊥: ð50Þ
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Each force field acting on the infinitesimal area is derived as

dFr

dSr
¼

��
pð2DÞ
0 þ 1

2
sð2DÞ0

�
−
1

3

�
2pð2DÞ

2 þ sð2DÞ2 þ 1

m2

�
−
sð2DÞ03

2x⊥
−
pð2DÞ0
3

x⊥
þ 2sð2DÞ3

x2⊥

���
δσ0σ

þ
��

pð2DÞ
0 þ 1

2
sð2DÞ0

�
þ 2

3

�
2pð2DÞ

2 þ sð2DÞ2 þ 1

m2

�
−
sð2DÞ03

2x⊥
−
pð2DÞ0
3

x⊥
þ 2sð2DÞ3

x2⊥

���
δλ03δ3λ

þ Q̂rr
λ0λ

1

m2

�
−pð2DÞ00

3 þ pð2DÞ0
3

x⊥
−
sð2DÞ003

2
þ sð2DÞ03

2x⊥
−
2sð2DÞ3

x2⊥

�
;

dFr

dSθ
¼ dFθ

dSr
¼ Q̂rθ

λ0λ
1

m2

�
−
2sð2DÞ03

x⊥
þ 2sð2DÞ3

x2⊥

�
;

dFθ

dSθ
¼

��
pð2DÞ
0 −

1

2
sð2DÞ0

�
−
1

3

�
2pð2DÞ

2 þ sð2DÞ2 þ 1

m2

�
sð2DÞ03

2x⊥
−
pð2DÞ0
3

x⊥

���
δσ0σ

þ
��

pð2DÞ
0 −

1

2
sð2DÞ0

�
þ 2

3

�
2pð2DÞ

2 þ sð2DÞ2 þ 1

m2

�
sð2DÞ03

2x⊥
−
pð2DÞ0
3

x⊥

���
δλ03δ3λ

þ Q̂rr
λ0λ

�
−2sð2DÞ2 þ 1

m2

�
−pð2DÞ00

3 þ pð2DÞ0
3

x⊥
þ sð2DÞ003

2
−
sð2DÞ03

2x⊥

��
þ Q̂θθ

λ0λ

�
−2sð2DÞ2 −

2

m2

sð2DÞ3

x2⊥

�
: ð51Þ

If the target is polarized along the longitudinal direction,
there is no θ dependence in the infinitesimal forces, such as
Q̂rr

33 ¼ Q̂θθ
33 ¼ 1=3 and Q̂rθ

33 ¼ 0. However, if a target is
polarized along one axis of the transverse plane, the angle
dependence on θ appears (see Appendix C).

C. EMT densities in the 2D infinite
momentum frame

As mentioned previously, the EMT densities in the 2D
IMF do not require any relativistic corrections, so that they
have a probabilistic meaning. In the IMF, we divide the
mass and mechanical densities respectively by the Lorentz
factors P0=m and m=P0 to remove the kinematical diver-
gence and suppression in these densities,

T00
IMFðx⊥; λ0; λÞ ≔ T00

EFðx⊥; Pz; λ0; λÞ
m
P0

����
Pz→∞

;

Tij
IMFðx⊥; λ0; λÞ ≔ Tij

EFðx⊥; Pz; λ0; λÞ
P0

m

����
Pz→∞

: ð52Þ

Thus, the T00
IMF is normalized to be its mass m instead of its

momentum Pz. This normalization is the same as the T00
BF

one. One should keep in mind that this mass density
∼mTþþ=Pþ is actually connected to the momentum
density Tþþ defined in the light cone basis. It is different
from the higher-twist mass density that arises from the bad
component of the EMT current. In this paper, the
mass density in 2D IMF indicates the momentum
density normalized as a hadron mass. Similarly, the
normalization of the Tij

IMF is consistent with that of Tij
BF.

The temporal component of the EMT current in the 2D IMF
is given by

T00
IMFðx⊥; λ0; λÞ ¼ δ3λδλ03ε

IMF
ð0;0Þðx⊥Þ þ δσ0σε

IMF
ð0;1Þðx⊥Þ

þ ϵ3jkŜjXk
1ðθx⊥ÞεIMF

1 ðx⊥Þ
þ Q̂ijXij

2 ðθx⊥ÞεIMF
2 ðx⊥Þ; ð53Þ

where 2D mass densities in the IMF are defined as

εIMF
ð0;lÞðx⊥Þ ¼mẼIMF

ð0;lÞðx⊥Þ; εIMF
1 ðx⊥Þ ¼ −

1

2

d
dx⊥

ẼIMF
1 ðx⊥Þ;

εIMF
2 ðx⊥Þ ¼ −

1

2m
x⊥

d
dx⊥

1

x⊥
d

dx⊥
ẼIMF
2 ðx⊥Þ ð54Þ

with

ẼIMF
ð0;lÞ;nðx⊥Þ ¼

Z
d2Δ
ð2πÞ2 e

−iΔ·rEIMF
ð0;lÞ;nðtÞ;

ðn ¼ 1; 2 and l ¼ 0; 1Þ: ð55Þ

As discussed in the 2D BF, the geometrical difference
between 2D and 3D space brings about the induced
monopole term. It contributes to εIMF

ð0;lÞ together with the
3D BF distribution. In addition to that, εIMF

ð0;lÞ is subject to
the relativistic effects arising from the Lorentz boost. On
the other hand, the εIMF

2 consists of the pure 3D BF
distribution together with the relativistic effects.
Interestingly, the dipole mass density is induced in the

2D IMF as shown in Eq. (53). On the other hand, the 2D BF
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mass distributions in Eq. (39) do not contain the dipole one.
It implies that the dipole mass density for a spin-1 particle is
induced by the Lorentz boost. At the zero momentum
transfer t ¼ 0, the normalization of the GFFs in the 2D IMF
are found to be

EIMF
ð0;lÞð0Þ ¼

1

m

Z
d2x⊥εIMF

ð0;lÞðx⊥Þ;

EIMF
2 ð0Þ ¼ −

m
4

Z
d2x⊥x2⊥εIMF

2 ðx⊥Þ; with ðl ¼ 1; 2Þ:

ð56Þ

Since the 2D angle integration of the irreducible tensor
Xi…in
n , we obtain the normalization of the 2D mass

distributions

Z
d2x⊥T00

IMFðx⊥; λ0; λÞ

¼
Z

d2x⊥
�
εIMF
ð0;0Þðx⊥Þδλ03δ3λ þ εIMF

ð0;1Þðx⊥Þδσ0σ
�

¼ m

�
EIMF
ð0;0Þð0Þδλ03δ3λ þ EIMF

ð0;1Þð0Þδσ0σ
�
: ð57Þ

As shown in Eq. (19), we find EIMF
ð0;0Þð0Þ ¼ EIMF

ð0;1Þð0Þ ¼
E0ð0Þ ¼ 1, so the T00

IMF is properly normalized to its mass
regardless of it spin polarization. We want to mention
that the normalization of the mass and spin lead to

EIMF
1 ð0Þ ¼ 2J 1ð0Þ − 2E0ð0Þ ¼ 0 in Eq. (19), which yields

the interesting nontrivial constraint on the induced dipole
mass density,

EIMF
1 ð0Þ ¼

Z
d2x⊥x⊥εIMF

1 ðx⊥Þ ¼ 0: ð58Þ

The spin density is obtained as

J3IMFðx⊥; λ0; λÞ ¼ ϵ3jkxj⊥T0k
EFðx⊥; Pz; λ0; λÞ

����
Pz→∞

¼ Ŝ3λ0λ

Z
d2Δ
ð2πÞ2 e

−ix⊥·Δ⊥
�
J 1ðtÞ þ t

dJ 1ðtÞ
dt

�

þ iϵ3jlQ̂3l
λ0λ

1

2m

Z
d2Δ
ð2πÞ2 e

−ix⊥·Δ⊥Δj

×

�
3J 2ðtÞ þ 2t

dJ 2ðtÞ
dt

�
: ð59Þ

Note that in the IMF the induced quadrupole structure
yields the additional contribution to the spin densities. The
integration of J3IMF over x⊥ removes the quadrupole
contribution, except for J 1. We thus have same normali-
zation

R
d2x⊥J3IMFðx⊥; λ0; λÞ ¼ Ŝ3λ0λJ 1ð0Þ with J 1ð0Þ ¼ 1

as in the case of the 2D BF spin distribution.
We can derive the spatial component of the EMT

densities in the 2D IMF as follows:

Tij
IMFðx⊥; λ0; λÞ ¼

�
pIMF
ð0;1Þðx⊥Þ −

2

3
pIMF
2 ðx⊥Þ

�
δσ0σδ

ij þ sIMF
ð0;1Þðx⊥Þδσ0σXij

2 ðθx⊥Þ þ
�
pIMF
ð0;0Þðx⊥Þ þ

4

3
pIMF
2 ðx⊥Þ

�
δλ03δλ3δ

ij

þ sIMF
ð0;0Þðx⊥Þδλ03δλ3Xij

2 ðθx⊥Þ þ 2sIMF
2 ðx⊥Þ½Q̂ipXpj

2 ðθx⊥Þ þ Q̂jpXpi
2 ðθx⊥Þ − δijQ̂pqXpq

2 ðθx⊥Þ�

−
1

m2
Q̂pq

∂
p
∂
qðsIMF

3 ðx⊥ÞXij
2 ðθx⊥Þ þ pIMF

3 ðx⊥ÞδijÞ −
2

m
ϵlm3Ŝl∂mðsIMF

1 ðx⊥ÞXij
2 ðθx⊥Þ þ pIMF

1 ðx⊥ÞδijÞ: ð60Þ

We then have five different equilibrium conditions:

pIMF0
ð0;lÞ;nðx⊥Þ þ

1

2
sIMF0
ð0;lÞ;nðx⊥Þ þ

1

x⊥
sIMF
ð0;lÞ;nðx⊥Þ ¼ 0;

ðn ¼ 1; 2; 3 and l ¼ 0; 1Þ; ð61Þ

where pIMF
ð0;lÞ;nðx⊥Þ and sIMF

ð0;lÞ;nðx⊥Þ are defined as

pIMF
ð0;lÞ;nðx⊥Þ ¼

1

8m
1

x⊥
d

dx⊥
x⊥

d
dx⊥

D̃IMF
ð0;lÞ;nðx⊥Þ;

sIMF
ð0;lÞ;nðx⊥Þ ¼ −

1

4m
x⊥

d
dx⊥

1

x⊥
d

dx⊥
D̃IMF

ð0;lÞ;nðx⊥Þ; ð62Þ

with

D̃IMF
ð0;lÞ;nðx⊥Þ ¼

Z
d2Δ
ð2πÞ2 e

−iΔ⊥·x⊥DIMF
ð0;lÞ;nðtÞ;

ðn ¼ 1; 2; 3 and l ¼ 0; 1Þ: ð63Þ

The difference between 2D BF and 2D IMF pressure and
shear force distributions solely results from the Lorentz
boost effects. In addition to that, pIMF

1 and sIMF
1 purely

originate from the Lorentz boost effects. All the pressure
densities satisfy the von Laue condition,

Z
d2x⊥pIMF

ð0;lÞ;nðx⊥Þ ¼ 0: ð64Þ

They are related to the constant D-terms,
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DIMF
ð0;lÞ;nð0Þ ¼ 2m

Z
d2x⊥x2⊥pIMF

ð0;lÞ;nðx⊥Þ

¼ −
1

2
m
Z

d2x⊥x2⊥sIMF
ð0;lÞ;nðx⊥Þ;

ðn ¼ 1; 2; 3 and l ¼ 0; 1Þ: ð65Þ

The internal local force fields in the IMF are given by

x̂i⊥T
ij
IMFðx⊥; λ0; λÞ ¼

dFr

dSr
x̂j⊥ þ dFθ

dSr
θ̂j⊥;

θ̂i⊥Tij
IMFðx⊥; λ0; λÞ ¼

dFr

dSθ
x̂j⊥ þ dFθ

dSθ
θ̂j⊥; ð66Þ

where

dFr

dSr
¼

��
pIMF
ð0;1Þ þ

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���
δσ0σ

þ
��

pIMF
ð0;0Þ þ

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���
δλ03δ3λ

þ Q̂rr
λ0λ

1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
−
sIMF00
3

2
þ sIMF0

3

2x⊥
−
2sIMF

3

x2⊥

�
− ϵlm3ŜlXm

1 ðθx⊥Þ
1

m
½2pIMF0

1 þ sIMF0
1 �;

dFr

dSθ
¼ dFθ

dSr
¼ Q̂rθ

λ0λ
1

m2

�
−
2sIMF0

3

x⊥
þ 2sIMF

3

x2⊥

�
−

2

m
ϵlm3Ŝlθ̂m⊥

sIMF
1

x⊥
;

dFθ

dSθ
¼

��
pIMF
ð0;1Þ −

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���
δσ0σ

þ
��

pIMF
ð0;0Þ −

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���
δλ03δ3λ

þ Q̂rr
λ0λ

�
−2sIMF

2 þ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
þ sIMF00

3

2
−
sIMF0
3

2x⊥

��
þ Q̂θθ

λ0λ

�
−2sIMF

2 −
2

m2

sIMF
3

x2⊥

�

− ϵlm3ŜlXm
1 ðθx⊥Þ

1

m

�
2pIMF0

1 − sIMF0
1

�
: ð67Þ

IV. ABEL TRANSFORMATION
FOR THE SPIN-1 PARTICLE

In the case of the nucleon EM form factors [36], the 3D
BF charge distributions are distinguished from 2D IMF
charge densities by the relativistic factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4m2

p
in

the integrand of the Fourier transform of the EM form
factors. Since the relativistic factor generates the infinite
order of the Laplacian, it is technically difficult to connect
the 3D charge distributions in the BF to the 2D charge
densities in IMF. It requires us to impose the infinite
number of boundary conditions on the differential equa-
tion. As for the Abel transformation for the nucleon EMT
form factors [34,35], on the other hand, we do not
encounter such a complexity [36], since such a Lorentz
boost factor m=E does not appear fortuitously. Thus, we
can directly connect the 3D BF distributions of the EMT
form factors to the 2D IMF densities without any technical
problems for the nucleon. Furthermore, if we consider
both the EM and EMT form factors for the higher-spin
particle, the relativistic effects raise similar problems in a
more complicated manner [14,56]. In the present work,
we thus carry out the Abel transformation in projecting the

3D BF distributions to the 2D BF densities instead of the
2D IMF ones.
The Abel transformation and its inverse transformation

are defined as

A½g�ðx⊥Þ ¼ Gðx⊥Þ ¼
Z

∞

x⊥

dr
r

gðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ;

gðrÞ ¼ −
2

π
r2
Z

∞

r
dx⊥

dGðx⊥Þ
dx⊥

gðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2⊥ − r2

p : ð68Þ

GðbÞ is called the Abel image of the function gðrÞ. For
example, if there is no higher multipole distribution in the
BF, the Abel image of the monopole mass distribution is
found to be

Z
dxzhT̂00ð0Þi−r;0 ¼

Z
dxzε0ðrÞδλ0λ ¼ εð2DÞ0 ðx⊥Þδλ0λ;

εð2DÞ0 ðx⊥Þ ¼
Z

∞

x⊥
dr

2rε0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p : ð69Þ

The Abel transformation can be straightforwardly applied
to the nucleon and the pion, since they do not have any
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quadrupole distributions. However, as we pointed out in
Ref. [14], mapping the 3D distribution onto the 2D one in
the presence of the quadrupole structure brings about
additional contributions. Collecting all the angle-dependent
Abel images in 3D space, we are able to reconstruct them in
2D space. It has been already discussed in various contexts
[57–60]. While the single Abel image is enough for a
spherically symmetric distribution, the angle-dependent
distribution requires more than one Abel image [61].
The scanning in all directions are required to project
angle-dependent 3D distributions to 2D ones in general.
In fact, the number of the scans depends on the shape of the
distributions [58]. In our case, we need two Abel images
only, which is a very special case of the anisotropic
distributions. To generalize them, we should introduce
the Radon transformation [62]. The Abel transformation
we keep using is just a special case of the Radon trans-
formation and is deeply related to it [59,60]. In the present
case, we need to integrate εðrÞYijðΩrÞ over the z-axis for
each 3D angle. The angle-dependent Abel transformation
can be analytically achieved as follows:

Z
dxzε2ðrÞYijðΩrÞQ̂ij

λ0λ ¼ εð2DÞ2 ðx⊥ÞXij
2 ðθx⊥ÞQ̂ij

þΔεðx⊥Þ
�
−
1

3
δσ0σ þ

2

3
δλ03δ3λ

�
;

ð70Þ

with

εð2DÞ2 ðx⊥Þ ¼
Z

∞

x⊥
dr

2x2⊥ε2ðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ;

Δεðx⊥Þ ¼
Z

∞

x⊥
dr

ð3x2⊥ − 2r2Þε2ðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p : ð71Þ

Employing the above expression, we derive the explicit
connections between the 2D and 3D distributions in the BF
by the Abel transformations

εð2DÞð0;0Þðx⊥Þ þ 2εð2DÞð0;1Þðx⊥Þ ¼ 6

Z
∞

x⊥

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ε0ðrÞ

¼ 3εð2DÞ0 ðx⊥Þ; ð72Þ

Δεðx⊥Þ ≔ εð2DÞð0;0Þðx⊥Þ − εð2DÞð0;1Þðx⊥Þ ¼ −
∂
2
ð2DÞ
4m

Ẽ2ðx⊥Þ; ð73Þ

Under this transformation, we observe that the rank-2
irreducible tensor in 3D space is reduced to the rank-2
irreducible tensor in 2D space and a part of the diagonal
contributions leaks out to the rank-0 irreducible tensor in
the 2D space. This induced monopole distribution Δε is
responsible for the splitting of the mass distributions
with the longitudinally- and transversely-polarized spins.

Note that the 2D spin distributions of the nucleon were
intensively discussed in Refs. [35,63,64].
The nucleon monopole pressure and shear forces were

investigated in Ref. [34,35] by means of the Abel trans-
formation. When it comes to a nonspherical hadron, all the
quadrupole pressure and shear-force distributions are con-
nected to each other via the Abel transformation in the same
manner,

pð2DÞ
n ðx⊥Þþ

1

2
sð2DÞn ðx⊥Þ¼

Z
∞

x⊥

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−x2⊥

p
�
pnðrÞþ

2

3
snðrÞ

�
;

sð2DÞn ðx⊥Þ¼2

Z
∞

x⊥

x2⊥dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−x2⊥

p snðrÞ: ð74Þ

Note that the definitions of the pressure and shear forces are
different from those in Ref. [34] by factor 1=2.

V. NUMERICAL RESULTS AND DISCUSSION

Since we want to investigate the general features of the
mechanical structure of the spin-1 particle, we will not use a
specific model but employ a simplified toy model for the
GFFs. We utilize the simple multipole parametrization for
the t dependence. The mass and spin form factors are
normalized to be 1 at t ¼ 0. The quadrupole mass form
factor at t ¼ 0 is also taken to be 1. On the other hand, the
values of the D-term form factors at t ¼ 0 are unknown. To
determine them, we need results from models (see for
example Refs. [45,65]). However, we take arbitrary neg-
ative values for the constant D-terms at t ¼ 0, assuming
that their negative values impose the stability conditions on
the spin-1 particle. As observed in Eq. (17), the kinematical
factor τ enters in the expressions for the GFFs in the IMF.
This means that when we carry out the inverse 2D Fourier
transforms to obtain the EMT densities in the IMF, τ may
cause the divergence. While this may have a physical
meaning as in the case of the pion, we do not know if this is
the case also for the spin-1 particle. In the current work, we
will assume that the EMT densities do not have any
singular behavior. So, we parametrize the GFFs by using
generically the following quadrupole type of the para-
metrization:

GðtÞ ¼ Gð0Þ
ð1 − t=Λ2Þ4 : ð75Þ

Here, we introduce the cutoff value Λ ¼ 2mρ, where mρ is
the ρ-meson mass. The values of Dnð0Þ are taken to be
D0ð0Þ ¼ D2ð0Þ ¼ D3ð0Þ ¼ −1. Since the values of all the
D-term form factors are taken to be the same, we have the
same values of pnðx⊥Þ and snðx⊥Þ in the 2D BF. This
choice of D-term values yields merit that we can compre-
hensively examine the relativistic effects when we move
from the 2D BF to the 2D IMF, as will be observed later.
Instead of quadrupole parametrization, we could employ
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either pentapole or hexapole parametrization. If we use a
different parametrization, the numerical results are, of
course, changed. In particular, the IMF densities are
sensitive to the choice of parametrization due to the
relativistic factor. Since, however, the purpose of the
current work is to examine the multipole structure of
the BF distributions and IMF densities, we will not concern
their qualitative features.

A. Mass distributions in the 2D transverse plane

The mass distributions in the 2D BF can be obtained by
the Abel transformation of those in the 3D BF, as shown in
Eqs. (69) and (70). The Abel transformation of the quadru-
pole mass distribution in the 3D BF, ε2ðrÞ, yields the
induced monopole distribution Δεðx⊥Þ. Thus, we have
three different terms for the mass distributions in the 2D
BF: ε0ðx⊥Þ, Δεðx⊥Þ, and ε2ðx⊥Þ. We draw the numerical
results for them in Fig. 1. The monopole mass distribution
is dominant over the induced monopole and quadrupole
ones. The quadrupole mass density is negative in the whole
region of x⊥ whereas the induced monopole mass distri-
bution, Δεðx⊥Þ, is positive till it reaches around 0.4 fm and

then turns negative. As shown in Eqs. (72) and (73), εð2DÞð0;0Þ
and εð2DÞð0;1Þ can be expressed in terms of εð2DÞ0 and Δε,

εð2DÞð0;0Þðx⊥Þ ¼ εð2DÞ0 ðx⊥Þ þ
2

3
Δεðx⊥Þ;

εð2DÞð0;1Þ ¼ εð2DÞ0 ðx⊥Þ −
1

3
Δεðx⊥Þ: ð76Þ

Thus, εð2DÞð0;0Þ and εð2DÞð0;1Þ are split by Δε as shown in Fig. 2. It

indicates that the magnitude of εð2DÞð0;0Þ is larger than εð2DÞð0;1Þ.
Since the contribution of the inner part of the nodal point
cancels out that of the outer part, Δε does not affect the
normalization of the mass as shown in the following
integration

Z
d2x⊥Δεðx⊥Þ ¼ −

Z
d2x⊥

∂
2
ð2DÞẼ2ðx⊥Þ

4m
¼ 0: ð77Þ

The induced monopole mass distribution changes only the
shape of the mass distribution.
Figure 3 depicts the transverse mass densities in the 2D

IMF. We have the following relations:

εIMF
ð0;0Þðx⊥Þ > 0; εIMF

ð0;1Þðx⊥Þ > 0: ð78Þ

The induced transverse-dipole mass density is much
smaller than the other transverse mass densities. Note that
εIMF
1 ðx⊥Þ amd εIMF

2 ðx⊥Þ vanish at x⊥ ¼ 0. As discussed in
the previous section, the integral of the x⊥-weighted
induced dipole mass density over x⊥ vanishes,

Z
d2x⊥x⊥εIMF

1 ðx⊥Þ ¼ 0: ð79Þ

FIG. 1. Mass distributions of a spin-1 particle in the 2D Breit frame. In the left panel, the solid, dashed, and short-dashed curves draw

the numerical results for εð2DÞ0 , εð2DÞ2 , and Δε defined in Eqs. (69) and (72), respectively. In the right panel, those weighted by 2πx⊥ are
exhibited.

FIG. 2. Mass densities of a spin-1 particle in the 2D Breit frame.
The solid, dashed, and dot-dashed curves show the numerical

results for εð2DÞ0 , εð2DÞð0;0Þ, and εð2DÞð0;1Þ. Δε is defined in Eq. (73).
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Note that this condition is highly nontrivial. The right panel
depicts the mass distributions weighted by 2πx⊥.
It is of great use to visualize the 2Dmass distributions for

the polarized spin-1 particle, so that we can see how its
mass is distributed and influenced under the polarization.
As shown explicitly in Appendix B, we can derive the
expressions for the mass distribution in the 2D BF by
choosing specifically the polarization. In Fig. 4, we draw
T00
EFðx⊥; 0; λ0; λÞ by choosing four different polarizations.

The upper-left panel of Fig. 4 illustrates the mass

distribution of the spin-1 particle with sx ¼ 1 when it is
polarized along the x axis. As written in Eq. (B12),
the mass distribution contains all contributions. The quad-

rupole term cos 2θεð2DÞ2 ðx⊥Þ=4 introduces the angular
dependence of the mass distribution. As shown in
Fig. 1, the quadrupole term is negative over the whole
region in the 2D BF. Putting them together, we observe that
the mass distribution in the 2D BF is squeezed into a 2D
prolate form. On the other hand, when the spin-1 particle is
polarized along the x-axis with sx ¼ 0 chosen, the scalar

FIG. 3. Transverse mass densities of a spin-1 particle in the 2D infinite-momentum frame. The solid and dashed curves draw the 2D
mass densities εIMF

ð0;0Þ and εIMF
ð0;1Þ, whereas the short-dashed and dot-dashed ones depict εIMF

1 and εIMF
2 . The expressions for these mass

densities are given in Eq. (54). In the right panel, we draw those weighted by 2πx⊥.
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FIG. 4. T00ðx⊥Þ visualized in the 2D BF by choosing a specific polarization. In the upper-left (upper-right) panel, we draw the mass
distribution when the spin-1 particle is polarized with sx ¼ 1 (sx ¼ 0). In the lower-left (lower-right) panel, we illustrate that with sz ¼ 1
(sz ¼ 0).
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term εð2DÞð0;0Þðx⊥Þ vanishes, so that we have only two different
contributions, i.e., εð2DÞð0;1Þ and − cos 2θεð2DÞ2 =2 as given in

Eq. (B11). Since we have already shown in Fig. 3 that εð2DÞð0;1Þ
is smaller than εð2DÞð0;0Þ and we have a larger positive quadru-
pole contribution to the mass distribution, compared to the
previous case (sx ¼ 1), we expect that the mass distribution
should be compressed along the y-axis. Thus, its shape
becomes oblate as shown in the upper-right panel of Fig. 4.
When the spin-1 particle is polarized along the z-axis, the
scalar contribution survives only regardless of choosing
a specific value of sz. Thus, the mass distribution of the
spin-1 particle polarized along the z-axis is always in a
spherical shape, as visualized in the lower panel of Fig. 4.
We now consider the mass distribution of the spin-1

particle in the 2D IMF. As written in Eq. (53), it acquires
the induced dipole contribution that arises from the Lorentz
boost. We have presented its explicit expressions in
Eq. (B16) given in Appendix B when the polarization of
the spin-1 particle is fixed. In addition to the quadrupole
contribution, the induced dipole one provides an additional
angular dependence of the mass distribution. Thus, when
the spin-1 particle is polarized along the x-axis with sx ¼ 1,
the mass distribution is contracted to be prolate, which is
similar to that in the 2D BF. However, we can observe a

clear signature of the dipole feature when the spin-1 particle
is polarized along sx ¼ 1, as drawn in the upper-left panel
of Fig. 5. The upper-right panel displays the clear quadru-
pole structure. It indicates that the Lorentz boost intensifies
the quadrupole pattern. When the spin-1 particle is polar-
ized along the z-axis, only the scalar contribution survives
as in the case of thpdele mass distribution in the 2D BF.

B. Mechanical properties of a spin-1 particle

We are now in a position to discuss the mechanical
properties of a spin-1 particle. The 3D pressure and
shear-force densities can be derived by the inverse
Fourier transformation as given in Eqs. (33) and (34).
Transforming the derived 3D BF pressure and sear-force
distributions by the Abel transformation, we obtain those in
the 2D BF. Since we employ the same form for the GFFs of
the spin-1 particle, the pressure and shear-force distribu-
tions become degenerate respectively for all n, as shown in
Fig. 6. This degenerate forms of pn and sn have a virtue that
the relativistic effects can clearly emerge when the longi-
tudinal momentum of the spin-1 particle goes to infinity.
When the spin-1 particle is boosted by the Lorentz

transformation, the pn and sn distributions undergo drastic
changes. So, the pressure and shear-force densities in the
2D IMF reveal the relativistic effects as exhibited in Fig. 7.
We observe that the degeneracy imposed on the pressure
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FIG. 5. T00ðx⊥Þ visualized in the 2D IMF by choosing a specific polarization. In the upper-left (upper-right) panel, we draw the mass
distribution when the spin-1 particle is polarized with sx ¼ 1 (sx ¼ 0). In the lower-left (lower-right) panel, we illustrate that with sz ¼ 1
(sz ¼ 0).
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FIG. 6. Pressure and shear-force distributions (pð2DÞ
n and sð2DÞn ) in the 2D BF. In the lower panel, we draw those weighted by 2πx⊥.

FIG. 7. Pressure and shear-force densities in the 2D IMF. In the lower panel, we draw those weighted by 2πx⊥. The decomposition of
the pressure and shear-force densities are defined in Eq. (60).
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and shear-force distributions are removed. As mentioned
previously, pIMF

1 and sIMF
1 arise from the Lorentz boost. The

pressure densities satisfy the stability condition as in
Eq. (64). This indicates that the pressure densities in the
2D IMF should have the odd number of the nodal points.
As shown in the lower-left panel, we depict the pressure
densities weighted by 2πx⊥. pIMF

ð0;0Þ has three nodal points

whereas all other pressure densities have only one as those
in the 2D BF. It is interesting to see that the newly emerged
induced pressure pIMF

1 under Lorentz boost is negative at
the center in contrast to other pressures. The shear-force
densities in the 2D IMF also exhibit interesting features. As
shown in Fig. 6, the shear-force distributions are all positive
and degenerate. When the momentum of the spin-1 particle
becomes infinite, all the components of the shear-force
densities come apart. The sign of sIMF

1 ðx⊥Þ becomes even
negative. The negative features of the pressure and shear-
force densities are related to the positive D-term in the
IMF (19), which originates from the solely relativistic
effects. More interestingly, sIMF

ð0;0Þ has two nodal points.

These are unique features for the spin-1 particle and higher
spin states.
In Figs. 8 and 9, we illustrate the strong force fields

inside a spin-1 at rest and in the fast-moving frame,
respectively, when it is polarized along the x-axis (upper
panel) and z-axis (lower panel). In Appendix C, we have
explicitly written the expressions for the strong force fields

with the direction of the polarization chosen. In the 2D
IMF, we observe the dipole pattern in the upper-left panel
and the quadrupole structure in the upper-right panel as in
the mass distributions. Note that the strong force fields
shown in Figs. 8 and 9 consist of partial ones. If one
considers all the force fields, they vanish at each local point.
In other words, the energy and momentum flow in both
directions along the arrows in Figs. 8 and 9, so that the net
flows vanish. For simplicity, we present only one direction
indicated by the arrows. Nevertheless, the strong force
fields visualized in Figs. 8 and 9 exhibit how the relativistic
effects change the behavior of the strong force fields inside
a spin-1 particle.
As written in Eq. (51), the strong force fields in the 2D

BF have only the monopole and quadrupole terms. Thus,
when the spin-1 particle is polarized along the x-axis with
both sx ¼ 1 and sx ¼ 0, the quadrupole patterns are seen as
in the upper panel of Fig. 8. When it is polarized along the
z-axis, we find only the monopole pattern. On the other
hand, the Lorentz boost induces the dipole term in the
spatial component of the EMT densities (see Eq. (60).
When the spin-1 particle is polarized along the x-axis with
sx ¼ 1 chosen, all the dipole and quadrupole terms con-
tribute to the strong force fields as shown in Eq. (C8). The
upper-left panel of Fig. 9 reveals clearly this feature.
However, if one selects sx ¼ 0 with the spin-1 particle
polarized along the x-axis, all the dipole contributions
vanish. So, the upper-right panel of Fig. 9 demonstrates the
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FIG. 8. Strong force fields inside a spin-1 particle in the rest frame (Pz ¼ 0) are visualized in the 2D plane when the target is polarized
along x- and z-axis.
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quadrupole pattern, being similar to that in the 2D BF.
When the spin-1 particle is polarized along the z-axis, the
strong force fields in the 2D IMF are not much different
from those in the 2D BF. These features of the strong force
fields resemble the mass 2D distributions.

VI. SUMMARY AND CONCLUSIONS

In the present work, we scrutinized the mechanical
structure of the spin-1 particle. We first formulated the
gravitational form factors and the energy-momentum tensor
distributions in three different frames; the three-dimensional
Breit frame, the two-dimensional Breit frame, and the two-
dimensional infinite-momentum frame (or equivalently the
Drell-Yan frame). By introducing these three different
frames, we were able to distinguish the geometric effects
from the relativistic effects that arise from the Lorentz boost.
A prominent point is that an additionalmonopole structure is
induced by going from the three-dimensional Breit frame to
the two-dimensional one. This can be achieved by the Abel
transformation. The two-dimensional infinite-momentum
frame can be reached by taking the limit of the infinite
longitudinal momentum of the spin-1 particle. This Lorentz
boost induces the dipole mass density, of which the
integration over the transverse plane vanishes because of
the normalization of the mass and spin of the spin-1 particle.
This provides a nontrivial constraint on the induced dipole

mass density.When the spin-1 particle is polarized along the
x-axis with sx ¼ 1, the mass distribution reveals the quadru-
pole pattern in the two-dimensional Breit frame. When its
momentum goes to infinity, the induced dipole mass is
generated, so that one can clearly observe the dipole pattern
in themass density.When the spin state of the spin-1 particle
is taken to be sx ¼ 0, the quadrupole structure is enhanced
by the Lorentz boost.
The relativistic effects on the pressure and shear-force

densities are even more prominent. Since we take the same
quadratic form of the gravitational form factors, the pressure
and shear-force distributions become degenerate regardless
of the value of the subscript n. However, when we go from
the two-dimensional Breit frame to the two-dimensional
infinite momentum frame, the pressure and shear-force
densities undergo drastic changes. While the pressure
distributions in the two-dimensional Breit frame have only
one nodal point, which is essential for them to satisfy the
stability conditions, pIMF

ð0;0Þ has even three nodal points

because of the Lorentz boost. Interestingly, the sign of
pIMF
1 becomes negative in the core part in contrast to the any

other pressures. The shear-force densities also exhibit
unique features under the Lorentz boost. sIMF

ð0;0Þ has two

nodal points and sIMF
1 becomes negative. The negativevalues

of the pressure and shear-force densities are related to the
positive D-term in the IMF, which arises from the solely
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FIG. 9. Strong force fields inside a fast-moving spin-1 particle (Pz ¼ ∞) are visualized in the 2D plane when the target is polarized
along x- and z-axis.
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relativistic effects. We also visualized the strong force fields
inside a spin-1 particle. Though they vanish at each local
point, they display the multipole structure of the spin-1
particle, in particular, when it is polarized along the x-axis.
The most interesting behavior of the strong force fields can
be found by choosing sx ¼ 1. In this case, all the dipole and
quadrupole terms contribute to the strong force fields.
In the current work, we focused on the mechanical

structure of a generic spin-1 particle. However, we want to
mention that there are several spin-1 particles such as the ρ
meson, the ωmeson, the vector kaon, the a1 meson, and the
deuteron. While they share the general features discussed in
the present work, they will possibly show quantitative
differences each other. In particular, the deuteron can be
treated as a nonrelativistic particle, whereas all the vector
mesons should be considered as relativistic ones. Apart
from the relativistic effects, there may be certain effects due
to the different quark configuration of the vector mesons.
The corresponding study will appear elsewhere.
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APPENDIX A: GRAVITATIONAL FORM
FACTORS OF A SPIN-1 PARTICLE IN THE
TWO-DIMENSIONAL DRELL-YAN FRAME

The results from the light-front formalism should
coincide with the those from the IMF. As a cross-check,
we are able to carry out the same calculation in the light-
front formalism. A light-front four-vector is given by

xν ¼ fxþ; x−; x⊥g; ðA1Þ

with x� ¼ ðx0 � x3Þ= ffiffiffi
2

p
. The Drell-Yan frame is defined

by Δþ ¼ 0. The kinamatics are given by

P¼ 1

2
ðp0 þpÞ ¼ ðPþ;P−;0Þ;

Δ¼ ðp0−pÞ ¼ ð0;0;Δ⊥Þ; with P− ¼ 1

2Pþ

�
m2þΔ2⊥

4

�
:

ðA2Þ

The matrix elements of Tþþ, Tþi, and Tij are respectively
decomposed in terms of the gravitational form factors as
follows:

hp0; λ0jTþþð0Þjp; λi ¼ 2Pþ2EIMF
ð0;0ÞðtÞδλ03δ3λ þ 2Pþ2EIMF

ð0;1ÞðtÞδσ0σ þ 2Pþ2
ffiffiffi
τ

p
EIMF
1 ðtÞiϵ3jkŜjλ0λXk

1ðθΔ⊥Þ
þ 4Pþ2τEIMF

2 ðtÞQ̂klXkl
2 ðθΔ⊥Þ;

hp0; λ0jTþið0Þjp; λi ¼ 2mPþ ffiffiffi
τ

p
iϵ3liŜ3λ0λX

l
1ðθΔ⊥ÞJ IMF

1 ðtÞ þ 4mPþτ
�
Xik
2 ðθΔ⊥Þ −

1

2
δik

�
J IMF

2 ðtÞQ̂3k;

hp0; λ0jTijð0Þjp; λi ¼ 2m2τ

��
1

3
DIMF

2 −
1

2
DIMF

ð0;1Þ

�
δσ0σ þ

�
−
2

3
DIMF

2 −
1

2
DIMF

ð0;0Þ

�
δλ03δλ3

�
δij

þ 2m2τXij
2 ðθΔ⊥Þ½δσ0σDIMF

ð0;1ÞðtÞ þ δλ03δλ3DIMF
ð0;0ÞðtÞ�

þ 4m2τ½Q̂ikXjk
2 ðθΔ⊥Þ þ Q̂jkXik

2 ðθΔ⊥Þ − Q̂lmXlm
2 ðθΔ⊥Þδij�DIMF

2 ðtÞ

þ 8m2τ3=2iϵlm3ŜlXm
1 ðθΔ⊥Þ

�
Xij
2 ðθΔ⊥Þ −

1

2
δij

�
DIMF

1 ðtÞ

þ 8m2τ2Q̂lm

�
Xlm
2 ðθΔ⊥Þ þ

1

2
δlm

��
Xij
2 ðθΔ⊥Þ −

1

2
δij

�
DIMF

3 ðtÞ: ðA3Þ

The decompositions in Eq. (A3) are identical to those in the infinite momentum frame.
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APPENDIX B: EXPLICIT CALCULATION OF
THE MASS DISTRIBUTIONS

Since the basis used in this work is not a standard one,
we first provide the conversion from the current basis to the
standard spherical basis in Table I. In Figs. 4 and 5, we have
visualized the mass distributions in the 2D BF and 2D IMF,
respectively, taking a specific polarization of the spin-1
particle. We show here how to compute the mass distri-
butions when the polarization is fixed. In Eq. (39), the mass
distribution in the 2D BF is written as

T00
EFðx⊥; 0; λ0; λÞ ¼ δ3λδλ03ε

ð2DÞ
ð0;0Þðx⊥Þ þ δσ0σε

ð2DÞ
ð0;1Þðx⊥Þ

þ Q̂ij
λ0λX

ij
2 ðθÞεð2DÞ2 ðx⊥Þ; ðB1Þ

where λ and λ0 run over x, y, and z whereas σ and σ0 lie in
the 2D EF, i.e., they take either x or y. We shall use θ
instead of θx⊥ for convenience. When the spin-1 particle is
polarized along the z-axis (sz) and sz is explicitly given, we
have to get the matrix elements of T00 as follows:

sz ¼ 0 → hzjÔjzi;

sz ¼ 1 →
1

2
½hxjÔjxi þ hyjÔjyi þ ihxjÔjyi − ihyjÔjxi�;

sz ¼ −1 →
1

2
½hxjÔjxi þ hyjÔjyi − ihxjÔjyi þ ihyjÔjxi�:

ðB2Þ

On the other hand, when it is polarized along the x-axis
(sx), we find the matrix elements as

sx ¼ 0 → hxjÔjxi;

sx ¼ 1 →
1

2
½hzjÔjzi þ hyjÔjyi − ihzjÔjyi þ ihyjÔjzi�;

sx ¼ −1 →
1

2
½hzjÔjzi þ hyjÔjyi þ ihzjÔjyi − ihyjÔjzi�:

ðB3Þ

With the spin-1 particle polarized along the y-axis (sy),
we get

sy ¼ 0 → hyjÔjyi;

sy ¼ 1 →
1

2
½hxjÔjxi þ hzjÔjzi þ ihxjÔjzi − ihzjÔjxi�;

sy ¼ −1 →
1

2
½hxjÔjxi þ hzjÔjzi − ihxjÔjzi þ ihzjÔjxi�;

ðB4Þ

where Ô is a multipole operator. In the Cartesian basis,
the matrix representations of the quadrupole operator
hλ0jQ̂ijjλi ≔ Q̂ij

λ0λ are given by

Q̂xx
λ0λ ¼

0
BBBBB@

λnλ0 x y z

x − 2
3

0 0

y 0 1
3

0

z 0 0 1
3

1
CCCCCA
; Q̂yy

λ0λ ¼

0
BBBBB@

λnλ0 x y z

x 1
3

0 0

y 0 − 2
3

0

z 0 0 1
3

1
CCCCCA
;

Q̂zz
λ0λ ¼

0
BBBBB@

λnλ0 x y z

x 1
3

0 0

y 0 1
3

0

z 0 0 − 2
3

1
CCCCCA
; ðB5Þ

Q̂xy
λ0λ ¼

0
BBBBB@

λnλ0 x y z

x 0 −1
2
0

y −1
2

0 0

z 0 0 0

1
CCCCCA
; Q̂xz

λ0λ¼

0
BBBBB@

λnλ0 x y z

x 0 0 −1
2

y 0 0 0

z −1
2
0 0

1
CCCCCA
;

Q̂yz
λ0λ ¼

0
BBBBB@

λnλ0 x y z

x 0 0 0

y 0 0 −1
2

z 0 −1
2

0

1
CCCCCA
: ðB6Þ

Having contracted the i, j ¼ 1; 2 indices to the xi⊥ and xj⊥,
we have the following expressions:

Q̂ij
λ0λx̂

i⊥x̂
j
⊥≔Q̂rr

λ0λ¼

0
BB@

1
6
ð−1−3cos2θÞ −cosθsinθ 0

−cosθsinθ 1
6
ð−1þ3cos2θÞ 0

0 0 1
3

1
CCA;

Q̂ij
λ0λθ̂

ix̂j⊥¼Q̂θr
λ0λ¼

0
B@
cosθsinθ −1

2
cos2θ 0

−1
2
cos2θ −cosθsinθ 0

0 0 0

1
CA;

Q̂ij
λ0λθ̂

iθ̂j¼Q̂θθ
λ0λ¼

0
BB@

1
6
ð−1þ3cos2θÞ cosθsinθ 0

cosθsinθ 1
6
ð−1−3cos2θÞ 0

0 0 1
3

1
CCA:

ðB7Þ

TABLE I. Conversion from the our basis to the standard
spherical basis.

Quantization axis n jsn ¼ 1i jsn ¼ 0i jsn ¼ −1i
x-axis (transversal) 1ffiffi

2
p ðjzi − ijyiÞ −jxi − 1ffiffi

2
p ðjzi þ ijyiÞ

y-axis (transversal) 1ffiffi
2

p ðjxi þ ijziÞ −ijyi 1ffiffi
2

p ðjxi − ijziÞ
z-axis (longitudinal) − 1ffiffi

2
p ðjxi þ ijyiÞ jzi 1ffiffi

2
p ðjxi − ijyiÞ

MECHANICAL STRUCTURE OF A SPIN-1 PARTICLE PHYS. REV. D 107, 054007 (2023)

054007-21



If the spin-1 particle is polarized with sz ¼ 0, then there is no θ dependence. So, the mass distribution contains only the

scalar one εð2DÞð0;0Þðx⊥Þ,

T00
EFðx⊥; 0; λ0; λÞ ¼ δzzδzzε

ð2DÞ
ð0;0Þðx⊥Þ þ

�
Q̂rr

zz −
1

2
Q̂ii

zz

�
εð2DÞ2 ðx⊥Þ ¼ εð2DÞð0;0Þðx⊥Þ: ðB8Þ

If, however, it is polarized with sz ¼ 1, then we obtain T00 as

T00
EFðx⊥; 0; λ0; λÞ ¼ δσ0σε

ð2DÞ
ð0;1Þðx⊥Þ þ

�
Q̂rr

s0z¼1;sz¼1 −
1

2
Q̂ii

s0z¼1;sz¼1

�
εð2DÞ2 ðx⊥Þ

¼ 1

2
ðδxx þ δyyÞεð2DÞð0;1Þðx⊥Þ þ

�
Q̂rr

s0z¼1;sz¼1 −
1

2
Q̂ii

s0z¼1;sz¼1

�
εð2DÞ2 ðx⊥Þ

¼ εð2DÞð0;1Þðx⊥Þ: ðB9Þ

Note that we have the following algebra:

Q̂rr
s0z¼1;sz¼1 −

1

2
Q̂ii

s0z¼1;sz¼1 ¼ 0;

Q̂rr
s0z¼0;sz¼0 −

1

2
Q̂ii

s0z¼0;sz¼0 ¼ 0;

Q̂rr
s0x¼0;sx¼0 −

1

2
Q̂ii

s0x¼0;sx¼0 ¼ −
1

2
cos 2θ;

Q̂rr
s0x¼1;sx¼1 −

1

2
Q̂ii

s0x¼1;sx¼1 ¼
1

4
cos 2θ: ðB10Þ

Thus, the quadrupole contribution vanishes when the spin-1
particle is polarized along the z-axis. However, if it is
transversly polarized with sx ¼ 0, we get the contribution
from the quarupole term

T00
EFðx⊥;0;λ0;λÞ¼δxxε

ð2DÞ
ð0;1Þðx⊥Þþ

�
Q̂rr

xx−
1

2
Q̂ii

xx

�
εð2DÞ2 ðx⊥Þ

¼ εð2DÞð0;1Þðx⊥Þ−
1

2
cos2θεð2DÞ2 ðx⊥Þ: ðB11Þ

When the spin-1 particle is polarized with sx ¼ 1, we
obtain the following mass distribution

T00
EFðx⊥; 0; λ0; λÞ ¼

1

2
δzzδzzε

ð2DÞ
ð0;0Þðx⊥Þ þ

1

2
δyyε

ð2DÞ
ð0;1Þðx⊥Þ

þ
�
Q̂rr

s0x¼1;sx¼1 −
1

2
Q̂ii

s0x¼1;sx¼1

�
εð2DÞ2 ðx⊥Þ

¼ 1

2
εð2DÞð0;0Þðx⊥Þ þ

1

2
εð2DÞð0;1Þðx⊥Þ

þ 1

4
cos 2θεð2DÞ2 ðx⊥Þ: ðB12Þ

We can carry out a similar algebra to obtain the mass
distributions in the 2D IMF. To obtain the force fields in the
2D BF and 2D IMF, we can perform a similar calculation.

In the IMF, we have additional dipole contribution,
which is induced by the Lorentz boost,

∼ ϵ3jkŜjλ0λX
k
1: ðB13Þ

In the Cartesian basis, the matrix representations of the spin
operator hλ0jŜijλi ≔ Ŝiλ0λ are given by

Ŝxλ0λ¼

0
BBBBB@

λnλ0 x y z

x 0 0 0

y 0 0 −i
z 0 i 0

1
CCCCCA
; Ŝyλ0λ¼

0
BBB@

λnλ0 x y z

x 0 0 i

y 0 0 0

z −i 0 0

1
CCCA;

Ŝzλ0λ¼

0
BBB@

λnλ0 x y z

x 0 −i 0

y i 0 0

z 0 0 0

1
CCCA: ðB14Þ

Having contracted the j, k ¼ 1; 2 indices to the ϵ3jkXk
1, we

have the following expressions:

ϵ3jkŜjλ0λX
k
1 ¼

0
BBB@

λnλ0 x y z

x 0 0 −i cos θ
y 0 0 −i sin θ
z i cos θ i sin θ 0

1
CCCA; ðB15Þ

Note that the diagonal components vanish, and the transverse
states jx; yi should be mixed with the jzi, so that we have a
finite contribution to the mass distributions. Since there is no
mixture of the them, the dipole contribution vanishes when
the spin-1 particle is polarized along the z-axis.
Similarly, if it is transversely polarized with sx ¼ 0, we

still have null contribution from the induced dipole term.
However, if it is polarized with sx ¼ �1 we then have finite
contribution,
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ϵ3jkŜjλ0λX
k
1 ¼ sin θ ðsx ¼ 1Þ;

ϵ3jkŜjλ0λX
k
1 ¼ 0 ðsx ¼ 0Þ;

ϵ3jkŜjλ0λX
k
1 ¼ − sin θ ðsx ¼ −1Þ;

ϵ3jkŜjλ0λX
k
1 ¼ cos θ ðsy ¼ 1Þ;

ϵ3jkŜjλ0λX
k
1 ¼ 0 ðsy ¼ 0Þ;

ϵ3jkŜjλ0λX
k
1 ¼ − cos θ ðsy ¼ −1Þ: ðB16Þ

One can clearly see in Fig. 5 that the dipole contributes to
the mass distribution only with sx ¼ 1. In the other figures,
such contributions vanish.

APPENDIX C: EXPLICIT CALCULATION OF
THE MECHANICAL DISTRIBUTIONS

In this appendix, we show explicitly the mechanical
distributions for a spin-1 particle. When we have sz ¼ 0,
the matrix elements of the dipole and quadrupole operators
are obtained as

Q̂rr
s0z¼0;sz¼0¼

1

3
; Q̂θθ

s0z¼0;sz¼0¼
1

3
; Q̂θr

s0z¼0;sz¼0¼0;

ϵlm3Ŝls0z¼0;sz¼0X
m
1 ðθÞ¼0; ϵlm3Ŝls0z¼0;sz¼0θ̂

m
1 ðθÞ¼0: ðC1Þ

Thus, we can show that the quadrupole pattern of the
distribution vanishes when the spin-1 particle is polarized
along the z-axis (sz ¼ 0),

dFr

dSr
¼

��
pIMF
ð0;0Þ þ

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���

þ 1

3

1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
−
sIMF00
3

2
þ sIMF0

3

2x⊥
−
2sIMF

3

x2⊥

�
;

dFr

dSθ
¼ dFθ

dSr
¼ 0;

dFθ

dSθ
¼

��
pIMF
ð0;0Þ −

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���

þ 1

3

�
−2sIMF

2 þ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
þ sIMF00

3

2
−
sIMF0
3

2x⊥

��
þ 1

3

�
−2sIMF

2 −
2

m2

sIMF
3

x2⊥

�
: ðC2Þ

Since there is no θ dependence on dFr;θ=dSr;θ, the visualized forces looks like the unpolarized nucleon force distributions,
except for the strengths of them.
When the spin-1 particle is polarized along the z-axis with sz ¼ 1, we find the matrix elements of the dipole and

quadrupole operators as follows:

Q̂rr
s0z¼1;sz¼1 ¼ −

1

6
; Q̂θθ

s0z¼1;sz¼1 ¼ −
1

6
; Q̂θr

s0z¼1;sz¼1 ¼ 0;

ϵlm3Ŝls0z¼1;sz¼1X
m
1 ðθÞ ¼ 0; ϵlm3Ŝls0z¼1;sz¼1θ̂

m
1 ðθÞ ¼ 0: ðC3Þ

So, the quadrupole pattern of the distribution again vanishes when the spin-1 particle is polarized along the z-axis
with sz ¼ 1,

dFr

dSr
¼

��
pIMF
ð0;1Þ þ

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���

−
1

6

1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
−
sIMF00
3

2
þ sIMF0

3

2x⊥
−
2sIMF

3

x2⊥

�
;

dFr

dSθ
¼ dFθ

dSr
¼ 0;

dFθ

dSθ
¼

��
pIMF
ð0;1Þ −

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���

−
1

6

�
−2sIMF

2 þ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
þ sIMF00

3

2
−
sIMF0
3

2x⊥

��
−
1

6

�
−2sIMF

2 −
2

m2

sIMF
3

x2⊥

�
: ðC4Þ

Note that for sz ¼ 1 they are still independent of θ, which means that they are spherically symmetric.
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When the spin-1 particle is transversely polarized along x-axis with sx ¼ 0, θ dependence of dFr;θ=dSr;θ emerges. In this
case, the matrix elements of the dipole and quadrupole operators are derived as

Q̂rr
s0x¼0;sx¼0 ¼ −

1

6
ð1þ 3 cos 2θÞ; Q̂θθ

s0x¼0;sx¼0 ¼ −
1

6
ð1 − 3 cos 2θÞ; Q̂θr

s0x¼0;sx¼0 ¼ cos θ sin θ;

ϵlm3Ŝls0x¼0;sx¼0X
m
1 ðθÞ ¼ 0; ϵlm3Ŝls0x¼0;sx¼0θ̂

m
1 ðθÞ ¼ 0: ðC5Þ

Thus, the strong force fields can be directly obtained as

dFr

dSr
¼

��
pIMF
ð0;1Þ þ

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���

−
1

6
ð1þ 3 cos 2θÞ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
−
sIMF00
3

2
þ sIMF0

3

2x⊥
−
2sIMF

3

x2⊥

�
;

dFr

dSθ
¼ dFθ

dSr
¼ cos θ sin θ

1

m2

�
−
2sIMF0

3

x⊥
þ 2sIMF

3

x2⊥

�
;

dFθ

dSθ
¼

��
pIMF
ð0;1Þ −

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���

−
1

6
ð1þ 3 cos 2θÞ

�
−2sIMF

2 þ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
þ sIMF00

3

2
−
sIMF0
3

2x⊥

��

−
1

6
ð1 − 3 cos 2θÞ

�
−2sIMF

2 −
2

m2

sIMF
3

x2⊥

�
: ðC6Þ

While all the dipole contribution still found to be zero, the quadrupole structure brings about the deformation of the strong
force distributions.
The most interesting case arises when the spin-1 particle is polarized along the x-axis with sx ¼ 1. The matrix elements of

Q̂s0x¼1;sx¼1 and Ŝs0x¼1;sx¼1 are given by

Q̂rr
s0x¼1;sx¼1 ¼

1

12
ð1þ 3 cos 2θÞ; Q̂θθ

s0x¼1;sx¼1 ¼
1

12
ð1 − 3 cos 2θÞ; Q̂θr

s0x¼1;sx¼1 ¼ −
1

2
cos θ sin θ;

ϵlm3Ŝls0x¼1;sx¼1X
m
1 ðθÞ ¼ sin θ; ϵlm3Ŝls0x¼1;sx¼1θ̂

m
1 ðθÞ ¼ cos θ: ðC7Þ

Using these results, we can show that all the dipole and quadrupole contributions to the strong force fields emerge as follows:

dFr

dSr
¼ 1

2

��
pIMF
ð0;1Þ þ

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���

þ 1

2

��
pIMF
ð0;0Þ þ

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
−
sIMF0
3

2x⊥
−
pIMF0
3

x⊥
þ 2sIMF

3

x2⊥

���

þ 1

12
ð1þ 3 cos 2θÞ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
−
sIMF00
3

2
þ sIMF0

3

2x⊥
−
2sIMF

3

x2⊥

�
− sin θ

1

m
½2pIMF0

1 þ sIMF0
1 �;

dFr

dSθ
¼ dFθ

dSr
¼ −

1

2
cos θ sin θ

1

m2

�
−
2sIMF0

3

x⊥
þ 2sIMF

3

x2⊥

�
−

2

m
cos θ

sIMF
1

x⊥
;

dFθ

dSθ
¼ 1

2

��
pIMF
ð0;1Þ −

1

2
sIMF
ð0;1Þ

�
−
1

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���

þ 1

2

��
pIMF
ð0;0Þ −

1

2
sIMF
ð0;0Þ

�
þ 2

3

�
2pIMF

2 þ sIMF
2 þ 1

m2

�
sIMF0
3

2x⊥
−
pIMF0
3

x⊥

���

þ 1

12
ð1þ 3 cos 2θÞ

�
−2sIMF

2 þ 1

m2

�
−pIMF00

3 þ pIMF0
3

x⊥
þ sIMF00

3

2
−
sIMF0
3

2x⊥

��

þ 1

12
ð1 − 3 cos 2θÞ

�
−2sIMF

2 −
2

m2

sIMF
3

x2⊥

�
− sin θ

1

m

�
2pIMF0

1 − sIMF0
1

�
: ðC8Þ
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