
Physics Letters B 788 (2019) 117–121
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of double-polarization asymmetries in the quasi-elastic 
3 �He(�e, e′p) process

The Jefferson Lab Hall A Collaboration
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We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of 
3He proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q 2 = 0.25 (GeV/c)2

for missing momenta up to 250 MeV/c. These observables represent highly sensitive tools to investigate 
the electromagnetic and spin structure of 3He and the relative importance of two- and three-body 
effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily 
reproduced by state-of-the-art calculations of 3He unless their three-body segment is adjusted, indicating 
that the spin-dependent part of the nuclear interaction governing the three-body breakup process is 
much smaller than previously thought.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The 3He nucleus represents the key challenge of nuclear physics 
due to its potential to reveal the basic features of nuclear structure 
and dynamics in general. In particular, this paradigmatic three-
body system offers a unique opportunity to study the interplay 
of two-nucleon and three-nucleon interactions, an effort at the 
forefront of nuclear physics research [1–4]. Modern theoretical 
descriptions of the structure and dynamics of 3He require, first 
of all, a detailed understanding of the nuclear Hamiltonian (in-
cluding the three-nucleon force), which generates the consistent 
nuclear ground and scattering states, while accounting for final-
state interactions (FSI). The reaction mechanism comprises also the 
electromagnetic current operator, which takes into account meson-
exchange currents (MEC). Experiments on 3He, particularly those 
involving polarization degrees of freedom, provide essential input 
to theories which need to be perpetually improved to yield better 
understanding of the underlying physics and to match the cur-
rent increase in experimental precision. The quality of theoretical 
models is crucial to all 3He-based experiments seeking to extract 
neutron information by utilizing 3He as an effective neutron tar-
get, an approximation relying on a sufficient understanding of the 
proton and neutron polarization within polarized 3He.

The 3He nucleus is best studied by electron-induced knockout 
of protons, deuterons and neutrons, where the sensitivity to var-
ious aspects of the process can be greatly enhanced by the use 
of polarized beam and target [2]. The focus of this paper is on 
the two-body (2bbu) and three-body (3bbu) breakup channels with 
proton detection in the final state, 3 �He(�e, e′p)d and 3 �He(�e, e′p)pn, 
which were investigated concurrently with the already published 
3 �He(�e, e′d) data [5].

In a 3 �He(�e, e′p) reaction the virtual photon emitted by the in-
coming electron transfers the energy ω and momentum q to the 
3He nucleus. The process observables are then analyzed in terms 
of missing momentum, defined as the difference between the 
momentum transfer and the detected proton momentum, pm =
|q − pp|, thus pm corresponds to the momentum of the recoiled 
deuteron in 2bbu and the total momentum of the residual pn sys-
tem in 3bbu.

The unpolarized 3He(e, e′p) process at low energies has been 
studied at MAMI, both on the quasi-elastic peak [6] and below it 
[7]. The bulk of our present high-energy information comes from 
experiments in quasi-elastic kinematics at Jefferson Lab [8–10], 
resulting in reaction cross-sections at high pm and yielding impor-
tant insight into nucleon momentum distributions, isospin struc-
ture of the transition currents, FSI, and MEC [11–15]. However, just 
as in the (e, e′d) case, experiments that exploit polarization offer 
much greater sensitivity to the fine details of these ingredients. 
Such measurements have been extremely scarce. A single asymme-
try data point with high uncertainty exists from NIKHEF [16,17]. In 
addition, we have a precise measurement of both transverse and 
longitudinal asymmetries separately for the 2bbu and 3bbu chan-
nels in quasi-elastic kinematics [18,19], but the measurement was 
restricted to (and summed over) relatively low pm.

Early theoretical studies [20–22] have shown strong sensitiv-
ities of double-polarization asymmetries in 3He breakup to the 
isospin structure of the electromagnetic current, to the sub-leading 
components of the 3He ground-state wave-function, as well as to 
the tensor component of the nucleon–nucleon interaction. How-
ever, while in the deuteron channel these would predominantly 
manifest themselves at low pm, the 2bbu and 3bbu proton chan-
nels should give more information at high pm, a region which is, 
however, difficult to explore experimentally. These diagrammatic 
evaluations ultimately gave way to more refined, full Faddeev cal-
culations performed independently by the Krakow [23,24] and 
the Hannover/Lisbon [25–28] groups, which we use in this paper. 
The key feature of our experiment is the unmatched precision of 
the extracted asymmetries together with a broad kinematic range, 
with pm extending to as far as 250 MeV/c. This extended coverage 
represents a crucial advantage, since Faddeev calculations indicate 
that the manifestations of various wave-function components, as 
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well as the potential effects of three-nucleon forces, imply very 
different signatures as functions of pm.

If both beam and target are fully polarized, the cross-section for 
the 3 �He(�e, e′p) reaction has the form

dσ(h, �S)

d�
= dσ0

d�

[
1 + �S · �A0 + h(Ae + �S · �A)

]
,

where d� = d�edEed�p is the differential of the phase-space vol-
ume, σ0 is the unpolarized cross section, �S is the spin of the target, 
and h is the helicity of the electrons. Here �A0 and Ae are the 
target and beam analyzing powers, respectively, while the spin-
correlation parameters �A yield the asymmetries when both the 
beam and the target are polarized. If the target is polarized only 
in the horizontal plane defined by the beam and scattered elec-
tron momenta, the term �S · �A0 does not contribute [20], while Ae
is suppressed and is negligible with respect to �A .

The orientation of the target polarization is defined by the an-
gles θ∗ and φ∗ in the frame where the z-axis is along q and the 
y-axis is given by pe × p′

e. The measured asymmetry at given θ∗
and φ∗ is then

A(θ∗, φ∗) = �S(θ∗, φ∗) · �A = (dσ/d�)+ − (dσ/d�)−
(dσ/d�)+ + (dσ/d�)−

,

where the subscript signs represent the beam helicities. In this 
paper we report on the measurements of these asymmetries in 
3 �He(�e, e′p)d and 3 �He(�e, e′p)pn processes. The measurements were 
performed during the E05-102 experiment at the Thomas Jeffer-
son National Accelerator Facility in experimental Hall A [29], with 
a beam energy of 2.425 GeV in quasi-elastic kinematics at en-
ergy transfer ω ≈ 140 MeV and four-momentum transfer of Q 2 =
q2 − ω2 ≈ 0.25 (GeV/c)2.

In the experiment we utilized a continuous, longitudinally 
polarized electron beam with an average polarization of Pe =
(84.3 ± 2.0)%. The beam polarization was measured periodically 
by a Møller polarimeter [29], and the given uncertainty is pre-
dominantly systematic. The beam currents were between 5 μA and 
11 μA, chosen to ensure stable operation in conjunction with the 
polarized target system. The target was a 40 cm-long glass cell con-
taining 3He gas at approximately 9.3 bar (0.043 g/cm2), polarized 
continuously by hybrid spin-exchange optical pumping [30–33]. 
Two pairs of Helmholtz coils were used to maintain the in-plane 
target polarization direction along the beam line and perpendicu-
lar to it, as dictated by instrumental constraints. This corresponded 
to the angles 67◦ and 156◦ with respect to q, allowing us to 
measure A(67◦, 0◦) and A(156◦, 0◦), respectively. Electron para-
magnetic and nuclear magnetic resonance [34–36] were used to 
monitor the target polarization, P t, which was between 50% and 
60% when corrected for dilution due to nitrogen, close to the max-
imum polarization of 63% achieved without beam. The dilution 
factor was determined by using a reference cell filled with unpo-
larized 3He and different amounts of N2, and measuring the rates 
at different relative pressures.

The scattered electrons were detected by a High-Resolution 
magnetic Spectrometer (HRS) [29] positioned at 12.5◦ , while the 
protons were detected by the large-acceptance spectrometer Big-
Bite placed at 75◦ equipped with a detector package optimized 
for hadron detection [37]. The reconstructed proton momenta were 
corrected for energy losses in all materials from the target vertex 
to the detector package. Further details of the experimental setup 
and the procedure to extract the very pure sample of electron-
proton coincidence events are given in Ref. [5].

The experimental asymmetry for each orientation of the tar-
get polarization was determined as the relative difference be-
tween the number of background-subtracted coincidence events 
Fig. 1. The asymmetries A(67◦, 0◦) (top) and A(156◦, 0◦) (bottom) in the quasi-
elastic 3 �He(�e, e′p) process (2bbu and 3bbu combined) as functions of missing mo-
mentum, compared to theoretical predictions (green) showing the 2bbu (blue) and 
3bbu (red) contributions as well as the ratio of 3bbu and 2bbu cross-sections 
(grey, right axis). Full lines correspond to Krakow (K) calculations [23,24], while the 
dashed lines correspond to Hannover/Lisbon (H/L) calculations [25–28]. Only statis-
tical uncertainties are shown. For systematical uncertainties and the meaning of the 
error bands see text.

corresponding to positive and negative beam helicities, Aexp =
(N+ − N−)/(N+ + N−), where N+ and N− have been corrected 
for helicity-gated beam charge asymmetry, dead time and radiative 
effects. The corresponding final values of the physics asymmetries 
were calculated as A = Aexp/(Pe P t).

The resulting asymmetries as functions of pm are shown in 
Fig. 1. The largest contribution to their systematic error comes 
from the relative uncertainty in the target polarization, P t , which 
has been estimated at ±5%, followed by the uncertainty in the 
target dilution factor (±2%) and the absolute uncertainty of the 
beam polarization, Pe (±2%). The background rates, determined by 
empty-cell measurements, were smaller than 0.3% of the total, re-
sulting in a 0.1% systematic uncertainty of the final asymmetry. The 
beam-charge asymmetry was determined to be (−0.2 ±1.5) ·10−5. 
Other helicity-correlated false asymmetries were evaluated to be 
less than 0.1%, also much smaller than the measured physics asym-
metry. The uncertainty in the target orientation angle represents a 
minor contribution (±0.6%) to the total uncertainty, totalling ≈6% 
(relative).

Fig. 1 also shows the results of the state-of-the-art three-body 
Faddeev calculations of the Krakow (K) [23,24] and Hannover/Lis-
bon (H/L) [25–28] groups. The K calculations are based on the 
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Fig. 2. The extracted asymmetries for 2bbu (left) and 3bbu (right). Curve notation as 
in Fig. 1, with the addition of the Pisa 2bbu calculation [40] in the left panel (blue 
dotted lines hidden beneath the full and dashed lines). See text for details.

AV18 nucleon–nucleon potential [38] and involve a complete treat-
ment of FSI and the dominant part of MEC, but do not include 
three-nucleon forces; the Coulomb interaction is taken into ac-
count in the 3He bound state. The H/L calculations are based on 
the coupled-channel extension of the charge-dependent Bonn po-
tential [39] and also include FSI and MEC, while the � isobar is 
added as an active degree of freedom providing a mechanism for 
an effective three-nucleon force and for exchange currents. Point 
Coulomb interaction is added in the partial waves involving two 
charged baryons. In contrast to the K and H/L approaches, the 
Pisa (P) calculations [40] are based on a variational pair-correlated 
hyper-spherical harmonic expansion that is comparable in preci-
sion to the Faddeev methods and is expected to account for all 
relevant reaction mechanisms. The P calculations are based on 
the AV18 interaction model (augmented by the Urbana IX three-
nucleon force [41]), in which full inclusion of FSI is taken into 
account, as well as MEC. At present, the Pisa group only pro-
vides 2bbu calculations. Coulomb interaction is included only in 
the bound state in K calculations, but in both bound and scat-
tering states in H/L and P calculations. All these calculations re-
produce sufficiently well the nuclear binding energies and charge 
radii [26,27,42,43]. Due to the extended experimental acceptance, 
all theoretical asymmetries were appropriately averaged, resulting 
in the error bands around the theoretical curves in Fig. 1. Details 
can be found in [5].

Neither the K nor the H/L calculation reproduces the measured 
asymmetries to a satisfactory level. Similarly to our findings in the 
deuteron channel, the theories approximately capture their over-
all functional forms, but exhibit systematic vertical offsets of up 
to two percent. In all calculations shown here a strong cancella-
tion is involved in obtaining each total asymmetry from its 2bbu 
and 3bbu contributions, which are typically opposite in sign and 
of different magnitudes. Nevertheless, the failure of the theories to 
reproduce the data can be traced to the 3bbu asymmetry alone, as 
discussed in the following.

Since the energy resolution of our measurement (about 11 MeV
FWHM) was insufficient to directly disentangle the 2bbu and 3bbu 
channels, the individual asymmetries were extracted by restricting 
the data sample to pm ≤ 60 MeV/c and studying the dependence 
of A(67◦, 0◦) and A(156◦, 0◦) in terms of the upper cut in missing 
energy, Em = ω − Tp − 7.7 MeV. The comparison of the measured 
Em spectrum (extending below Em = 0 due to resolution effects) 
with the simulated one revealed that in spite of the overlap be-
tween the two channels, the lowest portion of the distribution at 
Fig. 3. The A(67◦, 0◦) (full symbols) and A(156◦, 0◦) (empty symbols) asymmetries 
for 2bbu (left) and 3bbu (right) divided by the corresponding asymmetries for elas-
tic �e�p scattering at the same value of Q 2 and for Em ≤ 2.5 MeV. In both panels the 
data (circles) are compared to the calculations (squares). The tiny uncertainties on 
the theoretical points are due to the averaging procedure.

Em ≤ 0 is dominated by 2bbu. There the 3bbu contributes only 
7% to the total cross section, thus offering a possibility to extract 
the 2bbu asymmetry. The extracted asymmetry A2bbu agrees well 
with the calculations (see Fig. 2 (left)). At the same time, a very 
small residual difference between the experimental result and the-
ory (0.5% in all cases) suggests that near the threshold the size of 
the 3bbu asymmetry is about 1%, much smaller than the predic-
tions. To study the 3bbu asymmetry above the threshold, the data 
at Em > 0 were incrementally added to the analysis. Considering 
that the measured asymmetries contain also the 2bbu contribu-
tion, the 3bbu asymmetry (Fig. 2 (right)) has been extracted from 
the data as

A3bbu = (1 + R ′
32)Aexp − A2bbu

R ′
32

.

Here R ′
32 is the 3bbu/2bbu cross-section ratio obtained from the 

R32 shown in Fig. 1 by considering Em up to a specific maximum 
value, with pm ≈ 0, and correcting for finite momentum and an-
gular resolutions as well as radiative effects. Typically R ′

32 ranges 
from 0.20 to 0.33 and is assumed to be well under control in both 
K and H/L calculations, with an uncertainty of about 10%. The ex-
tracted asymmetries are in good agreement with the theory in the 
limit where the whole spectrum (Em ≤ 50 MeV) is considered in 
the analysis, but strongly deviate from the theory near threshold 
(Em ≤ 2.5 MeV) for the 3bbu reaction channel.

In an effort to compensate for the effect of spin orientation 
of protons inside the polarized 3He nucleus, we have divided the 
nuclear asymmetries by the asymmetries for elastic �e�p scattering 
[44] at the same value of four-momentum transfer; see Fig. 3. In 
a simplified picture of the 3 �He(�e, e′p) process, one would expect 
the 2bbu ratio at pm ≈ 0 to be −1/3, corresponding to the effec-
tive polarization of the (almost free) proton inside the polarized 
3He nucleus, while the 3bbu ratio should vanish because either 
of the two oppositely polarized protons could be knocked out in 
the process. Indeed, in the 2bbu case both the experimental and 
the predicted ratios coincide almost perfectly, at the anticipated 
“naive” value of −1/3. On the other hand, in the 3bbu case the 
predictions cluster approximately around unity (and apparently re-
tain a residual dependence on θ∗), while the two experimental 
ratios are much smaller (and mutually consistent).

In conclusion, we have provided the world-first, high-precision 
measurement of double-polarization asymmetries for proton
knockout from polarized 3He nuclei at two different spin settings 
and over a broad range of momenta. Two state-of-the-art theo-
retical approaches to the 3He disintegration process are able to 
approximately accommodate the main structural features of our 
data set. Since the asymmetries are rather small and strong can-
cellations of the two-body and three-body breakup contributions 
are involved, the agreement can be deemed satisfactory and the 
theoretical framework justified. However, the high precision of our 
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measurements has been able to reveal a substantial deficiency in 
the calculations of the three-body breakup process, presumably 
due to a mismatch between the true relativistic kinematics and 
non-relativistic spin-dependent nuclear dynamics employed in the 
calculations.

On the other hand, since the three-body breakup process is 
more selective than the corresponding two-body breakup of 3He, 
it will be interesting to investigate if an application of consistent 
chiral two-nucleon and three-nucleon interactions with chiral two-
nucleon and three-nucleon contributions in the electromagnetic 
current operator could also shed light on this problem.
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