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The properties of the Xð3872Þ and its spin partner, the Xð4014Þ, are studied both in vacuum and at finite
temperature. Using an effective hadron theory based on the hidden-gauge Lagrangian, the Xð3872Þ is
dynamically generated from the s-wave rescattering of a pair of pseudoscalar and vector charm mesons. By
incorporating the thermal spectral functions of open charm mesons, the calculation is extended to finite
temperature. Similarly, the properties of the Xð4014Þ are obtained out of the scattering of charm vector
mesons. By applying heavy-quark flavor symmetry, the properties of their bottom counterparts in the axial-
vector and tensor channels are also predicted. All the dynamically generated states show a decreasing mass
and acquire an increasing decay width with temperature, following the trend observed in their meson
constituents. These results are relevant in relativistic heavy-ion collisions at high energies, in analyses of
the collective medium formed after hadronization, or in femtoscopic studies, and can be tested in lattice-
QCD calculations exploring the melting of heavy mesons at finite temperature.
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I. INTRODUCTION

Over the past decades an incredible amount of charmo-
niumlike states have been observed experimentally, the so-
called XYZ. These new discoveries have triggered different
theoretical interpretations of their nature, whether they
can be understood as tetraquarks, hadroquarkonia states,
hadronic molecules, cusps due to kinematic effects, or
a mixture of different components (see, for example, the
recent reviews [1–3]).
Among these XYZ, the Xð3872Þ [also known as

χc1ð3872Þ] has a prominent role as initiator of the new
quarkonium revolution in 2003. First observed in B� →
K�πþπ−J=ψ decays by the Belle collaboration [4], its
existence was later confirmed by BABAR [5], CDF [6–8],
D∅ [9], LHCb [10], and CMS [11]. The spin-parity
quantum numbers of the Xð3872Þ, JPC ¼ 1þþ, were
extracted at LHCb experiments [12,13]. This state is
quite close to the D0D̄�0 threshold, has a width of
ΓX ¼ 1.19� 0.21 MeV, and is found to decay similarly

into J=Ψω and J=Ψρ states [14], signaling to an apparent
violation of isospin. The Xð3872Þ can be identified in the
decays of B mesons, Λb baryons, as well as in the radiative
decays of charmonia and through lepto- or photoproduction.
In spite of all the available experimental data, the nature

of the Xð3872Þ is still evasive. Within constituent quark
models, the Xð3872Þ could be understood as a 23P1 cc̄
charmonium configuration, the χc1ð2PÞ state. Nevertheless,
the quark model computations give a too large value for
the mass of this state (see, for example, Refs. [15–17])
and other interpretations have appeared. Among them, the
Xð3872Þ has been interpreted as a tetraquark state [18–20]
or as a loosely bound hadron molecule [21–26]. This latter
picture has become very popular due to the closeness of the
D0D̄�0 threshold, the large decay rate to D0D̄�0, as well as
the explanation of the apparent isospin symmetry violation
in terms of simple phase-space considerations. Other
analyses consider the Xð3872Þ as a hadrocharmonium
[27], a mixture between charmonium and exotic molecular
states [28–30], or relate this statewith aX atom [31].We refer
the reader to the recent reviews [1,2,32–37] and references
therein.
More recently, the Xð4014Þ state has been observed by

the Belle collaboration, appearing as a second structure in
the two-photon process γγ → γψð2SÞ [38]. While the first
structure seen in γγ → γψð2SÞ corresponds to a state with
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mass M¼3922.4�6.5�2MeV and width Γ ¼ 22� 17�
4 MeV, and it might be associated to the Xð3915Þ, the
χc2ð3930Þ, or a mixture of them, the second state withM ¼
4014.3� 4� 1.5 MeV and Γ ¼ 4� 11� 6 MeV could
be a new resonance, the Xð4014Þ. As discussed in
Refs. [39,40], the application of heavy-quark spin sym-
metry (HQSS) to the charmed meson-antimeson system
together with the identification of the Xð3872Þ and
Xð3915Þ states as isoscalar DD̄� and D�D̄� molecular
states with JPC ¼ 1þþ and 0þþ, respectively, implies the
existence of four additional molecular partners. Among
those, the Xð4014Þ is identified as a D�D̄� state with
JPC ¼ 2þþ. Note, however, that the molecular nature of the
Xð3915Þ state used as an input in the HQSS analyses is
under discussion, as it could be identified as the charmo-
nium χc0ð2PÞ [41–43] or as an s-wave Dþ

s D−
s state [44],

thus implying that the Xð4014Þ state belonging to the
HQSS family is still under debate.
Whereas the nature of these X states is determined by the

charmonium spectrum and the comparison with the branch-
ing ratios for two- and three-body decays, the production
yield of these exotic hadrons in pp collisions or relativistic
heavy-ion collisions (HICs) has opened a new venue of
interest. In particular, there has been a recent controversy
on the conclusions about the nature of Xð3872Þ coming
from the analysis of the high prompt production cross
section of the Xð3872Þ at pp collisions at CDF [7] and in
CMS [11]. The description of the multiplicity dependence
of the production rates of promptly produced Xð3872Þ
relative to the ψð2SÞ, observed recently in pp collisions at
LHCb [45], has also lead to debate on the interpretation of
the Xð3872Þ [46,47] (see a more detailed discussion and
references in [48]).
One of our motivations to study thermal effects on these

hadrons comes from the collective medium formed after
hadronization in relativistic HICs. At high collision ener-
gies, the eventual hadronic medium is created around
temperatures of Tc ¼ 156 MeV, where interactions among
hadrons occur until the so-called kinetic freeze-out at lower
temperatures. Among these hadrons, the exotic Xð3872Þ
has recently been reconstructed in Pb-Pb collisions by the
CMS experiment [49], where a substantial production with
respect to pp collisions for the ratio Xð3872Þ=ψð2SÞ has
been reported. Therefore, this state can suffer from thermal
medium modifications during the hadronic expansion until
its final decoupling from the medium.
In this context, the Xð3872Þ has already been considered

within the statistical hadronization model [50], incorpo-
rated—as the model itself stipulates [51]—with its vacuum
properties, i.e., a mass of 3872 MeV and (nearly) zero
width. This model shows a prediction for the distribution of
transverse momentum, pT , at LHC energies, which is still
soon to be tested, and has to wait for future measurements.
The behavior of the charmoniumlike states for extreme

conditions, such as those found in HICs at RHIC and LHC

energies, is another way to study the nature of these states.
As an example, using the coalescence model, the ExHIC
collaboration [52–54] has shown that considering the
Xð3872Þ as a molecule implies a production yield much
larger than for the tetraquark configuration, in particular if
one also takes into account the evolution in the hadronic
phase [55,56], given that the production and absorption
cross sections in HICs are expected to be larger for a
molecular state. Indeed, the authors of Ref. [56] corrobo-
rated that fact by studying the time evolution of the
Xð3872Þ abundance in the hot hadron gas based on all
hadronic production mechanisms of the Xð3872Þ assumed
in Refs. [56,57]. Other approaches have analyzed the nature
of the Xð3872Þ in HICs with instantaneous coalescence
models [58,59], within a statistical hadronization scheme
[50], or using a thermal-rate equation approach [60].
However, up to now, the analyses of the production of

charmoniumlike states, such as the Xð3872Þ, in HICs do not
take into account their possible in-medium modification in
the hot hadronic phase. In the case of the Xð3872Þ, there are
two recent studies on its in-medium properties. In Ref. [61]
the properties of the Xð3872Þ in a finite-temperature pion
bath have been studied assuming this resonance to be a
molecular state generated by the interaction of DD̄�–c.c.
pairs and associated coupled channels. Within this approach,
the Xð3872Þ develops a substantial width within a hot pionic
bath at temperatures close to the critical temperature,
whereas its nominal mass moves above the DD̄� threshold.
In Ref. [48] the behavior of the Xð3872Þ in dense nuclear
matter was studied assuming that the Xð3872Þ is a purely
molecular (DD̄�–c.c.) state or taking into account mixed-
molecular scenarios. Important nuclear corrections for the
DD̄� amplitude and the pole position of the resonance were
found, showing a strong dependence of these results on the
DD̄� molecular component in the Xð3872Þ wave function,
which can be tested in the future experiments PANDA and
CBM at FAIR.
In the present paper we want to pursue the analysis of

the nature of the charmoniumlike states by studying the
modification due to finite-temperature corrections of the
properties of the Xð3872Þ and its possible spin-2 partner,
the newly observed Xð4014Þ. We assume that they are
molecular-type bound states of two charmed mesons,

generated from the Dð�ÞD̄� and Dð�Þ
s D̄�

s coupled-channel
interactions, belonging to the same HQSS multiplet.
Moreover, we take advantage of the heavy-quark flavor
symmetry (HQFS) and analyze the bottom sector. To this
aim, we first give predictions for the vacuum masses of
Xb bottomoniumlike partners generated from the Bð�ÞB̄�

and Bð�Þ
s B̄�

s interactions, following the philosophy of
Refs. [39,40], and then study their modification at finite
temperature. The heavy-quark flavor partners of the
Xð3872Þ have been searched for in the Xb → πþπϒð1SÞ
channel from pp collisions by CMS [62] and ATLAS [63],
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and in eþe− → γXb, Xb → ωϒð1SÞ by Belle [64] and very
recently by Belle-II [65], with no significant evidence
found so far. The final goal of this work is to gain insight
into the nature of the Xð3872Þ, the Xð4014Þ and the
associated bottom partners by analyzing their in-medium
properties in hot matter, as a complementary tool to
spectroscopic analyses of these charmonium- and botto-
moniumlike states.
The paper is organized as follows. In Sec. II we present the

local hidden-gauge formalism, showing how the pseudosca-
lar-vector and vector-vector interactions are built. Then, in
Sec. III we discuss the unitarization procedure in coupled
channels, whereas in Sec. IV we explain how the unitariza-
tion procedure is modified at finite temperature within the
imaginary-time formalism. We finalize this paper by pre-
senting our results in Sec. Vand our conclusions in Sec. VI.

II. THE LOCAL HIDDEN-GAUGE FORMALISM

The interaction between pseudoscalar (P) and vector
mesons (V) can be studied using the Lagrangian of the local
hidden-gauge symmetry approach [66–68],

L ¼ −
1

4
hVμνVμνi þ 1

2
m2

V

��
Vμ −

i
g
Γμ

�
2
�
; ð1Þ

where h� � �i stands for the trace in SUð4Þ flavor space and
Vμν is defined as Vμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�, in terms

of the SUð4Þmatrix Vμ containing the vector mesons (to be
shown later). The hidden-gauge coupling constant g is
related to the meson decay constant f and the vector meson
mass mV through the relation g ¼ mV

2f , which fulfills
the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin rule
of vector-meson dominance [69,70].
The expansion of the Lagrangian of Eq. (1) leads, on one

hand, to a four-vector contact term (VVVV),

Lc
VVVV ¼ g2

2
hVμVνVμVν − VνVμVμVνi; ð2Þ

and, on the other hand, it gives rise to the vertices involving
a vector meson and two pseudoscalar mesons (PPV),

LPPV ¼ −ighVμ½P; ∂μP�i; ð3Þ

and three vector mesons (VVV),

LVVV ¼ ighðVμ
∂νVμ − ∂νVμVμÞVνi: ð4Þ

We note that there is no contact term for the scattering
between pseudoscalar and vector mesons (i.e., PPVV) in
the hidden-gauge formalism.
In SUð4Þ, the P and Vμ matrices collecting the 16-plets

of pseudoscalar- and vector-meson fields can be written as

P ¼

0
BBBBBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p ηþ 1ffiffi
3

p η0 πþ Kþ D̄0

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p ηþ 1ffiffi
3

p η0 K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ 1ffiffi

3
p η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA

ð5Þ

and

Vμ ¼

0
BBBBB@

1ffiffi
2

p ðρ0 þ ωÞ ρþ K�þ D̄�0

ρ− 1ffiffi
2

p ð−ρ0 þ ωÞ K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA

μ

: ð6Þ

We focus on the sector with hidden charm C ¼ 0 and
strangeness S ¼ 0 in isospin basis. We consider the
DD̄�ð3875.80Þ and DsD̄�

sð4080.54Þ coupled channels
with quantum numbers IGðJPCÞ ¼ 0þð1þþÞ, and the
D�D̄�ð4017.11Þ and D�

sD̄�
sð4224.40Þ channels in the case

of IGðJPCÞ ¼ 0þð2þþÞ, where the numbers in parentheses
denote their corresponding energy thresholds in MeV. The
KK̄�ð1389.29Þ and K�K̄�ð1789.30Þ channels can be safely

ignored in this study, given that their threshold masses lie
far from the energy region of interest and their contribution
to the generation of the Xð3872Þ and the Xð4014Þ,
respectively, is negligible. We will actually see that the
states with hidden strangeness, i.e., DsD̄�

s and D�
sD̄�

s , play
also a minor role, and that the Xð3872Þ and the Xð4014Þ are
mainly generated from the dynamics of theDD̄� and D�D̄�
channels, respectively, due to the proximity of these states
to their thresholds. Nevertheless, we consider a coupled-
channel basis and allow transitions between different chan-
nels for completeness. We note that we consider positive
G-parity1 (and hence positive C-parity) combinations of the

1We recall that the G-parity operator is defined as Ĝ ¼ eiπT2 Ĉ,
with T2 being the second component of the isospin SUð2Þ
operator, and the C-parity operator acts on pseudoscalar and
vector mesons as ĈjPi ¼ jP̄i and ĈjVi ¼ −jV̄i.
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PV wave functions in isospin basis, i.e., jDD̄�−c:c:i¼
1
2
ðjD0D̄�0i−jD̄0D�0iþjDþD�−i−jD−D�þiÞ and jDsD̄�

s−
c:c:i ¼ 1ffiffi

2
p ðjDþ

s D�−
s i − jD−

s D�þ
s iÞ, following the sign con-

vention in [24], but employ the simplified notationDD̄� and
DsD̄�

s throughout this work.
From the Lagrangians in Eqs. (2)–(4) we build the

s-wave amplitudes for the scattering processes PV → PV
and VV → VV. It turns out that in the hidden-gauge
formalism the interaction between a pseudoscalar meson
and a vector meson is described by a t-channel vector-
meson exchange diagram, depicted in Fig. 1(a) for the
case DD̄� → DD̄�. For the interaction between two vector
mesons, such as D�D̄� → D�D̄�, in addition to the
t-channel diagram of Fig. 1(b), there is the contribution
of the four-vector contact term of Fig. 1(c).
The VVV vertex of Eq. (4) also allows one to build the

s-channel and u-channel vector-meson exchange diagrams
[71,72]. However, the first one only contributes to the
p-wave interaction and thus it is suppressed, while the latter
would imply the exchange of a virtual vector meson with
double charm for the sector under consideration. Therefore
these diagrams are left out in our study.
The interaction between bottomed mesons is described

by the same Lagrangians as in the case of charmed mesons,
with the replacement of the mesons with charm quarks in
the SUð4Þ matrices in Eqs. (5) and (6) with the corre-
sponding mesons with bottom quarks. Therefore, in the
hidden-bottom sector we have BB̄� and BsB̄�

s coupled
channelswith IGðJPCÞ ¼ 0þð1þþÞ, andB�B̄� andB�

sB̄�
s with

IGðJPCÞ ¼ 0þð2þþÞ.

A. Pseudoscalar-vector interaction

We consider the fDD̄�; DsD̄�
sg (fBB̄�; BsB̄�

sg) coupled-
channel interaction, which proceeds through the exchange
of virtual ρ, ω, or J=ψ (ϒ) mesons for diagonal transitions,
as in Fig. 1(a), or a virtual K� for nondiagonal transitions.
The PPVand VVV vertices in this diagram are described by
Eqs. (3) and (4), respectively, and neglecting the three-
momenta of the external vector mesons, which is a good
approximation near threshold [73], they read

tPPV ¼ aðk1 þ k3Þiϵð0Þi ; ð7Þ

tVVV ¼ bðk2 þ k4Þiϵð2Þj ϵð4Þj ϵð0Þi ; ð8Þ

where the indices i, j are spatial and ϵi denotes the
polarization three-vector components of the vector mesons.
The superindex (0) refers to the exchanged virtual vector
meson and the indices 1,2,3, and 4 denote the particles in
the scattering process Pð1Þ þ Vð2Þ → Pð3Þ þ Vð4Þ. The
scattering amplitude is then obtained by considering all the
possible vector-meson exchanges. The numerical factors a
and b depend on the mesons in the vertex and are calculated
in the charge basis.
In the limit t ≪ m2

V , with t being the four-momentum
exchanged in the process, the t-channel exchange diagram
reduces to a contact interaction and the interaction potential
from an incoming channel l to an outgoing channelm of the
coupled-channel basis reads

VPV→PV
lm ðs; t; uÞ ¼ ξlmðk1 þ k3Þ · ðk2 þ k4Þϵ⃗ð2Þ · ϵ⃗ð4Þ

¼ ξlmðs − uÞϵ⃗ð2Þ · ϵ⃗ð4Þ; ð9Þ

where s, t, and u are the usual Mandelstam variables. This
amplitude is then transformed from the charge basis to the
isospin basis and projected into spin states and into s wave.
We note that the approximation of neglecting the three-
momenta of the external vector mesons with respect to their
mass is appropriate only when considering the interaction
projected in s wave. Then, the only possible spin state with
L ¼ 0 is J ¼ 1, for which the scalar factor ϵ⃗ · ϵ⃗0 ¼ 1, up to
corrections suppressed by the mass of the heavy-flavor
meson. We have checked that, to the order we work here,
the expression of the projected amplitudes obtained from
the helicity formalism coincide with ours.
The coefficients ξlm in isospin basis are given in Table I

in the hidden-charm sector for I ¼ 0. Those in the hidden-
bottom sector are readily obtained with the replacement of
the charmed mesons with the corresponding bottomed
ones, and J=ψ → ϒ. Also the constants gD and gDs

are
replaced with gB and gBs

. One can see that the exchange
of a heavy vector meson, H ¼ fJ=ψ ;ϒg, is suppressed
with respect to the exchange of a light vector meson,
L ¼ fK�; ρ;ω;ϕg, by a factor m2

L=m
2
H.

(a) (b) (c)

FIG. 1. Diagrams of the interaction between pseudoscalar and vector mesons: (a) t-channel vector-meson exchange for PV → PV,
(b) t-channel vector-meson exchange for VV → VV, and (c) four-vector contact term. Dashed lines depict pseudoscalar mesons and
solid lines represent vector mesons.
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The interaction potential given in Eq. (9) is equivalent to
that obtained from the Lagrangian used by the authors of
Ref. [74],

LPPVV ¼ −
1

4f2
TrðJμJ μÞ; ð10Þ

with the pseudoscalar and vector currents defined as Jμ ¼
ð∂μPÞP − Pð∂μPÞ andJ μ ¼ ð∂μVνÞVν − Vνð∂μVνÞ, respec-
tively, although employing another SUð4Þ-symmetry break-
ing pattern to suppress the terms involving the exchange of
a heavy vector meson, which leads to somewhat different

values for the diagonal ξðI¼0Þ
lm coefficients. This interaction

was recently used in Ref. [61] to study the thermal effects on
the Xð3872Þ. In these works, the pion decay constant f that
holds in the light sector is replaced by that of the heavy D
meson, fD, for channels involving heavy mesons.
Following a similar strategy, we take the hidden-gauge

coupling constant g in the Lagrangian of Eq. (1) to be
channel dependent, i.e., gi ≡ mρ

2fi
. The values of fi that we

take for the charmed and bottomed mesons,

ffiffiffi
2

p
fD ¼ 212.6 MeV;

ffiffiffi
2

p
fDs

¼ 249.9 MeV; ð11Þ
ffiffiffi
2

p
fB ¼ 190.0 MeV;

ffiffiffi
2

p
fBs

¼ 230.0 MeV; ð12Þ

correspond to the preferred theoretical values of the most
recent PDG review [14].
One should bear in mind that small modifications of the

amplitude in Eq. (9) due to a different prescription for the
hidden-gauge coupling constant, g, or for the SUð4Þ-
breaking pattern, can be reabsorbed by the free parameters
of the unitarization process, as it will become apparent in
Sec. III. For instance, the value of the cutoff can be fixed to
reproduce some experimental data. For the pseudocalar-
vector interaction, we will fix the cutoff to reproduce the
vacuum mass of the Xð3872Þ.

B. Vector-vector interaction

The vector-vector interaction in the hidden charm sector
within the hidden-gauge formalism was addressed in [71].

Here we consider the fD�D̄�; D�
sD̄�

sg (fB�B̄�; BsB̄�
sg)

coupled channels. Contrary to the pseudoscalar-vector
case, the amplitude for the vector-vector scattering receives
the contribution of a four-vector-meson contact term in
Fig. 1(c) that can be directly obtained from the evaluation
of the Lagrangian of Eq. (2):

VVV→VV;ðcÞ
lm ¼ αlmϵ

ð1Þ
i ϵð2Þi ϵð3Þj ϵð4Þj þ βlmϵ

ð1Þ
i ϵð2Þj ϵð3Þi ϵð4Þj

þ γlmϵ
ð1Þ
i ϵð2Þj ϵð3Þj ϵð4Þi : ð13Þ

The contribution to the potential from the t-channel
exchange is obtained in a similar way as in the pseudo-
scalar-vector case, except for the more complex structure of
polarization vectors that follows from the evaluation of
the diagram in Fig. 1(b) with the three-vector-meson vertex
of Eq. (8),

VVV→VV;ðexÞ
lm ðs; t; uÞ ¼ ξ̃lmðs − uÞϵð1Þi ϵð2Þj ϵð3Þi ϵð4Þj : ð14Þ

The amplitudes in Eqs. (13) and (14) can be separated
into three different spin contributions, J ¼ 0, 1, and 2 with
L ¼ 0 (we only consider the s wave), by using the spin
projectors PðJ¼0Þ;PðJ¼1Þ;PðJ¼2Þ [75]. Given the following
expressions for the combinations of polarization vectors,

ϵð1Þi ϵð2Þi ϵð3Þj ϵð4Þj ¼ 3PðJ¼0Þ; ð15Þ

ϵð1Þi ϵð2Þj ϵð3Þi ϵð4Þj ¼ PðJ¼0Þ þ PðJ¼1Þ þ PðJ¼2Þ; ð16Þ

ϵð1Þi ϵð2Þj ϵð3Þj ϵð4Þi ¼ PðJ¼0Þ − PðJ¼1Þ þ PðJ¼2Þ; ð17Þ

one can see that the contact term

VVV→VV;ðcÞ
lm ¼ð3αlmþβlmþ γlmÞPðJ¼0Þ þðβlm− γlmÞPðJ¼1Þ

þðβlmþ γlmÞPðJ¼2Þ; ð18Þ

gives rise to interactions in all the spin channels with
different weights, while the vector-meson exchange term,

VVV→VV;ðexÞ
lm ðs; t;uÞ¼ ξ̃lmðs−uÞ½PðJ¼0Þ þPðJ¼1Þ þPðJ¼2Þ�;

ð19Þ

contributes in the same amount to all the spin states.
With the above considerations, one has that the full

expression for the VV → VV scattering amplitude in a
sector with definite isospin I and spin J can be written as

VVV→VV;ðI;JÞ
lm ðs; t; uÞ ¼ CðI;JÞ

lm þ ξ̃ðI;JÞlm ðs − uÞ; ð20Þ

where the first term comes from the contact interaction and
the second term corresponds to the t-channel vector-meson

exchange. The corresponding isospin coefficientsCðI;JÞ
lm and

TABLE I. The isospin coefficients of the t-channel vector-
meson exchange terms for the channels involved in the generation
of the Xð3872Þ, with IGðJPCÞ ¼ 0þð1þþÞ.

PV → PV ξðI¼0Þ
lm

DD̄� → DD̄� −2g2D
�

1
2m2

J=ψ
þ 3

4m2
ρ
þ 1

4m2
ω

�

DsD̄�
s → DsD̄�

s −2g2Ds

�
1

2m2
ϕ
þ 1

2m2
J=ψ

�

DD̄� → DsD̄�
s −2gDgDs

�
1ffiffi

2
p

m2
K�

�
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ξ̃ðI;JÞlm are displayed in Table II, for I ¼ 0 and J ¼ 2, which
are the quantum numbers that we assume for the Xð4014Þ.
The coefficients in the hidden-bottom sector follow from
the same replacements as in the pseudoscalar-vector case.
We have taken gD�=B� ¼ gD=B and gD�

s=B�
s
¼ gDs=Bs

, with the
values of fD=B and fDs=Bs

given above.
It was shown in Ref. [71] that the contribution of the

contact term is in general smaller than the contribution of
the vector meson exchange but not negligible. For instance,
in the D�D̄� → D�D̄� transition the contact term accounts
for ∼5% of the total interaction evaluated at the D�D̄�
threshold for I ¼ 0, J ¼ 2 (see Table XVII in [71]).
It is also interesting to note that the contribution to the

vector-vector amplitude from the dominant vector-meson
exchange term in Eq. (20), with any spin J ¼ 0, 1, or 2, has
the same expression as the pseudoscalar-vector amplitude
in Eq. (9), with definite spin J ¼ 1, as is evident from the

fact that ξðIÞlm ¼ ξ̃ðI;JÞlm in Tables I and II. Hence, the leading
interaction between open heavy-flavor mesons within the
local-hidden gauge approach automatically fulfills the rules
of HQSS. The contact term, only present in the vector-
vector interaction, does not satisfy HQSS constraints but it
is a numerically suppressed contribution [76].

III. UNITARIZATION IN COUPLED CHANNELS

In this section we briefly discuss the unitarization
process that leads to poles in the scattering amplitudes
and that are associated to molecular states that are dynami-
cally generated. The pseudoscalar-vector and vector-vector
interactions derived from the local hidden-gauge formalism
are unitarized by solving the coupled-channel Bethe-
Salpeter equation in the on-shell factorization approach
[77,78],

T ¼ Vð1 − VGÞ−1; ð21Þ

where the kernel V is provided by the s-wave projection of
the interaction potentials in Eqs. (9) and (20), and G is the
propagator of the two mesons in the loop,

GðsÞ ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
1 þ iε

1

ðP − qÞ2 −m2
2 þ iε

;

¼
Z

d3q
ð2πÞ3

ω1 þ ω2

2ω1ω2

1

s − ðω1 þ ω2Þ2 þ iε
; ð22Þ

where m1 and m2 are the masses of the two open heavy-
flavor mesons, q is the four-momenta of one of the mesons
in the loop, P is the total four-momentum of the system,
Pμ ¼ ð ffiffiffi

s
p

; 0⃗Þ, and ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

1

p
and ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

2

p
are the energies of the intermediate mesons. The integral in
Eq. (22) needs to be regularized. There are two methods
that are usually employed. One is the dimensional regu-
larization scheme, in which the loop function reads

GDRðsÞ ¼ 1

16π2

	
aðμÞ þ ln

m2
1

μ2
þm2

2 −m2
1 þ s

2s
ln
m2

2

m2
1

þ qcmffiffiffi
s

p ½lnðs − ðm2
1 −m2

2Þ þ 2qcm
ffiffiffi
s

p Þ

þ lnðsþ ðm2
1 −m2

2Þ þ 2qcm
ffiffiffi
s

p Þ
− lnð−sþ ðm2

1 −m2
2Þ þ 2qcm

ffiffiffi
s

p Þ

− lnð−s − ðm2
1 −m2

2Þ þ 2qcm
ffiffiffi
s

p Þ�


; ð23Þ

where qcmðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s−ðm1þm2Þ2�½s−ðm1−m2Þ2�

p
=ð2 ffiffiffi

s
p Þ

is the three-momentum of the mesons in the loop in the
center-of-mass frame, and the subtraction constant aðμÞ at
the regularization scale μ is a free parameter. The other
method consists in introducing a cutoff Λ in the momentum
integral shown explicitly after the last equality in Eq. (22).
In this case, Λ is the free parameter. An analytical
expression can be found in Ref. [79].
The two regularization methods can be related by

demanding the same value of the loop function at threshold,
which results in a relationship between the free parameters
aðμÞ and Λ:

aðμÞ ¼ 16π2½GΛðsthrÞ −GDRðsthrÞ�; ð24Þ

for a given μ. A naturally sized cutoff in the range
½500; 1000� MeV corresponds to values of the subtraction
constant for the DD̄�=D�D̄� channels in the range
½−1.8;−2.4�, for μ ¼ 1 GeV. We note that the cutoff
method produces distortions in the loops at energies of a
few hundreds of MeV above threshold, but it always gives
ReG < 0 below threshold, which is the region where
bound states appear. We recall that bound states correspond
to singularities in the scattering amplitude, which, accord-
ing to Eq. (21), fulfill 1 ¼ V ReG. Conversely, dimensional
regularization can produce ReG > 0 and the subsequent
generation of unphysical states with repulsive potentials.
Following the previous observation, we have thus

decided to use the cutoff regularization. On one hand,

TABLE II. The isospin coefficients of the contact (CðI;JÞ
ij ) and

the t-channel vector-meson exchange (ξ̃ðI;JÞij ) terms for the
channels involved in the generation of the Xð4014Þ, with isospin
IGðJPCÞ ¼ 0þð2þþÞ.

VV → VV CðI¼0;J¼2Þ
lm ξ̃ðI¼0;J¼2Þ

lm

D�D̄� → D�D̄� −3g2D −2g2D
�

1
2m2

J=ψ
þ 3

4m2
ρ
þ 1

4m2
ω

�

D�
sD̄�

s → D�
sD̄�

s −2g2Ds
−2g2Ds

�
1

2m2
ϕ
þ 1

2m2
J=ψ

�

D�D̄� → D�
sD̄�

s −
ffiffiffi
2

p
gDgDs

−2gDgDs

�
1ffiffi

2
p

m2
K�

�
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we are interested in bound states, where the use of a cutoff
scheme is safer (to avoid generation of spurious poles). On
the other hand, the calculation is straightforward to general-
ize to finite temperature. We will exploit the extension at
finite temperature of the unitarization process with thermal
propagators regularized with the cutoff that we presented in
Refs. [80,81], a methodology that is discussed in the next
section. The value of the cutoff is determined by fixing
the pole position in vacuum to the experimental mass of the
Xð3872Þ in the pseudoscalar-vector sector, and that of the
Xð4014Þ in the vector-vector sector.
The unitarized scattering amplitude admits an expansion

in a Laurent series around the pole position. For a T-matrix
element it reads

TijðzÞ ¼
gigj
z − zp

þ
X∞
n¼0

TðnÞ
ij ðz − zpÞn; ð25Þ

where zp is the pole position in the complex s plane, gi is
the coupling of the bound state or resonance to channel i
(e.g., i ¼ DD̄�; DsD̄�

s), and gigj is the residue around the
pole. We can get the couplings to each of the channels using
the limit formula

gigj ¼ lim
z→zp

½ðz − zpÞTijðzÞ�; ð26Þ

or, alternatively,

gigj ¼
�
∂

∂z

�
1

TijðzÞ
�����

zp



−1
: ð27Þ

IV. FINITE TEMPERATURE FORMALISM

In Refs. [80,81] we employed the imaginary-time
formalism (ITF) to compute the medium corrections due
to a gas of light mesons on the properties of the open-charm
pseudoscalar and vector mesons. The general expression
for the thermal two-meson propagator loop reads

GðE; P⃗;TÞ ¼
Z

d3q
ð2πÞ3

Z
∞

−∞
dω

Z
∞

−∞
dω0

×
S1ðω; q⃗;TÞS2ðω0; P⃗ − q⃗;TÞ

E − ω − ω0 þ iε

× ½1þ fðω; TÞ þ fðω0; TÞ�: ð28Þ

As mentioned in the previous section, the real part of the
momentum integral is regularized with a cutoff, its value
being determined in vacuum. The Bose-Einstein distribu-
tion factors fðω; TÞ ¼ 1=ðeω=T − 1Þ appear from the sum-
mation over Matsubara frequencies within the ITF.
The spectral functions Siðω; q⃗;TÞ take account of the

dressing of the heavy-meson masses by the thermal
medium. We employ the spectral functions for the D=Ds

andD�=D�
s mesons presented in Refs. [80,81], and we have

performed similar calculations to obtain those of the open-
bottom mesons.
We then solve the Bethe-Salpeter equation in Eq. (21)

with the above thermal loop functions containing dressed
mesons, and the interaction kernels of Sec. II. We note that,
in the ITF formalism, thermal corrections enter in loop
diagrams [82,83], and therefore the tree-level interactions at
finite temperature remain the same as in vacuum.
The analytical continuation of the unitarized scattering

amplitudes to the complex-energy plane at finite temper-
ature, with imaginary Matsubara frequencies, is nontrivial.
Therefore, we do not look for poles of the scattering
amplitude in the complex-energy plane at finite temper-
ature. Instead, we extract the thermal properties of the
dynamically generated states from the structures observed
in ImT, as discussed in the next section.

V. RESULTS

We will apply the formalism described in the previous
sections to discuss the plausibility of dynamically generat-
ing the Xð3872Þ and the Xð4014Þ as DD̄� and D�D̄�
molecular states, as well as the partners predicted in the
bottom sector. After fixing the model in vacuum in order to
reproduce the mass of these states from the experiments, we
will analyze the modification of their properties in a hot
medium.

A. Vacuum properties

Solving the Bethe-Salpeter equation in Eq. (21) with the
hidden-gauge interaction kernel of Eq. (9) for the DD̄� and
DsD̄�

s coupled-channel system with I ¼ 0 and J ¼ 1, we
find a pole below the DD̄� threshold that corresponds to a
bound state and thus has no decay width. It can be placed at
mXð3872Þ by using a cutoff value of Λ ¼ 567 MeV in the
regularization of the loop functions, as shown in the first
row of Table III. The generation of this state is dominated
by the DD̄� → DD̄� interaction, as we can see from the
large coupling of the pole to this channel. Actually, the
DsD̄�

s channel plays a minor role, and its omission barely
affects the pole position.
Similarly, the unitarization of the interaction of Eq. (20)

for theD�D̄� andD�
sD̄�

s coupled-channel system with I ¼ 0
and J ¼ 2 gives rise to a pole in the scattering amplitude
below the D�D̄� threshold that is placed at mXð4014Þ by
taking Λ ¼ 510 MeV. Note that, in this sector, in addition
to the attractive vector exchange interaction, which is
responsible for the generation of a bound DD̄� state in
the PV case, there is also the attractive contribution from
the contact term. It is therefore not surprising that a lower
value of the cutoff is needed in the VV sector to bind the
Xð4014Þ a few MeV below the D�D̄� threshold. We note
that these values of the cutoff lie in the lower side of what is
considered to be naturally sized. The pole position of the
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Xð4014Þ and its couplings to the different channels are
displayed in the second row of Table III.
The poles associated to the counterparts of the Xð3872Þ

and the Xð4014Þ in the bottom sector are dynamically
generated from the Bð�ÞB̄� interaction employing, for
consistency, the same values of the cutoff. The properties
predicted for these states are listed in the subsequent rows
of Table III. We obtain a J ¼ 1 BB̄� state with a binding
energy of 55 MeV from the PV interaction, and a J ¼ 2

B�B̄� state with 38 MeV of binding energy. Therefore,
according to the model employed, these excited bottomonia
states would be considerably more bound than those in the
charm sector. This is partly related to having a somewhat
stronger interaction in the bottom sector due to the slightly
smaller decay constants [compare Eqs. (11) and (12)] but
also to the smaller kinetic energy inherent in the bottomonia
states because of the heavier masses of their constituents.
The authors of Ref. [84] have recently suggested the

Xð4014Þ to be a D�D̄� molecule with quantum numbers
IGðJPCÞ ¼ 0þð0þþÞ using a contact interaction within the
hidden-gauge formalism. The authors argue to have
absorbed the vector-meson exchange contribution in the
contact term by varying gD for values around gD ¼ mD�=
ð2fDÞ. This is an arguable procedure considering that the
contact term is subleading with respect to the meson-
exchange contribution (see our discussion in Sec. II B),
hence the latter should be the one determining the size and
sign of the interaction. The adopted prescription results in a
spin-2 interaction that is not attractive enough to dynami-
cally generate a bound state at an energy close to the
experimental mass of the Xð4014Þ. However, by taking the
full vector-vector interaction, the Xð4014Þ can be naturally
generated as aD�D̄� bound state with IGðJPCÞ ¼ 0þð2þþÞ,
as we have shown in this section. Another argument that
disfavors the J ¼ 0 assignment to the Xð4014Þ made in
Ref. [84] is the fact that the contact interaction is repulsive
in this sector, i.e., compelling the authors to employ small
values of the subtraction constants in the unitarization
process to produce an unphysical bound state.
We conclude the study at T ¼ 0 by providing an

estimation of the size of the Xð3872Þ and Xð4014Þ from
their wave functions, following the formalism of Ref. [25],
which has been derived specifically for these exotics, thus

using the nonrelativistic approach. After computing the
wave functions in coordinate space as described by [25],
the obtained values of the rms radius, defined as

rrms ¼
ffiffiffiffiffiffiffiffi
hr2i

q
¼

�Z
d3rr2jΨj2

�
1=2

; ð29Þ

are rrms½Xð3872Þ�¼1.96 fm and rrms½Xð4014Þ� ¼ 2.30 fm,
which are typical sizes for shallow bound states (e.g., the
deuteron). Within our description of the Xð3872Þ as a
molecular state, our estimation of the radius lies in the low
side when compared to other estimates [34,47]. The reason
is that we work within the isospin formalism, and our
vacuum meson masses correspond to an average of the
charged states (Dþ; D0;…). Then, despite having fixed the
exotic masses to their experimental positions, the resulting
elastic thresholds and binding energies differ from those
using charged states, cf. Table III. In fact, our result is a
weighted average between the low binding energy
(∼0.1 MeV) in the D0D̄�0 channel and the large binding
(∼8 MeV) in the DþD�− channel found in Ref. [25].

B. Thermal modifications

In this section we study how the dynamically generated
Xð3872Þ and Xð4014Þ states, as well as their bottom
counterparts, behave in a hot medium.
We first show the thermal two-meson loop function of

the DD̄� (left panels) and DsD̄�
s channels (right panels) at

finite temperature in Fig. 2. These follow from the
numerical integration of Eq. (28), where we have used
the spectral functions of the D, Ds, D�, and D�

s mesons
obtained in our previous works [80,81]. In these references
it was found that the thermal masses (i.e., the peak position
of the spectral functions) decrease with increasing temper-
atures, while their widths grow considerably (see Fig. 6
below). Therefore, the dressing of the loop function with
the spectral functions softens and shifts towards lower
energies the onset of the unitary cut of the imaginary part
(bottom panels) with the consequent effects on the corre-
sponding structure of the real part (top panels).
In Fig. 3 we display the spectral functions of the

dynamically generated states, Xð3872Þ (left panel) and
Xð4014Þ (right panel), for various temperatures. Being

TABLE III. Pole position and coupling constants in the sectors with hidden charm (upper half) and hidden bottom
(lower half), strangeness S ¼ 0 and IGðJPCÞ ¼ 0þð1þþÞ; 0þð2þþÞ, together with the value of the cutoff employed
Λ, the label of the associated experimental state and the threshold of the nearest channel.

Λ State Nearest threshold ffiffiffiffiffizpp Couplings
(MeV) (MeV) (MeV) (GeV)

567 Xð3872Þ mD þmD̄� ¼ 3875.80 3871.65þ i0.00 jgDD̄� j ¼ 9.23 jgDsD̄�
s
j ¼ 3.98

510 Xð4014Þ mD� þmD̄� ¼ 4017.11 4014.31þ i0.00 jgD�D̄� j ¼ 8.56 jgD�
s D̄�

s
j ¼ 3.69

567 ... mB þmB̄� ¼ 10604.12 10548.65þ i0.00 jgBB̄� j ¼ 7.51 jgBsB̄�
s
j ¼ 3.28

510 ... mB� þmB̄� ¼ 10649.30 10611.21þ i0.00 jgB�B̄� j ¼ 6.47 jgB�
s B̄�

s
j ¼ 2.83
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dynamically generated states, these spectral functions are
defined as

SðP⃗ ¼ 0; EÞ ¼ −
1

π
ImTðP⃗ ¼ 0; EÞ; ð30Þ

where T is the unitarized thermal scattering amplitude
DD̄� → DD̄� (left panel) and D�D̄� → D�D̄� (right panel).
The dashed lines in dark blue depict the position of the
poles associated to the Xð3872Þ and the Xð4014Þ in

vacuum. As temperature increases, the peak position
decreases and the width increases. The spectral functions
of the dynamically generated Xb states in the bottom sector,
displayed in Fig. 4, show an analogous behavior with
temperature as that of their charm counterparts.
Figure 5 shows the evolution with temperature of the

properties of the dynamically generated states. The mass
shift represented on the left panel is obtained, at each
temperature, as the difference between the peak position of
the corresponding spectral function and the real part of the

FIG. 2. Real (top panels) and imaginary (bottom panels) parts of the loop functions of the DD̄� (left panels) and DsD̄�
s (right panels)

channels at temperature T.

FIG. 3. Thermal spectral function of the Xð3872Þ (left panel) and Xð4014Þ (right panel) states, i.e., imaginary part of the unitarized
scattering amplitudes at finite temperature for the diagonal transitions DD̄� → DD̄� (left) and D�D̄� → D�D̄� (right).
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vacuum pole listed in Table III. The half width shown in the
right panel is taken as half of the full width at half
maximum from the left-hand side of the spectral distribu-
tion, as it is less distorted than the right-hand side which
can be affected by threshold effects. For comparison, we
display in Fig. 6 the thermal modification of the properties
of the ground-state D, D�, B̄, and B̄� mesons, extracted
from their corresponding spectral functions.2

Focusing first on the hidden charm states, Xð3872Þ and
Xð4014Þ, we observe that their mass gets reduced with
temperature, following the decreasing mass trend of their

meson components. Themass reduction is around 30MeVat
T ¼ 100 MeV and around 70 MeV at T ¼ 150 MeV.
Nevertheless, the mass of the dynamically generated states
is always close to their corresponding finite temperatureDD̄�

and D�D̄� threshold, respectively, being below it for T ≲
100 MeV and above it for T ≳ 100 MeV. This is more
clearly visualized in the left panel of Fig. 7, where the
temperature evolution of the Xð3872Þ and Xð4014Þ masses
(solid lines) is compared with their corresponding temper-
ature dependent threshold (dashed lines). The shaded areas
account for the width of these states, which is found to be
roughly the sum of the width of their meson components,
being just somewhat larger for the highest temperatures
explored in this work. This can be easily checked upon
comparing the half widths of theD andD� mesons displayed
on the right panel of Fig. 6 with those of the Xð3872Þ and
Xð4014Þ states shown on the right panel of Fig. 5.

FIG. 4. Thermal spectral function of the Xb vector (left panel) and tensor (right panel) generated states, i.e., imaginary part of the
unitarized scattering amplitudes at finite temperature for the diagonal transitions BB̄� → BB̄� (left) and B�B̄� → B�B̄� (right).

FIG. 5. Temperature evolution of the mass shift and the half-width of the hidden-charm and hidden-bottom dynamically generated
states.

2The interaction of open heavy-flavor mesons with a bath of
light mesons with vanishing net flavor chemical potentials is no
different for heavy mesons or heavy antimesons, meaning that the
in-medium spectral functions for D̄ð�Þ=Bð�Þ are the same as those
for Dð�Þ=B̄ð�Þ
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The displacement of the Xð3872Þ towards lower energies
with increasing temperatures found in the present work is
opposite to what is found in the study of Ref. [61]. There,
the peaks of the D and D� spectral functions were kept
at the position of their vacuum mass, so a temperature-
independent DD̄� threshold was maintained. Therefore,
the tendency of the dynamically generated state to move
towards the threshold, and even above it, with increasing
temperature led the study of Ref. [61] to obtain an increased
temperature-dependent Xð3872Þ mass with respect to
its vacuum value. It is interesting to note that a recent
lattice QCD study of temperature effects on charmed
pseudoscalar and vector correlators finds a reduction in
mass of 20(7) MeV for theDmeson and of 43(10) MeV for
the D� meson [85], which is quite consistent with our
effective field theoretical results.

As for the temperature dependence of the Xð3872Þ
width, while we find agreement with the value of about
30 MeV at T ¼ 100 MeV quoted in Ref. [61], a large
discrepancy of more than a factor of 2 is observed at
T ¼ 150 MeV. At this temperature we find the Xð3872Þ to
have a width of about 150 MeV to be compared with the
value of 60 MeV given in Ref. [61]. This reduced width for
the Xð3872Þ can partly be explained by the smaller width of
its mesonD andD� components, found to be of the order of
45 MeV at T ¼ 150 MeV in the model employed in
Ref. [61]. We also note that the width of the Xð3872Þ
depends on how it is extracted from an asymmetric peak
which is distorted by a threshold. Considering the right-
hand side of the distribution displayed in Ref. [61], a width
of 90–100 MeV at T ¼ 150 MeV is obtained for the
Xð3872Þ, a value that is more consistent with the width

FIG. 6. Temperature evolution of the mass shift and the half-width of the open-charm and open-bottom ground state mesons.

FIG. 7. Temperature evolution of the peak of the dynamically generated states (solid lines) and the thresholds (dotted lines). The
shaded areas show the width of the states, e.g., mXð3872Þ � ΓXð3872Þ=2 for the Xð3872Þ.
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of its constituents and does not deviate so strongly from our
result.
We end this section by discussing the properties of the

hidden bottom states. As found in the charm sector, the
mass of the dynamically generated Xbð1þþÞ and Xbð2þþÞ
states, displayed on the left panel of Fig. 5, decreases with
temperature following the trend of the mass of their meson
components seen on the left panel of Fig. 6. It is worth
mentioning here that the temperature correction to the mass
of the ground-state bottom mesons is found to be somewhat
smaller than that of the charm mesons. Recalling that the
mass shift is proportional to Π=2M, this behavior results
from the combination of a twice more attractive self-energy
[86] with a three times larger mass of the bottom mesons
compared to the values for the charm mesons. The mass
reduction of the Xbð1þþÞ and Xbð2þþÞ bottomonia with
respect to their vacuum mass is similar to that of their
charmonia counterparts up to T ¼ 100 MeV and becomes
larger at higher temperatures, reaching a value of around
120 MeV at T ¼ 150 MeV, which is almost twice the
reduction observed for the Xð3872Þ and Xð4014Þ states. As
clearly visualized in Fig. 7, within the temperature range
explored, the bottomonia maintain a similar binding energy
with respect to the temperature-dependent threshold as that
in vacuum, although a stronger descent is observed at larger
temperatures, where one is also approaching the limit of
applicability of hadronic effective theories of T ∼ Tc. As
for the width of the Xbð1þþÞ and Xbð2þþÞ states, displayed
on the right panel of Fig. 5, it is found to be larger at each
temperature than that of their charm counterparts, reaching
a value of 50 MeVat T ¼ 100 MeV and about 200 MeVat
T ¼ 150 MeV. This is obviously due to the wider character
of their ground-state bottom meson components compared
to the charm meson ones, as can be seen on the right panel
of Fig. 6.

VI. CONCLUSIONS

In this study we have addressed both vacuum and finite-
temperature properties of the exotic state Xð3872Þ and its
heavy-quark spin-flavor partners, namely, the Xð4014) as
well as the axial-vector and tensor Xb states. For these goals
we have assumed that the internal structure of these hadrons
is of a meson-meson molecular state [21–26,56,87]. While
a tetraquark component has not been discarded, we based
our assumption on the closeness of the mass of the Xð3872Þ
to the DD̄� threshold and its very small decay width. Using
an effective hadron approach based on the hidden-gauge
Lagrangian extended to SUð4Þ and coupled to pseudoscalar
mesons, we have first generated the Xð3872Þ out of the
solution of the Bethe-Salpeter equation that resums the
s-wave scattering of a charm and anticharm meson pair.
After fixing the parameters of the model using the
experimental properties of the Xð3872Þ, we have extended
the description to finite temperature using the imaginary-
time formalism. Additional input for this calculation was

the known thermal spectral functions of the open-charm
mesons from Refs. [80,81]. Then, we have extended the
calculation (both in vacuum and at finite temperature)
to generate the tensor state, identified with the exper-
imental Xð4014Þ, out of the scattering of vector mesons.
Finally we have studied their bottom counterparts Xb in
the axial-vector IðJPCÞ ¼ 0ð1þþÞ and tensor channels
IðJPCÞ ¼ 0ð2þþÞ, states which have not been experimen-
tally found yet [62–65], and for which we provide
predictions, also at finite temperatures.
In our approach we have considered temperatures

below the hadronization one, around Tc ¼ 156 MeV. A
temperature of T ≃ 150 MeV roughly corresponds to our
limiting temperature where our results start to suffer from
sizable systematic uncertainties. For somewhat lower
temperatures (corresponding to the freeze-out one) our
results show that the mass of the Xð3872Þ and the Xð4014Þ
would dropΔm ≃ −60 MeV, and acquire a decay width of
Γ ≃ 120 MeV. While the small relative mass drop might
not affect appreciably the dynamics of the exotics,
the amount of decay width can give a somewhat larger
multiplicity of these particles in the medium. A simple
estimation of Boltzmann multiplicities gives an increased
yield from the case using a vacuum mass (like the one
used in the statistical thermal model) to a state with a
downshifted mass and a decay width like the one obtained
here. Such a moderate decay width is mostly inherited from
the thermal width of the D=D� mesons. In principle this
would point out to a higher multiplicity of open-charm
states coming from the decays of the Xð3872Þ=Xð4014Þ.
In vacuum, we find a similarity between these states and

the deuteron case, as their binding energies and sizes are
alike. Then, because their small binding energy, the
survival of these states in a hot environment could be
questioned along the lines of the so-called “snowballs in
hell” puzzle [88]. However notice that at T ≃ 140 MeV our
exotics are genuine resonances (see Figs. 5 and 7) with a
decay width Γ ≃ 120 MeV, and a corresponding lifetime
around cτ ≃ 1.6 fm. Therefore, we would expect that these
states suffer from subsequent dissociation and regeneration
processes within the hadron phase, until their decoupling
from the medium. A real-time simulation—like the ones
performed in Ref. [56] but with broad states—is needed
to ascertain the possibility of increased open charm
production. Such continuous melting/fusion reactions have
been considered for the deuteron case in several recent
works [88–90].
Another alternative to study these exotics might come

from femtoscopic measurements in proton-proton and
HICs [91,92]. For the former, some works have seen the
effect of a narrow (bound state) exotic in correlation
functions [93]. Should these measurements be feasible in
HICs, it could be possible to study how the effect of having
an in-medium resonance, instead of a bound state, can show
up in the correlation function of D and D� mesons.
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Finally, within the bottom sector we found that—in line
with the open-flavor meson studies in [80,81]—medium
modifications affect heavier states more. While Xb states
have larger vacuum masses, the mass shifts at our top
temperatures can be a factor of 2 larger than those for the X
states. In addition, we find slightly larger thermal decay
widths for the bottom exotics. One should keep in mind
that, as these states are much more suppressed in HICs than
the charmed ones, the possible detection of any medium
modification is really a far-reaching result. Nevertheless,
there exist also theoretical works and lattice-QCD calcu-
lations exploring the melting of heavy mesons at finite
temperature in connection to the chiral symmetry restora-
tion. Although lattice-QCD calculations of hidden bottom
states are typically focused on the bottomonium ground and
excited states ϒ [94], similar studies addressing bottom
exotics could in principle be also performed. In our case
we predict that, under the assumption of the Xbs being
molecular states of BB̄�=B�B̄�, they acquire thermal decay
widths of Γ ≃ 200 MeV and mass shifts of Δm ≃
−120 MeV for temperatures around T ¼ 150 MeV.
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