QUASIELASTIC (e,¢'p) REACTIONS AND PROTON
PROPAGATION THROUGH NUCLEI
by
DEREK VAN WESTRUM

B. S., University of Colorado, 1992

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Physics

1998



This thesis for the Doctor of Philosophy degree by
Derek van Westrum
has been approved for the
Department of
Physics
by

Edward R. Kinney

Donald F. Geesaman

Date

The final copy of this thesis has been examined by the signators, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.



iii

van Westrum, Derek (Ph. D., Physics)
QUASIELASTIC (e,e'p) REACTIONS AND PROTON PROPAGATION THROUGH
NUCLEI

Thesis directed by Associate Professor Edward R. Kinney

Coincidence (e,e'p) cross sections for the quasielastic scattering of elec-
trons from hydrogen, carbon, iron, and gold nuclei were measured at squared four-
momentum transfers of 0.64, 1.28, 1.79, and 3.25 (GeV/c)?. By dividing the experi-
mental cross section for a given momentrum transfer and target by the cross section
calculated in the Plane Wave Impulse Approximation, the transparency of the nu-
clear medium to the recoiling proton can be defined. This transparency is studied
as a function of momentum transfer and nuclear size.

The goal of the experiment is to study both the quasielastic scattering reac-
tion mechanism and the propagation of protons through atomic nuclei. Where they
overlap, the results agree with those measured in previous experiments. The results
are used to identify important aspects of the final state interactions between the re-
coiling proton and residual nucleus, to verify the single-nucleon knockout picture of
the reaction, and to provide a baseline for future experiments at higher momentum

transfers.
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CHAPTER 1
INTRODUCTION

1.1 Overview

This work presents the proton propagation results of Experiment E91-013.
This section is intended to provide a brief overview of the method and motivation
of the experiment. The chapter then continues with a more detailed introduction
to electron scattering in general, the plane wave impulse approximation, various
theoretical predictions, previous data, and finally a more detailed description of the
actual experiment.

The experiment was performed at the Continuous Electron Beam Acceler-
ator Facility (CEBAF, now known as Jefferson Lab) in December, 1995 and May,
1996. The purpose of the experiment is twofold: to study, in detail, the scattering
of electrons from bound nucleons, and to study the propagation of nucleons through
nuclear matter. This work is focused primarily on the second topic, but during
the course of this chapter it will become apparent that, due to the nature of the
experimental method used in E91-013, the two aspects are inherently related.

In the simplest model, the propagation of protons through the nucleus can
be described by a mean free path, A. This is the average distance a proton will travel
without suffering an interaction with another particle. The mean free path can be

written classically as

1
A= ,
POpN

(1.1)

where p is the nucleon density, and o,y is the proton-nucleon cross section. Given
that both the density of nuclear matter and the free proton-nucleon cross sections are

well known, it came as a surprise when this estimate of the mean free path, ~ 2 fm,



drastically underestimated the experimentally measured value of ~ 6 fm (measured
using A(e,e’) and A(p,p), and A(p,2p) reactions). It was found that the large value
of A could only be explained by including a number of nuclear effects; the three
most prominent being Pauli blocking of the nucleons that proton scatters from,
correlations between the proton and other nucleons, and the non-locality of the
nuclear potential. The first effect is simply that nucleons struck by the proton
cannot scatter into states that are already occupied, and the second is that short-
range correlations between the proton and other nucleons tend to reduce the density
near the struck proton. Finally, the non-locality, or energy dependence of the nuclear
potential (which is often treated by giving the bound nucleons an effective mass
M* < M), reduces the effective cross section for proton-nucleon scattering in the
nuclear medium.

In order to study these and other nuclear effects, more recent measurements
of proton propagation have studied the A(e,e’p) reaction at relatively high proton
kinetic energies (~ 1 GeV) and over a large range of nuclear target sizes. Instead
of using the mean free path, which is density dependent, the propagation is now
usually quantified via the nuclear transparency, 7', defined as the fraction of scattered
protons that escape from the nucleus without interaction. 7' is measured by dividing
the number of scattered protons observed experimentally by the number expected
assuming that each proton suffers no interaction on its way out of the nucleus.

The reaction, A(e,e'p), takes place as follows: An electron of known energy
scatters through an angle 6., emitting a virtual photon. The photon imparts its
energy and momentum to a bound proton. This proton may or may not undergo
further interaction with the residual nucleus. If it does not, it is detected along with
the scattered electron. This process can be viewed as using the electron beam to
create photons of known energy and momentum (given the electron kinematics) to

knock protons out of the nucleus.



The present experiment is the latest in this series of proton propagation
studies. Nuclear transparency has been measured on a wide range of target sizes—
carbon, iron, and gold—and over a proton kinetic energy range of 300 to 1800 MeV.
These energies span the region where the proton-nucleon cross section changes rapidly.
Furthermore, this energy range covers the overlap between two regions that have tra-
ditionally been described by quite different theoretical methods. The unprecedented
precision of these results also allow for the study of other aspects of proton propaga-
tion, including off-shell nucleon behavior and the transparency for protons emerging
from particular nuclear shells.

The remainder of this chapter discusses electron scattering in general, the
A(e,e'p) reaction under various approximations and the interactions between the re-
coiling proton and the residual nucleus. The models used to describe the reaction
and a detailed discussion of the cross section for scattering from a bound proton are
presented. Next, the results of previous A(e,e’p) experiments are presented, followed
by an introduction to experiment E91-013. Chapter 2 then discusses the experi-
mental apparatus and calibrations. The extraction of the experimental data and a
description of the PWIA calculation of the yields is presented in Chapter 3. Chap-
ter 4 presents the experimental results and uncertainties, followed by a discussion of

theoretical calculations and interpretations of various aspects of the experiment.

1.2 Electron Scattering and The A(e,e'p) Reaction

The scattering of high energy electrons from nuclei is an excellent way to
extract information on both nuclear structure and the properties of bound nucle-
ons. The advantages of using electrons as nuclear probes stem from the weakness
of the electromagnetic interaction. First, an electron is able to sample nucleons
from anywhere within the nuclear volume. This is to be contrasted with hadronic

probes which, due to the strong interaction, are more likely to react with surface



nucleons. Second, electrons are able to penetrate the interior of the nucleus without
suffering sizeable distortions which is crucial in knowing, for example, the energy
of the electron at the reaction vertex. Third, the electron-photon coupling can be
calculated to high precision via quantum electrodynamics (QED). Finally, because
the photon emitted by the electron is virtual, both the momentum transfer, ¢, and
the energy transfer, w, can be varied independently; a real photon must obey the
relation w? — ¢ 2 = 0. This allows the energy transfer to be adjusted while keeping
the momentum large enough such that the photon can resolve individual nucle-
ons. (The four-momentum transfer is written as ¢ = (w,§), and one also defines
2= 2 =% —w?)

Electron scattering does, however, have its disadvantages as well. Its weak
interaction also means very small cross sections, and until recent advances in elec-
tron accelerator facilities, this usually resulted in statistically limited data. Also,
the tiny mass of the electron means it is susceptible to sizeable energy losses by the
bremsstrahlung radiation of photons. These are however, just higher order correc-
tions to the vertex in QED and can be treated theoretically.

A typical measured inclusive electron scattering cross section is shown in
Fig. 1.1 as a function of w. [1] The lowest energy-loss peak, at w ~ 4 MeV, is
due to elastic scattering, in which the nucleus remains in its ground state. Then,
as w increases, the electron starts to excite a series of nuclear states. Finally, at
approximately 40 MeV, the electron scatters incoherently from individual nucleons
within the nucleus. This is referred to as “quasielastic” scattering, and indeed, at
this energy loss w = Q%/2M, consistent with electron scattering from a free nucleon
of mass M. The quasielastic peak is very wide (~40 MeV) due to the Fermi motion

of the bound nucleons.
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Figure 1.1. Inclusive (e,e) Cross Section as a Function of Energy Loss, w. The
data are from Saclay. 280 MeV electrons are scattered through 60° on a 2C target
(Q? = 0.07 (GeV/c)?).

Inclusive quasielastic scattering results have been used to test, and essen-
tially confirm, the single-nucleon knockout picture of the reaction. However, es-
pecially at high energy transfers, effects like the excitation of individual nucleons
and the emission of pions and multiple nucleons become possible, complicating the
picture.

If the recoiling nucleon is detected in coincidence with the scattered elec-
tron, additional information on nuclear structure and the properties of bound nu-
cleons can also be obtained. With a few assumptions (all of which are expected to
improve at high energies; see the next section), one is able to reconstruct the initial
energy and momentum of the detected nucleon. As a simple model of a proton in a

nucleus, consider a particle bound in a square-well potential of radius ¢ and depth



V()Z
-V r<a
Vr) = . (1.2)
0 r>a

The solutions of the radial Schrodinger equation,

d’R,, 2dRy (1 +1)
dr? r dr 72

are spherical Bessel functions,

Ajl(k l?") r<a
Ru(r) = " . (1.4)
Bhi(iar) r>a

where A and B are constants, y is the reduced mass of the bound particle, and
k2, = Z—‘;(Enl + Vo). The eigenenergy of the state labeled by (nl) is E,; and is
determined by matching the two solutions and their derivatives at » = a. The
energy E,; is the energy necessary to remove a particle from the state (nl), and as
such, it is often referred to as the “separation energy” for that state. Each state can
be occupied by up to 2(2] + 1) protons, where the overall factor of 2 comes from
the fact that protons are fermions. Starting with the most deeply bound state, a
series of shells, each with energy E,;, is formed as protons are added: two protons
in the 1s state (I = 0), six in the 1p state (I = 1), etc. Although this model is clearly
naive, a shell structure is actually observed in nuclei. The ordering of the states is
altered, however, due to the shape of the actual potential (not a spherical box) and
spin interactions between the nucleons (neglected here).

Figure 1.2 displays the separation energy spectrum measured at Saclay for
scattering from '2C. [2] One can clearly distinguish the knockout of protons from
two different states: a tall, narrow peak at approximately 16 MeV and a much
broader peak centered at approximately 38 MeV. The shell model predicts that the
most deeply bound state is the 1s, followed by the 1p. Figure 1.3 shows the two

momentum distributions obtained by integrating over the two peaks in Fig. 1.2. As
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expected, the more deeply bound state has strength at zero momentum, consistent
with [ = 0, while the other state reaches a maximum at higher momentum (I = 1).
The 1s hole state in the residual ''B nucleus has a wider distribution in separation
energy than the 1p. This is due to the fact that the 1s state is embedded in a high
density of more complicated states and thus, with the increased mixing, has a shorter
lifetime. It was A(e,e’p) results like these that were said to “prove the literal truth

of the shell model”. [3]

1.3 The A(e,e'p) Reaction in the Plane Wave Impulse Approximation
In the so-called Plane Wave Impulse Approximation (PWTIA), the A(e,e'p)
reaction takes place as follows: [1,4] In the reference frame of the laboratory, an
electron with four-momentum k = (¢, k) scatters through an angle 6, to a momentum
K = (¢, K ), emitting a single virtual photon with a four-momentum ¢ = (w,q) =
k — k'. Here, neglecting the mass of the electron, the invariant momentum transfer

squared, Q?, can be written as
0
Q? = 4ec’ sin® 5 (1.5)

The photon interacts with a bound proton of momentum p = (E,p”’) which exits
the nucleus without further interaction with final momentum p’ = (E',p"). The
remaining A — 1 nucleus, possibly in an excited state and recoiling with momentum
pr, is undetected. The reaction is shown schematically in Figure 1.4. The PWIA
is comprised of the following approximations and assumptions: only one photon is
exchanged (the Born approximation), the reaction occurs quickly enough such that
the dynamics of the residual nucleons can be neglected (Impulse Approximation),
both the electron and proton can be described by plane-waves (Plane Wave Ap-
proximation), and that the proton undergoes no final state interactions (FSI) as it

traverses the nuclear medium.
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Figure 1.4. Plane Wave Impulse Approximation. The initial (final) electron momen-
tum is denoted by k (k'), and the initial (final) proton momentum is denoted by p
(p"). The momentum transfer is ¢ = k — k' = (w, q).

One can define the “missing” momentum as

Pm=p" =14, (1.6)

which, under the PWIA (neglecting FSI) is equal to the initial momentum of the
bound proton, p’ (and opposite to the momentum of the residual nucleus). The
missing energy, defined as

Epn=w—-T —T,, (1.7)

is the energy required to remove the proton from the nucleus (the separation energy).
Here w = ¢ — ¢ and T" is the kinetic energy of the struck proton.

Because of the inherent quantum-mechanical motion of the initial protons,
the final state protons are emitted over a wide range of angles and momenta. One
can detect the entire initial-momentum distribution by either keeping the electron
kinematics fixed, and detecting the protons over a range of angles, or by adjusting the
electron kinematics such that only fixed final proton momenta (parallel to the virtual

photon direction) are selected. The two methods are known as “perpendicular”
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(a) Perpendicular Kinematics

Figure 1.5. Perpendicular and Parallel Kinematics. The momentum transfer, ¢, and
the final proton momentum, p'’/, are the two measured quantities (solid). They are
used to infer the initial proton momentum, p' (dashed). Part (a) shows two examples
of perpendicular kinematics with the same ¢. Here p is roughly perpendicular to ¢,
which is held fixed, and the proton detector is moved in angle to detect the final (and
given ¢, the initial) proton momentum distribution. Part (b) shows two examples
of parallel kinematics with the same p'’. In this case, the initial proton momentum
is parallel (or antiparallel) to ¢, and the proton distribution is mapped by adjusting
the electron kinematics so as to keep the proton detector fixed.

and “parallel” kinematics, respectively, in reference to the angle between the initial
proton’s momentum and the momentum transfer (Figure 1.5).

The combined probability of finding a bound proton with momentum pj,
and separation energy, F,,, is referred to as the spectral function, S(pi,, Ep,). In the
Independent Particle Shell Model (IPSM), in which the bound nucleons are assumed

to be non-interacting and fill distinct orbitals (with quantum numbers labeled by «),
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the spectral function appears as

S(ﬁmaEm) = ZNa|¢a(ﬁm)|2La(Em)a (1'8)

where N, is the orbital occupation number, ¢, (p),) is the momentum-space wave
function, and L4(E,,) is the separation energy distribution of the state c.

In the PWIA, the cross section for A(e,e’p) scattering can simply be written
as the product of S(p,,, En,), the probability of finding a bound proton with energy
and momentum E,, and py,, times oy, the cross section for electron scattering from

such a proton: [1]

d%o
= E'p'oep(Dim, En) S (B> Bm)- 1.9
A A0 dEyd, ~ 2P P Bn)S P, Bn) (L.9)

1.3.1 Off-Shell Cross Section As was mentioned, in the IPSM the
nucleons are considered free particles. However, this neglects the fact that they are
bound and hence off-shell, meaning that in general, E2 # 5 2 + M? (Note that
the initial proton momentum, p and the missing momentum, p,, are taken to be
equivalent). The cross section for electron scattering from a bound proton necessarily
depends on the proton’s initial energy, and one is left with the choice of using either
E = M —E, (where Ej is the separation energy, and the kinetic energy of the recoiling
nucleus is neglected), or assuming E? = 5 ? + M?; the two are not equal in general.
Another complication arises in the calculation of the photon-proton vertex in the
(e,e'p) reaction. The assumption is usually made that the electromagnetic nuclear
current, J = (p, J ), can be described by the sum of the individual, non-interacting,
nucleon currents. Conservation of the nuclear current, however, implies the existence
of both exchange currents between the nucleons and correlated nucleon momenta;
both of which are ignored by construction in the IPSM. These ambiguities cannot
be resolved without a complete, field-theoretic description of the nuclear current,

which depends on the dynamic interactions of all the nucleons. Because this is an
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extremely difficult task, various sets of approximations and assumptions have to be
employed, resulting in several off-shell cross section prescriptions.

The most often used off-shell prescription is “o..;” of de Forest. [6] The “cc”
refers to the fact that current conservation, ¢ - J= wp , is maintained, albeit in an
ad hoc manner, by using it to eliminate the explicit dependence on the longitudinal
component of the current. Here J is the nuclear current and p is the nuclear charge
density. Oun-shell, relativistic Dirac spinors are employed, and the kinematics are

adjusted by

@ E —E (1.10)

Q= —¢=7"-d",

where £ = \/p2 + M2. The cross section appears as

A 0 0\ /2
Oep = OMott MW + (5 + tan® 5) Wr+ A <>\ + tan? 5) Wi cos ¢

6
+ ()\ cos? ¢ + tan® 5) WS} , (1.11)

where \ = %—Z, 0 =cos L(k-k'), and ¢ = cos 1[(G x k) - (§ x p')]. The cross section
for the Coulomb scattering of electrons from a point-like, spin 1/2, infinitely massive

object of charge e, is given by the Mott cross section,
9
OMott = @(6')2(:08 5= T i (1.12)
2

The Wx’s in Eqn. 1.11 contain the nucleon structure information. In o.. they

appear as
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1 [, 7 -
We = o0 |(BE+E) (Ff—i-#“QFg)—qQ(FlJFHFﬂZ]v (1.13)
7 2
= L _(F +xF
W spg R
12 i02 =2
_ pPsiny 9 q 9.9
Ws = W(FluMz“?)’
' =)
psiny , — q
Wi = ——Z(E+E) <F12+4M2”2F22>'

Here k is the anomalous magnetic moment of the proton, « is the angle between
7' and ¢, and F1(Q?) and F3(Q?) are the usual, on-shell Dirac and Pauli nucleon
form factors, respectively. The structure functions W, Wy, Wg, and Wi, arise from
the various interactions of the electron current with the nucleon current: the longi-
tudinal Coulomb interaction, the transverse magnetic interaction, the longitudinal-
transverse interference, and the transverse-transverse interference, respectively. Fi-
nally, note that the explicit dependence of the cross section on E,, and p,, has been
replaced by the equivalent dependence on ¢, ' and w (Equs. 1.6 and 1.7).
Although the o..; prescription of de Forest is the most popular off-shell cross
section, it is one of many, each of which handles the nuclear wave functions, off-shell
kinematics, and current conservation in different ways. As discussed by Pollock et al.,
for example, the apparent agreement between two different prescriptions cannot
be taken as a sign that the models are accurate. [7] A complete discussion of the
ambiguities inherent in off-shell cross section calculations is provided by Naus in

Ref. 8.

1.4 Final State Interactions

Although the PWTA successfully describes the gross features of the A(e,e'p)
reaction, it has its limitations. The most important effect neglected in the PWIA is
the interaction of the struck proton with the residual nucleus. Large angle proton-
nucleon scatterings or inelastic pion production, for example, cause a loss of this

proton flux. By removing protons from the quasielastic channel, these final state
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interactions cause the experimental A(e,e’p) yield to be smaller than the PWIA
prediction. Nuclear transparency, defined to quantify this reduction, is described
below, followed by an introduction to the Distorted Wave Impulse (DWIA) and
Glauber approximations—two common ways to treat FSI theoretically.

1.4.1 Nuclear Transparency A simple way to quantify the reduced
experimental yield relative to the PWIA prediction is via the nuclear transparency,

T, defined as

7= v dDmdEn N (B, pm)
 Jy dPmd Eny NPV By, o)

(1.14)

The experimental and PWIA-calculation yields are given by NP and N*WIA re-
spectively, and V is the experimental acceptance. The transparency is interpreted
as the probability that a proton will emerge from the nucleus without suffering a
collision.

One expects the transparency to decrease as the the size of the nucleus
increases, as the longer (on average) exit path provides more scattering chances. As
a function of proton momentum, the transparency can be expected to mirror, ap-
proximately, the momentum dependence of the proton-nucleon cross sections, shown
in Fig. 1.6. [9] For example, where the cross sections reach their maximum, the
transparency can be expected to be small due to the increased reaction probability.

1.4.2 Nuclear Effects  Although nuclear transparency is conceptually
simple, theoretical calculations require the inclusion of various nuclear effects to
obtain agreement with experimental nuclear transparency data. These effects can
include Pauli blocking, nucleon-nucleon correlations, and spin-orbit interactions. [15]
Coulomb distortion of the electron wave functions also becomes important for large Z
nuclei. Note that some of these are effectively included in the DWIA [16]. Although
a brief description is provided here, a full discussion of these effects is given in

Section 4.4 in the description of the various nuclear transparency calculations.
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Pauli blocking refers to the fact that a small angle rescattering of the pro-
ton will only transfer a small momentum to a bound nucleon. This is not possible if
the “would-be” final state of the nucleon is already occupied. The net result is that
small angle rescatterings of the proton are suppressed, and the proton thus trav-
els farther than would otherwise be expected, thereby increasing the transparency
of the nucleus. (Note that large angle scatterings, which can conceivably scatter
nucleons into unoccupied states, result in protons outside of the experimental ac-
ceptance.) Because of the highly repulsive nature of the nucleon-nucleon interaction
at small distances, it is possible for two initial-state nucleons to scatter from each
other (and are thus “correlated”) with extremely large momenta. This causes a
net decrease in the spectral function below the Fermi momentum, decreasing the
interaction probability, and again, increasing the transparency. As was mentioned
previously, a detailed calculation must take the spin-orbit interaction between the
recoiling proton and residual nucleus into account, as it causes an asymmetry in
the momentum distributions around ¢. Finally, the non-locality, or equivalently, the
momentum-dependence, of the nuclear potential must also be treated.

The final nuclear effect discussed here is the concept of “color transparency”
(CT). Perturbative QCD calculations of hadron propagation through nuclear matter
predict that, at high energies, the color forces responsible for the FSI between the
nucleon and the residual nucleus become negligible. [17] The argument is based
on three assumptions: [18] One, at the time of interaction, the nucleon must have
fluctuated to a small size. This is due to the fact that the quark that absorbs the
photon must be within a distance 1/Q) from the other two quarks in the nucleon to
be able to “communicate” the momentum transfer. Otherwise, this quark will most
likely be stripped from the proton causing the formation of hadronic jets. The second
assumption is that, because the nucleon is small, it undergoes a weakened interaction

with the nucleus. Finally, it is assumed that due to its large kinetic energy after the
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Figure 1.7: Distorted Wave Impulse Approximation.

reaction, the nucleon does not have time to fluctuate back to “normal” size until
after it has left the nucleus. That is, time dilation implies that in the rest frame of
the residual nucleus, the nucleon stays in its reduced-size state for a longer time.
1.4.3 Distorted Wave Impulse Approximation The most com-
mon way to treat FSI effects theoretically and still use the formalism of the PWIA,
is to modify the wave function of the struck proton via an interaction with a com-
plex, optical model potential. This constitutes the Distorted Wave Impulse Approx-
imation, or DWIA, shown schematically in Fig. 1.7. If one neglects the spin-orbit
interaction between the proton and the residual nucleus, one still has the simple cross
section form of Eqn. 1.9, but S(p,, Fn,) is replaced by a distorted spectral function,

SP (P, Em,p") that depends explicitly on the scattered proton’s momentum, p': [2]

2
SP By By 5') = 3 NaLa(Em — Ea) |68 (Brms 7) (1.15)
«

Here, N, and E, are the orbital occupancy and separation energy for the state

a = (n,l,7), respectively. The distorted momentum amplitude, ¢~ (5, "), is given
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1 A-1
08 G = e [ e Pesp (i 207 60l (116)

for a spin 0 nucleus. Here ¢, () describes the initial bound state of the nuclear mean

field and satisfies,
h? L, L,
l_%v + V(T)] ba(7) = Eqda(T). (1.17)

The single particle potential, V(r), is usually taken to be a Woods-Saxon shape
(consisting of a volume term, a Coulomb term, and a spin-orbit term).

In Eqn. 1.16, x, *(7) is the distorted wavefunction for the emission of a
proton with final momentum 5’ from position 7. Note that the momentum of the

proton relative to the nucleus is given by

F= 21— 05" - 5l (1.18)

and should not be confused with the electron momentum. The scattered proton
wave, x, (), is also assumed to satisfy a Schrodinger equation with a complex

optical potential given by

- R -1 — R 1
Uopt =V [1 + exp (TTH +iW {1 + exp (T 7 )} + Ve. (1.19)

The optical potential, U,y (r), contains both real and imaginary central terms and a
real Coulomb potential. The parameters for the various terms in Uy (r) are derived
from both proton-nucleus total and elastic cross section data. The main effect of
the real part of the optical model potential is a distortion of the proton’s kinematic
variables which results in a net shift in the PWIA momentum distribution to smaller
momentum. The imaginary part results in a reduction of the cross section by 30—
50%. [4]

As was mentioned, the simple, factorized form of Eqn. 1.8 is possible only
if both the spin-orbit interaction of the proton with the residual nucleus and the

p-dependence of the nuclear current are neglected. Boffi et al. discuss these effects
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and find that, in the case of the 2C 1p shell, the factorization approximations cause
an increase in the asymmetry of the missing momentum distributions about pp, =
0. [11,12] The cross section at negative (positive) missing momentum is decreased
(increased) by 5-10%, although the magnitude depends on the details of the optical
model and on the kinematics (“negative” missing momentum in this case refers to
protons detected between ¢ and the direction of the beam, while “positive” refers
to protons detected at angles larger then ¢—See Section 2.1). Boffi et al. conclude
that the factorized form is a “reasonable first order approximation,” but the spin-
orbit interaction and p-dependence of the nuclear current often need to be explicitly
included to obtain agreement with experimental cross sections. Note, however, that
when integrating over the entire missing momentum distribution, the effect of the
increased asymmetry is reduced, and the change in the total cross section is expected
to be a few percent at most.

The theoretical calculation of T in the DWIA is similar in form to that of
the experimental definition, Eqn. 1.14. The transparency is taken to be the ratio of

the DWIA and PWIA cross sections, integrated over missing energy and momentum:

T — demfdﬁmaep(Emaﬁm)SD(Emaﬁmaﬁ,)
Y dem fdﬁmaep(Emaﬁm)S(Emuﬁm)

1.4.4 The Glauber Approximation The transparency can also be

(1.20)

calculated in the Glauber, or high-energy, approximation [13]. When the momen-
tum of the struck proton is much larger than that of the nucleons in the residual
nucleus (“spectator” nucleons), the change in the proton’s momentum due to co-
herent rescattering is small. Thus the proton undergoes a negligible deflection, and
its trajectory can be approximated by a straight line (the so-called eikonal approx-
imation). In addition, because the time it takes the proton to traverse the nucleus
is so small, the spectator nucleons can be approximated by fixed scattering centers.
Under these approximations, the classical transparency of the nucleus is given by

the probability that the path of the proton out of the nucleus contains no nucleons.
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This path can be thought of as a “tube” with cross sectional area o, given by

g =

1

—(Z0y + Noyn), (1.21)
where oy, and o0y, are the proton-proton and proton-neutron cross sections, respec-
tively (Note that depending on the specific calculation, either the total or reaction

cross sections are used. See Section 4.4). If the proton is emitted at position 7 with

momentum p'’, the Glauber transparency is given by: [14]

T = %/d%pp(F)P(f), (1.22)

where p,(7) is the proton density at position 7, and P, generally a function of 7" and

p', is the probability that no nucleons are on the proton’s path:

P(7,p') = exp {—/0 dsp(F+p's)o| . (1.23)

Here s is the distance along the exit path of the proton (moving in the direction '),
and p(7+p's), is the density of the (uncorrelated) nucleons in the residual nucleus at
position 77+ p's along the exit path. The dependence of P on p' is usually neglected
however, because at large momentum-transfer p’ is approximately parallel to ¢ (and
the dependence of T" on ¢'is left implicit). The interpretation is that the transparency
is the probability of no nucleons being on the proton’s exit path integrated over all
paths (weighted by the nucleon density).

Refinements to this simple picture include the effects of both the nucleon-
nucleon correlations and Pauli blocking. The details of specific Glauber approxima-

tion calculations can be found in Section 4.4.

1.5 Previous Data
The first A(e,e'p) experiments were performed at Frascati in 1964 to study

the validity of the shell model. Since then, such experiments have been performed

at Saclay, NIKHEF, SLAC, MIT-Bates, Mainz, and more recently, CEBAF. Recent
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reviews of theoretical calculations and experimental results of the A(e,e’N) reaction
are provided in Refs. 4 and 5. In addition, there exists the comprehensive review of
Frullani and Mougey in Ref. 1.

The first A(e,e'p) experiment to study a relatively large region of missing
energy for a variety of targets was performed by Mougey et al. at Saclay in 1975 [2].
Electrons with an incident energy of 497 MeV were scattered from '2C, ?8Si, °Ca,
and %6Ni. The experiment was able to cleanly separate the 1p and 1s shells in
12C(Fig. 1.2) where, as discussed earlier, their identities were confirmed through a
momentum distribution analysis. The experimental resolution of 1.2 MeV in the 2C
missing energy spectrum also enabled the separation of the first two excited states
in 1'B (Fig. 1.2). Using the shell model to predict normally occupied states, missing
energy distributions were fit to each shell in each target. The striking result was the
size of the widths of the deeply bound shells, some of which approached ~40 MeV.
The analysis of the data performed by Mougey et al. pioneered the DWIA description
of the A(e,e'p) reaction.

The 1980s saw much study of the 2C(e,e’p) reaction, with experiments per-
formed at NIKHEF, and MIT-Bates. The experiments can be roughly divided into
two classes. The first set consisted of high resolution experiments [19-22] performed
at NIKHEF to study the knockout of protons from nuclear shells near the Fermi
surface. Figure 1.8 shows the excitation energy (E,) spectrum of the residual ''B
nucleus. Knockout from the 1p shell gives rise to three states at £, = 0, 2.125, and
5.020 MeV (%7 ground state, %7, and %7, respectively). Between 6 and 12 MeV
there also exist a series of states corresponding to knockout from normally unoccu-
pied 1d, 2s, and 1f shells. The role of two-step processes (proton knockout, followed
by inelastic excitation of the !B nucleus) was determined to be a small effect [20], so
the population of these normally unoccupied states was used to measure the role of

nucleon-nucleon correlations in the '?C nucleus. The conclusion that “long-range”



23

"077 E L1 L1 L1 111 - 11| 111 L1 L1 L1 L1 L1 L1 E
-8
= 104 3
7 ] i
/& | .
™~ -9
> 104 3
= ] ;
o 107 3
Wy : :
% 1 \ i
-1
/‘O L 1‘ T 1T ‘ L T ‘ T T

-2 0 2 4 6 8 10 12 14 1o 18 20 22 24
Excitation Energy (MeV)

Figure 1.8. Previous Data: Proton Knockout from the 2C 1p Shell. Shown is the
excitation energy spectrum of the reaction 2C(e,e'p)!'B at a central missing mo-
mentum of 172 MeV/c. The bin width is 100 keV. The data are from NIKHEF [22].
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correlations populate the states above the Fermi level at the expense of the valence
states below the Fermi level was subsequently verified on a wide range of targets.
Here, “long-range” refers to a distance of a few fermis where, when compared with
the strongly repulsive core at small distances, the nucleon-nucleon interaction is rel-
atively weak. It is the repulsive core that gives rise to the “short-range” correlations
(and high momenta) discussed in earlier in Section 1.4.2. Figure 1.9 shows the ra-
tio of observed occupancy of the valence orbitals to the shell model prediction as
a function of target mass. [24] In addition to the long-range correlations, knockout
data from both the 1p and 1s shells of carbon were used to support the idea that
the short-range correlations cause a uniform depletion of all shells, as strength is
moved to higher missing energies and momenta. Again, this is has been verified on
a wide range of targets, and is known as the violation of the “spectroscopic sum
rule,” in reference to the lack of observed strength relative to that expected in the
shell model. As is seen in Fig. 1.9, the combination of the both the long and short-
range correlations is approximately 35%, independent of target size. Comparing the
spectroscopic factors of both the valence and more deeply bound states, it has been
concluded that roughly 10% of the depletion is due to the long-range correlations,
and the other 25% is due to the short-range correlations. [23] Further discussion of
the correlation effect its various theoretical predictions will appear in Section 4.3.3.

The second set of 2C(e,e’p) experiments focused on the separation of the
longitudinal and transverse structure functions in order to study the quasifree re-
action mechanism. The inclusive '?C(e,e’) data of Barreau et al. showed a ratio of
transverse to longitudinal strength 60% in excess of that expected in the impulse
approximation (and assuming that the nuclear medium does not affect the structure
of the nucleon). [25] Calculations that included effects such as correlations, final state
interactions, and the possible modification of off-shell nucleon form factors could not

describe the data, and therefore, coincidence (e,e’p) experiments were employed to
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Figure 1.9. Spectroscopic Factors as a Function of A. Plotted is the ratio of the ob-
served occupancy of valence states to that expected in the shell model, as a function
of target mass. The data are from Ref. 24.
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study the reaction mechanism. These experiments were performed at both MIT-
Bates and NIKHEF in various kinematical regimes. An L-T separation analysis
performed by van der Steenhoven et al. at NIKHEF was used to conclude that the

ratio of the magnetic and electric form factors,
Rg = [(4M*/Q*)Wr/Wi]'/? o Gut /G,

for a bound proton is approximately 20% greater than that of a free proton. [26]
However, it was discovered that these results were based on a poor approximation,
and it was later concluded that there is at most a 10% enhancement in the ratio of
Gu/GE. [23]

At missing energies above E,, 11, it is possible to remove two nucleons from
the nucleus. This process is expected to be mainly transverse in character, as it
most likely entails scattering from the meson exchange currents (MECs) between the
two (correlated) nucleons. The first experiment to find evidence of such processes
was performed by Ulmer et al. at MIT-Bates. [27] As shown in Fig. 1.10, above
Ep, n the transverse response, Ry, has a small peak presumably due to scattering
from the 1s state, followed by uniform strength up to the highest missing energies
detected. That the strength near E,, ~ 40 MeV is due to the scattering from 1s
protous is confirmed by an identical peak in the longitudinal response, Ry, which is
expected to be dominated by single particle knockout. The excess strength confirmed
an earlier MIT-Bates experiment that measured scattering in the dip region above
the quasielastic peak [28], and in turn, was confirmed by a later experiment at
NIKHEF [29].

These early results, typified by the 1?C(e,e'p) reaction, identified and exam-
ined two related aspects of the quasielastic scattering mechanism: the observation
of reduced (relative to the shell model) spectroscopic factors and the possibility of
scattering from meson exchange currents. Both of these effects actually stem, in

part, from correlations between nucleons. The other major aspect that needs to be
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Figure 1.10. Separated Response Functions from '2C. The upper (lower) panel shows
the transverse (longitudinal) response function as a function of missing energy. The
square points at E,, = 17.5 MeV have been scaled by 1/3 for plotting purposes. Both
the zero axis and the two-particle emission threshold are indicated by horizontal and
vertical dashed lines, repsectively.
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examined in detail is the interaction of the proton with the residual nucleus. Once
the nucleon correlations and FSI are understood, one can then examine more exotic
effects such as possible changes in the properties of bound nucleons (and thus, in the
off-shell p—N cross section).

The first experiment designed explicitly to use the A(e,e'p) reaction to study
proton propagation through nuclei was performed in 1987 at MIT-Bates. [30, 31]
Electrons at 779.5 MeV were scattered through 50.4° off 2C, 27Al, ¥Ni, and '®!Ta
targets. The ratio of the experimental (e,e'p) and (e,e’) yields, was divided by the
same ratio calculated in the PWIA to define the nuclear transparency. Figure 1.11
shows the nuclear transparency as a function of nucleon number, A, and the results
of a Glauber calculation by Pandharipande and Pieper. [15] As expected, the trans-
parency does decrease with increasing target size. The explicit inclusion of Pauli
blocking, non-locality, and correlation effects was necessary to achieve agreement
with the experimentally measured transparency.

Nuclear transparency experiments, especially the A(e,e’p) reaction, are also
seen as a clean way to search for the onset of color transparency: as Q? increases to
the point where the three assumptions that comprise the CT theory become valid,
the reduced FSI should appear as an increase in the transparency of the nucleus.
Experiment NE-18 at SLAC was designed to look for CT at squared momentum
transfers up to 7 (GeV/c)?. [32,33] Figure 1.12 shows the nuclear transparency
results as a function of proton momentum (including the data from MIT-Bates).
Although one may be tempted to imagine a slight rise in the transparency at high
proton momentum (indicating the onset of CT), it is not significant given the NE-18
error bars. As yet, no lower bound for the applicability of the CT prediction has
been determined, although it is generally expected at Q% < 10 (GeV/c)2.

Color transparency issues aside, the NE-18 transparency data, as a function

of proton momentum, do seem to roughly mirror the p-N cross section (Fig. 1.6).
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Figure 1.11. T vs. A at Q?=0.34 (GeV/c?). The dotted line is based on the free
p-N cross section, the dashed line includes Pauli blocking, the dot-dashed line then
includes non-locality effects, and the full calculation then includes correlation effects
(solid). The data are from MIT-Bates. [30,31] (Horizontal log scale.)
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Figure 1.12. Previous Transparency vs. Proton Momentum. The squares are '2C,
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Where the cross section rises from approximately 0.6-1 (GeV/c)? and then levels off,
the transparency falls and levels off. There is, however, a lack of experimental data

around 1 (GeV/c)?, where the cross section changes most rapidly.

1.6 Experiment E91-013

Experiment E91-013 was performed to study several aspects of the A(e,e'p)
reaction. Cross sections were measured on a varitey of (natural) targets (‘H, 2C,
%Fe, and '“"Au) and over a wide range of momentum transfers: Q% = 0.64-
3.25 (GeV/c)?. As discussed in the next chapter, the experimental apparatus al-
lowed for much higher data rates—and therefore correspondingly more precise cross
section measurements—than was possible in previous experiments.

The range of measured, final state, proton momenta (840-2550 MeV /c) cov-
ers the minimum of the p-N cross section (Fig. 1.6), the rise above pion-production
threshold, and finally, the plateau above approximately 1100 MeV/c. As was men-
tioned, one might expect this behavior to manifest itself in the energy dependence
of proton attenuation. An important question though, is to what extent is this
single-nucleon knockout picture modified by multi-body effects like Pauli blocking,
nucleon-nucleon correlations, and non-locality? In addition, the momentum-transfer
range covered in E91-013 overlaps both the low Q? region, traditionally described
by DWIA calculations, and the higher Q? region, usually described by high-energy
Glauber approximation calculations. Can one model describe the complete energy
dependence of the data? Finally, by taking data on a wide range of target sizes, one
can determine whether or not the cross sections scale with A, as expected in the
single-nucleon knockout picture.

The maximum momentum transfer of 3.25 (GeV/c)? is lower than the gen-
erally accepted onset of color transparency, and hence no such signal is expected.

However, E91-013 data are expected to be useful not only in verifying the results
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of NE-18, but also in establishing a baseline from which to compare other data at
higher Q2.

Finally, it is worth noting that experiment E91-013 was also designed to
separate the longitudinal and transverse response functions. The details of this
aspect of the experiment are the subject of Reference 34 and outside the scope of
this work. Briefly however, such a “Rosenbluth” separation is performed as follows:
First, note that the cross section for scattering of an electron from a free proton can

be written as

do B E 1 5 o A
a0 b = UMottE—l g [GE(Q )+ T <1 +2(1 4+ 7)tan 5) Gy (Q )] ,  (1.24)

where 7 = Q?/4M?. The electric and magnetic form factors, G and Gy, can be re-
lated to the W¢ (the Coulomb, or “longitudinal” response) and Wy (the “transverse”

response) structure functions already introduced (Eqn. 1.11):

We = (14 7)GE, (1.25)

WT = 2TGM.

So, by measuring cross sections at kinematics with the same Q?, but different scat-
tering angles, one can essentially isolate the W;, and Wy terms. This allows one to
test the quasielastic scattering mechanism by separating the longitudinal response,
which is expected to be dominated by the single-particle knockout, from the trans-
verse response, which is expected to be dominated by two-body (meson exchange)
currents.

Finally, by measuring the asymmetry in cross sections left and right of ¢,
one can isolate the Wy structure function in Eqn. 1.11. There is evidence that this

term is highly sensitive to relativistic effects in the nucleus. [35, 36]



CHAPTER 2
EXPERIMENTAL METHOD/APPARATUS

2.1 Experimental Overview

Experiment E91-013 studied the (e,e’p) reaction on hydrogen, carbon, iron,
and gold targets at momentum transfers of Q% =0.6, 1.3, 1.8, and 3.3 (GeV/c)2. It
was performed in the Hall C end station at the Continuous Electron Beam Accel-
erator Facility (CEBAF) in Newport News, Virginia. Figure 2.1 shows a plan view
of the end station. After being accelerated to the desired energy, the electron beam
was delivered to the hall where it impinged on the target. For Q% < 3 (GeV/c)?, the
scattered electrons were then detected in the High Momentum Spectrometer (HMS)
and the recoiling proton in the Short Orbit Spectrometer (SOS). The roles of the
spectrometers were reversed at the highest momentum transfer.

Table 2.1 lists the kinematic settings used in E91-013. Note that the angle
at which a proton with zero initial momentum is detected—the proton kinematics
being restricted by the electron kinematics—is referred to as the “conjugate” angle.
The two pairs of kinematic settings, (A,D) and (C,E), are used to perform the
Rosenbluth separations discussed in Section 1.6. Kinematics D and E are referred
to as the “backwards” kinematics in reference to the larger electron scattering angle

(relative to A and C).
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Figure 2.1: Hall C plan view.
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Table 2.1: E91-013 Kinematics. The conjugate proton angles are indicated in bold face.

Label | Beam Central Central Central Central Approximate Q’
Energy | Electron | Electron Proton Proton Proton (GeV/c)?
(GeV) Angle | Momentum Angle Momentum Kinetic
(degrees) | (GeV/c) (degrees) (GeV/c) | Energy (MeV)
A | 2445 20.5 2.075 35.4, 39.4, 43.4, 47.4, 0.840 350 0.64
51.4 55.4, 59.4, 63.4,
67.4, 71.4, 75.4
B 2.445 32.0 1.725 31.0, 35.0, 39.0, 43.0, 1.275 700 1.28
47.0, 51.0, 55.0
C 3.245 28.6 2.255 32.5, 36.5, 40.5, 44.5, 1.550 970 1.79
48.5, 52.5
D 0.845 78.5 0.475 27.8, 31.8, 35.8, 39.8, 0.840 350 0.64
43.8, 47.8
E 1.645 80.0 0.675 22.8, 26.8, 30.8, 34.8 1.550 970 1.84
F 3.245 50.0 1.400 25.1, 27.6 30.1 2.550 1800 3.25

58
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Figure 2.2. Missing Momentum Sign Convention. Shown here is the case of “posi-
tive” (by convention) missing momentum: the proton is detected on the upstream
side of ¢. “Negative” is the case with p’ between ¢ and the outgoing electron beam.

Experiment E91-013 took data in so-called perpendicular kinematics (Sec-
tion 1.3). In E91-013, an arbitrary sign is applied to the magnitude of the missing
momentum: positive for protons detected on the larger scattering angle side of §,
and negative for protons detected on the smaller angle side. Figure 2.2 summarizes

the conventions.

2.2 Beam Line

The CEBAF electron beam is accelerated in stages before it reaches the
end stations. The electrons are produced at the injector by thermionic emission
and are initially accelerated to 45 MeV. The beam then enters the main part of the
accelerator which consists of two linear accelerators connected by two semicircular
arcs. Figure 2.3 shows a schematic of the accelerator layout. The electrons gain
400 MeV per linac and can be recirculated up to five times. This results in nominal
beam energies of 845, 1645, 2445, 3245, or 4045 MeV. At the end of the south linac
the electrons enter the Beam Switch Yard (BSY) where they are sent to one of the
three end stations. For E91-013, the beam then travels through the Hall C arc, and

enters the experimental end station.
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Figure 2.3: Plan view of the CEBAF Accelerator.

A schematic of one of the resonant cavities that make up the linear accelera-
tors is shown in Fig. 2.4. The cavities are driven at 1.497 GHz (in the radio-frequency,
or RF, range) such that they continuously produce accelerating fields that are syn-
chronized with the electrons. To eliminate power loss in the cavities due to I°R
heating, they are immersed in 2 K helium so as to make them superconducting. The
accelerator can have a duty cycle of 100% meaning that every RF cycle can contain
an electron bunch. After being accelerated, a separator is used to send every third
beam bunch to each of the three end stations meaning experiments in Hall C see
pulsed beam at 499 MHz, or every 2 ns.

The position of the beam is monitored at various locations throughout the
Hall C arc including approximately 1 m upstream of the target chamber entrance
window. The beam position monitors (BPMs) are cavities with two pairs of antennae
each (one measuring vertically, the other horizontally) that pick up the 499 MHz
structure of the beam in the Hall C arc. The signals are proportional to the distance
from the beam. The difference over the sum of the paired signals is converted into

a position so as to be independent of current. The BPMs are read out every two
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Figure 2.4. A CEBAF Accelerator Cavity. The charge, “+” and “-,” resonates at a
frequency such that the electron bunches (shaded regions) are continuously attracted
to the next node.

seconds and have an absolute uncertainty of 1 mm and a relative error of ~0.1 mm.

In addition to the BPMs, so called “superharps” can be used to tell not
only the position of the beam, but to measure its profile as well [37]. A superharp
consists of three wires on an actuated arm that can be moved through the beam
(Fig. 2.5). As the wires sweep through the beam, a vertical-horizontal-vertical se-
quence of position/profile measurements is performed. Although the absolute error
on the beam position using the superharps is smaller than that of the BPMs, su-
perharp scans cannot be performed while data are being taken. This is because the
scattering from the tungsten wires is unacceptable. Thus the BPMs were used to
read out the position continuously and a superharp scan was only performed every
few hours as a check/calibration. The combination of both position monitors allowed
for £1 mm absolute uncertainty on the beam position at the target, with a relative
uncertainty of ~ 0.15 mm.

Because of the small spot size of the beam, a large amount of energy can be
deposited in a small volume in the target. To avoid target damage, or local boiling

in the case of liquid targets, it is sometimes necessary to sweep the beam over a
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Figure 2.5. A superharp is used to measure the beam position and profile. A motor
drives the harp through the beam, and an encoder records its position. As the wires
pass through the beam they measure horizontal, vertical, and horizontal profiles.
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Figure 2.6. Two sets of dipole magnets are driven with a periodic current so as to
form a raster pattern on the target.

larger area on the target forming a raster pattern [38]. During E91-013, this was
accomplished using a sinusoidal waveform with a frequency of approximately 25 kHz
to drive two sets of dipole magnets (Fig. 2.6). Depending on the beam energy, the
magnets, located 21 m upstream of the target, can sweep the beam up to £5 mm in
both the horizontal and vertical directions. Typically, a raster size of £0.5 mm (in
both directions) was used for both the solid and cryogenic targets.

The beam energy is usually determined by measuring the electron’s trajec-
tory through the Hall C arc along with the current in the dipole magnets. During
such an energy measurement, superharps are used to measure the position of the
beam at the beginning, center, and end of the arc. The trajectory, combined with
field map data (to convert the magnet currents into magnetic field values), allows
the determination of the beam energy. The uncertainty, 0 E/E, of the beam energy
measured with this method is approximately 2 x 10~%. This is dominated by the
uncertainty in the integrated field, [ B -dl. Reference 39 discusses this beam energy

measurement in detail.
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As a check on this “arc measurement” method, three additional measure-
ments, each independent of the arc dipole settings, were employed. In the first,
elastic electron scattering from a composite target is measured. The difference in
recoil energies, AE,., is used to extract the beam energy. [34] The recoil energy is
given by,

Q> 2BE _,90

sif S T S g (2.1)

Erec =

(where the electron mass has been neglected in the second relation). The difference

in recoil energies for a composite target with nuclei masses of M; and My is then
2 1 1
AE, ¢ ~ EEI sin® — (— — —> . (2.2)

Measurement of AFE,.., E', and the electron scattering angle allows extraction of
the beam energy. Using a BeO target, this method was employed at a beam energy
of 845 MeV, resulting in an absolute uncertainty of approximately 2 x 1073. The
differential recoil method becomes unfeasible at higher energies as the elastic cross
sections are so small.

The beam energy can also be measured by comparing the cross sections of
electron scattering from the ground state and first excited state of 12C. At Q? =
0.129 (GeV/c)?, the ratio of these cross sections has a minimum. [40] Measuring the
angle of the scattered electron and using the observed minimum in the above ratio

to determine Q?, one can extract the beam energy via,

0
Q? = 4AEFE' sin? oL (2.3)
where
E
E=——"_. (2.4)
2F sin” @
1+ =3

Precise determination of the minimum—possible only for the 845 MeV beam energy—
dominates the uncertainty: ~ 1 x 1073,
The final “kinematic” method used to determine the beam energy consists

of measuring the H(e,e'p) reaction. Given the angles and momenta of the scattered
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Table 2.2: Beam Energy Measurements.

Nominal | Method FEgeam

Value (MeV)

845 Arc 844.56+0.19

845 Differential | 844.7+£1.5
Recoil

845 Diffractive 844.74+0.9
Minimum

1645 | Arc | 1648.5+0.5 |

2445 Arc 2449.9+0.6

2445 Elastic 2444.9+5.0
H(e,e'p)

electron and proton, one can determine the beam energy. Although this method can
be used at all beam energies, it is the least sensitive, as it relies on the resolution of
both spectrometers.

The results of the beam energy measurements are summarized in Table 2.2.
In the analysis of E91-013, the small differences between the measured and nominal

values are neglected.

2.3 Charge Measurement

Because of the DC-like nature of the CEBAF beam, traditional methods
of charge measurement—measuring an induced current in a pickup coil as the beam
pulses pass by—become infeasible. Hall C has three Beam Current Monitors (BCMs)
that measure the instantaneous beam current [49]. The first is an Unser monitor,
and a simplified schematic is shown in Fig. 2.7. The first toroid measures any AC
fluctuations in the beam, while the second toroid (in reality there are several) is used
to measure the DC component. An AC modulator at approximately 4 kHz is used
to drive the toroid through its hysteresis curve which, in the absence of beam, is
symmetric. However, in the presence of a DC beam with current ¢, the hysteresis

curve will be biased in one direction. A feedback loop is set up such that the opposite
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Figure 2.7: Schematic of Unser monitor

current, —i, is forced through another winding around the toroid so as to keep the
hysteresis curve symmetric. This current, —¢, is converted to a voltage, sent to a
voltage-to-frequency (V-F) converter whose output is then sent to a scaler read by
the data acquisition.

Although the Unser monitor is sensitive to thermal fluctuations (its zero
offset can shift 1 A on the order of a day), it does have the advantage of excellent
linearity over a wide range of currents and a well known gain (about 4 mV/uA for the
Unser and about 4000 Hz/uA for the entire system). Furthermore, it was the only
current monitor that could be calibrated absolutely, and so the other monitors were
adjusted to match the Unser. A precision voltage source and resistors were used to
simulate a DC beam of known current in the Unser, and this was used to determine
the Unser’s gain to 2 parts in 10*. The noise level in the Unser is approximately
0.2 pA.

Hall C also contains two cavity beam current monitors. The 499 MHz

structure of the beam excites a 1497 MHz TMjy;p mode in resonant cavities that
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are placed coaxially around the beam. The electric field for this mode is radially
symmetric meaning that the current measurements are somewhat insensitive to the
beam position. The AC signal from a pickup antenna is amplified, sent through
an RMS-to-DC converter (Analog Devices AD367), and then, as in the case of the
Unser monitor, is sent through a V-F converter to a scaler.

Unlike the Unser, the cavity monitors have a good signal to noise ratio and
reasonable gain stability (over the course of a few days), but cannot measure current
absolutely. This is because calculation of the power output as a function of beam
current is sensitive to details such as the surface finish of the cavities. Therefore a
current monitor calibration algorithm was devised in which beam was sent to the
hall in a series of increasing then decreasing current steps alternated with periods of
no beam. The beam-off periods were used to determine the zero offset of the Unser,
and the gains of the BCMs were determined by comparison with the well known gain
of the Uunser.

During the two run periods, E91-013 ran at currents ranging from 10-50 pA.
In this current region, and with the temperature drifts, a random error of 1% is
assigned to the current measurements. This is also consistent with the variation in

the output of the three monitors.

2.4 Targets

Experiment E91-013 required both solid targets—carbon, iron, gold, and
polyethylene (CHy)—and a cryogenic hydrogen target. During the first run period
(December 1995) only the solid targets were available; the new scattering cham-
ber, including a cryogenic target, was added in February 1996. Figure 2.8 shows
a schematic of the target scattering chamber. Either the solid target ladder or the
cryo-stack can be rotated into the beam.

The solid targets are thin foils, nominally 0.75 inches tall by 1.5 inches wide.
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Figure 2.8. A cut-away view of the Hall C scattering chamber. The angle which the
solid targets intersect the beam can be adjusted. The solid targets can be lifted out
vertically to allow the cryo-stack to be rotated into the beam. The height of both
the solid target ladder and cryo-stack is used to choose between the various solid or
cryo- targets.
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Table 2.3: Solid Target Parameters.

Target | Radiator | Areal Areal Dec. | May | Comments
Density | Density 1995 | 1996
(%) (g/cm?) | Error (%)

C 0.5 0.230 0.2 X X

C 0.1 0.060 0.1 X

C 6.0 2.561 0.05 X

Fe 2.2 0.309 0.1 X X 0.005” & 0.010”
foils

Fe 5.4 0.748 0.05 X 0.020” & 0.020”
foils

Au 3.1 0.196 0.10 X X 0.002” & 0.002”
foils

Au 6.0 0.375 0.05 X

CHs 0.2 0.089 0.2 X

CH, 0.2 0.093 0.2 X

CH, 1.6 0.700 0.1 X 8 foils

Table 2.3 lists the solid target dimensions. Note that in the case of the iron targets
and one of the gold targets, two foils were used to achieve the desired target thickness.
The solid targets are located in a vertical ladder that is controlled remotely from the
counting house. The ladder is moved vertically so as to change which target is at
beam height. The ladder can also be rotated around its vertical axis so as to change
the angle of the target plane relative to the beam. This is done to reduce the amount
of target material that particles have to traverse in order to reach the spectrometer
(Fig. 2.9). The error on the target angle is approximately two degrees. The target
angles used for the various kinematics are listed in Table 2.4.

The target thicknesses were measured as follows. The mass was measured
using a balance with a 1.0 mg precision. A microscope with a digitized slide ta-
ble was used to determine the location of each vertex to 8 pum, and the area was
then calculated assuming straight edges between the vertices. The areal density is
then defined as the mass/area. Note that the targets are assumed to have uniform

thickness and mass density.
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Figure 2.9. The angle of the solid target with respect to beam is altered so as to
minimize the material that a scattered particles must traverse. The target angle, %,

is defined to be positive when the normal to the target, n is directed towards the
SOS.

Table 2.4. Target angles for each kinematic setting. The target angle is defined
as the angle between the beam and the normal to the target pointing downstream.
Positive target angles are towards the SOS. See Fig. 2.9. The error on the target
angle is approximately 2 degrees.

Label Electron Proton Target
Spectrometer | Spectrometer Angle
Angle Angle
(degrees) (degrees) (degrees)

A 20.5 55.4 20
B 32.0 43.0 10
C 28.6 40.5 10
D 78.5 31.8 -20
E 80.0 22.8 -20
F 50.0 25.1 10
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Figure 2.10: Cryogenic stack.

The carbon targets are in the form of pyrolytic graphite and have the
natural isotopic abundance: 98.9% '?C with a 1.1% '3C contamination. The iron
and gold targets also have natural abundances: 91.76% 5Fe with a 5.9% ®*Fe and
2.1% ®"Fe contamination, and 100% '°"Au. The largest contaminant, >*Fe, has only
a 0.3% effect on the target thickness, and thus the target impurities are neglected in
the analysis.

For calibration purposes, a liquid hydrogen target was also used during the
May 1996 running. The Hall C cryogenic stack—an array of three sets of target
cells—can be rotated into the beam via remote control. Each set, or “loop,” has
both a 15.5 ¢m and 4.2 cm cell. Figure 2.10 shows a detail of the cryogenic stack.
Only the short cell of loop 2 was used in E91-013. The cells are thin aluminum

cylinders constructed from beer can stock, 6.35 cm in diameter. The can bottom
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Figure 2.11. Cryogenic target loop. The arrows indicate the direction of the hydrogen
flow.

forms the exit window and is 0.31 mm thick. The entrance window is also made
of aluminum and is 0.18 mm thick. Because the end caps are spherical in shape, a
change in beam position can mean an effective change in target length. The error is
estimated to be 0.05% in length for a 1 mm change in the beam location. Figure 2.11
shows a detail of the target loop.

The Hall C cryotarget is able to dissipate up to 200 W of power deposited by
the electron beam in the liquid hydrogen. However, for typical E91-013 conditions,
25 pA and a 4.2 cm target, the beam heating is only ~30 W. By circulating the hy-

drogen through a heat exchanger, the hydrogen is maintained at 19 K and 29 PSIA.
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Figure 2.12: Schematic of the Short Orbit Spectrometer (SOS).

At this pressure, the hydrogen has a density of 0.732040.00036 g/cm? and is 3 K be-
low its boiling point. The density dependence on temperature is %j—; = —1.25%/K;

whereas the density dependence on pressure is smaller: %j—lf; = 0.01%/PSIA. Thus,
a precise monitoring of the temperature is critical. Two Lakeshore Cernox resistors
are installed in each loop, and their resistance is converted to temperature using
an Oxford ITC502 [41]. The error in the temperature read out is 50 mK which
corresponds to an uncertainty in the density of less than 0.1%. The temperature is
controlled with a feedback loop consisting of the temperature read out module and
a low power heater.

Because the beam can deliver so much energy to a small volume, local
boiling (and thus decreased effective target thickness) may be a problem. To study
this effect, elastic scattering from deuterium was measured at various beam currents.
The yields scaled with current to better than 1% for currents up to 70 uA (the largest
current used during E91-013) [42].

The largest contaminant in the hydrogen is expected to come from HD, and

is estimated to be less than 0.3% by mass.

2.5 Short Orbit Spectrometer

The Short Orbit Spectrometer (SOS) is depicted in Fig. 2.12. It is described
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Table 2.5: SOS Characteristics.

‘ Parameter ‘ Value ‘
Max. Central Momentum | ~ 1.8 GeV/c
Momentum Bite + 20 %
Resolution (dp/p) <0.1%
Solid Angle Acceptance 10.7 msr
Scattering Angle Bite £ 40 mr
Scattering Angle Range 11° —120°
Out of Plane Angle Range =+ 40 mr
Horizontal Angle Precision 0.8 mr
Vertical Angle Precision 0.8 mr

in detail in Refs. [43,44] and the references therein. The SOS is designed to detect
and identify electrons, protons, pions, and kaons of momenta up to 2 GeV/c. It is
composed of three magnets: a horizontally-focusing quadrupole (Q1), followed by
two, vertically-bending, dipoles (BM01, BM02). The first dipole produces a vertical
bend of 33° upwards, the second 15° downwards, for a net vertical bend of 18°. The
magnets are tuned in point-to-point mode in the vertical direction, meaning that
particles with the same momentum and position at a point target are focused to the
same point in the focal plane at the exit of the spectrometer. (The focal plane is
discussed in Section 3.1.) Table 2.5 lists the properties of the SOS.

The magnets are conventional (non-superconducting), and powered by three
supplies that are controlled remotely from the counting house. The SOS magnet
program determines the correct power supply currents for a given spectrometer mo-
mentum setting. If the given setting is in the chosen direction of the hysteresis curve,
the program will adjust the power supplies to approach the target current value. If,
however, the requested setting is in the other direction on the hysteresis curve, the
program will notify the user of the need to degauss the magnets. In this case, the
current is increased to the maximum value, brought back down to zero, the polarity
of the magnet is reversed, the current is then increased to the maximum in the op-

posite direction, and then finally, the magnets are ramped back up to the requested
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Figure 2.13. Schematic of a collimator. The collimator defines the solid angle at the
entrance of the spectrometer. The edges of the octagonal hole are beveled so as to
match the envelope of the particles emerging from the target.

value. During E91-013, the hysteresis curve convention for the SOS magnets was an
increase in the currents away from zero field. That is, a degauss was not performed
if the magnitude of the momentum was increased from setting to setting.

The acceptance in solid angle for the SOS is defined by one of three avail-
able Hevimet [45] (an alloy of 90% W, 5% Cu, 5% Ni; p = 17 g/cm?) collimators.
E91-013 typically used the large aperture collimator which has an acceptance of
7.55 msr. The small collimator, often used in calibration runs, has an acceptance of
4.98 msr (approximately 65 mrad horizontally, 70 mrad vertically). The openings are
beveled to match the envelope from the (point) target to the spectrometer entrance

(Fig 2.13). The third “collimator” is actually an array of holes, often called a “sieve
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Figure 2.14: Schematic of the SOS detector stack, shown approximately to scale.

slit.” It is used in optics tests to map trajectories at the entrance of the spectrometer

to those at the focal plane. The reconstruction of focal plane quantities to vertex

quantities will be discussed in Section 3.2.

2.5.1 SOS Detectors The SOS has an array of detectors that allow
precise determination of a particle’s trajectory (and hence momentum) and identity.
After a particle enters the detector hut it traverses two sets of drift chambers, two
planes of hodoscopes, a gas filled Cerenkov radiation detector, two more planes of
hodoscopes, then four layers of Pb-glass blocks. Figure 2.14 shows a schematic of
the SOS detector stack.

It is useful at this point to define the spectrometer hut coordinate system.
The SOS (and HMS) uses the TRANSPORT [46] coordinate convention in which
Z lies in the bend plane and is directed towards particles with higher momentum;
thus vertically downward in both spectrometers. (The SOS has a net vertical bend.)
Figure 2.15 shows the coordinate system. The Z axis is along the central ray of
the spectrometer, positive being in the direction of the particles. The ¢ axis is
then horizontally to the left as seen by a particle, so as to maintain a right-handed

coordinate system. Note that with the HMS to the right of the beam and the SOS

to the left, the positive §j axis points towards smaller scattering angle in the HMS,
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Figure 2.15. Side view of the spectrometer coordinate system. (True for both the
SOS and HMS.)

and larger scattering angle in the SOS.

Drift chamber (or wire chamber) information is used by the tracking algo-
rithm (Section 3.1) to calculate a particle’s trajectory in the detector hut. A drift
chamber is a gas-filled volume containing a grid of fine wires. As a charged particle
traverses the chamber, it ionizes the gas, and the liberated electrons are attracted
to sense wires. The electrons form a pulse on the sense wire indicating that the
particle was somewhere in the vicinity of that wire. The time it takes the electrons
to reach each wire is measured and converted to a distance from the wire using an
empirically determined position-drift time relationship. However, it is not possible,
with the information of one wire alone, to determine on which side of the wire the
ionizing particle went (“left/right” ambiguity), nor where along its length the ion-
ization occurred. A second plane with wires parallel to, but offset from, the first
plane, is used to help eliminate the left/right ambiguities. In addition, planes with
wires of a different orientation are used to locate the particle along the length of a
given wire. Figure 2.16 shows a simplified wire chamber: The track is seen end on,

and the solid lines represent firing wires. The second U’ plane determines which side
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Figure 2.16. A simplified model of a wire chamber displaying the left /right ambiguity
determination. The solid lines are meant to represent firing wires. See text for details.

of the U wire the particle went, and the crossing V' wires locate the trajectory along
the U wires.

The two sets of drift chambers in the SOS are identical, and they are placed
at £24.75 cm in 2 relative to the spectrometer focal plane. The active area for the
chambers is ~67 cm in the X (vertical) direction, and ~40 cm in the Y (horizontal)
direction. There are six planes in each chamber labeled: U, U', X, X', V, V.
The X planes, so called because they measure vertical, or Z position, are oriented
horizontally, the V planes are at 60° to the horizontal, and the U planes at 120°. The
primed planes are just duplicates, offset by half the wire spacing. Figure 2.17 shows
the layout as seen by an incoming particle. The basic cell is depicted in Fig. 2.18,
and it is 6.35 mm thick in the z direction. The electric field that guides the ions is
shaped by the cathode foils (0.012 mm mylar coated with 0.12 pm copper) and the
potential wires (60 pm diameter, gold-plated tungsten) which are both typically kept
at roughly -2000 V. The sense (anode) wires (30 pm diameter, gold-plated tungsten)
are kept at ground potential. The sense wire spacing in the plane is 10.0 mm.

The volume between the wires and foils is filled with a mixture of argon-

ethane gas (50/50 by mass) that is mixed remotely and then fed to the chambers.
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Figure 2.17: Layout of SOS drift chamber planes as seen by an incoming particle.
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Figure 2.18: Layout of SOS drift chamber cell.
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A typical flow rate was 200 cm? /minute. The mixture and flow rate were monitored
approximately once every eight hours, and a bad gas mixture was usually noticed
immediately by a marked decrease in chamber efficiency.

Each sense wire is connected to a preamplifier/discriminator card and is
read out individually. If the signal is above the discriminator threshold a logic
pulse starts a Fastbus multi-hit time-to-digital-converter (TDC). The TDC (LeCroy
LRS1877 [47]) information for the last 32 us is read out only if there is a trigger
(common stop mode). (The trigger is discussed in detail in Section 2.7.) The time for
each wire is converted into a distance which is then used by the tracking algorithm
(Section 3.1) to locate the particle trajectory. The time-to-distance calibration is
done by creating a histogram of the drift times for many events (for all hit wires),
and mapping the distribution in time to a uniform distribution over the +5 mm
cell width. The drift time-distance relation is then stored and used by the tracking
algorithm.

Hodoscopes are thin strips, or “paddles,” of scintillating plastic wrapped in
a light-tight coating. As radiation traverses the plastic, its atoms are ionized, and,
as the atomic electrons reorganize, visible light is emitted (the plastic “fluoresces”
or “scintillates”). This light is collected at the ends of the paddles and detected by
photomultiplier tubes (PMTs). The light is produced and collected very quickly (a
few nanoseconds), and this fast response allows precise determination of the time
that the particle was at the scintillator. The plastic must have the following charac-
teristics: a high efficiency for converting the incoming radiation into visible light, a
short decay time, and it must be transparent to the emitted fluorescent radiation.

In both Hall C spectrometers, four planes of hodoscopes are used. A com-
bination of scintillators firing in coincidence (each plane responding to a particle

as it passes by) can define a trigger which is then used to read out the rest of the
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Figure 2.19. Perspective view of two hodoscope planes. The particle’s position can
be roughly determined using the location of the firing (shaded) scintillators.

detectors. By using multiple planes, separated by sizeable distances, one can deter-
mine the velocity of the particle using its “time of flight.” In addition, using small,
sectioned paddles (Fig. 2.19) with different orientations (much like the different wire
orientations in the drift chambers), one can also determine a rough position of the
particle’s trajectory.

There are four hodoscope planes in the SOS; two before and and two after
the gas Cerenkov detector. The separation between the two sets of planes is ap-
proximately 1.76 m. The first and third planes, labeled S1Y and S2Y, are oriented
vertically (and thus measure position in the horizontal, or § direction). Both planes
contain nine paddles each. Those of S1Y measure 10 mm x 45 mm x 635 mm, and
those of S2Y, 10 mm x 45 mm x 1125 mm. The paddles are slightly overlapped to
avoid dead regions, resulting in an active area of approximately 365 mm (horizon-
tally) by 635 mm (vertically) for S1Y, and 1125 mm x 365 mm for S2Y. The second
and fourth scintillator planes, labeled S1X and S2X, are oriented horizontally. S1X

and S2X contain nine and sixteen paddles, respectively. In both cases, the paddles
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measure 10 mm X 75 mm X 365 mm. Again, the paddles are overlapped, resulting
in an active area of 365 mm (horizontally) by 635 mm (vertically) for S1X and 1125
mm (horizontally) by 365 mm (vertically) for S2X.

The light for each paddle is collected at both ends by Phillips 2282 PMTs.
The signals are sent to the counting house where they are sent through a splitter.
A third of the signal is sent to a Fastbus analog-to-digital converter (ADC) (LeCroy
LRS1881M), and the remainder to a discriminator. The discriminated pulse is sent
to a Fastbus TDC (LeCroy LRS1877), a VME scaler, and a coincidence module to
become part of the trigger (Section 2.7).

Once in the detector hut, all particles have basically the same momentum.
And, at typical CEBAF energies, light particles such as electrons and pions are, for all
practical purposes, traveling at the speed of light. Therefore, time of flight methods
to separate particle identities are infeasible, and other means must be found. A
particle that exceeds the velocity of light in a medium will emit Cerenkov radiation.
A particle of mass m in a medium with an index of refraction of n = 1 + 7 will emit
this radiation of its energy exceeds the threshold energy given by

m(1l+n)
Vin2+n)

A threshold Cerenkov detector contains a medium chosen such that the faster of two

By = (2.5)

particles emits the radiation, while the slower does not, and the particles are thus
separated.

The SOS Gas Cerenkov detector is designed to separate electrons and pions
(or positrons from positively charged pions). It is a box, approximately 1 m? in
volume, filled with gaseous Freon-12 (CClyFy, n = 1.00108) at room temperature
and atmospheric pressure. This corresponds to a Cerenkov threshold of ~ 10 MeV
for electrons and ~ 3000 MeV for pions. As electrons (or positrons) traverse the
volume, they emit light which is reflected by four overlapping mirrors at the back

of the detector onto four Burle 8854 PMTs. The signals from each PMT are sent
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upstairs to the counting house where they are split. One half goes to a Fastbus ADC
(LeCroy LRS1881M), and the rest are summed in a linear fan in/fan out whose
output is sent to a discriminator. This pulse (or lack thereof) can then be used in
the trigger to identify electron events'.

The last detector in the SOS detector stack is the calorimeter (or shower
counter). Its purpose is to measure the energy of electrons, and it consists of forty-
four Pb-glass blocks each connected to a PMT. As an electron decelerates in the
vicinity of atomic nuclei in the glass it emits bremsstrahlung radiation. These
bremsstrahlung photons can then go on to produce more e /e~ pairs, which in
turn radiate producing more photons, and so on. The electrons and positrons emit
Cerenkov radiation in the glass. This light is detected by the PMTs, and the amount
of light collected is proportional to the energy deposited in that block. Because elec-
trons and positrons are stopped in the calorimeter, summing the contribution from
each block gives an energy proportional to that of the original electron.

The shower counter is usually used in conjunction with the Cerenkov detec-
tor for particle identification. Electrons (and positrons) are identified because they
lose a constant fraction of their energy in each calorimeter layer, whereas a pion (or
any hadron) will usually lose a constant amount of energy per layer (typically 300
MeV in both the SOS and HMS calorimeters). It is possible however, that a pion
undergoes a charge exchange reaction, creating a neutral pion that then decays into
two photons. These photons then shower to produce a large signal in the detector,
causing a high energy tail in the calorimeter spectrum.

The SOS shower counter consists of four layers of eleven Pb-glass blocks
each. The Pb-glass has a radiation length of 2.54 cm. Each block is 10 cm x 10 cm X
70 cm, meaning the entire stack is approximately 16 radiation lengths. As shown in

Fig. 2.14, the array of blocks is tilted with respect to the central ray, and each row of

INote that neither the SOS or HMS gas Cerenkov detectors were used in the trigger during
E91-013.
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Figure 2.20: Schematic of the High Momentum Spectrometer.

blocks is slightly offset from the others to avoid dead regions. Each block is wrapped
in 25 pm of aluminized mylar and 0.076 mm of Tedlar [48] for light tightness.

The signal from each PMT is sent to the counting house where it is split.
Half of the signal goes to a Fastbus ADC (LeCroy LRS1881M), and the rest is
summed in a series of linear fan ins/fan outs as follows: A sum is formed for each
layer, then the first two layers are added to form a preshower sum (PRSUM), and
then all are added to form a shower sum (SHSUM). Although the calorimeter was
not used in the E91-013 trigger, these last two signals are sent to discriminators and

then to the trigger where they can be used to identify electrons and pious.

2.6 High Momentum Spectrometer

A diagram of the High Momentum Spectrometer (HMS) is shown in Fig. 2.20.
It is designed to detect particles with momenta up to 6 GeV/c, have a large mo-
mentum acceptance, and provide excellent resolution [43]. The HMS is a QQQD
spectrometer, meaning it consists of three focusing quadrupoles followed by a dipole
which bends the particles vertically through 25°. The characteristics of the HMS
are listed in Table 2.6. As in the case of the SOS, the HMS magnets were tuned in
point-to-point mode during E91-013.

The HMS magnets are all superconducting although the quadrupoles con-

tain soft iron cores. The transverse focusing in the HMS is provided by the quadrupoles,
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Table 2.6: HMS Characteristics.

‘ Parameter ‘ Value ‘
Max. Central Momentum 7.5 GeV/c
Momentum Bite +9%
Resolution (dp/p) <0.1%
Solid Angle Acceptance 8.1 msr
Scattering Angle Bite + 32 mr
Out of Plane Angle Range + 85 mr
Angle Precision (Horizontal) 0.8 mr
Angle Precision (Vertical) 0.8 mr

labeled Q1 (horizontally focusing), Q2 (vertically focusing), and Q3 (horizontally fo-
cusing). The magnets are all cooled by 2 K liquid helium provided by the CEBAF
End Station Refrigerator (ESR). A program was written to take a requested mo-
mentum setting and calculate the required magnetic fields and supply currents for
each magnet. The quadrupoles power supplies are set by current, meaning it was
necessary to map the fields as a function of excitation current. The dipole contains
a Hall effect probe linked in a feedback loop to the power supply. This enables one
to set the magnet directly by specifying the desired field.

As in the case of the SOS, the acceptance in solid angle is defined by one
of three Hevimet collimators (5 cm thick). There are two octagonal collimators,
and the larger was used during the experiment. It defines an acceptance of roughly
6.8 msr. The third collimator is a “sieve slit” which consists of an array of holes that
were used to map locations at the entrance of the spectrometer to the focal plane.

2.6.1 HMS Detectors The HMS detector stack is quite similar to
that of the SOS. As shown schematically in Fig. 2.21, it consists of four planes of
hodoscopes, two six-plane wire chambers, a gas threshold Cerenkov detector, and a
four layer Pb-glass shower counter.

The HMS contains two identical sets of drift chambers that are opera-

tionally quite similar to those of the SOS [50]. However, instead of three plane
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Figure 2.21: Schematic of the HMS detector stack shown approximately to scale.

orientations, the HMS chambers have two horizontally oriented planes (X, X'),
two vertically oriented planes (Y, Y”'), a 15° plane (V'), and a 165° plane (U). As
shown schematically in Figure 2.22, the order as seen by an incoming particle is
XYUVY'X'. The chambers are set apart by 81 c¢cm so as to be equally spaced about
the nominal focal plane, and have an active area of approximately 113 cm (vertically,
or X) by 52 cm (horizontally, or Y'). Again, the duplicated planes are offset by one
half the cell width to aid in left/right determination. The basic cell is repeated in
the z direction every 1.8 cm. The field shaping wires (cathodes) are 150 pm in di-
ameter and are made of gold-plated copper-beryllium, and the sense wires (anodes)
are 25 pm in diameter and are made of gold-plated tungsten wire. The chambers
use the same gas mixture as the SOS chambers: argon-ethane (50/50 by mass) at a
typical flow rate of 200 cm?/minute.

The signals from the sense wires are amplified and discriminated in either
Nanometrics [51] and LeCroy 2735DC drift chamber cards. As in the case of the SOS,
only pulses above threshold form a start in the drift chamber TDCs (Section 2.7).
The time-to-distance conversion procedure is identical to that in the SOS.

There are four hodoscope planes in the HMS; two immediately after the wire
chambers (S1) and two more after the Cerenkov detector (S2). The spacing between

the two sets is approximately 2.2 m. The first and third planes, labeled S1X and
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Figure 2.22: Layout of HMS drift chamber planes as seen by an incoming particle.

S2X, are oriented horizontally and contain sixteen paddles each. The paddles in the
X planes measure 21 mm x 80 mm X 750 mm. The second and fourth planes are
labeled S1Y and S2Y, respectively. They are oriented vertically, and each contain
ten paddles that measure 21 mm x 80 mm X 1205 mm. The active area of the HMS
scintillators is 120 cm vertically by 75 cm horizontally.

The signal processing of the HMS scintillators is performed in a manner
identical to that of the SOS. The signals are sent to a splitter in the counting house,
where a third of the signal is sent to a Fastbus ADC, and the rest to a discriminator.
These pulses are then sent to a Fastbus TDC, a VME scaler, and then to the trigger
electronics (Section 2.7).

The HMS Cerenkov detector sits between two the sets of hodoscope planes.
It has a 1.8 m length, and was filled with Ny gas at approximately 14.7 PSIA. The
energy threshold for Cerenkov radiation is ~ 20 MeV for electrons and ~ 4 GeV for
pions. As in the case of the SOS gas Cerenkov, the photons were reflected to the

phototubes (also Burle 8854) by spherical mirrors.
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The final detector in the HMS stack is the shower counter. Its design is
identical to that of the SOS with the exception of having thirteen blocks in each of

the four layers.

2.7 Trigger Electronics

The detector ADCs and TDCs for each spectrometer are read out only in
the case of a trigger. Quite simply, a trigger is defined by the firing of each hodoscope
plane as a particle passes through the detector stack. This is called a “singles” trigger
meaning the that there was a trigger in a single spectrometer. During E91-013, both
spectrometers were operated in “coincidence” mode in which the relative timing of
triggers in both the SOS and HMS is used to tag two particles as originating from
the same reaction vertex.

Although it is possible to include particle identification in the trigger (e.g.,
require a calorimeter signal for electrons, or lack of a Cerenkov signal for pions),
E91-013 ran with a simple three-out-of-four (3/4) hodoscope plane requirement. This
was implemented as follows: As shown in Fig. 2.23, the signals from the hodoscope
PMTs are fed to a splitter in the counting house where approximately 1/3 of each

signal is sent through delay to a LeCroy Fastbus ADC (LRS1881M).
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The remaining 2/3 of each signal is sent to a Phillips 16 Channel Discrim-
inator Latch (CAMAC Model 71106). A LeCroy 64 channel logic unit (LRS4564) is
used to OR the tubes from a given side of each hodoscope plane. Each side is then
ANDed together to form four plane pretrigger signals, S1X,S51Y,52X,S52Y. The
signals, S1X (S2X) and S1Y (S2Y) are then ANDed together to form S1 (S2).
These signals are sent to Phillips delay modules (792) where they are delayed by
up to 64 ns to adjust the relative timing of the four planes. The delayed signals
are then sent to a LeCroy logic unit (LRS365AL) where the pretrigger, SCIN (one
among others not used in E91-013), is defined as a 3/4 OR of S1X, S1Y, 52X, S2Y.
A pretrigger differs from a trigger only in that while it is counted, its detector infor-
mation may not actually get read out; the data acquisition computer may be busy,
or it may be set to only read out every nth event so as to maintain a manageable
data rate (this is known as “prescaling”). The output of the logic unit is a gate that
is set to 30ns wide in the case of the HMS and 100ns wide in the case of the SOS.
This is to allow a comfortable overlap for a coincidence trigger.

The pretrigger signals from each spectrometer are then sent to a LeCroy
8LM programmable logic module. This device is programmed to classify an event
either an HMS single, an SOS single, or a coincidence, depending on the timing
of the inputs. A third input to the 8LM is a BUSY from the Trigger Supervisor
(TS) [52]. The logic signal outputs of the 8LM can be either an HMS single, and/or
an SOS single, and/or a coincidence pretrigger. Each of these signals has both a
BUSY and non-BUSY version depending on the state of the T'S. This information
is used for data acquisition dead time calculations (Section 3.6). Note that every
pretrigger output of the 8LM is sent to a scaler.

The trigger information is used by Trigger Supervisor to read out the Fast-
bus ADCs and TDCs as follows. We consider an HMS singles event that is not

prescaled as an example (the SOS information is retrieved in precisely the same
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manner). After the 8LM, the HMS TRIG signal is split; one part is delayed while
the other is sent to the TS, as shown in Fig. 2.24. The TS creates two long HMS
gates, that last until each Fastbus crate reports finished. These gates are ANDed
with the original HMS TRIG that was split off after the 8LM. Once this AND is
formed, the gates are sent to read out the HMS ADCs, and the (common) start is
sent to the HMS TDCs. The ADC and TDC signals have each been delayed by
the precise amount of time so as to be in time with these gates. Note that it is
the delayed HMS TRIG signal that determines the timing of the gates, and that
this insures that the HMS signals are read out in time with the HMS trigger. This

process is often referred to as °

‘retiming,” and it is important because in the case of
a coincidence trigger it allows each spectrometer to read out its respective signals

relative to the timing of its own trigger.
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Figure 2.24: Trigger Supervisor.
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A coincidence trigger is slightly more complicated in that there exists the
additional timing information between the two spectrometers. There are two coin-
cidence times, one reported by the HMS and the other by the SOS, and they are
measured as follows. The HMS coincidence time is started by the HMS TDC start;
namely the retimed HMS TRIG signal ANDed with the T'S output. The stop comes
from the SOS TRIG (shown in the bottom of Fig. 2.24). There is also a time started

by a retimed SOS TRIG and stopped by the HMS (not shown in Fig. 2.24).

2.8 Data Acquisition

The Fastbus ADC and TDC data were read out through an FDDI (fiber
optic) link to a Hewlett-Packard 9000 Unix workstation [53]. The data were writ-
ten directly to hard disk in CEBAF Online Data Acquisition (CODA) format [54].
During normal running, every coincidence trigger was written to disk, and SOS and
HMS singles were each prescaled separately so as to maintain a manageable data
rate. Coincidence data were typically read at a rate of approximately 500-1000 Hz.
Scaler values were written to disk every two seconds.

In addition to the Fastbus data and scaler values, slow control information
was included in the data stream every thirty seconds. “Slow controls” refer to static,
or slowly changing, parameters that includes things like high voltage settings, magnet
power supply settings, and beam line parameters.

The Fastbus data were acquired in “sparsified” mode in which only non-
zero data were read from each ADC and TDC (often known as “zero-suppression”).
The TDCs were sparsified by reading out only those channels that had stops. The
ADCs have a programmable threshold which was typically set fifteen channels above
zero. The zero (or “pedestal”) of the ADC was determined at the beginning of each
run by creating one thousand artificial triggers. These thousand events show up as

a narrow peak in a histogram of the ADC output. This automatic determination of



Table 2.7: Runs taken in buffered mode.

‘ Kinematics ‘ Run Range ‘ Run Mode
A 5307 — 5327 | Not Buffered
A 5329 — 5350 | Buffered
A 5351 — 5354 | Not Buffered
A 5355 — 5374 | Buffered
A 5437 — 5448 | Buffered
A 8168 — 8194 | Buffered
B 5377 — 5422 | Buffered
B 8196 — 8215 | Buffered
C 5473 — 5573 | Not Buffered
C 8216 — 8238 | Buffered
D 5613 — 5707 | Not Buffered
D 8308 — 8349 | Buffered
E 8466 — 8541 | Buffered
E 8554 — 8563 | Buffered
F 8571 — 8680 | Buffered

the channel corresponding to zero signal for each ADC can then be used as input
to the data acquisition code such that it only reads out data above zero. Any time
there was a reason to believe a pedestal may have changed, a short run was taken
to get the new values, and the input to the DAQ was modified.

During part of the December 1995 run and all of the May 1996 run, the data
were recorded in “buffered” mode meaning that the Fastbus modules buffered the
event information (up to sixteen events) while the DAQ computer was busy. Note
that buffering only occurs at high rates; at lower rates, the computer can keep up,
precluding the need to buffer the events. Table 2.7 lists the runs taken in buffered

mode.



CHAPTER 3

DATA ANALYSIS

Each particle must be tracked, timed, reconstructed to the target, and iden-
tified, before physics quantities (i.e., missing energy and momentum) for that event
can be calculated. Corrections due to inefficiencies in the detectors and processes
that prevent the detection of valid trajectories must also be applied. This chapter
starts with a discussion of the tracking algorithm, which fits a trajectory through the
spectrometer focal plane. Next is a discussion of the reconstruction of this trajectory
back to the target vertex, followed by a description of the corrections that need to
be applied to the trajectory. The standard parameters used to define good events
(often referred to as “cuts”) are then presented before the chapter concludes with a

description of the experimental simulation, SIMC.

3.1 Tracking Algorithm

The tracking algorithm fits a trajectory through the detection plane given
the wire chamber information. The detection plane is located halfway between, and
parallel to, the two wire chambers and marks the approximate location of the focal
plane (Fig. 3.1) [55]. The focal plane is defined to be the surface along which, in
the dispersive direction, a particle’s position depends only on its momentum. (This
is true to first order; aberrations can cause dependencies on other quantities. See
Section 3.2.) Note that the terms “detection plane” and “focal plane” are often
taken to be synonymous, and unless otherwise noted, the subscript “fp” will be used
to denote quantities measured in the detection plane.

Except for details arising from slight differences in wire chamber designs,
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Figure 3.1. The difference between focal and detection planes. Particles with differ-
ent momenta are focused to different spots along the focal plane which is actually a
surface “near” the detection plane.

the tracking algorithms for the two spectrometers are very similar. The algorithms
work by grouping pairs of non-like wires into “pairs.” A non-like wire is a wire that
is sufficiently perpendicular to its partner. For example, the X and U wires in the
SOS (60° apart) are considered non-like. Other than parallel wires, only the X — U,
X —V,and U — V pairs in the HMS are considered too similar to be paired. The
algorithm then loops over pairs, grouping pairs of pairs into “combos.” Combos that
are sufficiently near each other are grouped into “space points.” Finally, a miniature
track through the one chamber, called a“stub,” is fitted through each space point.
Stubs from the two chambers that have positions and slopes such that they are
approximately collinear are then linked into tracks. A x? is formed for each track,
and in the case of multiple tracks, is used to select the best track. The efficiency of
the algorithm and issues related to multiple tracks are discussed in Section 3.3.
There are many user defined parameters that govern the tracking algorithm.
Those used in E91-013 are listed in Table 3.1. Both a minimum and maximum

number of hits per chamber are defined as five and thirty, respectively. Ideally, each
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Table 3.1: Tracking algorithm parameters. See text for explanation of terms.

\ | HMS | SOS |
Maximum Hits 30 30
Minimum Hits ) )
Minimum Combos 6 6
Space Point Criterion (cm) | 1.2 1.2
x Stub Criterion (cm) 30 50
y Stub Criterion (cm) 10 10
z' Stub Criterion 0.5 | 0.75
y' Stub Criterion 0.5 0.5

track fires one wire per plane resulting in six hits per chamber. However inefficiencies
(Section 3.3) can result in five or fewer planes with firing wires. In the case of the
HMS, the minimum of five was chosen to insure that at least one Y plane fired
(recall that four of the six planes in the HMS are X-like). On the other hand, it
is often the case that a particle will fire two adjacent wires in a plane resulting in
approximately twelve hits per chamber. If multiple tracks occur, the number of
hits can grow rapidly, and thus the maximum was set to thirty. As discussed in
Section 3.3, however, the chambers are very efficient, and the number of tracks with
less than five hits or more than twelve is actually very small (< 0.1%), and thus the
results are quite insensitive to the choice of the allowed number of hits. The “space
point criterion” is the radius in which all combos must lie in order to be considered
part of the same space point. Finally the stub criteria define the vertical (z, z')
and horizontal (y, y’) distance and slope ranges in which two stubs must lie to be
considered part of the same track.

Once a particle has been tracked, its focal plane quantities are determined.
The focal plane quantities consist of z and y (the vertical and horizontal coordi-
nates, respectively), and z’ and ¢y’ (the vertical and horizontal trajectory slopes,

respectively).
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3.2 Event Reconstruction
The focal plane quantities define a trajectory that then must be recon-
structed back through the spectrometer to the reaction vertex in the target. These

target quantities depend on the focal plane quantities through the transformation,
!
' ' Tkl
Igar = Z (M;klm)xzfprpyfpyf?}a (3'1)
j’k7l7m

where the prime indicates that the sum over j, k, [, m is constrained such that
j+k+1+m< N, (3.2)

where N is the order of the transformation, and

x%ar = x:ﬁarv
.’L‘?ar = Ytar,
x?ar = yilfaru
xfar = 4.

The quantities M ;klm are matrix elements, and § is the momentum of the particle

expressed relative to the spectrometer’s central momentum, p.:

5: p_pC
Pc

Note that information on the vertical position at the target has been exchanged for
knowledge of the momentum, and therefore x4, is assumed to be zero.

The matrix elements for both spectrometers are determined through an
iterative process. The program COSY INFINITY is used to calculate the matrix
elements (5th order for the HMS; 6th order for the SOS) for a nominal description

of the spectrometer [56]. Data are then taken with a point target and with the



76

1.0" 0.4"

— - — |-

A
* L 4 L 4 * o0 L 4 * *
* * L d * o0 L d < <

l * * . L 2K . * . 8.23"
* > > > - -
0.6"

& 4 & & &
* * * * L 2K 4 * * *
* L 4 L d * o0 L 4 * <*
* * L 4 * o0 L 4 L J <*
* * L 4 L 3K 2K 3 L 4 * *

Y

A
Y

11.75"

Figure 3.2. The SOS sieve slit. The known position of the holes at the entrance to
the spectrometer are used to fit the reconstruction matrix elements. The missing
holes are used to verify the orientation of the slit. Note that the holes are angled so
as to take into account the expanding particle envelope from the target to the slit.
The hole diameters are ~ 0.1 inches. The HMS sieve slit is similar.

sieve slit in place at the entrance of the spectrometer. (Figure 3.2 shows the SOS
sieve slit. The HMS slit is similar.) The COSY simulation is sufficient to take the
focal plane data, reconstruct back to the sieve slit position, and determine with high
probability which of the holes the particles most likely went through. Then, knowing
the true position of the holes, the matrix elements are adjusted to fit the particle
tracks through the center of holes. The process is then repeated with the new matrix

elements until the values converge.

3.3 Tracking Efficiency

Because the tracking algorithm requires both a minimum and a maximum
number of hits, inefficient planes or noise hits can cause the algorithm to fail to find
a track even if the event was valid. Thus, the measured yields need to be corrected
for the tracking efficiency. The efficiency is measured by placing tight cuts on the

position of the triggering scintillators which insures that the particle trajectories went
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through the wire chambers, and should thus be tracked. The fraction of these events
that are tracked is taken to be the “tracking efficiency.” Note that this measures
both the efficiency of the wire chambers and the tracking algorithm together.

Two tests of this as a true measure of the efficiency were performed. After
correcting for the efficiency, yields from runs with quite different tracking efficiencies
were seen to agree at the 1% level. The second test determined that the measured
tracking efficiency agreed with what was expected given the wire chamber plane
efficiency. The efficiency for a given plane, P;, is defined by taking events with the
same fiducial scintillator cuts as above and calculating the fraction of the time that
the plane fired. The average plane efficiency, P, is then the average efficiency of all
twelve planes in both chambers. The fact that the algorithm requires at least five
firing planes in both chambers means that the probability, P, of finding a track goes
as

P = (6P° — 5P%)2 (3.3)

The probability of finding a track given the average plane efficiency was found to
match the measured tracking efficiency at the 1% level. The two tests described were
used to assign a 1% error due to the wire chamber efficiency/tracking algorithm.

The tracking efficiencies for both spectrometers were typically > 97%. How-
ever, there are some examples—the hydrogen Kinematics F data being the most
prominent—of runs that have efficiencies as low as 50%. In this case, the problem
was traced to a bad gas mixture. Table 3.2 lists the mean tracking efficiency for both
spectrometers at each kinematics.

It is possible that the tracking algorithm finds multiple tracks for a given
event. These multiple-track events fall into two classes: those that are actually two
real particles in the spectrometer at the same time, and those that are artifacts of
the algorithm (often referred to as “ghost” tracks). The latter are usually caused by

a few extra, or “noisy” wires that upset the left/right determination such that two or
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Table 3.2. Mean tracking efficiencies for each target at each kinematic setting. A

“ 7

indicates that there was just one run at that setting.

| Kinematics | Target | HMS Eff. | Error | SOS Eff. | Error |

A Carbon 0.983 0.001 0.992 0.000
A Iron 0.983 0.001 0.992 0.000
A Gold 0.983 0.001 0.992 0.000
A Hydrogen 0.989 — 0.991 —

B Carbon 0.955 0.018 0.994 0.001
B Iron 0.979 0.003 0.994 0.001
B Gold 0.979 0.002 0.993 0.001
B Hydrogen 0.982 — 0.990 —

C Carbon 0.984 0.003 0.991 0.003
C Iron 0.985 0.002 0.975 0.017
C Gold 0.985 0.002 0.979 0.012
C Hydrogen 0.950 — 0.954 —

D Carbon 0.981 0.003 0.991 0.001
D Iron 0.978 0.004 0.991 0.001
D Gold 0.966 0.007 0.990 0.001
D Hydrogen 0.964 0.001 0.986 0.001
E Carbon 0.938 0.003 0.925 0.055
E Iron 0.918 0.003 0.982 0.002
E Hydrogen 0.981 — 0.990 —

F Carbon 0.970 0.009 0.992 0.001
F Iron 0.975 0.007 0.990 0.001
F Gold 0.975 0.006 0.992 0.001
F Hydrogen 0.520 0.030 0.991 0.000
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more tracks can be fit through a space point. In this case the track with the lowest
x? is chosen as the “selected” track. Most of the multiple-track events fall into this
latter category. Because the fraction of events for both cases is always less than 0.1%

of the total, errors induced by the presence of multiple tracks are neglected.

3.4 Proton Absorption

Because protons are strongly interacting particles, there is a significant
chance that they will undergo a nuclear interaction as they traverse the detector
stack. If such a reaction removes the proton from the acceptance before it causes
a trigger, the measured coincidence yield will be artificially low. Given the nuclear
interaction lengths (the mean free path between nuclear interactions) of the materials
in the proton’s path, it is possible to estimate the “proton absorption” [9]. One can
also use H(e,e'p) to measure the absorption directly, because every electron in the
coincidence acceptance region must have caused the emission of a corresponding
proton. The fraction of “missing” protons is the absorption (and, consequently, the
fraction that survive is the transmission).

Table 3.3 (3.4) lists the properties of the materials that a proton must
traverse on its way from the target through the SOS (HMS). The mean free path
between nuclear collisions, ), is derived as follows. Reference 9 lists both the mean
free path between nuclear collisions, Ay, and the mean free path between inelastic
interactions, A;, as calculated from \; = ﬁ, where N4 is Avogadro’s number,
and o; is the corresponding cross section. Because the cross section is very peaked
in the forward direction, elastic scattering will only remove a small fraction of the
protons from the acceptance. To account for this, the average of the total interaction
length and the inelastic contribution, is used in the absorption estimation. Assuming

that a proton traversing one quarter of the third scintillator is sufficient to cause a



Table 3.3: Materials in the SOS.

Absorber Density Thickness A X X/
(g/cm®) (cm) | (g/cm?) | (g/cm?) | (107°)

3.37cm LH 0.0708 3.37 47.3 0.239 5.04
5 mil Al target 2.70 0.0127 88 0.0343 0.39
window
8 mil Al chamber 2.70 0.0203 88 0.0548 0.62
window
Air 0.00121 ~ 15 75 0.0182 0.24
Kevlar 0.74 0.0127 ~ 70 0.0094 0.13
Mylar 1.39 0.0076 72 0.0106 0.15
Kevlar 0.74 0.0381 ~ 70 0.0282 0.40
Mylar 1.39 0.0127 72| 0.0177 0.25
Air (DCL1 - 82) 0.00121 ~ 149 75 0.180 2.40
Mylar cathode 1.39 | 14(0.00125) 72 0.0244 0.34
Wire (effective) W 19.3 24(0.0002) 147.7 | 0.00938 0.06
(12 x 30 4+ 12 x 60)purn
Ar/Ethane 0.00154 12(0.6178) ~ 70 | 0.01142 0.16
(50/50 weight)
Poltysty. 1.03 | 2(1.04)(1.0) 70 2.142 | 30.61
(1.04 overlap)
Cerenkov windows ~ 1.39 2(0.030) ~ 70 | 2(0.042) 1.21
(2mil tedlar,
10mil lexan)
Freon 12 (latm) 0.00493 100 87 0.493 5.67
Mirror (rohacell, - - ~ 70 0.45 6.43
mylar, carbon)
Poltysty. 1.03 | L(1.10)(1.0) 70| 0283 | 4.05
(1.10 overlap)

| Total 58.2




Table 3.4: Materials in the HMS.
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Absorber Density Thickness A X X/
(g/cm?) (cm) | (g/em?) | (g/em?) | (107

3.37cm LH 0.0708 3.37 47.3 0.239 5.04

(after scatt.)

5 mil Al 2.70 0.0127 88 0.0343 0.39

target window

16 mil Al 2.70 0.0406 88 | 0.1096 1.24

chamber window

Air 0.00121 ~ 15 75 0.0182 0.24

Kevlar 0.74 0.0381 ~ 70 | 0.0282 0.40

Mylar 1.39 0.0127 72| 0.0177 0.25

Kevlar 0.74 0.0381 ~ 70 | 0.0282 0.40

Mylar 1.39 0.0127 72| 0.0177 0.25

Air (exit pipe 0.00121 ~ 256 75 0.310 4.13

through S2

4 mil Mylar 1.39 0.0102 72 0.0142 0.20

(entr/exit)

Sense Wires (effective) 19.3 0.000076 147.7 | 0.00146 | 0.010

25pm W, 12 planes

Field Wires (effective) 2.70 0.0068 89.1 | 0.0184 0.21

150pm Al/Au (99/1)

18 planes

Ar/Ethane 0.00154 16.6 ~ 70 0.0256 0.36

(50/50 weight)

Field Wires (effective) 5.40 0.0068 87.9 | 0.0368 0.42

150pum Cu/Be (50/50)

18 planes

Poltysty. 1.03 | 2(1.067)(1.0) 70 2.198 | 31.40

(1.067 overlap)

Cerenkov windows 2.70 2(0.102) 88.5 | 2(0.275) 6.22

40mil Al

(entrance/exit)

Cerenkov gas No 0.00125 150 64.2 1875 2.92

Rohacell Mirror ~ 0.05 ~ 1.8 ~ 70 0.09 1.3

support

Mirror SiOs 2.20 0.3 83.1 0.66 3.13

Poltysty. 1.03 | 1(1.067)(1.0) 70| 0275 | 7.94

(1.067 overlap)

Total \ | 67.34 |
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3/4 trigger, the predicted transmission in the SOS is
PTS05 cateutated = ¢ 22 ~5/N = 700982 — 0,943, (3.4)
and for the HMS:
PTHMS cateutated = € 21 Xi/Ai = 700673 — (g 935 (3.5)

Measurements of the proton absorption in the SOS were performed as fol-
lows: hydrogen coincidence runs (electrons in the HMS, protons in the SOS) were
analyzed twice; once coincidences only, and then electron arm only. Looking at
hsx},, versus hsyj,. (the vertical and horizontal slopes at the target, respectively)
for the coincidence data reveals the region in the HMS that kinematically corre-
sponds to the coincidence region for the SOS. That is, events in this region had to
cause a proton to enter the SOS; if the proton did not cause a trigger it must have
been absorbed. Note that this only works with hydrogen targets; protons in carbon,
for example, may be absorbed do to final state interactions in the nucleus or have
sufficient initial Fermi momentum so as to be outside the SOS’s acceptance. Fig. 3.3
shows plots of the coincidence events and electron-only events. The coincidence
data were used to put tight cuts on the electron arm quantities. By counting the
number of coincidences and electrons-only in this region the proton transmission is

determined via

Ncoins
Neoins + Prescaleprs Ne-oniy

PTmeasured = (36)

Table 3.5 lists the measured values for five Hydrogen runs with protons in the SOS.
Note that they are independent of the proton momentum (at least over this limited
range). Taking the average, the proton transmission in the SOS is measured to be
0.951 £ 0.005, in agreement with the theoretical estimate. This value is used in the

analysis of £E91-013.
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Figure 3.3. ' versus 3’ at the target for electrons in the HMS. The top plot is
coincidences-only and thus defines the kinematic region in the HMS in which coin-
cidences occur. The bottom plot is electrons-only for the same kinematic region.
Electrons in the “coincidence” region in the second plot were paired with protons
that were apparently absorbed before detection.
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Table 3.5. Measured proton transmission in the SOS. Note that “e-only” takes the
HMS prescale factor into account.

| Run # \ 8168 8197 8235
J (%) —2.0 - 2.0 —2.0—> 2.0 —2.0—> 2.0
x},, (rad) —0.009 — 0.003 | —0.02 — 0.02 —0.02 — 0.02
Yqr (rad) —0.01 — 0.02 | —0.015 — 0.015 | —0.015 — 0.015
Ytar (cm) —0.5—=0.25 —0.7— 0.7 —04—04
Prescalemgyrs 25 3 4
# coins 64804 20215 12412
# e-only 3600 1161 660
Pyroton (GeV/c) 0.840 1.275 1.550
Absorption 0.9471+0.004 0.94610.003 0.950+0.004
Run # 8310 8560
J (%) 2.0 —3.5 —2.5—0.0
Zh,r (rad) —0.05 — 0.05 —04—04
Ypar (rad) —0.1 - 0.15 —0.01 — 0.02
Ytar (cm) —1.5—=0.75 —2.0—=0.8
Prescalegrs 4 1
# coins 15513 14114
# e-only 684 691
Pyroton(GeV/c) 0.840 1.550
Absorption 0.95840.003 0.95340.002
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Table 3.6. Measured proton absorption in the HMS. Note that “e-only” takes the
HMS prescale factor into account. Run 8584 had 55% tracking efficiency in the HMS.
The coincidence counts were increased by 1/0.55.

| Run # | 12256 | 12284 | 8584 |
5 (%) 50—15.0 | 10.0 — 15.0 —1.0 = 8.0
)., (rad) —0.03 = 0.03 | —0.03 — 0.03 | —0.035 — 0.035
Yl (rad) 0.0 —0.025 | —0.02—0.02 | —0.02 — 0.02
Ytar (cm) -1.0—51.0 | -1.0—=10 —1.0 > 1.0
Eelectron(GeV) > 0.8 > 0.8 > 1.0
Prescalegos ) ) 1
# coins 925 1325 6163
# e-only 50 70 427
Pyroton(GeV]/c) 1.500 1.500 2.550

| Absorption [ 0.95+0.15 | 0.95+0.013 [ 0.935+0.003 |

Experimental determination of the proton absorption in the HMS is more
difficult only in that hydrogen coincidence runs with protons in the HMS (and non-
coincidence electrons in the SOS that are not prescaled away) are rare. The following
three hydrogen coincidence runs were used: 12256, 12284, two experiment E94-014
runs from November 1996, and 8584, an E91-013 run from April 1996. None of the
runs are ideal. The E94-014 runs require tight constraints on the kinematic variables
to insure that the electron should have caused a coincidence, and this results in a low
number of counts. Run 8584 had roughly ten times the number of events but had an
HMS tracking efficiency of only 55%. For all of these runs, a calorimeter signal was
required in the SOS to insure that the particles were indeed electrons. (Note: this
was also tried for the runs with electrons in the HMS, but the effect was negligible.)
Table 3.6 lists the results.

The value of 0.945 4+ 0.02 is in agreement with the theoretical 0.935, but
the large error bar (relative to the SOS measurement) reflects the large tracking
correction (run 8584) or the low number of counts (runs 12256 and 12284), and the
fact that the values are dependent on the kinematic constraints at the few percent

level. As in the case of the SOS a value of 0.95 was actually used in the analysis.
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3.5 Dead Time Corrections

When measuring absolute cross sections, one needs to account for valid
events that arrive while the data acquisition/trigger hardware is busy. This busy, or
“dead,” time stems from two sources: the electronic dead time, due to the trigger
hardware being busy, and the computer dead time, due to the finite time it takes
the data acquisition computer to process events. Note that the dead time is actually
most often quoted in terms of the fraction of time the data acquisition system is
busy. The live time is then defined as 1 - dead time.

The electronic dead time is due to the fact that the logic pulses in the
trigger all have a finite width (30 ns). If another event arrives during this interval it
will be missed. Given an average event rate, r, the probability of n events occurring
in an interval ¢ is given by the Poisson distribution,

r ne—rt
P(n) = L (3.7)

n!

The probability then, of zero events occurring in time ¢ is thus,
P(0)=¢e ", (3.8)

which, because the rates in E91-013 were small enough relative to the gate width,
can be approximated by,

P(0) ~ 1 —rt. (3.9)

That is, the probability of no new events arriving in an interval ¢ after a trigger goes
linearly with ¢ for small rates. Thus, to measure the counts lost in the 30 ns gate
width, four additional gate widths (30, 60, 90, and 120 ns) were used, and the counts
measured with each were recorded. Then, assuming the linear form of Eqn. 3.9, an
extrapolation is made back to zero gate width to arrive the true number of counts.
The ratio of the number of counts actually measured to the true number of counts
is the electronic live time. (The dead time is one minus the live time.) In all runs,

the electronic dead time was less than 0.1%, and thus neglected.
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The second source of dead time is due to the finite time it takes the Trig-
ger Supervisor to read out the Fastbus modules and the data acquisition computer
to write an event to disk. It can take up to 800 us to process a non-buffered co-
incidence event.! Because this is comparable to the typical average time between
events (500 - 1000 ps), the computer dead time can be quite sizeable. To measure
this dead time, the ratio of the number of TRGs to the total number of PRETRGs
is taken. PRETRG is a hardware trigger, and TRG is the same hardware trigger
ANDed with TS-BUSY. Thus the ratio is the fraction of time the data acquisition
system was ready to process triggers. Note, that one can use either spectrometer
to calculate the computer dead time, because the same fraction of triggers is lost in
both arms (the agreement in reported dead time between the two spectrometers is
always better than 0.02%).

Because most runs were taken in buffered mode, the computer dead time
corrections were usually quite small-—on the order of 0.5%. The early carbon runs
in kinematics A, however, were not taken in buffered mode, and for these runs the

corrections can be as large as 50%.

3.6 Timing Corrections

The coincidence time is used to determine the likelihood that an electron
in one arm and a proton in the other arm both originated from the same reaction.
It is the difference between the times the electron and the proton were at the target,
and as such, is ideally a narrow peak centered at zero. Figure 3.4 shows a typical
corrected coincidence time spectrum. The central shaded peak contains the true
coincidences, and the shaded regions to the sides are used in the calculation of the
background (discussed in Section 3.7). Note that one is even able to resolve the

2 ns micro-structure of the beam. However, to obtain such a spectrum, one has

'Note that buffered events can be read every 100 us although it still takes ~ 800 us to fully
process each event.
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to account for pulse height dependencies in the TDCs, light propagation time in
the scintillators, signal propagation in the electronics, and path length differences
through different parts of the spectrometer acceptance. These are collectively known
as timing corrections. Further corrections, due to random background events and
Fastbus synchronization problems, are discussed in Section 3.7.

When measuring (relative to some start) the time at which a scintillator’s
phototube fires, one has to correct for the fact that a large pulse will cross a discrim-
inator threshold earlier than a smaller pulse. Thus, “pulse height corrections” need
to be applied to each phototube, meaning that the measured time (TDC signal) is
adjusted based on the pulse shape (ADC signal). The correction used is empirical,

and of the form,

At = PHC\/ADC/PHOFF — 1 + tosfeu, (3.10)

where ADC' is the raw ADC value, and PHC, PHOFF, and t,f s are the timing
correction parameters. The parameters are fit as follows. To minimize variations
due to propagation of light in the scintillators, a small area of interest is defined
by using pairs of crossed scintillators. Then the pulse height correction for one of
the four tubes in the crossed pair is determined by adjusting its parameters so as to
match the time as given by the other three tubes (which, at the beginning of this
boot-strapping process, have been fit with rough corrections). Actually, for a given
scintillator, the average time of both tubes at each end is used so as to eliminate
dependence on position along the scintillator. The process is then iterated for all
scintillators.

Given the pulse height corrections, the light propagation time in the scin-
tillators can then be measured. Because the light usually arrives at the phototubes
via a series of internal reflections, the time is not simply the distance from the track
divided by the speed of light in the scintillator. An effective speed of light is de-

termined empirically by plotting the position of the hit versus the time difference
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between the phototubes on either end of the scintillator, and taking the slope. In
E91-013, an average was taken over the velocities for all the scintillators in each
plane.

Next, corrections for differences in cable lengths need to be included. Again,
pairs of crossed scintillators are used, but the pulse height corrections and light
propagation time corrections have been applied. An offset for each tube is adjusted
so as to make the time produce the correct 5 for the particles of interest (8 =1 for
electrons, and 8 = \/ﬁw for protons).

Finally, to determine the time at which the particle was at the reaction
vertex, path length corrections need to be applied. That is, the time taken to
traverse the spectrometer depends on the particle’s trajectory in addition to its
velocity. Using a COSY model of the spectrometer, the path length is given as a
function of z sy, ', T p2'y,, :L'?fp, :v’pr, and y;?p The difference between the actual and

central path lengths divided by 3 gives the path length timing correction.

3.7 Blocking and Synchronization Corrections

Even with the timing corrections discussed in the previous section, one still
needs to account for various problems and inefficiencies in the trigger and data ac-
quisition (Sections 2.7 and 2.8) before the corrected coincidence time can be used to
define good (e,e'p) events. These problems fall into three categories: events in which
a random singles trigger blocks a true coincidence, events in which a late trigger
causes both the start and stop of the coincidence TDC (“self-timing” events), and
events in which a loss of synchronization occurred between detectors in a spectrome-
ter or between the two spectrometers themselves. The first two effects were expected
and affect a small fraction (< 1%) of the events. The synchronization problems were
due to unexpected problems with running the Fastbus modules in buffered mode.

Blocked coincidences occur when a random singles trigger arrives just before
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HMS Start

Random, "Blocking"
Proton in the SOS

True, Coincidence
Proton in the SOS

Time

Figure 3.5. Coincidence Blocking. An early, random, proton in the SOS causes an
early stop of the HMS coincidence time (time x). The true proton is a time y > x
behind the HMS.

a true coincidence event. As an example, if a random proton arrives in the SOS just
before the true, coincidence proton, the stop for the HMS coincidence time and
the SOS TDCs will be early, and the gates for the SOS ADCs will be too narrow
(Fig. 3.5). In addition, tight cuts on the coincidence time will then remove events
that were possibly good. In E91-013, the rates in the SOS were, on average, higher
than those in the HMS, and thus the majority of these coincidence blocking events
were of this type—random SOS events causing early SOS stops. To correct for this,
a cut defining coincidence blocked events is placed on the HMS coincidence time.
The fraction of the total that are blocked is used to correct the final yields. In all
kinematics, this was a very small effect. The worst run (5375) only had 1.8% of its
coincidences blocked.

The other problem is the fact that a late SOS trigger, for example, can
cause the output of the trigger supervisor (Fig. 2.24) to arrive at the AND gate

after the delayed HMS TRIG. This means that the HMS ADCs and TDCs (in this
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Figure 3.6. Self-Timing Events in Run 5370 (Log scales). The self-timing events are
shaded. Panel 1 shows the raw HMS coincidence time, panel 2 shows the HMS time
at the focal plane, and panel 3 shows the (path length) corrected coincidence time.

example), which are delayed so as to be in time with the HMS TRIG, are read out
at a time dictated by the SOS. Furthermore, the HMS coincidence time—normally
started by the HMS and stopped by the SOS—is now both started and stopped by
the SOS. This “self-timing” causes a peak in the raw coincidence time (the shaded
region at approximately channel 2700 in the top panel of Fig. 3.6). Due to details
in the delay wiring, it turns out that this problem only occurred in the HMS. The
SOS had more freedom in its ADC and TDC delays so as to insure the SOS TRIG
always arrived after the COIN TRIG.

The problem with the self-timing events is actually fixed by the path length
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corrections (Section 3.6). These events have an HMS coincidence time that is too
small (the shaded area in the top panel of Fig. 3.6 should extend to the right). This
results in an HMS focal plane time (middle panel of Fig. 3.6) that is too small,
because the start, induced by a late SOS TRIG, arrives too late. However, in cal-
culating the corrected coincidence time, the focal plane time is subtracted from the
raw coincidence time:

CTlrgw — A

CTcorr ~ B - tfp, (311)

where CT.qy is the raw coincidence time TDC value, A is a TDC offset, B is is
the TDC channel-to-time conversion factor, and ty, is the corrected time at the
focal plane. The errors then cancel when subtracting something that is too small
from something that is itself is too small by the same amount. As is seen in the
HMS coincidence time spectrum (bottom panel of Fig. 3.6), these self-timing events
comprise the part of the random background expected for events with a late SOS
trigger. Thus these events are left in throughout the analysis until they are eliminated
in a standard random background subtraction.?

As was mentioned in Section 2.8, the data for certain runs were taken in
buffered mode (Table 2.7). It was not noticed that the buffered information was
often written to disk with the wrong synchronization. That is, event information
from one set of detectors was being mixed with detector information from that of
another event. And, in the case of coincidence triggers, event information from
the SOS was sometimes paired with HMS information for a different event. It is
important to remember that in both cases the effect is rate dependent, and once the
data acquisition computer “catches up,” the synchronization is restored. It is also
true that the synchronization problems of both types usually comprised less than 1%
of the events. Only in the forward proton angles of Kinematics A (high background)

did the fraction of approach 15%.

2Note however, that in the correction of the synchronization errors discussed below, the blocking
events are removed.
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Synchronization problems in the coincidence data show up distinctly in the
raw coincidence time TDC spectra. Figure 3.7 shows these spectra for the SOS and
HMS, respectively (Run 5370; unusually bad). The SOS spectrum (upper panel) has
a good coincidence time peak at roughly channel 1500 on a background the width

“

of the gate. Everything below channel 1000 and above channel 2500 has a “wrong”
HMS event paired with it, resulting in a bogus coincidence time.

To correct the coincidence data, the following algorithm was devised. First,
the coincidence blocking events are removed. Then, to measure the fraction of events
that are out of sync, a “checksum?” is formed with the raw HMS and SOS coincidence
times. As discussed in Section 2.7, for normal coincidence events, a late HMS trigger
will correspond to a small HMS coincidence time (the SOS shows up relatively quickly
to form the stop). However, from the point of view of the SOS, the HMS stop shows
up relatively late, forming a large SOS coincidence time. Thus, for good events, the
coincidence times as reported by the two spectrometers will always add to a value
in a well defined, small, range; a so called checksum. Figure 3.8 shows a histogram
of the sum of the raw HMS and SOS coincidence times (It is an event by event
sum of the two histograms in Fig. 3.7.). The shaded area marks events with good
synchronization (the small flat region to the left of the main peak at channel 4000 is
due to the retiming events discussed above), and the rest are discarded. The fraction,
good/total, along with the fraction of coincidence blocking events is then used to
correct the final yields. Note that for this run (5370) roughly 10% of the events have
lost synchronization. For comparison, Fig. 3.9 displays this checksum for a run with
negligible synchronization problems (Run 5307).

Now that the out-of-sync and blocking events have been removed, a stan-
dard background subtraction is performed with the remaining data to arrive at the
final coincidence yield. That is, the peak £1.5 ns in the corrected SOS coincidence

time spectrum (the central shaded region of Fig. 3.4), with cuts on HMS §, SOS 4,



95

10% E

10% E

10 +

Ll

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500
SOS Raw Coin. Time (TDC Channels)

[T R AR RRRRE RAREE RAREE REAREE USRS REREE LR REARRS

10% -

0% E

10 ¢

L

-500 O 500 1000 1500 2000 2500 3000 3500 4000 4500
HMS Raw Coin. Time (TDC Channels)

Figure 3.7. Raw SOS and HMS coincidence time TDC spectra, respectively (log
scales).



96

104
0%

104

10 F

3

A I I | 3
1000 2000 3000 4000 5000 6000 7000 8000 9000
Raw HM S Coin. Time + Raw SOS Coin. Time

-1000 O

Figure 3.8. Sum of Raw HMS and SOS Coincidence Times in Tun 5370 (Log scale).
The shaded area near channel 4000 is taken as “good.”

missing energy and momentum, 6 and ¢ for both spectrometers, and PID cuts on
the electron arm, is taken as good. Two areas away from this peak, each 6 ns in
width, are used to calculate the average background/ns (ideally each area consists
of an integral number of RF “bumps”). The average background/ns is multiplied
by the width of the good peak to give the number of background events in the good
coincidence time cut. To arrive at the coincidence yield, the events passing the coin-
cidence time cut minus the background is divided by the fraction of events that were
in sync and did not have coincidence blocking protons. Equation 3.12 summarizes

the calculation.

RC, - B
(F. x F})) (Q x TEgpys x TEspos x PT x LT)’

Coin. Yield (3.12)

where RC| is the number of raw coincidence events that are in sync (with the blocking

events removed), B is the background contribution, F. is the fraction of events with
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Figure 3.9. Sum of Raw HMS and SOS Coincidence Times in Tun 5307 (Log scale).
The shaded area near channel 4000 is taken as “good.”

a good checksum, Fj, is the fraction of events without coincidence blocking protons,
Q is the accumulated charge of the incident electrons, T'Efyr5(s0s) is the measured
tracking efficiency of the HMS (SOS), PT is the proton transmission, and LT is
the computer live time. Note the bremsstrahlung radiation emitted by the electrons
(and to a lesser extent, the protons) may cause the electron energy to drop out of the
experimental acceptance. The experimental yields are not corrected for these losses,
rather they are compared with a simulation (Section 3.9) that includes radiative
effects.

A different method was used to correct the singles yields for synchronization
problems. A test was formed that counted the number of electron-only events that
had calorimeter and Cerenkov ADC values of 0 or 4095; so-called “singles zeroes.”
An overflow (4095) occurs when the stop for a TDC shows up late, but still within

a specified time window, and the zeroes occur when the stop fails to show up at
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all. These events obviously fail to pass the PID cuts, and so need to be re-included
in the final yield. Of course not all of these events would have passed all the cuts
and contributed to the yield; a certain fraction may have been just outside of the
acceptance. To correct for this, we multiply the number of zeroes by the number of
events that pass the acceptance/PID cuts over the raw number (minus the zeroes).
Then, in calculating the singles yield, this number of corrected singles zeroes is
added to the number of electron only events (that have passed the cuts) which is
then multiplied by the electron arm prescale factor. The coincidence yield (which
has further corrections discussed above) is then added to that to get the final yield.

For example, in the HMS:

(HMS o x PS) + HMe

Singles Yield = 3.13
ingles Yie Q x TEius X LT , ( )
where
HMS, -
HMS.orr = HMS, - Z ¢ oy 3.14
o <oty e (HMSrawe—only -z)’ ( )

and where HM S~ ,,;,, is the number of electron-only counts with HMS 4, angle, and
calorimeter cuts, HM S, 4peoniy 18 the raw number of HMS electron-only counts with
no cuts, and HM S, is the number of coincidence triggered HMS counts (corrected
for the fraction that are in sync—see above) with only HMS § and HMS angle cuts. Z
is the number of “singles zeroes, 7 PS is the electron arm prescale factor, and, as in
Equation 3.12, @) is the accumulated charge of the incident electrons, TEyrs(s0s)
is the measured tracking efficiency of the HMS (SOS), and LT is the computer live

time.

3.8 Particle Identification

Due to the coincidence nature of the experiment, particle identification in
E91-013 is a relatively small problem: If produced, a pion (8 ~ 1) in the proton
(6 < 1) arm does not have the correct time of flight to be in time with the elec-

tron. Pions in the electron arm are easily removed using Cerenkov and calorimeter
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responses. The efficiency of the Cerenkov detector and the calorimeter are discussed
in Reference 57. Both were measured by using the elastic scattering of electrons from
hydrogen. The ratio of events with electron signals (Cerenkov signal corresponding
to three or more photoelectrons, or a calorimeter response greater than, or equal to
the scattered electron energy) to the total number of events, is taken as the efficiency.
The requirement is made that the invariant mass, W, for each event must be below
the pion production threshold: W? < 1.15 (GeV/c)?. The Cerenkov efficiency is
found to be > 99.5% for electron energies from 0.5-2.1 GeV. The calorimeter effi-
ciency is typically > 99%, although it falls to approximately 98% at low (< 1 GeV)

electron energies.

3.9 Simulation

In addition to the PWIA calculation needed for the transparency results, a
simulation of the experiment is needed to extract the spectral functions and model
the radiative corrections. The simulation used is an Independent Particle Shell Model
(IPSM) calculation done in the PWIA. The program, SIMULATE Hall C (SIMC),
is based on SIMULATE, written by Makins for experiment NE-18. With the excep-
tion of modifications used to make it Hall C specific, a complete discussion of the
simulation can be found in Reference 58.

3.9.1 Overview The simulation of an event begins with an incoming
electron whose position and energy are chosen randomly from distributions match-
ing those of the actual beam. In addition, corrections due to ionization losses and
Coulomb distortions in the target are applied. A basic scattering vertex is then
formed by choosing the scattered electron and proton trajectories, energies, and
momenta at random over a range of kinematics that exceeds the experimental ac-
ceptance. The electron kinematics are used to calculate the momentum transfer ¢,

and, given the proton’s final momentum p’, the missing energy and momentum are
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determined. Unphysical kinematic situations, or events that result in a particle out-
side of the experimental acceptance, are assigned a weight of zero (see below). The
probability that each particle at the vertex emits a real or virtual bremsstrahlung
photon is then calculated, and the trajectories and energies are modified accordingly.
Forward matrix elements are used to transport the electron and proton through the
target and their respective spectrometers, where multiple scattering and ionization
losses are included. The simulated focal plane quantities are then reconstructed back
to the target as for the data, and these reconstructed target values (as opposed to
the generated values) of the electron and proton trajectories are used to calculate
the missing energy and momentum. These results are then written to the output
files. Each event that has both the electron and proton arrive successfully at their

respective focal planes is assigned a weight of
E,plaepS(Em ) pm) Wirad,

where o, is the off-shell electron-proton cross section (Section 3.9.2), and S(E,,, pm)
is the model spectral function value for the given E,, and p,, (Section 3.9.3). Note
that in the calculation of the weight, the vertex values of E,, and p,, are used, as
opposed to the reconstructed values. Note also that the product E'p'cc,S(Ep,, pm)
is the coincidence cross section in the PWIA. The factor W,.q is a correction for
the emission of both real and virtual photons by the incoming electron, scattered
electron, and the recoiling proton. (Section 3.9.4). Finally, all events are weighted
by

LAE,AQ,AE,AQ,
Ngen ’

where L is the experimental luminosity, AE,AQ, AE,A(), is the phase space volume,
and Nge, is the number of generation attempts. The SIMC output files are thus
created such that the Monte Carlo output is ready for direct comparison with the

experimental data.
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3.9.2 Off-Shell Cross Section The off-shell cross section used in
SIMC employs the o, prescription of deForest [6], described in Section 1.3.1. In
order to facilitate comparison with experiment NE-18, the same form factor calcu-
lations are used in E91-013. The dipole form is used for the proton electric form

factor, G%,,

9\ —2
G, = (1 + %) , (3.15)

and the parameterization of Gari and Krimpelmann is used for the proton magnetic
form factor (Equs. (2) and (3) of Ref. 59).
3.9.3 Model Spectral Functions For the results in Reference 60
(that is, with the exception of some tests—see Appendix A), the model spectral
functions used in E91-013 are the same as those in experiment NE-18. They are
based on the IPSM, and the approximation is made that they factor as
S(Emypm) = (25 +1) Y prtyi (0m) Lt (Em). (3.16)
n’l’j
The momentum distributions, p(p,,), were calculated using the program

DWEEPY [61] with the following nuclear mean-field model potential:

h \?22df - _
V=—V0f(r,R0,a0)+Vso<mﬂc> ;d—{l-s+VC(r), (3.17)
where
1
f(r,R,a) = ——, (3.18)
1+e

is the usual Woods-Saxon form for the radial shape. The parameter a defines the
“thickness” over which the nuclear deunsity falls off, and R is taken to be the approx-

imate radius of the residual, A — 1, system:
R=ro(A—1)'3. (3.19)

The volume term in the potential, Vj, depends only the radial position of the nucleon

in the nucleus, and the spin-orbit term, V;,, describes the interaction between the
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nucleon’s spin and its orbital angular momentum. The Coulomb term, Vi, is due to
the presence of the other Z — 1 protons, and is approximated by the potential due

to a uniform spherical charge distribution of radius R¢ (= r.A'/3):

—1)e2 2
Vo(r) = —% (g - 2Rc> . (3.20)

The wave functions calculated in this nuclear mean-field framework are
strictly local. In reality however, the potential (and thus the wavefunction) at a
given position is non-local, depending on the nuclear wave function elsewhere. Note
that this is equivalent to the statement that the nuclear mean-field potential is energy
dependent. To take this into account, the program DWEEPY still utilizes a local

potential, but a so-called Perey-factor is used to distort the wave functions: [62]

U, (7)

V1+2MB2V (r)’

where (3, the range of the non-locality, is approximately 1 fm. (Note that ¥y (r)

Unr(r) =

(3.21)

then has to be renormalized.) According to Elton and Swift [63], non-locality only
becomes important for A > 40, and therefore only the *®Fe and 7 Au wave functions
were corrected for the effect.

The binding energy distributions, £L(E,,), are taken to be roughly Lorentzian

in shape:

1 I'i(E)/2
Li(E) =~ , 3.22
) = @ B T B)27 (5:22)
where Ep, and I';(E) are the binding energy and widths of the i*" shell, respectively.
The shell widths are either taken from fits to low-Q? data, or calculated from the

formula of Brown and Rho [64]:

(24MeV)(E; — Ef)?
(500MeV?) + (E; — Ep)?’

Iy(E) = (3.23)

where E; is the binding energy of the i*® shell (Ep, in Equation 3.22), and Ep is

the Fermi energy of the nucleus. Note that is exceedingly difficult to determine the
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Table 3.7: Model parameters for 2C.

Shell | Ep r Vo 70 ag Vo T'so Uso o
(MeV) | (MeV) | (MeV) | (fm) | (fm) | (MeV) | (fm) | (fm) | (fm)

Ls1s | 381 | 20 66 1.36 | 0.55 13

Ipyy | 162 |5 55 1.36 | 0.55 | 9 1.36 | 0.55 | 1.3

shell widths of the deeply bound states in iron and gold. The NE-18 model spectral
functions were used in E91-013 for the sake of comparison, but it should be pointed
out that in some cases the agreement between data and simulation was somewhat
poor. Section 4.3.3 discusses the dependence of the results on the model used, and
Appendix A discusses the use of an alternative *°Fe spectral function model.

The parameters for the carbon model spectral function were originally ob-
tained as follows. The central binding energies for the 1s and 1p shells were deter-
mined empirically to be 38.1 MeV and 16.2 MeV, respectively, from an examination
of the Saclay data [2] and Table X of Ref. 1. The shell widths were also derived from
an examination of Saclay 2C(e,e'p) data taken at Q% = 0.16 (GeV/c)?. The 1s shell
width is 20.0 MeV, while that of the 1p shell is 5.0 MeV. The mean-field potential
parameters for the missing momentum distribution were taken from the Saclay data.
Table 3.7 lists the carbon parameters.

The shell energies for "Fe were taken from the Hartree-Fock calculation
of Reference 65. The binding energies were all increased by 2.0 MeV to reflect the
difference in separation energy of %Ni and 6Fe. Equation 3.23 was used to calculate
the shell widths using a Fermi energy of 8 MeV. The parameters for the mean-
field model potential were taken from the 58Ni values in Reference 2, but they were
modified slightly so as to obtain a better fit with the data. Table 3.8 summarizes
the %Fe model parameters. As was mentioned, the agreement between the °CFe
model and the data was somewhat poor, and Appendix A discusses a Hartree-Fock

calculation used to provide consistent binding energies and momentum distributions.
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Table 3.8: Model parameters for *°Fe.

Shell Ep r Vo 70 ag Vso Tso Qs ro
(MeV) | (MeV) | (MeV) | (fm) | (fm) | (MeV) | (fm) | (fm) | (fm)
Lsi/2 50 18 80.7 1.30 | 0.60 1.3
1ps/s1/ | 37 14 69.0 | 1.30 | 0.60 | 40 1.30 | 0.60 | 1.3
1d5/273/2 23 6 58.2 1.30 | 0.60 | 23.5 1.30 | 0.60 | 1.3
2,0 | 167 |3 527 | 1.30 | 0.60 1.3
1f7/2 11.3 1.0 52.7 1.30 | 0.60 | 13.8 1.30 | 0.60 | 1.3

The binding energies for " Au were derived from the 2%®Pb data of Ref-
erence 65. To account for the difference in separation energies of the two nuclei,
2.2 MeV was subtracted from each binding energy. The widths of the 1g, 2d, and
1h shells were taken from Reference 65, while the widths of the more deeply bound
shells were calculated using Equation 3.23. As in the case of *°Fe, the mean-field
model parameters were a best fit of data and calculations from various sources: the
208Ph data of Reference 65 and the calculations of Reference 66. Table 3.9 lists the
model parameters for %7 Au.

3.9.4 Radiative Corrections Corrections to the (e,ep) cross section
need to be applied due to the fact that the electron (and to a much lesser extent, the
proton) will emit photons as it is accelerated in the vicinity of nuclei. These modifi-
cations can be divided into two categories: “Internal” bremsstrahlung describes the
emission of photons by both the electron and proton at the reaction vertex. This
includes both real photons (Fig. 3.10) and higher order modifications due to the
emission of virtual photons (Fig. 3.11). “External” bremsstrahlung is induced by
material incidental to the reaction. Both categories are known collectively as radia-
tive corrections. Calculations of these corrections in the inclusive 'H(e,e’) reaction
were first performed by Schwinger [67], and were later modified by Mo and Tsai [68].
A more recent treatment was given by de Calan, Navelet, and Picard [69]. In the

analysis of the NE-18 data, Makins et al. reformulated the (e,e’) calculations of Mo
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Table 3.9: Model parameters for 197 Au.

Shell Ep r Vo 70 ag Vso Tso Qs ro
(MeV) | (MeV) | (MeV) | (fm) | (fm) | (MeV) | (fm) | (fm) | (fm)
181/2 46 19 71.9 1.31 | 0.65 1.2
Ips/an/e | 41 17 713 | 1.31 | 0.65 | 6 1.15 | 0.65 | 1.2
1d5/273/2 32 14 67.8 1.31 1 0.65 | 6 1.15 |1 0.65 | 1.2
281/2 28 12 66.5 1.31 | 0.65 1.2
1f7/275/2 22.9 94 65.1 1.31 1 0.65 | 6 1.15 |1 0.65 | 1.2
Wajaaje | 172 | 7.9 632 | 1.31 [ 0.65 |6 115 | 0.65 | 1.2
1g9/277/2 12.5 6.0 63.7 1.27 1 0.65 | 6 1.15 | 0.65 | 1.2
2d5/2 8.3 3.7 62.0 1.32 | 0.65 | 6 1.15 | 0.65 | 1.2
lhyyy | 7.7 4.0 670 | 1.29 | 0.65 | 6 115 | 0.65 | 1.2
2d3/2 6.2 1.5 57.2 1.36 | 0.65 | 6 1.15 | 0.65 | 1.2

and Tsai for the case of coincidence (e,e’p) reactions. A summary of these calcula-
tions is provided below, while a more detailed description can be found in Refs. 58
and 70. As in the case of the model spectral functions, the radiative correction
prescription of Makins et al. was used in the simulation of E91-013.

Following the discussion of Makins, the internal bremsstrahlung radiation

cross section for the emission of multiple photons can be calculated to all orders as

do do
- 1 — Gpar 3.24
QA B dEye dE-y ds2, ep( hard) (3:24)
y AeAer Ay 1
(VIR P (VIR (VAT B0 B B

where ddT” is the one-photon exchange, electron-proton cross section, €2, is the
€ ep

scattered electron solid angle, and E,e, E,¢, and E,, are the total energies emitted
by photons along the direction of the incoming electron, scattered electron, and
recoiling proton, respectively. The four-momenta of the incoming and scattered
electrons (mass m) are given by k and k', respectively, and the momentum of the

recoiling proton (mass M) is given by p’. The As in Eqn. 3.25 are given by
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() (b)
(© (d)
W M

Figure 3.10: The four first order bremsstrahlung radiation Feynman diagrams.

(a) (b)
(©) j (d) i

Figure 3.11. The Feynman diagrams of the four included, second order, virtual
photon corrections to the one-photon exchange electron-proton cross section. Note
that only terms necessary to cancel divergences are kept in diagrams (b) and (c).
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al 4k? k 1 —cos@,
al 4k k 1 —cos@,
Ayt = p ln<m2>+21n(y)+ln<T>—1],
i 0’ —y
@ p’ 1P
Ay = — |In|=5———"F= ] —2]|,
P ™ | (po —|ﬁ’|> ]

where 6, is the scattered electron angle, and dp4-q is the contribution from second

order virtual photon emission:

3 —¢? 1 b/ 2
5hard =2« [_E In (W) + % — El:(s,:] (q ) . (326)
Here ¢? is the momentum transferred from the electron (k — k'), and 4} is due to

the vacuum polarization corrections (the sum over ¢ running over the three lepton

flavors, each with mass m;):

1
5Zp:§

—g +In <_m—q22>] . (3.27)

i

Makins makes the following approximations and assumptions in arriving at
Eqn. 3.25. First, on-shell form factors and kinematics are used in the calculation of
the proton-photon vertex. Note that both of these approximations are assumed to
have little effect on the results as the total proton radiation is negligible. Second,
the derivation encounters two sets of “infrared” divergences as both the mass of the
photon and the total energy lost to radiation, AFE, are taken to zero. The first set
is removed when the interference between the first-order and second-order diagrams
(two-virtual-photons; Fig. 3.11) is included (actually, second-order diagrams that
include photon interactions with the poorly understood proton current are generally
omitted; only terms necessary to cancel the first-order divergences are kept). The
second set of divergences are caused by terms (0407 (AE)) that go to infinity as AE
goes to zero. That is, the cross section for emitting photons with vanishingly small
energies becomes infinite. The situation is remedied by a cancellation that occurs

between terms that have multiple photons, each with energy less than AFE, and
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Figure 3.12. Angular Distribution of Bremsstrahlung Photons. The kinematics
consist of an electron (beam at 0°) scattered through 35° and a recoil proton at -45°.
Q% =1 GeV/c?. (Vertical log scale.)

terms that have the total energy of all emitted photons less than AE. To order o?,

dsoft(AE) can be approximated by e 0s0st(AE)

. Note that this “exponentiated” form
goes to zero as AFE — 0, as expected physically: there is zero probability of of losing
no energy to radiation. Third, the cross section for internal bremsstrahlung factorizes
into three functions; one for each arm of the (e,e'p) vertex. It is noticed empirically

that the emission of radiation by a particle is strongly peaked in the direction of that

particle (Fig. 3.12), and thus the angular distribution is approximated as
Apeating(@) = Xed(& — k) + Ar6(@0 — k') + Ay d(@ — §), (3.28)

where @ is the direction of the emitted photon. This “peaking” approximation is
utilized in the derivation of Equation 3.25. Finally, although the peaking approx-
imation is used in the calculation of the emission of a single photon, the angular

distribution of multiple photons is approximated by calculating the total energy lost
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in each arm, and taking the vector sum:
ajtotal = E'ye]; + E,ye/f{; ! + E,Yp/ﬁ ! (329)

External bremsstrahlung is defined as radiation induced by nuclei other
than the one participating in the (e,e’p) reaction. SIMC takes external bremsstrahlung
into account for electrons traversing the target, scattering chamber windows, air be-
tween the chamber and the spectrometer, and the spectrometer entrance window.
After the electrons have traversed the spectrometer dipole magnet(s), multiple scat-
tering is a much larger effect in terms of energy smearing. Early [71] calculates
the probability of an electron with momentum |E | radiating total energy E*' when

traversing ¢ radiation lengths of material with atomic charge, Z, as

bt
- 1 bt [ Eest
P(|k|, Bt t) = _ )
(%1, ,t) {1+ bf) B l 7 ] ; (3.30)
where
1 Z+1
b = (124 21— 31
9( +ZL1+L2>’ (3:31)
1
Ly = 5.216—§1n(Z),

2
Ly = 7.085 - Wn(2).

Noting that both internal and external radiation emitted by a charged particle are
emitted along the direction of the charged particle’s momentum, one can rewrite the
total energy radiated along k and K as E; and Ey, respectively. Then, the internal
(Equation 3.25) and external radiation can be combined, resulting in

do do

dQdEM B AETAESETT T dQe|,, (1 = dnara) (3.32)
X 1 1
U(1+ bt;) D(1 + bt )
Ot X) Bt A Ay
: " 5 ,
kbt (VEE)N K (VER) A (\/]\47])6))‘17
X .
Eilf/\i*bti E]-*Af*btf E17,\p,

f '
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Note that the external radiation by the proton—suppressed by a factor of (%)Q—is
neglected.

The above formulae are applied in SIMC as follows. As can be seen in
Eqn 3.33, the peaking approximation results in a cross section that factors into
independent distributions for each arm in the (e,e’p) reaction. Each factor is of the

form
1 bt + A dE
(1 + bt) kbt (VEE ) BL- A0

(except that bt = 0, and Vkk' — /Mp” for the proton). An energy distribution

(3.33)

function suitable for randomly weighting events is formed by defining

bt; + A;, (3.34)
bt; + A
kit (VEE )N

where 4 indicates both the incoming and scattered electrons, and

gi

g = Ay, (3.35)
Ay
(/ Mpp)™

for the recoiling proton. The energy distributions for each arm of the reaction can

C

then be written as

C; x B dE;, (3.36)

where 7 now stands for all three arms of the reaction. Normalizing the distributions
via
Emaa:
N/ EI~YE =1, (3.37)
Emin
weighting functions of the form

gE9t
) A

min

G = (3.38)

are obtained that are then used to randomly weight the energy lost in each arm

due to radiation. The limits, E,,;, and Fy., are chosen so as to exceed the the
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beam energy or the spectrometer acceptance for the incoming electrons and scattered
electrons and protons, respectively. This is to allow for the possibility that a higher
energy electron, for example, may radiate “into” the acceptance.

With the energy lost by each particle now determined (E., ¢, E,r, and E,,
for the incoming electron, scattered electron, and recoiling proton, respectively), the
vertex values of the energy and momentum for each arm are adjusted accordingly.

In addition, the event is assigned a radiation weight which gives the total probability

for the occurrence of this particular set of radiative losses:

Wraa = W DD (1 = §10ra), (3.39)

r e/

where the factors ®¢* are corrections for the emission of external photons with large

energies,
bt; E;

PEt =1 — =,
¢ bt; + X\ k;

(3.40)

w? (f({ " is given by the product of the three internal radiation weights for the incoming

and scattered electrons and the recoiling proton,

Wyad! = WiagWiaaWhya, (3.41)
where
) C i g i g
rad — [(Emaz) - (Emm) :| ) (342)

and where ¢ indicates the three arms of the reaction.

The effect of the radiative corrections is most easily understood in terms
of a missing energy and momentum basis. As an example, if a real photon with
four-momentum w is emitted, the missing energy and momentum are both shifted

(c.f. Egns. 1.6 and 1.7):

P = P —G+3=p,+3, (3.43)

E, = E-E -T,+uw’ =E;,+d°
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Figure 3.13. Effects of Radiation on Hydrogen E,, and p,, Spectra. Simulated E,,
vs. pmy, spectra are plotted with and without radiative effects in the left and right
panels, respectively. The radiation of real photons appears as a tail of events with
E., = pm. (Vertical log scale)

where 1~3’m and E,, are the measured missing energy and momentum, and E,, and
Pm are the true vertex values. Thus, in a two-dimensional histogram of E,, versus
Pm (Fig. 3.13), the radiative effects show up as a “tail” of events along E,, = ||
The effect of the radiation weight then, is to reduce the number of events in a given
(Em, |Pm|) bin, accounting for radiation “out of” that bin. And, by adjusting the
energy and momentum vertex values of the particles, events can radiate “into” other
(Em, |Pm]) bins.

Comparisons of data and Monte Carlo for 'H and nuclear targets can be
found in Sections 4.1 and 4.3.1, respectively.

3.9.5 Spectrometer Simulation With the vertex values of the tra-
jectories and momenta now determined, the particles must next be transported

through their respective spectrometers to the focal plane. In addition, energy loss
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and multiple-scattering corrections to the trajectories need to be applied as the par-
ticles traverse the various materials in the spectrometer.

The forward transformation—the inverse of the process described in Sec-
tion 3.2—must be performed in order to calculate the transport of the particles from
the target to the focal plane. The forward matrix elements were calculated to fifth
order using COSY Figure 3.14 shows a comparison of experimental and simulated
quantities at the focal plane.

As the particles traverse materials in the spectrometer (entrance and exit
windows, air, wire chambers, etc. See Tables 3.3 and 3.4), they suffer both energy
loss and angular deviations due to multiple scattering (bremsstrahlung losses have
already been included in teh radiative corrections). The energy loss of the protons
due to ionization of the material is calculated using the Bethe-Bloch equation,

E Z 1 |1, 2m.c2B%~4%T,
AE _ 3072 L | Ly, 2mee Sy Tinaa

— 32 44
dz AB? |2 12 A (3.44)

where Z and A are the atomic number and atomic mass number, respectively, § and
v are the usual relativistic quantities, Ty = 2mec?%y? is the maximum kinetic
energy that can be imparted by the proton to an electron, and I ~ Z x 10 eV is
the mean excitation energy of the material. [9] The units are such that the energy is
measured in MeV, and the thickness, dz, is measured in g/cm?. The electron energy
loss due to ionization is slightly modified to take into account their light mass, and

the fact that the scattering now occurs between identical particles:

dE Z t
- = —0.1535% {19.26 +1n (EH : (3.45)

where ¢ and p are the thickness (in g/cm?) and the density (in g/cm?) of the material,
respectively, and # — 1. [72] Multiple scattering is into account separately in both
the in-plane and out-of-plane directions using Gaussian angular distributions with
widths given by

1+ 0.038 1n(Xi) : (3.46)

136 T {
0

0= —2—
pB Xo
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Figure 3.14. Carbon Focal Plane Spectra: Simulation vs. Experiment. Shown are
the horizontal position and slope, and vertical position and slope spectra for the
electron (e) and proton (p). The experimental spectra are solid and the simulated
spectra are grey. 2C data at Q% = 0.64 (GeV/c)?.
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where p and z are the particle momentum and charge, respectively, and x and Xy
are the material thickness and radiation length, respectively. [9] Energy loss and
multiple scattering are taken into account throughout the spectrometer, up to the
position of the wire chambers (focal plane). The focal plane values of z, z', y, and
y' are then used to reconstruct the trajectory back to the target. The reconstruc-
tion is performed using COSY-calculated matrix elements that invert the forward
transformation.

3.9.6 Further Refinements A series of refinements to the PWIA
calculation are necessary before comparison with the experimental data is possible.
First, Coulomb distortions can significantly change the energy of the electron at the
reaction vertex. The electron is accelerated to a higher energy than expected at the

vertex, and then decelerated on its way out of the nucleus:
kS = Fip + ki, (3.47)

where ¢ and f refer to the initial and final electron momentum, respectively, and

al
= fo—. 3.48
7 fC’RC (3.48)

Here R¢ is the effective charge radius of the target nucleus, and fo ~ 1.5 for a

spherical charge distribution. [73] The first effect is a change in momentum transfer

N k;
q»eﬂzq'<1+ki>+kl (7’_%> (349)
f f

The second effect is a net increase in the electron flux near each nucleus due to the

of

Coulomb attraction. In SIMC, the Coulomb corrections are taken into account by
shifting the reported missing momentum via 7 ¢ = 5 — ¢ *® and changing the

de Forest off-shell cross section by [73]

o)
053”:( = ) Ocer (3.50)




Table 3.10: Coulomb Corrections in SIMC for each kinematics.

. weff\ 2
Kine | Target q App, < lez )
(GeV/e) | (MeV/e)

A 2¢C 0.84 0.75 1.0026
56Fe 2.16 1.0077

7 Au 4.55 1.0162

B 2C 1.27 1.06 1.0026
56Fe 3.06 1.0077

7 Au 6.45 1.0162

C 2¢C 1.55 0.79 1.0020
56Fe 2.30 1.0058

7 Au 4.80 1.0122

D 2C 0.84 3.20 1.0077
56Fe 9.30 1.0220

7 Au 19.60 1.0471

E 2C 1.55 2.70 1.0039
56Fe 7.90 1.0113

7 Au 16.80 1.0241

F 2C 2.55 1.60 1.0020
56Fe 4.70 1.0058

7 Au 9.90 1.0122

116
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Table 3.10 lists the change in p),, and o for each kinematics and each target. The
backwards angle kinematics (D and E) have the largest Coulomb distortions due to
the small energy of the incoming electron. And, as expected, the largest distortions
for a given kinematics are on the gold target.

Finally, the simulation is based on the IPSM, and as such, fails to take
into account correlations between the nucleons. As discussed in the introduction,
these correlations can shift the nucleon momenta beyond the Fermi momentum and
thus out of the experimental acceptance. The Monte Carlo therefore overestimates
the experimental yield. The approximation is made that a constant fraction of the
spectral function strength is shifted beyond the experimental acceptance. Thus a
single “correlation correction factor” can be defined that corrects the simulated yields
for this effect (As defined here, the simulated yields are divided by the correction

factor). The factors are calculated via

. fEm Pm SIPSMdﬁdem

Fcorrel — = )
fEm Fm SecorreldpmdEpy,

(3.51)

where S_.orer 18 a correlated spectral function calculated for each target nucleus. The
same correction factors are used here as in experiment NE-18: The carbon corre-
lated spectral function is taken from a Brueckner finite nuclei theory calculation for
the 1°0 nucleus [33], and the iron and gold correlated spectral functions come from
nuclear matter calculations by Ji and Engel, corrected for finite nucleus effects [74].
Table 3.11 lists the correlation correction factors for each nucleus. The uncertain-
ties are derived from the model dependencies in the various calculations, and are

discussed in more detail in Section 4.3.3.
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Table 3.11: Correlation Correction Factors

‘ Nucleus ‘ Fioorrel ‘

12¢ 1.11 + 0.03
56Fe 1.26 + 0.08
7TAw | 1.32 + 0.08

3.10 Extraction of the Transparency
As was mentioned in Section 1.4.1, nuclear transparency is defined to be

the ratio of the measured (e,e'p) yield to that calculated in the PWIA:

7, = v Pnd BNy (B, i)
Jy @nd B NE VA (B, in)

(3.52)
where the € subscript refers to the fact that this ratio is to be constructed at a given
proton angle setting. The integrals are taken over the kinematic phase space V', and
a range of missing energy and momentum (discussed below).

To calculate the experimental yield, N;xp , the coincidence data from a
given proton angle setting are binned from 0 to 80 MeV in missing energy and
—300 to 300 MeV/c in missing momentum. In addition, constraints are placed on
other kinematical quantities to insure that both the electron and proton are in well-
understood regions of the spectrometers. Table 3.12 lists the standard constraints
used in E91-013. Next, the aforementioned corrections—proton absorption, dead
time, timing, synchronization, and background—are applied to the data. Note that
the correction of synchronization problems and the removal of coincidence blocking
protons are performed for each run individually, and hence, are not listed here. The

sensitivity to these constraints is discussed in Section 4.3.2. Finally, the data with

above constraints and corrections are weighted by,

1
Q X TEHMS X TESOS x PT x LT’

where () is the accumulated charge of the incident electrons, T'Eyprs(sos) s the

measured tracking efficiency of the HMS (SOS), PT is the proton transmission, and
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Table 3.12. Standard Data Constraints for E91-013. The calorimeter requirement
depends on the kinematics. Note that there is no Cerenkov constraint for kinematics
F, with electrons in the SOS.

‘ Parameter ‘ Constraint ‘
Missing Energy (MeV) 0-80
Missing Momentum (MeV/c) +300
HMS ¢ (%) +8
SOS ¢ (%) -10 - 20
(p in SOS)

SOS 4 (%) +15
(e~ in SOS)

HMS X7, (rad) £0.075
HMS Y/, (rad) £0.040
SOS X!, (rad) £0.045
SOS Y/, (rad) £0.060

Kine. A e~ Calorimeter (GeV) > 1.0
Kine. B e~ Calorimeter (GeV) > 1.0
Kine. C e~ Calorimeter (GeV) > 1.0
Kine. D e~ Calorimeter (GeV) > 0.2

Kine. E e~ Calorimeter (GeV) > 0.4
Kine. F e~ Calorimeter (GeV) > 0.8
e~ Cereknov (npe) 1

Coincidence time cut (ns) +1.5

Backgrd. Sample Width (ns) 6x2
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LT is the computer live time. In the case of duplicated runs, the weighted average of
the yields is taken. The weights are calculated from the v/N statistical error, where
N is the raw number of events surviving the constraints.

The PWIA calculation yields, Nap WIA " are obtained by performing the
experimental simulation using the same kinematical constraints as for the data (Ta-
ble 3.12). This is done for each target at every proton angle setting at each Q2.
In addition to providing simulated yields, the Monte Carlo results are also used to
correct slight offsets in the experimental data. As the spectrometer positions are
changed for the various kinematic settings, small offsets in the detectors and rela-
tive position of the target occur. These offsets manifest themselves as overall shifts
angle and missing energy spectra. Therefore, when applying the constraints to both
experiment and simulation, the relative position of both sets of spectra must agree.
Thus, the experimental spectra are offset by a constant (that differs from run to
run) such that means of both the vertical and horizontal angle distributions and the
least bound states in the missing energy distribution match those of the simulation.
That the means of the distributions are used is reasonable as long as the shapes of
both the experiment and simulation agree. While this is true for the angular dis-
tributions, the missing energy distributions can sometimes differ depending on the
target and kinematics. For this reason, the missing energy yields are only compared
from 0-25 MeV so as to align the threshold separation energies. The sensitivity of
the transparency to these adjustments are discussed in Section 4.3.2.

Given the experimental and simulated yields, the transparency is calculated
via Eqn. 1.14 for each proton angle setting. The weighted average of each angle

setting is then taken to arrive at the transparency for a given Q?:

_ 2 Tywy

T ;
Za Wy

(3.53)

where wy is the weight calculated from the statistical uncertainty in each ratio, Tj.



CHAPTER 4
RESULTS

This chapter presents the results of the data analysis. The hydrogen co-
incidence yields are used to test various aspects of the Monte Carlo, followed by a
presentation of inclusive (e,e’) yields for all targets. The coincidence data and nuclear
transparency results are then presented, followed by a discussion of the systematic
and model-dependent uncertainties. The chapter then concludes with comparisons

of the experimental results and various theoretical calculations.

4.1 Hydrogen Coincidence Results

The elastic scattering of electrons from hydrogen is used to test several
aspects of the experimental simulation, SIMC. Coincidence H(e,e'p) data at each
E91-013 kinematic setting are used to test both the understanding of the spectrome-
ters” acceptance, the Monte Carlo’s radiative correction procedure, and the absolute
normalization.

Because the spectral function of hydrogen is simply the product of delta
functions centered at E,, = 0 and p,, = 0, there is no spectral function model de-
pendence in the Monte Carlo. This makes H(e,e'p) data ideal for measuring the
acceptance of both spectrometers; the agreement between data and simulation does
not rely on the quality of a nuclear model. Figure 4.1 shows a comparison of exper-
imental and Monte Carlo H(e,e'p) spectra at Q? = 0.64 (GeV/c)? (Kinematics A:
electrons in HMS, protons in SOS). The two sets of spectra are normalized to the
same luminosity, and corrected for background, proton absorption, and detector in-

efficiency. The angle spectra are reconstructed to the target and are measured with
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Table 4.1. Hydrogen Coincidence Yields: Data vs. Simulation. The ratio of data
to simulation is taken using events passing the standard constraints (Section 3.10).
The yields are normalized to charge and corrected for background, tracking ineffi-
ciencies, and proton absorption. The uncertainties are statistical. Note that the
very low (~ 55%) tracking efficiency for the hydrogen run at kinematics F causes an
additional uncertainty, and therefore the inclusive yields have to be relied upon for
normalization (Section 4.2).

Kinematics Q? Data/Simulation
(GeV/c)?

A 0.64 1.006 + 0.005
B 1.28 1.007 % 0.006
C 1.79 0.991 £ 0.006
D 0.64 0.986 & 0.007
E 1.84 0.987 £ 0.007
F 3.25 0.94 + 0.02

respect to the central ray of the respective spectrometers: 6 is the angle in the
scattering plane, and ¢ is the out of plane angle. The longitudinal position of the re-
action vertex (in the extended hydrogen target) as seen by the electron spectrometer
is given by Y. Note that because the electron arm is at 20.5°, the 4.2 cm length
of the target is foreshortened to approximately 1.5 cm. In addition to the standard
constraints, each event was required to have an invariant mass equal to that of the
proton to insure that the scattering was indeed elastic.

Table 4.1 lists the ratio of experimentally measured to simulated coincidence
yields. The error bars reflect only the statistical uncertainty of both yields, and with
the exception of Kinematics F, there is very good agreement (1%). As was mentioned,
a bad gas mixture in the HMS wire chambers caused extremely low (~ 55%) tracking
efficiencies in the Kinematics F hydrogen runs. Both the accuracy of the efficiency
correction and the validity of the events that were detected are considered suspect
for these runs, and thus the inclusive yields (Section 4.2) have to be relied upon for
comparison.

Coincidence H(e,e'p) data can also be used to test the radiative correction
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Figure 4.1. Hydrogen Coincidence Data vs. Simulation Reconstructed to Target.
Data (solid) and simulation (dashed) for Kinematics A: (Q? = 0.64 (GeV/c)?). The
yields are normalized to charge, corrected for background, tracking inefficiencies, and
proton absorption, and an invariant mass cut is applied to the experimental yields.
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procedures employed in the Monte Carlo. Because the true missing energy distribu-
tion of hydrogen is a delta function centered at E,, = 0, all missing energy strength
beyond roughly 10 MeV (the width reflecting the experimental resolution) is due to
radiative effects. Figure 4.2 shows hydrogen missing energy spectra for each kine-
matic setting. The highest electron momenta occur at kinematics C and E, and hence
these kinematics have the poorest resolutions. In all kinematics, however, there is
excellent agreement in the radiative spectra all the way out to 80 MeV in missing

energy. Figure 4.3 shows the corresponding missing momentum distributions.

4.2 Inclusive Cross Sections

As a test of both the data analysis and the normalization of the model
spectral functions, the inclusive yields of both the experiment and simulation were
calculated. The extraction of the experimental inclusive yield is discussed in Sec-
tion 3.7, but briefly, the prescaled, electron-only events are added to the coincidence
yields, giving the experimental counts, N. The cross section, in units of nb/sr/MeV,

is then calculated via:
d’c NMy10%
dEdQ  tNALEN,AQAE’

(4.1)

Here, M, is the target mass in amu, ¢ is the target thickness in g/cm?, £ is the
DAQ live time, £ is the tracking efficiency of the electron arm, N, is the total
number of incident electrons, and A2 and AF are the accepted ranges of solid angle
and energy loss, respectively. The only constraints placed on the inclusive data are
electron particle identification (shower counter and Cerenkov signals) and the same
0 and angle ranges used in the coincidence analysis for the electron arm.

Although SIMC is designed to simulate coincidence data, it can be used to
calculate inclusive yields by opening up the acceptance of the proton arm. This en-
ables every proton scattered by an electron to be detected in an all-inclusive proton

“spectrometer.” However, the output of the simulation still needs to be corrected for
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Figure 4.2. Hydrogen Missing Energy Spectra (Log scale). Data (solid) and sim-
ulation (dashed), Kinematics A - F, left to right, top to bottom. The yields are
normalized to charge and corrected for background, tracking inefficiencies, and pro-
ton absorption (a comparison of the integrated yields is given in Table 4.1). See text
for details.
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are normalized to charge and corrected for background, tracking inefficiencies, and
proton absorption (a comparison of the integrated yields is given in Table 4.1). See
text for details.
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the fact that SIMC does not include effects like neutron scattering, pion production,
and A excitation. The neutron contribution is taken into account at each kinemat-
ics as follows: Using the parameterizations of Gari and Krimplemann [59] for both
neutron form factors, the elastic electron-neutron cross section is calculated. The
electron-proton cross section is calculated using the Gari and Kriimplemann mag-
netic proton form factor and the dipole electric form factor. The SIMC yield is then

multiplied by
Zoey + Noep
Zoep )

To correct for the inelastic contributions, the electron-nucleus scattering code of
Lightbody and O’Connell [75] was modified to provide both the total and quasifree
radiated cross sections as a function of energy loss, w. For each w bin, the difference

_ d?c
dEdQ

tot

d?c
dEdQ

qfree

is added to the neutron-corrected SIMC yield. Because the comparison is being made
between experimental and simulated yields, no attempt has been made to correct
for “bin-centering” effects. (Bin-centering refers to the fact that it is necessary to
convert the total integrated counts in a given w bin to the number expected at the
center of that bin. This can be an important effect when the shape of the distribution
is changing rapidly over the bin width.) However, because the binning used in the
two sets of spectra is the same, both effects are expected to roughly cancel. Note
that the inelastic contributions are not corrected for either the bin-centering effects
or the experimental acceptance. Both effects are expected to be small except possibly
at the edges of the acceptance. Finally, note that because the kinematics are such
that the quasifree reaction is expected to dominate, the correlation factors listed in
Table 3.11 have been applied to the SIMC yields to correct for the over-estimation
of the quasielastic strength.

For completeness, the experimentally measured inclusive hydrogen yields
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are compared those of the simulation. Because there is no Fermi motion in hydrogen,
it is possible to isolate the quasifree peak by placing constraints on the invariant mass
of the particle from which the electron scattered. Thus, corrections for the inelastic
contribution are not necessary.

Figures 4.4—4.7 show both the experimental and simulated cross sections
at each kinematics for carbon, iron, gold, and hydrogen, respectively, and the exper-
imental cross sections are tabulated in Appendix C.  The grey points on the solid
target plots are the SIMC yields corrected for correlations and neutron contribution
only. They are plotted so as to illustrate the size of the inelastic contribution as cal-
culated by Lightbody and O’Connell. As Q? increases, these contributions become
larger, and indeed dominate at Kinematics F. Note also that radiative effects have
not been removed from the data but have instead been included in the simulation
and inelastic contribution calculation. Table 4.2 lists the ratios of experimentally
measured yield to simulated yield and the corresponding statistical uncertainty for
each target at each kinematic setting. With the exception of Kinematics F, the
experimental yields for the solid targets are, on average, 5.6%, 11.1%, and 9.5%
higher than those of the simulation for carbon, iron, and gold, respectively. How-
ever, the discrepancies do vary with the kinematic setting. At Kinematics F the
results are highly dependent on the accuracy of the Lightbody and O’Connell code,
as the majority of the strength is inelastic. The experimental and simulated inclusive
hydrogen yields do, however, agree quite well and are consistent with the coincidence
results (Table 4.1). In particular, there is good agreement at Kinematics F, where
the exclusive results were suspect due to the poor HMS (proton detector) tracking
efficiency.

Note that only statistical uncertainties are plotted in Figs. 4.4—4.7. The
uncertainties in the tracking efficiency, current measurement, and run stability each

contribute 1% to the total systematic uncertainty (See Section 4.3.2), and SIMC
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Figure 4.4. Carbon Inclusive Cross Sections. The experimental results are shown
with statistical uncertainties only (each point has a 10% systematic uncertainty),
and the curve is the corrected model. The model results with only correlation and
neutron corrections are shown in grey. The integrated yields are listed in Table 4.2.

Kinematics A-F, left to right, then down.
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Figure 4.5. Iron Inclusive Cross Sections. The experimental results are shown with
statistical uncertainties only (each point has a 10% systematic uncertainty), and
the curve is the corrected model. The model results with only correlation and neu-
tron corrections are shown in grey. The integrated yields are listed in Table 4.2.

Kinematics A-F, left to right, then down.
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Figure 4.6. Gold Inclusive Cross Sections. The experimental results are shown
with statistical uncertainties only (each point has a 10% systematic uncertainty),
and the curve is the corrected model. The model results with only correlation and
neutron corrections are shown in grey. The integrated yields are listed in Table 4.2.
Kinematics A-F, left to right, then down.
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Table 4.2. Inclusive Yields: Data vs. Simulation. Listed are the ratios of data yield
to simulated yield. The uncertainties are statistical only and do not include the 10%
systematic uncertainty.

| Target | Kinematics | Expmt./Simulation |
2C 1.15 + 0.01
1.02 £ 0.01
1.02 £ 0.01
1.06 £ 0.01
1.04 £ 0.02
1.45 + 0.02
1.20 £ 0.01
1.01 £0.01
0.93 £ 0.01
1.28 £ 0.02
1.13 £ 0.02
1.47 £ 0.03
1.24 £ 0.01
1.02 £ 0.01
0.91 £ 0.01
1.21 £0.01
1.24 £ 0.03
0.98 £ 0.01
1.01 £0.01
1.01 £ 0.01
0.97 £ 0.01
0.97 £ 0.01
1.01 £ 0.03

56 Fe

197Au

IH

TEHoOQ@E M0 Q@EHTEHOQE>"9EHHC QW >
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was used to estimate a 10% systematic uncertainty due to a lack of experimental
acceptance corrections. (However, to the extent that the simulation correctly models
the acceptance, the systematic uncertainty is not expected to affect the agreemeent
between the experimental and simulated cross sections.) The sum, in quadrature, of
the above contributions is used to assign an overall systematic uncertainty of 10%
to the inclusive yields. A more careful analysis of the experimental acceptance is
expected to reduce this figure.

The purpose of comparing the experimental and simulated inclusive yields
for the solid targets is to test the normalization of the model spectral functions.
While the variation in agreement displayed in Table 4.2 seems to be large, note that
the size of the discrepancy depends more on the kinematic setting than on the target.
Indeed, even the discrepancy in spectra shape is similar for each kinematic setting
for the three targets (Figs. 4.4-4.6). This indicates that the differences probably do
not stem from problems with the spectral functions but rather from the way in which
the inelastic corrections are applied. One possibility is simply that the accuracy of
the Lightbody and O’Connell calculation changes as the kinematic range of E91-013
is covered. Another possibility is that the inelastic corrections are sensitive to the
acceptance and bin-centering effects. To conclude, there is no dramatic evidence
that the model spectral functions give rise to an inclusive yield that is inconsistent
with experiment. The observed average discrepancy of approximately 10% seems to

be dependent more on the kinematic setting than on the target model.

4.3 Nuclear Transparency
This section presents the nuclear transparency results of experiment E91-013.
Coincidence yields and missing energy spectra for the solid targets are compared with

the simulation, and then the transparency is presented as a function of Q? and A.
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The dependence of the transparency on the models in the Monte Carlo is then dis-
cussed, followed by a description of various theoretical calculations of the nuclear
transparency.

4.3.1 Transparency Results Experimental and simulated missing
energy spectra for each E91-013 kinematic setting are presented for each target in
Figures 4.8-4.10, where the spectra are normalized to the same number of counts in
order to facilitate comparison of the shapes. The simulated carbon spectra seem to
show more strength near E,, ~ 30 MeV (between the 1pz/, and 1s;/, states) than
do the experimental spectra. This strength is reduced if the location of the 1s peak
in the model spectral function is moved just a few MeV towards higher missing en-
ergy. Of the three targets however, the largest discrepancy between simulation and
experiment clearly occurs for iron (Fig. 4.9). Here the strength of least bound states
is underestimated, and the (simulated) shell widths of the deeply bound states (near
E,, = 45 MeV) seem to be too small. However, as discussed below, the yields for all
targets are integrated over 0-80 MeV in missing energy, and are largely insensitive
to the shapes of the missing energy spectra. The dependence of the transparency
on the models is discussed in Section 4.3.3, and an alternative model spectral func-
tion for °°Fe is discussed in Appendix A. The corresponding missing momentum
distributions for the three targets are presented in Figures 4.11-4.13. Note that in
all cases, the agreement is quite acceptable. Radiative effects are responsible for the
asymmetry about p,,, = 0, and are well described by the simulation.

The distribution of the experimental coincidence yields as a function of
proton angle are presented for each target in the upper panels of Figures 4.14—
4.16, respectively. Note the complete coverage of the Fermi cone in proton angle.
The lower panels display the transparency as a function of proton angle. The lines
represent the Monte Carlo yields (calculated for individual proton angle settings,

but connected smoothly) normalized to match the data at the central (conjugate)
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respectively. The lower panel displays the transparency as a function of proton
angle. Again for the sake of clarity, the data are offset by 0.2, 0.1, 0.0, and -0.15 for
kinematics A-C and F, respectively. The lines in both cases are the simulation yields
normalized to the measured value of the transparency (Table 4.3). In each case the
statistical errors are smaller than the plotting symbols. The systematic and model
uncertainties are omitted.

angle transparency value. In each of the lower panels of Figs. 4.14-4.16, for a
given @2, there is a slight slope in the transparency as a function of proton angle.
This left/right (of ¢) asymmetry in the cross section is due to the LT interference
term in the off-shell cross section. [35] The fact that the experimental cross section
divided by the o..; prescription of de Forest still shows a slope indicates that the

magnitude of the term is underestimated in o..;—especially at low Q%. At these
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Figure 4.15. Iron Transparency vs. Proton Angle. The upper panel displays coin-
cidence yields as a function of proton angle for kinematics A-C, and F. For clarity,
scale factors of 0.21, 1.6, 2.25, and 35.0 have been applied to each kinematics, re-
spectively. The lower panel displays the transparency as a function of proton angle.
Again for the sake of clarity, the data are offset by 0.2, 0.1, 0.0, and -0.15 for kine-
matics A-C and F, respectively. The lines in both cases are the simulation yields
normalized to the measured value of the transparency (Table 4.3). In each case the
statistical errors are smaller than the plotting symbols. The systematic and model
uncertainties are omitted.
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Figure 4.16. Gold Transparency vs. Proton Angle. The upper panel displays coinci-
dence yields as a function of proton angle for kinematics A-C, and F. For clarity, scale
factors of 0.55, 0.4, 5.5, and 80.0 have been applied to each kinematics, respectively.
The lower panel displays the transparency as a function of proton angle. Again for
the sake of clarity, the data are offset by 0.2, 0.1, 0.0, and -0.15 for kinematics A-C
and F, respectively. The lines in both cases are the simulation yields normalized
to the measured value of the transparency (Table 4.3). The systematic and model
uncertainties are omitted.
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momentum transfers, where the asymmetry is largest, data were taken on both sides
of ¢, allowing the average over the proton angle to be used for the transparency. At
Kinematics F, where data were only collected on the larger-angle side of ¢, the effect
of the term is negligible. An analysis of this asymmetry is currently underway and
is expected to allow the extraction of the LT term for all three targets at Q? = 0.64,
1.28, and 1.79 (GeV/c)2.

As discussed in Section 3.10, the transparency for a given Q? is calculated
by taking the charge-weighted average of the ratio of the experimental coincidence
yield to the Monte Carlo yield over each proton angle setting. Table 4.3 lists the
nuclear transparency for each target at each kinematics. The indicated uncertainties
reflect the 1% statistical uncertainty, the 2.3% (2.5% for Kinematics F') systematic
uncertainty (Section 4.3.2), and the model-dependent uncertainty (Section 4.3.3)
added in quadrature. The transparency as a function of Q% and A is presented in
Figures 4.17 and 4.18, respectively. Note that in most cases the statistical uncertain-
ties are smaller than the plotting symbols. Figure 4.17 also includes the MIT-Bates
data (*2C, *®Ni, and '8! Ta targets at Q?=0.34 (GeV/c)?) and the NE-18 data (*2C,
%Fe, and 197 Au targets at Q?=1.0, 3.1, 5.0, and 6.8 (GeV/c)?). The E91-013 data
are in agreement with the NE-18 data, but have a much higher statistical precision.
It is true however, that the E91-013 carbon transparencies, while within the NE-18
error bars, seem to be systematically slightly lower. It should also be mentioned
that the model-dependent uncertainties listed for the E91-013 iron and gold results
is slightly larger than that quoted in NE-18. As discussed in Section 4.3.3 and Ap-
pendix A, the uncertainty in the the normalization of the spectral functions of these
targets is thought to be underestimated by ~ 2% in NE-18. Therefore, when looking
at Fig. 4.17, it is important to remember that the E91-013 data are presented with
these slightly larger uncertainties, whereas the NE-18 results are not.

Figure 4.17 also presents the transparencies for the Rosenbluth separation
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Table 4.3. Nuclear Transparency. The error bars indicate the total uncertainty: sys-
tematic (2.3%), statistical (1%), and model dependencies (target-dependent) added
in quadrature. The errors in parentheses include only the statistical and systematic
uncertainties.

Kine. Q? 2o ke T BiAwT
(GeV/c)?

A 0.64 0.61 & 0.03 (0.02) | 0.47 £ 0.05 (0.01) | 0.38 & 0.04 (0.01)
B 1.28 0.60 + 0.03 (0.02) | 0.44 + 0.05 (0.01) | 0.32 & 0.04 (0.01)
C 1.79 0.57 & 0.03 (0.01) | 0.40 £ 0.04 (0.01) | 0.29 & 0.03 (0.01)
D 0.64 0.64 + 0.03 (0.02) | 0.54 £ 0.06 (0.01) | 0.43 & 0.05 (0.01)
E 1.84 0.59 & 0.03 (0.01) | 0.44 £ 0.05 (0.01) -

F 3.25 0.58 + 0.03 (0.02) | 0.42 £ 0.04 (0.01) | 0.28 & 0.03 (0.01)

kinematics (D and E) at Q?=0.64 and 1.79 (GeV/c)?. For all targets, at both
momentum transfers, these L-T points (shown as triangles) have a slightly higher
transparency. This is because these backward kinematics emphasize transverse scat-
tering, particularly from meson exchange currents. As this effect is not included in
the model, the transparency is slightly increased. More discussion of the model’s

reliability at the backwards kinematics can be found in Ref. 34.
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It is interesting to note that the flatness of 1" observed in all targets at large
Q? could be used to place tight boundaries on the possible change of the in-medium
proton form factors. (Note that the flatness of the transparency is not dependent on
the model spectral functions or the correlation corrections.) Taking the ratio of the
transparency at Q% = 3.3 (GeV/c)? to that at Q% = 1.78 (GeV/c)? and averaging
over the three targets, one sees a rise of 2.5 + 2.4%. This is consistent with the
measured free p-N cross section which falls by roughly 2% in this range. Therefore
there seems to be at most a 2% change in the in-medium p-N cross section.

In order to study the behavior of the transparency for a given missing
energy range, the transparency for various FE,, bins is plotted in Fig. 4.19 as a
function of Q? for each target. With the exception of the binning in FE,,,, the standard
transparency extraction was performed. The behavior of the transparency for each
E,, range is easily understood in the case of carbon. The region from 0-30 MeV in
missing energy is known to be populated by the 1pz/; protons, which, because of
their nonzero angular momentum, occupy most of the nuclear surface. Because the
nuclear surface of carbon is relatively diffuse, there is decreased density, and hence an
increased transparency for protons knocked out of these orbits. On the other hand,
the 1s; /5 protons feel no such angular momentum barrier and, on average, occupy
the nuclear “interior.” Thus, the protons with missing energies corresponding to
the 1s state (30-50 MeV) see a decreased nuclear transparency. At higher missing
energies (> 50 MeV), the experimental yields include strength from effects that
are not included in the model, such as two-nucleon emission and meson exchange
currents. Because the single-particle strength in the simulation is exhausted, there is
a net increase in the transparency. This simple picture becomes somewhat clouded
for the larger targets, as nuclear shells start to overlap and the relative number of
surface nucleons decreases. It is true though that the transparency is largest at high

missing energies where the simulated single particle strength is falling.
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Figure 4.19. Transparency vs @2, Binned in E,,. From top to bottom are the
transparencies for carbon, iron, and gold, binned in E,, from 0-30 (squares), 30—
50 (diamonds), 50-70 (triangles), and 70-100 MeV (circles). The error bars are
statistical only, and the lines are only meant to guide the eye.
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The transparency as a function of missing energy does seem to have a
different behavior for each target as a function of Q2. It is important to reiterate
that the Q% dependence is not expected to be sensitive to the model, but that the A
dependence might be. The flatness of the carbon transparency with @2, exhibited
earlier in Fig. 4.17, seems to persist for each missing energy range. The iron results,
on the other hand, show a large Q? dependence. As is seen in Fig 4.9, the shapes of
both the experimental and simulated missing energy spectra change as Q? changes
(Note that only Kinematics A-~C and F are plotted in Fig. 4.19). For example, in
Fig. 4.9, the prominent peak in the model at ~ 40 MeV in Kinematics A is somewhat
reduced at Kinematics C, and a similar, though somewhat smaller, change occurs for
the experimental spectra. Because the simulated iron spectra exhibit such narrow
peaks, the transparency as a function of E,, is more sensitive to the bin choices.
Note though, that when the integral is taken over the complete missing energy range
(Fig. 4.17), this sensitivity is reduced, and the transparency has less dependence on
Q>

The A-dependence of the transparency is examined by fitting it, for a given
(Q)?, to the form T = Ty A~®. Because the transparency is a measure of the interaction
between the knocked-out proton and residual nucleus, it should scale as the length of
the proton’s exit path. This path should, in turn, scale as the radius of the nucleus,
and therefore it might be expected that T o< A~1/3. The results of the fit are listed
in Table 4.4. Note that the decrease in transparency as a function of A is actually
better approximated by A~%2 than by A~!/3. Indeed, as discussed in Section 4.4,
most of the transparency calculations underestimate 7" for the iron and gold targets.

4.3.2 Systematic Uncertainties The systematic uncertainties in the
transparency results of experiment E91-013 can be divided into two classes: those
that affect the experimental yields and those that are due to model dependencies

in the simulation (discussed in Section 4.3.3). A summary of all the uncertainties
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Table 4.4. Nuclear Transparency vs. A. The T vs. A data of Fig. 4.18 are fit to the
form T'= TyA™“.

Kinematics Q? Ty «
(GeV/c)?

A 0.64 0.927 + 0.001 | 0.169 + 0.0003

B 1.28 1.00 £ 0.04 0.208 + 0.013

C 1.79 1.05 £ 0.01 0.242 4+ 0.003

F 3.25 1.03 £ 0.08 0.231 + 0.026

in the experimental data, including run stability and constraint sensitivity, will be
presented here. Note that the uncertainties due to certain aspects of the analysis
(tracking efficiency, charge measurement, and proton absorption, for example) have
been discussed previously.

For a given kinematic setting (A-F in Table 2.1), the electron arm was held
fixed while the proton arm was swept over the Fermi cone. Thus, after correcting for
luminosity and detector inefficiencies, the electron singles yield (the sum of prescaled
electron-only events and the coincidence events) should remain constant from run to
run. However, drifting current monitor calibrations or changing detector efficiencies,
for example, can cause the singles yield to vary. The extent to which the change in
yields is larger than the amount expected from statistical fluctuations is a measure of
the systematic uncertainty in the absolute normalization of the yields. Table 4.5 lists
the percent variation in the singles yields—calculated from the standard deviation—
for each kinematics. The run-to-run variations vary from 0.5 — 1%, consistent with
the statistical uncertainty.

Run stability can also be measured by comparing the coincidence yields for
duplicated runs. Table 4.6 lists the variation (calculated as in the case of the singles
yields) in coincidence yields for each kinematics. Note that the average extends
only over the central (or “conjugate angle”) runs, as these settings had the most

duplication. Again, the run-to-run stability of the coincidence yields is consistent
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Table 4.5. Singles Yield Run Stability. Run stability presented as the percent varia-
tion in the average (weighted by charge) of the singles yields. The percent variation
is the standard deviation in the yields divided by the average yield. Also listed is
the average statistical uncertainty for a given target and kinematics. For Kinematics
A-D, both Dec. 1995 and May 1996 data are used in the averages.

Kinematics | Target | % Standard Average Total #
Deviation Stat. of Runs
Uncertainty
A C 0.88 0.59 16
B C 1.19 1.49 13
C C 0.78 0.98 17
D C 1.48 0.73 16
E C 2.49 2.33 13
F C 3.06 1.38 9
A Fe 0.97 0.62 14
B Fe 1.03 1.05 11
C Fe 1.23 1.22 18
D Fe 2.13 0.91 14
E Fe 2.36 1.87 14
F Fe 1.16 1.19 11
A Au 0.81 0.80 18
B Au 1.70 1.05 12
C Au 1.83 1.28 19
D Au 2.59 0.96 10
F Au 1.70 1.68 16
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Table 4.6. Coincidence Yield Run Stability. Run stability presented as the % varia-
tion in the average (weighted by charge) of the coincidence yields for the conjugate
angle setting at each kinematics. The percent variation is the standard deviation in
the yields divided by the average yield. Also listed is the average statistical uncer-
tainty for a given target and kinematics. For Kinematics A-D, both Dec. 1995 and
May 1996 data are used in the averages.

Kinematics | Target | % Variation in Average Total #
Coin. Yield Stat. of Runs
Uncertainty
A C 1.18 0.76 4
B C 1.48 1.10 5
C C 2.28 1.21 5
D C 3.20 1.19 4
E C 2.57 3.66 6
F C 3.01 1.86 2
A Fe 0.98 1.32 4
B Fe 0.26 0.93 3
C Fe 0.21 1.16 2
D Fe 1.75 2.35 2
E Fe 1.20 2.66 2
F Fe 0.96 2.24 4
A Au 1.30 1.04 4
B Au 1.12 1.61 5
C Au 2.06 1.76 4
D Au 2.28 2.23 5
F Au 5.29 4.79 8
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Table 4.7. Counstraint Stability Tests. The standard constraints of Table 3.12 are

adjusted as follows to test the dependence of the results.

‘ Label ‘ Item Values
em100 Missing Energy (MeV) 0 to 100
em120 Missing Energy (MeV) 0 to 120
pm200 Missing Momentum (MeV/c) -200 to 200
pm200 Missing Momentum (MeV/c) -250 to 250
pm320 Missing Momentum (MeV/c) -320 to 320
hsdelta6 HMS 6 (%) -6 to 6
hsdeltal0 HMS ¢ (%) -10 to 10
ssdelta8tol8 | SOS ¢ (% (p in SOS) -8 to 18
ssdeltal2tol2 | SOS ¢ (%) (e~ in SOS) -12 to 12
hsyptar35 HMS Y/, (rad) -0.035 to 0.035
ssyptarbh SOS Y/, (rad) -0.055 to 0.055
coin8 Backgrd. Sample Width (ns) 8

with the statistical fluctuations at the 1% level. The results are used to assign an

uncertainty of 1% to the experimental yields due to run-to-run instabilities.

The standard constraints used in experiment E91-013 are listed in Ta-

ble 3.12. By varying each counstraint slightly, the sensitivity of the results to each

constraint can be quantified. Table 4.7 lists the different constraint tests. Tables B.1-

B.6 in Appendix B list the discrepancy (nominal/modified) between the nominal

transparency value and the value with the modified constraint. The discrepancy for

each target is averaged (weighted by the luminosity) over each run at each kinematic

setting for all proton angle settings. The results, listed in Table 4.8, are used to

assign a constraint-dependence uncertainty of 1% to the experimental yields.

Table 4.8: Constraint Stability Results

‘ Target ‘ Average Discrepancy ‘

C 0.997 £+ 0.008

Fe 0.995 £ 0.010

Au 0.994 £ 0.011
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Table 4.9: Systematic Uncertainties in the Data.

Item % Uncertainty
in Data Yield
Current Measurement 1
Solid Target Thickness 0.1
or
Cryo. Target Thickness 0.5
HMS Tracking Eff. 1
SOS Tracking Eff. 1
Proton Absorption
Kine. A-E 0.5
Kine. F 1
Background Subtraction 0.1
Constraint Stability 1
Run Stability 1
Sum in Quadrature
Kine. A-E 2.3
Kine. F 2.5

Because the transparency is the ratio of two missing energy spectra (in-
tegrated 0-80 MeV), it is sensitive to slight offsets in one spectrum relative to the
other. In E91-013, slight offsets do occur due to things like target position and
spectrometer alignment. As discussed in Section 3.10, the experimental angular dis-
tributions and missing energy spectra are all offset slightly so as to agree with the
simulation before the constraints are applied. Figure 4.20 shows the average shift
in each of these five quantities plotted as a function of kinematics. In all cases, the
shifts are very small resulting in negligible changes in yield (the largest being less
than 1.5%).

Table 4.9 summarizes the systematic uncertainties that affect the experi-
mental yields. (The uncertainties in the Monte Carlo are discussed in Section 4.3.3.)
The sum, in quadrature, of the above effects results in a systematic uncertainty on

the experimental yields of 2.3% (2.5% for Kinematics F).
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Figure 4.20. Shifts in Selected Spectra. The shifts in the data necessary to obtain
agreement with the simulation are shown for the missing energy, HMS z},,, HMS
Yars SOS z},,., and SOS zj,, spectra, respectively (left to right, then down), as a
function of kinematics. The “forward” kinematics, A, B, C, and F are labeled 14,
respectively, and plotted together. The “backwards” (L-T') kinematics, D and E, are
labeled 5 and 6 (no gold data were taken at Kinematics E), respectively. Squares
are carbon, triangles are iron, and circles are gold.
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4.3.3 Model Dependence Because the transparency is defined to be
the ratio of the experimental yield to that of a simulation, it is heavily model-
dependent. Examples of these dependencies include the off-shell e-p cross section,
radiative effects, IPSM spectral functions, and correlation corrections. In order
to facilitate a direct comparison between both sets of results, all aspects of the
simulation used in experiment E91-013 have been kept as close as possible to those
of experiment NE-18.

As discussed in Section 3.9.2, the o1 off-shell e-p cross section prescription
of de Forest is used for the final results. Substituting oo for o..; in the simulation
results in 1.5% lower cross sections, independent of target and kinematics. This
is used to quote a systematic uncertainty of 1.5%. Pollock et al. calculate off-
shell cross sections using six different prescriptions (including o1 and o¢e2) for
kinematics similar to those of E91-013. [7] They find that in general, the discrepancy
between results grows as a function of -y, the angle between the detected proton and
d. When averaged over y—weighted by the experimental yields (i.e. the majority
of the experimental data come from small y. See Figs. 4.14-4.16)—the discrepancy
between the off-shell prescriptions is approximately +3%. Because the majority of
(e,e'p) analyses employ o1, it is used here (with a 1.5% systematic error) in order to
facilitate comparison. It is important to remember, however, that when comparing
results from different experiments, one must either use the same off-shell prescription,
or understand the systematic differences between them.

The estimation of the uncertainties in the radiative correction procedure is
described in detail by Makins [58]. Because the region of large missing energy in hy-
drogen data is completely dominated by radiative effects, it is an ideal environment
for testing the agreement between experiment and simulation. The uncertainty in the

radiative correction procedure is taken as the variation in the ratio of experimental
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to simulated yields after changing the upper limit in the missing energy integra-
tion range. This provides an estimation of the uncertainty in the internal radiation
correction procedure as the (e,ep) reaction in thin liquid targets is dominated by
internal radiation. As in the case of experiment NE-18, this test was performed for
hydrogen data with upper limits in missing energy of 50, 80, 100, and 130 MeV. The
variation in the agreement of experiment and Monte Carlo for all kinematics was on
the order of 1.5%. Makins et al. estimated a 2% uncertainty in the external radi-
ation experimentally by noting the variation in yields when changing the radiation
thickness of carbon and iron. These results are used to assign an uncertainty of 2.5%
on the radiative corrections to the simulated yield.

The dependence of the results on the model spectral functions can be di-
vided into two contributions: the locations and widths of the shell energies, and the
widths of the momentum distributions. First, the sensitivity of the transparency to
the missing energy constraints is used to assign a model-dependent uncertainty of 2%
to the shell energy distributions for all three targets. While it may be argued that
the stability of the transparency with respect to the missing energy constraint has
already been included in the experimental systematic uncertainties, the value of 2%
is taken in order to be conservative. Second, the transparency depends heavily on
the widths of the model momentum distributions. These widths are directly related

to the normalization of the spectral function as the momentum density is weighted

by ppy:
o 1
/0 p?ndpmp(pm) = an (4'2)

That is, if one compares two normalized distributions with different widths, the
wider distribution will have less strength at a given p,,. Therefore, to test the
normalization of the the model spectral functions, the rms charge radius of each
nucleus was calculated, and the results, along with experimental results tabulated

by de Vries et al., are listed in Table 4.10. Note that the radii of both the carbon
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Table 4.10. RMS Charge Radii of the Model Momentum Distributions. The experi-
mental results are from de Vries et al. [78].

Target | Model RMS | Exp. Measured
Radius (fm) | RMS Radius (fm)

12 2.64 2.47 + 0.01
56Fe 3.83 3.75 + 0.03
197 Ay 5.30 5.32 + 0.04

and iron models are significantly larger than the experimental values indicating that
the model momentum distributions are somewhat narrow. However, as discussed in
Appendix A (in the context of the iron model spectral function), if the momentum
distributions are too narrow (wide), the transparency as a function of proton an-
gle will exhibit an unphysical, upward (downward) curvature. A slope is certainly
allowed, given the LT-term asymmetry discussed in Section 4.3.1, but a curve is
unphysical. Using the case of a distribution that is too wide as an example, this
curvature is seen to occur as follows: the strength at high missing momentum is
emphasized at large proton angles. At these large angles, because the simulated
strength (denominator) is too large, the transparency is artificially low, resulting in
a downward curve. Therefore, because no such curvature is observed in the trans-
parency of carbon and iron (Figs. 4.14 and 4.15), it is concluded that the wide radii
of the models are necessary to both fit the experimental momentum distributions
and still provide a physically acceptable LT-term asymmetry. The sensitivity of this
method—using the linearity of the transparency versus proton angle to constrain the
model momentum distributions—is estimated to correspond to a 4% uncertainty on
the transparency (See Appendix A). This, combined in quadrature with the 2% un-
certainty on the energy distributions, results in a 4.5% model-dependent uncertainty
for each target. Note that this value is in agreement with the < 5% discrepancies
observed by Dutta [34] when comparing the transparency calculated using experi-

mentally extracted spectral function values with the transparencies quote here.
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Two additional test were performed to further study the model-dependence
of the transparency on the carbon spectral function. First, the locations in missing
energy of the 1s; /5 and 1pg/; peaks in the nominal NE-18, model were adjusted by
~5 MeV, and the resulting change in yield was < 0.7%. A second, independent,
spectral function, based on a DWIA calculation by Zhalov [76] was also used to gen-
erate simulated '2C(e,e’p) yields. This spectral function provided the shell binding
energies and momentum distributions, but not the shell energy widths. Using the
NE-18 values for these widths, the yields for kinematics A, B, and C (the kinemat-
ics applicable for Zhalov’s spectral function) agreed with the nominal values at the
1-2% level for conjugate proton angles. Note that these results are well within the
4.5% uncertainty quoted above.

Although the integrated strength from 0-80 MeV in missing energy is be-
lieved to be insensitive (at the few percent level) to the shape of the model spectral
function, an attempt was made to derive an alternative *’Fe model in order to
improve the agreement with the experimental spectra (Fig. 4.9). The calculation,
discussed in detail in Appendix A, is based on a Hartree calculation by Horowitz [77].
The code, “TIMORA,” provides the shell binding energies and momentum distribu-
tions but not the shell widths. Therefore, a “best fit” approach was taken in which
the widths were adjusted in an ad hoc fashion so as to provide the best agreement
in the missing energy spectra shapes. The widths are in general much wider than
those employed in the NE-18 model and result in approximately 10% of the spectral
function strength being shifted beyond the maximum missing energy of 80 MeV.
In addition, the TIMORA momentum distributions are slightly wider than those
used in NE-18, resulting in a further 10% reduction in simulated strength. While
the agreement between the TIMORA-based and experimentally measured E,, spec-
tra seems reasonable, the transparency calculated with the TIMORA-based spectral

function exhibits an unphysical curvature when plotted versus proton angle. As was
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Table 4.11. Correlation Correction Factors of Benhar. Listed is the fraction of
integrated strength for |p,,| < 300 MeV /c for various E,, ranges.

‘Target ‘0<Em<oo‘0<Em<80MeV‘

‘He 1.12 1.12
160 1.11 —
Nuclear 1.12 1.25
Matter

mentioned earlier, this curvature indicates that the momentum distributions are ac-
tually too wide, and therefore the nominal NE-18 spectral function was employed in
the analysis of £91-013.

The uncertainties of the correlation correction factors were estimated by
comparing the values used in both E91-013 and NE-18 with independent calcula-
tions performed by Benhar. [79] The correlation correction factors for his *He, 160,
and nuclear matter correlated spectral function calculations are listed in Table 4.11,
assuming a maximum missing momentum of 300 MeV /c. (Recall that the simula-
tion is divided by Fiopre; to correct for correlations.) Note that when integrated over
all missing energy, the corrections depend only weakly on the target mass. That a
constant fraction of nucleons should be shifted to high missing momentum is consis-
tent with the idea that the effect is due to the repulsive core of the nucleon-nucleon
interaction; an effect that is largely independent of the target size. It is only when
the maximum missing energy cutoff of 80 MeV is imposed that the corrections attain
an A dependence. Extrapolating Benhar’s *He result to '2C, one obtains a factor
of approximately 1.13. This 2% discrepancy with the NE-18 value is taken as the
uncertainty for the '?C correlation correction factor. By calculating the discrepancy
between Benhar’s nuclear matter value and the NE-18 value for gold (from Ref.74),
the uncertainty on both the iron and gold factors is estimated to be 6%. Note that
this may actually overestimate the 55Fe uncertainty but that these values are in good

agreement with the uncertainties quoted by Makins et al.: 3%, 6%, and 6% for 2C,
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Table 4.12. Effect of Coulomb Shift on Transparency. The change in missing energy
counts (0-80 MeV), ATN, between simulation with coulomb corrected p;, and non-
Coulomb corrected p,, for Kinematics A. (—300 < p;,, < 300 MeV/c).

Proton Angle | 2C | 5Fe | 7Au
from ¢ (deg)

0 0.000 | 0.000 | 0.000
16 0.007 | 0.005 | 0.003
-16 0.006 | 0.002 | 0.001

56 Fe, and 7 Au, respectively.

Finally, a slight oversight in the analysis concerns the Coulomb corrections
in the simulation. As discussed in Section 3.9.6, the Monte Carlo reports the shifted
Dm in its output. The analysis of the experimental data however, does not take
into account the Coulomb effects on the missing momentum (the nominal beam
energy and measured momentum are used for the incoming and scattered momenta,
respectively). Thus, when placing the missing momentum constraint on both data
sets, and then comparing them in the transparency ratio, one is actually comparing
two spectra offset from each other by a few MeV/c (see Table 3.10). By running the
Monte Carlo normally, and again with p,, shifted by Aq, the error introduced by this
oversight can be quantified. The change the yield (missing energy from 0-80 MeV)
for Kinematics A is given in Table 4.12. The error introduced is seen to be negligible:
< 0.5%.

The above uncertainties are assumed to be mutually independent, and
are thus added in quadrature to get a total systematic uncertainty for the model-
dependence of the results (Table 4.13): 2.5%, 5.7%, 8.0%, 8.0% for 'H, 2C, 5Fe,
and 7 Au, respectively. Because the model-dependent uncertainties are different for
each target, they must be taken into account when studying the A-dependence of
the results (Fig. 4.18), or when comparing with experiments and calculations that

use different models. However, to the extent that the model-dependent uncertainties
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Table 4.13: Model-Dependent Uncertainties.

Item % Uncertainty
in Simulated Yield

Oep 1.5
Model Spectral Function:

2c 4.5

56 Fe 4.5

Y7 Au 4.5
Correlation Correction:

120 )

56Fe 6

197Au 6
Internal Radiation 1.5
External Radiation 2
Total Sum in Quadrature:

'H 2.5

12¢ 5.7

56Fe 8.0

N 8.0

are independent of Q?, the shape of the T' vs. Q%curve (Fig. 4.17) for a given target
is assumed to be known to within the statistical error bars. For example, predictions
based on other models may have higher overall transparency for carbon, but the

shape of the dependence on Q? should be similar to that measured in E91-013.

4.4 Nuclear Transparency Calculations and Discussion

There are several theoretical frameworks in which to calculate nuclear trans-
parency. The two most common are the distorted wave impulse (DWIA) and Glauber
approximations introduced in Sections 1.4.3 and 1.4.4, respectively. Traditionally,
the DWIA has been employed at low Q? (< 2 (GeV/c¢)?) and the Glauber approxima-
tion at higher Q2. Issues concerning the range of validity of both sets of calculations
is discussed below. Other models used in the calculation of transparency include
Intranuclear Cascade models (INC). Examples of each type of calculation are pre-

sented below for the targets and kinematics employed in experiments NE-18 and
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E91-013.

As described above, the DWIA models the final state interactions of the
proton with the residual nucleus via a complex, optical model potential. Figure 4.21
shows the results of one such calculation: the “effective empirical interaction” (EEI)
calculation of Kelly. [80] The parameters for the optical model potential are based
on the folding of the nuclear density with a density-dependent p-N interaction (here,
N means either proton or neutron). This effective interaction is taken from inelastic
proton-nucleus scattering data in the energy range 100 < 7, < 650 MeV. The real
part of the central term in the resulting potential stems from the short-range repul-
sive force (correlations) between nucleons, and a sizeable damping of the imaginary
part is due to Pauli blocking. This is consistent with the conclusion of Ireland et al.
that the DWIA picture effectively includes medium modifications of the p-N inter-
action. [16] As is evident in Fig. 4.21, the EEI calculation describes the carbon data
quite well, but then progressively underestimates the transparency as a function of
target size. Kelly ascribes the small kinks in each curve at Q* ~ 0.5 (GeV/c)? to
variations in the independent data sets to which the EEI is fit; no smooth energy
dependence was imposed. Therefore, the size of the kinks (~ £5%) can be taken as
a measure of the systematic uncertainty in the calculations. Kelly claims that the
increasing discrepancy between the calculations and the data with increasing target
size may stem from the fact that the EEI does not take multi-nucleon absorption of
the virtual photon into account. These additional channels “artificially” (with re-
spect to the single nucleon knockout picture) enhance the experimental (e,e'p) cross
section causing a net increase in the transparency. Note that the L-1' separation
performed in E91-013 [34] can be used to check this.

The second major theoretical framework in which to calculate nuclear trans-
parency is the Glauber approximation. Here, the recoiling proton is assumed to

travel in a straight line on its path through the residual nucleus. As discussed in
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Figure 4.21. Transparency vs. Q2. From top to bottom: 2C, Fe, and " Au. The
curves are the EEI calculations of Kelly. [80] The data are the same as in Fig. 4.17.
(Horizontal log scale.)
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Section 1.4.4, the nuclear transparency is the probability that no nucleons are in the
proton’s exit path integrated over all possible paths, and Pauli blocking is included
by modifying the p-p and p-n cross sections.

Figure 4.22 shows the results of a Glauber approximation calculation of
the transparency performed by Gao et al. [14] This calculation explicitly includes
p—N correlation effects in the residual nucleus by replacing the probability function
P(7,p") in Eqn. 1.23 with a correlated version (Note that correlations between the

spectator nucleons are neglected):
o
Pe ") = exp |~ [ dsg(s)oli+ )0, (4.3)
0
Here, g is the pair correlation function defined by
(4.4)

where pp, (7,7 ") is joint probability of finding a proton at 7' and a nucleon (a = p
for protons and n for neutrons) at 7. [81] Note that [p(7")p(7") — p(7',7")] (often
referred to as the “correlation hole”) is positive, and thus g has the net effect of

increasing the transparency. The transparency is then calculated via

7=~ [ dr o Po(i). (4.5)

Note that in the calculation of the cross section, the motion of the spectator nucleons
is neglected. Again, the calculation agrees fairly well with experiment for 2C, but
underestimates the transparency as the target size grows. As it follows the p-N cross
section below Q? ~ 1 (GeV/c)?, the calculation also seems to predict a stronger Q?
dependence than is seen in the data.

The results of a second Glauber approximation calculation, by Nikolaev
et al., are shown in Fig. 4.23. Although the Glauber approximation is applied,
the calculation is otherwise quite different from that of Gao et al. In this case a

simple Fermi parameterization is used for the nuclear density, the inelastic p—N cross



168

C Transparency

e Transparency

®7Au Transparency

T, T T LR

Q%(GeVv/c)?

Figure 4.22. Transparency vs. Q2. From top to bottom: 2C, Fe, and " Au. The
curves are the Glauber approximation calculations of Gao et al. [14] The data are
the same as in Fig. 4.17. (Horizontal log scale.)
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section is used, and no correlation effects are included. Even without the inclusion
of correlation effects, the calculation actually overestimates the carbon transparency
and does reasonably well for the other targets. Note that the calculation includes the
NE-18 kinematic constraints (|p),,| < 250 MeV/c) which are similar to, although
slightly tighter than, E91-013. Nikolaev et al. neglect correlation effects because they
claim the “hole effect” (the reduced density around the proton due to repulsive nature
of the p-N interaction at short distances) is largely offset by the “spectator effect”.
In an uncorrelated picture, two (or more) spectator nucleons in the residual nucleus
can occupy the same volume. This “shadowing” of nucleons causes a net decrease
in the interaction probability with the energetic proton. However, when correlations
between the spectators are included, and they can no longer shadow each other, the
chance for an interaction with the proton is increased. According to Nikolaev et al.,
the hole-correlation and spectator-correlation effects roughly cancel. [82]

In general, both the DWIA and Glauber calculations seem to do reasonably
well at predicting the carbon transparency, but as the target size increases, both sets
of calculations progressively underestimate the nuclear transparency at all momen-
tum transfers. The calculations basically follow a T oc A~/3 behavior, whereas the
data can be approximated by T oc A=%2 (see Table 4.4). Both Glauber calculations
also seem to show more Q% dependence than is seen in the data. This is especially
true of carbon, where the transparency as a function of ? is remarkably flat.

The @Q? range covered in experiment E91-013 straddles both the low-Q?
region, traditionally described by DWIA calculations, and the high-Q? region, where
the Glauber approximation is usually employed. In fact, both Kelly [80] and Nikolaev
et al. [84] state that Q% ~ 2 (GeV/c)? is the maximum value for the validity of the
DWIA and the minimum for the Glauber approximation. Nikolaev et al. make
the claim that the optical model cannot describe short-range (high momentum)

interactions effectively, and the Glauber approximation—under which the deflections
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Table 4.14: Proton-Nucleon Cross Sections. (Laboratory proton momentum.

Kinematics Proton Opp,tot Opp elas Opn,tot Opn elas
Momentum (mb) (mb) (mb) (mb)
(MeV/c)
A 840 23.8 1 232405 3254 —
B 1275 39.8 £0.6 25.1+£0.8]38.6+£0.2 ~ 32
C 1550 479 £ 0.1 24.1 £0.5 | 39.2 &+ 3.0 ~ 27
F 2550 45.1 £ 0.8 19.5 £ 0.7 | 42.9 £ 0.1 ~ 19

of the recoiling proton are neglected—Dbreaks down at low momentum. Kelly, on the
other hand, attributes the failure of the Glauber approximation at low Q? to the
following: Derivation of the Glauber transparency, Equn. 1.22, requires a summation
over all final states that contain A-1 nucleons. Thus p-N elastic scattering, which
dominates the FSI at low Q?, is actually not considered absorption. This is true even
if the missing energy is much larger than that accepted by experiments. Therefore,
as Kelly argues, one expects that, at low Q?, the transparency calculated in the
Glauber approximation will always be larger than that calculated in the DWIA.
Kelly also argues that the total p-N cross section, rather than just the
inelastic, should be used in the Glauber calculations because experimentally most
elastic rescatterings are removed from the acceptance. For reference, Table 4.14 lists
the total and elastic p—p and p—n cross sections. As an estimate of the elastically
scattered flux that is removed from the E91-013 acceptance, the SAID program [85],
using the SM97 phase shifts, was used to calculate the angular distribution of the
elastic p-p and p-n cross sections at each kinematic setting. Using the fact that
the spectator nucleon must receive enough momentum so as to be above the Fermi
level, it is possible to define a minimum scattering angle for the proton, 6,,;,. The
maximum scattering angle is given by the largest proton angle accepted in the exper-
iment. Table 4.15 lists the fraction, n, of the elastically scattered protons accepted in

E91-013. As one can see, at low Q?, where the elastic scattering contribution to the
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Table 4.15. Fraction of Accepted Elastically Scattered Protons. Listed are the
fraction of elastically scattered protons that are not Pauli-blocked and are within
the experimental acceptance. A zero indicates that Pauli-blocking prevented all

elastically scattered protons from entering the acceptance. Fermi momenta of 192,
226, and 275 (MeV/c) were used for 2C, *°Fe, and '%7 Au, respectively.

Target | Kine. A | Kine. B | Kine. C | Kine. F |

12C 0.02 0.10 0.10 0.09
p-p | %Fe 0 0.08 0.05 0
B7Au |0 0.04 0 0
2¢C 0.03 0.18 0.15 0.12
p-n | %Fe 0 0.13 0.09 0
B7Au |0 0.07 0 0

p-N cross section is highest, a negligible amount of elastically scattered protons are
accepted. Only at the intermediate values of @2, where the elastic contribution is
dropping rapidly, do some scattered protons remain in the acceptance. The correct

cross section to use in Glauber calculations is thus given by

Oeff = Otot — 7T)0el,

(4.6)

where oo, 01 are the total and elastic p-IN cross sections, respectively. If one does
not wish to take the experimental acceptance into account, Kelly is correct in that
the values of 1 given in Table 4.15 indicate that o is better approximated by oot
than by ojnelas- Note that the transparency calculations of Nikolaev et al., already
low for iron and gold, would be further reduced if they were to use the slightly more
accurate geg for the p-N cross section. On the other hand, if they were to take into
account correlations between the nucleons, this effect may be diminished.
Although Kelly claims the EEI transparency calculations should approach
the Glauber results as Q? increases, the highest Q2 he provides is only 1.3 (GeV/c)?.
Furthermore, the curves shown in Fig. 4.21 do not show any sign of upward curvature
at the highest )2, as would be necessary for agreement with the Glauber calculations
near ? ~ 2 (GeV/c)?. The calculations of Gao et al. do span the entire experimental

Q? range, although as mentioned, they seem to show more Q? dependence than do
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the data—especially for carbon. Note however, that the prediction of Kelly—that
the Glauber approximation will drastically overestimate the transparency at low
QQ?>—does not seem to be borne out. Indeed the Glauber approximation calculations
of Gao et al. seem to agree with the DWIA calculations of Kelly, and are only slightly
larger for iron and gold.

The final model for the calculation of nuclear transparency considered here
is the Intranuclear Cascade (INC) Model. The results of one such calculation, by
Golubeva et al., are shown in Fig. 4.24. [86] This model, originally developed to
describe hadron-nucleus scattering, describes the nucleus as a mixture of degener-
ate proton and neutron Fermi gases. Again, a Monte Carlo scheme is employed.
For each event, an initial proton is struck by an electron with kinematics (E, Q?,
w) equal to that of the experiment. Then as the proton propagates through the
residual nucleus, it undergoes a series of reactions (elastic or inelastic, including the
production of additional particles) whose relative probabilities are governed by their
respective cross sections (the free cross sections are used in all cases). Each struck
nucleon then starts its own series of interactions, and so on, forming a “cascade”
of scattered particles. The Pauli blocking of final states is included by accepting
only reactions that create recoiling nucleons with momenta are outside of the Fermi
sphere. The fraction of protons that enter a defined acceptance (in this case that
of the NE-18 experiment) relative to a PWIA calculation is taken to be the trans-
parency. As is shown in Fig. 4.24, the INC overestimates the transparency for all
targets, although the shape of the Q? dependence is quite acceptable. This is some-
what surprising given the fact that total p-N cross section is used in the description
of the FSI, and that nucleon-nucleon correlations are neglected. It is true that the
model is quasiclassical in the sense that each nucleon is treated as independent. Thus
coherent scattering of the proton by the residual nucleus, which can, in principle,

reduce the transparency by removing protons from the experimental acceptance, is
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neglected. Golubeva et al. claim however, that coherent scattering is a small effect.
An interesting result of the calculation, that is not discussed by the authors, is the

unexpected increase in T at large Q2.
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Figure 4.24. Transparency vs. Q2. From top to bottom: 2C, %Fe, and " Au. The
curves are the INC calculations of Golubeva et al. [86] The data are the same as in
Fig. 4.17. (Horizontal log scale.)



CHAPTER 5
DISCUSSION AND CONCLUSIONS

Experiment E91-013 was the first to be performed at CEBAF (now Jefferson
Lab), and measured quasielastic exclusive (e,e'p) electron scattering from 'H, 2C,
5Fe, and 7Au targets at squared momentum transfers of 0.64, 1.28, 1.79, and
3.25 (GeV/c)?2. The continuous wave nature of the electron beam allowed for the
most statistically precise (< 1%) data in this Q? range. The data are well described
in a single nucleon knockout picture in which an off-shell proton is struck by the
incoming electron, and escapes from the residual nucleus with a probability known
as the nuclear transparency. The results agree with previous experiments but have
a significantly higher precision.

Because the transparency is the ratio of experimental and simulated yields,
the simulation must model accurately every aspect of the A(e,e'p) reaction (with the
exception of the final state interactions of the proton). Therefore, knowledge of both
the experimental acceptance and the corrections to the cross section due to radiative
effects is important. Coincidence H(e,e'p) data were used to test the simulation
because interpretation of the results is not complicated by the accuracy of a model
spectral function. At each kinematic setting (with the exception of Kinematics F),
the integrated experimental and simulated H(e,e'p) cross sections were found to be in
agreement at the ~ 2% level, and the spectra shapes were found to be in reasonable
agreement (especially at high missing energy). The agreement in the cross sections
is a strict test of the data analysis process, and in particular, knowledge of the
acceptance. The validity of the radiative corrections procedure is evident in the

good agreement of the yields of both experiment and simulation at large values of
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missing energy.

The high statistics and reasonable resolution in the missing energy spectra
allow for a reassessment of the model spectral functions used in both E91-013 and
the previous SLAC experiment NE-18. The 1s state in 12C seems to be more deeply
bound (by approximately 4 MeV) than the value of 38.1 MeV used in the NE-18
model (a result ultimately derived from Saclay data [2]), but the effect on the trans-
parency results is negligible. Comparisons of experimental and simulated missing
energy spectra for %°Fe demonstrate that the model spectral function used in NE-18
underestimates the widths of the low-lying states (1s, 1p, and 1d). This discrepancy
prompted the calculation of an alternative spectral function (Appendix A) so as to
determine the sensitivity of the transparency results to the choice of model. A rela-
tivistic Hartree code (a model quite different from that used to produce the NE-18
spectral functions), TIMORA, was used to provide shell energies and momentum
distributions. Due to a lack of theoretical guidance, the energy widths of the nuclear
shell states were chosen in an ad hoc manner so as to match the shape of the ex-
perimental spectra. The large widths determined in this way cause a non-negligible
amount of single particle strength to occur above the nominal maximum missing
energy of 80 MeV. This appears to be inconsistent with tests that showed the 7' re-
sults are insensitive to the maximum missing energy cutoff. Finally, there also exists
an approximate 10% discrepancy in the strengths of the momentum distributions of
the NE-18 and TIMORA-based spectral functions. However, it was shown that the
TIMORA momentum distributions are too wide and cause an unphysical curvature
in a plot of transparency versus proton angle. Therefore, the nominal NE-18 model
was employed in the analysis of the E91-013 data. The method of using the linearity
of the transparency versus proton angle to limit the width of the momentum dis-
tributions did, however, prove to be a valuable tool, as it constrains the simulated

yields at the few percent level.
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As a function of target size, the transparency falls less quickly than the
T o A~1/3 behavior that one might expect. Both the DWIA and Glauber approxi-
mation calculations systematically underestimate the transparency as the target size
increases. For example, the iron transparency as calculated by Gao et al., is roughly
15% lower than the experimental result (Fig. 4.22). It is important to realize that
this discrepancy is larger than can be explained by known uncertainties in the ex-
perimental results. Even though the A-dependence is most sensitive to uncertainties
in the simulation, the two largest model-dependencies—correlation corrections and
spectral function normalizations—cannot account for the discrepancy with the cal-
culations. Two independent estimations of the correlation corrections were found to
be in agreement. In addition, the normalization of the carbon spectral function was
found to be in good (< 2%) agreement with an alternative calculation. To conclude,
there is no convincing evidence to suggest that the model spectral functions used in
the results of £E91-013 systematically underestimate the coincidence yield (and hence
overestimate the transparency). The failure of the calculations to reproduce the A
dependence of the data would still seem to be an open question.

As a function of )2, the transparency seems to be remarkably flat, especially
for carbon. One would expect the energy dependence of the transparency to be driven
largely by the proton-nucleon cross section which changes by over 50% in the E91-013
energy range. Indeed, calculations that take the energy dependence of the p-IV cross
section into account seem to overestimate its effect. It is true that the fraction of
protons that scatter elastically from nucleons and remain in the acceptance is largest
for the two central Q? points (1.28 and 1.78 (GeV/c)?), but this should be a few
percent effect at most.

If, on the other hand, one then assumes the transparency is independent of
Q*above 1.78 (GeV/c)?, the results might be used to place constraints on the possible

change of the in-medium p-N cross section. Given that the rise in transparency seems
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to be described well by the decrease in the free p-IN cross section, one could conclude
that the proton’s magnetic form factor (Gg falls more rapidly than Gj; with Q?)
changes by at most < 2%. However, as the calculations described here show, the
energy dependence of the FSI is not yet understood at a level to perform such an
analysis.

Finally, as expected given the NE-18 results, experiment E91-013 saw no
rise in T with Q% —the signature of color transparency. Although one could be
tempted to invoke CT to “explain” the large value of T" found for iron and gold, the
discrepancy between the experimental and theoretical values exists at all momentum
transfers.

Nuclear transparency is just one of many aspects of the A(e,e'p) reaction
currently being investigated with the E91-013 data. Ongoing analyses include Rosen-
bluth separations at Q% = 0.64 and 1.78 (GeV/c)? and the extraction of de-radiated
spectral functions. Discussed in Ref. 34, these measurements will explore the single
particle and multi-body contributions to the A(e,e’p) reaction. Finally, by measuring
the asymmetry in the coincidence cross section left and right of ¢, the LT interfer-
ence term in the off-shell electron-proton cross section can be extracted. Previous
data on lighter nuclei indicate that descriptions of the LT term are highly sensitive
to relativistic effects. Furthermore, the nuclear transparency results presented here
indicate that the popular o..; prescription of de Forest underestimates the strength
of the LT term, with larger discrepancies at low Q2. The analyses of previous, low-
Q? (e,e'p) data that employed o..1, may need to be corrected if either the size of the
LT term was neglected, or if data were only measured on one side of ¢. Note that
data taken in parallel kinematics are not affected by the LT interference term.

Future transparency experiments are scheduled at Jefferson Lab. Indeed, an
extension to £91-013, experiment E91-007, will measure the transparency of carbon,

iron, and gold. The experiment is scheduled to run in 1999, and will overlap with the
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Q? = 3.3 (GeV/c)? data of E91-013 and extend to Q? = 8.0 (GeV/c)2. The thrust
of this experiment is to search for CT effects with high statistics data at large Q2.
Other possible experiments might include a more detailed study of the
transparency as a function of Q? for 2C and other light targets. As it will soon
be possible to sample the entire Q? range from ~ 0.3 — 7 (GeV/c)? in a single
set of experiments, it will be interesting to see whether the observed flatness in 7'
observed in E91-013 is verified and exists for other targets. The A dependence of the
transparency is now limited by model-dependent uncertainties, but as these come
under control, it would be interesting to look at the transparencies for intermediate
targets with A ~ 40 and A = 100 to see if the observed T' oc A% behavior persists.
On the theoretical front, the nuclear transparency results of experiment
E91-013 suggest three areas of interest. First, the measured nuclear transparency
seems to fall off more slowly in A than predicted by current theoretical calculations.
Secondly, the transparency results as a function of proton angle indicate that the o
prescription of de Forest underestimates the strength of the LT interference term at
low Q?. Finally, theoretical exploration of the transition from low-Q?, DWIA cal-
culations to high-Q?, Glauber calculations is desirable. Specifically, the calculations
need to specifically include the energy dependence of the p — N cross section and the

missing energy acceptance of experiments.



APPENDIX A
ALTERNATIVE °FE MODEL SPECTRAL FUNCTION

A.1 Description of the Calculation

As discussed in Sections 3.9.3 and 4.3.3, when using the NE-18 versions of
the model *Fe spectral functions, the agreement between the experimental and sim-
ulated missing energy spectra is poor. In particular, the simulation underestimates
the strength at low missing energy, and the shell widths for the least bound states
are too narrow (Fig. 4.9). In order to improve the agreement between simulation and
experiment, and to test the sensitivity of the E91-013 results to the model spectral
functions, an alternative *°Fe spectral function was calculated and used as input to
SIMC.

The binding energy values and momentum distributions for the shells of
56Fe were extracted from the output of a relativistic Hartree computer code, TIM-
ORA, written by Horowitz. [77]. The code is based on the o-w relativistic quantum
field theory model of Walecka, in which the nucleus is described by nucleons inter-
acting via the exchange of scalar () and vector (w) mesons. [87] At high densities,
the meson field operators are replaced by their expectation values, resulting in a
mean field theory. In this limit, Horowitz also includes the (isovector) exchange of p
and 7 mesons. The coupling constants for each field are derived from nuclear matter
properties and the rms charge radius of *°Ca. TIMORA also requires initial esti-
mates for the binding energy and occupation number of each nuclear shell, and starts
by approximating the mean field potential with a Woods-Saxon shape. The Dirac
equation is then solved for each shell to give wave functions and energy eigenvalues.

These wave functions are used to construct shell densities which are then integrated
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over a Green’s function to get a new potential. This process is then repeated until
the convergence criterion (that no energy eigenvalue changes by 0.05 MeV) is met.
The code is quite sensitive to the initial eigenvalue estimates; small changes can
mean the difference between reasonable results and a complete lack of convergence.
In fact, the code had to be slightly modified such that the energy eigenvalues were

held fixed for the first few iterations.

A.2 Model Spectral Function Results

For each shell, TIMORA provides both the upper and lower components of
the Dirac wave function, 1, and ;. The upper r-space wave functions are shown in
Figure A.1 as a function of the nuclear radius, r. TIMORA actually provides ri,

and 7, and so the normalization is calculated via

[ () o)) = 1. (A1)

The momentum distributions are derived from the TIMORA output by taking the

Fourier transform of the r-space wave functions:

~ 1

(2m)3/?
1
(2mr)3

= 271'1)3/2 /d?’rz (20l +1 zyl(kr)ﬁ0(9)1/2l4+ lYlm (0, ¢)R(r),

VAr(20 + 1)
= (27T 3/2 / Zd,r]l k,r ¢’L( )

V(21
4(7;:3/—; D) /rdr]l (kr)api(r), (A.2)

e /d3r2 (21 + 1) (k) Yio ) 5 (),

21—!—1

where the subscript ¢ refers to either the upper or lower Dirac wave function, and

the orthogonality of the Y;,,s has been used:

/dQYim}/l’m’ = 0u O - (A3)
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Figure A.1. R-Space wave functions calculated by TIMORA. ri, is plotted versus
radius.

The momentum density appears as

p(k) = [Pl + i, (A.4)

SIMC requires that the k-space density be normalized such that

/ - E2dkp(k) = i, (A.5)
0 4r

which means it is necessary to divide the k-space wave functions by /2l + 1. Fig-
ure A.2 shows p(k) as a function of momentum.

Both the NE-18 and TIMORA energy values are listed in Table A.1, and
the agreement is quite reasonable (note that NE-18 did not split the shells into
two j-values). While the shell energies and momentum distributions are provided by
TIMORA, the shell widths still have to be specified. Equation 3.23 seems to produce
widths that are far too small resulting in narrow “humps” even for the deeply bound

shells. The widths were therefore modified by hand in order to form better agreement
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Figure A.2. Momentum-space wave function densities derived from TIMORA out-

put.

Table A.1. NE-18 and TIMORA values for *Fe shell energies. Note that NE-18 did
not split up shells into two j-values.

Shell | NE-18 Energy | TIMORA Energy
(MeV) (MeV)
Lsy/o 50.0 53.0
1p3/2 37.0 39.0
1py/2 37.0 35.0
1ds 9 23.0 23.0
ld3 23.0 15.4
2812 16.7 13.5
Lf7/2 11.3 8.3
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Table A.2. NE-18 and TIMORA values for the °6Fe shell widths. Note that NE-18
did not split up shells into two j-values.

Shell | NE-18 Width | TIMORA-based
(MeV) Width (MeV)
1512 18.0 55.0
1ps /2 14.0 45.0
1p1 ) 14.0 40.0
1ds 6.0 32.0
1dy/, 6.0 22.0
251 /2 3.0 6.5
1f7/2 1.0 1.5

with the experimental spectra. Table A.2 lists the values used by NE-18 and those
used in the new model. Note that in some cases, drastic changes in the widths are
necessary to attain agreement (in missing energy spectra shape) with experiment.
The real test of this spectral function, however, is in a comparison with experiment.
Figure A.3 shows a plot of experiment versus simulation at Q* = 0.64 (GeV/c)? in
which the yields have been normalized to the same number of counts. Here SIMC
was used with the TIMORA momentum distributions and eigenenergies, and the
ad hoc widths of Table A.2. The agreement between experiment and Monte Carlo
is clearly much better than that shown in Fig. 4.9, but there still seems to be a
slight lack of strength for the least bound shells. However, this is only true for this
kinematics. Figure A.4 shows the same comparison, still at Q? = 0.64 (GeV/c)?,
but at a more perpendicular kinematics (the central proton angle is 12° away from
¢ upstream of the beam). Note that in the this case, there seems to be an excess
of strength for the least bound shells. For completeness, Figure A.5 shows the same
comparison, same Q?, but now 8° towards the beam from ¢.

Figure A.6 compares the TIMORA-based and measured missing energy
spectra at the conjugate settings at each E91-013 kinematics. With the exception of
the underestimated strength of the least-bound states in the backwards kinematics

(D and E), the agreement is quite reasonable.
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Figure A.3. Experimental °Fe missing energy spectrum (black) versus SIMC out-
put (grey) with spectral function derived from TIMORA. Conjugate kinematics at
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Figure A.4. Experimental *Fe missing energy spectrum (black) versus SIMC output
(grey) with spectral function derived from TIMORA. The central proton angle is 12°
away from ¢ away from the beam. Q? = 0.64 (GeV/c)?.
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Figure A.5. Experimental *Fe missing energy spectrum (black) versus SIMC output
(grey) with spectral function derived from TIMORA. The central proton angle is 8°
away from ¢ towards the beam. Q? = 0.64 (GeV/c)?.

A.3 Comparison with the NE-18 Spectral Function

The spectra displayed in the previous section have been normalized to the
same number of counts so as to compare their shapes. Thus far, nothing has been said
about their normalizations. This section describes a comparison of the TIMORA-
based spectral function and the nominal NE-18 spectral function when integrated
over the experimental acceptance (0-80 MeV in missing energy, 0-300 MeV/c in
missing momentum). Because the transparency is the ratio of the experimental to
simulated yield, any discrepancy between different models will translate directly into
the same discrepancy in T'. Therefore, it suffices to compare the yields of the mod-
els directly. Table A.3 lists the integrated yield and “normalization factor” for both
spectral functions for the conjugate angle at Kinematics A. The normalization factor
is an artifact of the way in which SIMC calculates normalized yields. As discussed in

Section 3.9.1, the code generates events, populating a phase space slightly larger than
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Figure A.6. Comparison of TIMORA-based momentum distributions and experi-
ment at the conjugate angles of each E91-013 kinematic setting, (Kinematics A -F,
from left to right, then down.)
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Table A.3. Comparison of yields for NE-18 model and TIMORA-based spectral
functions for *Fe at Q? = 0.64 (GeV/c)?. See text for explanation.

‘ ‘ NE-18 ‘ TIMORA ‘ % Discrepancy ‘

Normalization | 1.264 x 108 | 1.262 x 10® -0.2
Factor
Normalized 33838 26247 -22.4
Yield

the experimental acceptance. Each event is assigned a weight factor based on the
off-shell cross section and spectral function. These weights are written to the output
file on an event-by-event basis. Then, when the code has finished, it calculates an
overall normalization factor equal to the simulated luminosity (i.e. the experimental
charge) divided by the number of attempted events. To calculate the yield then,
one integrates over the missing energy, weighting each event by its individual weight
factor, and then this sum is multiplied by the overall normalization factor. Compar-
ing the results for the two models, it is evident that while the normalization factors
agree very well, the actual yields disagree by a large amount. That the normalization
factors agree is not surprising because the phase space being populated is the same
in both cases. The weight factor for each event is calculated as:

1 To/2

1
w = ];[pa(pm) X ;./\TQ (E — Ea)2 + (Fa/2)27 (AG)

where « = (n, [, j) labels the shell quantum numbers, and pq (pm) , Na, Fa, and Ty
are the momentum distribution, occupancy, energy, and energy width of the state
«, respectively. Because the energy eigenvalues of both models are quite similar
(Table A.1), the discrepancy must be due to either differences in the shape of the
momentum distributions and/or the different shell widths employed.

The momentum distributions of both models are compared in Figs. A.7
and A.8. The agreement displayed in Fig. A.7 seems to be quite good, even at large
missing momenta, but the TIMORA distributions are actually systematically wider.

This extra width is important because the strength is weighted by a factor of k2 in



190

1077 — : : : Lt 10— : : : —
— sime — simc
N . [ E -- timora [
1 - timora | i -~ timora |
10—107 L wo—woi B
0" L S e U D A 0" L e B ) S
-600 —400 -200 0 200 400 600 -600 -400 -200 0 200 400 600
Momentum (MeV /c) Momentum (MeV /c)
107 . N B [ 107° . P S R L
—sime [ | — simc
] -- timora [ 7 . r
| -~ timora i - timora [
0] L0 |
r ] ‘ ' r
] S \E
i H . :“ .\J L
6 : : 6
10 B R A R \ \ 10 A \ T
—-600 —400 -200 0 200 400 600 -600 -400 -200 0 200 400 600
Momentum (MeV/c) Momentum (MeV/c)
10° . PR R R [
i — simc
i -- timora |
,‘0*107 L
0" N S B S S S S
-600 —400 -200 0 200 400 600

Momentum (MeV/c)

Figure A.7. Comparison of TIMORA-based (dashed) and NE-18(solid) momentum
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Table A.4. Integrated TIMORA and NE-18 Momentum Densities. Listed are the
ratios, TIMORA to NE-18, of the integral from -500-500 MeV /c (not weighted by
k%). For the two different 1p and 1d shells in TIMORA, the occupancy-weighted
average was used.

| Shell [ TIMORA/NE-18 |

Is 0.922
1p 0.898
1d 0.920
2s 0.900
1f 0.890

the normalization (Eqn. A.5). Therefore, the extra width results in a reduction of
the density, relative to the NE-18 model, at momenta lower than ~ 200 MeV/c, as
displayed on a linear scale in Fig. A.8. Table A.4 lists the ratio, TIMORA to NE-18,
of the integrated strength from 0-300 MeV/c. As one can see there is a constant
10% discrepancy for each shell. This translates into a 10% discrepancy in the fi-
nal simulated yields, as the events are weighted directly by the momentum density
(Eqn. A.6). Although the momentum distribution widths of the TIMORA output
can be made narrower by increasing the diffuseness of the Wood-Saxon potentials,
there is no compelling reason to do so, and the choice has been made to stay with
the parameters used in Ref. 77.

The larger shell widths used in the TIMORA-based spectral function also
have an effect on the yields. Given the Lorentzian shape of the energy distributions
(Eqn. A.6), one can calculate the fraction of the strength that is spread beyond the
nominal E,, cutoff at 80 MeV. These fractions are listed for both models, along
with the occupancy-weighted average, in Table A.5 Note that as expected, the large
widths of the deeply bound shells cause a non-negligible amount of strength to go
beyond the maximum experimentally accepted missing energy. The result is a further
10% discrepancy between the two models. Note that the seemingly large size of these

widths is necessary to produce the agreement in spectra shape display in the previous
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Table A.5. Integrated TIMORA and NE-18 Energy Distributions. The integral
from the single particle removal energy of 10.2 MeV to the maximum of 80 MeV
is compared with the same integral to infinity for each shell for both models. For
the multiple-j TIMORA distributions, the occupancy-weighted average is used. The
last entry lists the occupancy weighted average of all ratios.

| Shell | TIMORA | NE-18 |
1s 0.691 | 0.900
1p 0.812 | 0.944
1d 0.899 | 0.982
2s 0.973 | 0.992
1f 0.970 | 0.997
Occ. Avg. | 0.885 | 0.971

section.

To verify that the observed 20% discrepancy is indeed due to the sum of
these two effects, three comparisons are made with the nominal NE-18 model: the
full TIMORA model, the NE-18 model with its shell energies and widths but with
the TIMORA momentum distributions (for multiple j-values, the average width was
used), and finally a model with the TIMORA shell energies, ad hoc widths, and the
NE-18 model momentum distributions. These three cases are compared for a series
of maximum missing energies, and the percent discrepancy with the nominal NE-18
results are listed in Table A.6. As the maximum missing energy is increased, the

discrepancy between the ad hoc shell widths and the nominal NE-18 values decreases

Table A.6. Nominal vs. Alternative 5FeSpectral Function: Yield Tests. The tests
compare the nominal NE-18 spectral function with A) TIMORA, B) NE-18 energies
and shell widths, but TIMORA momentum distributions, and C) TIMORA energies
and the ad hoc shell widths and NE-18 momentum distributions.

Kinematic Test A Test B Test C

Range TIMORA E,, | Nominal E,, | TIMORA E,,
TIMORA p,,, | TIMORA p,, | Nominal p,,

Epmax = 50 MeV 28.0 12.4 18.3

Ep max = 80 MeV 20.6 11.5 10.5

Epmax = 120 MeV 16.0 11.5 5.6
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Table A.7. RMS Charge Radii of Iron Model Momentum Distributions. The exper-
imental result is from de Vries et al. [78].

\ | TIMORA [ NE-18 | Experiment |

RMS Charge | 3.67 3.83 3.7540.03
Radius (fm)

as more of the strength above 80 MeV is recovered (Tests A and C). However, as
the maximum missing energy is increased, Tests A and B show that the missing

momentum widths of TIMORA cause a consistent 10% discrepancy.

A.4 Conclusions

The discrepancy between the TIMORA and NE-18 momentum distribu-
tions prompted the search for an observable that might be used to exclude either
model as being unphysical. First, the rms charge radius for both models was cal-
culated, and the results are listed in Table A.7. Note that the TIMORA radius is
somewhat small, consistent with its momentum distributions being too wide. How-
ever, the radii of the two models straddle the experimental value, and so the charge
radius alone can not be used to exclude either the TIMORA or NE-18 model.

It is only when the transparency is plotted as a function of proton angle that
a problem with the TIMORA spectral function becomes evident (Fig. A.9; note that,
to facilitate comparison of the shapes, the TIMORA-based transparency is offset
vertically by -0.12 such that it agrees with the NE-18 model-based transparency
at the conjugate angle). One expects the off-shell cross section to be asymmetric
about the conjugate angle due to the LT interference term (Equn. 1.11). If the
de Forest description of the LT term were exact, this asymmetry would cancel when
dividing the experimental cross section by the simulation. However, as discussed
in Section 4.3.1, de Forest underestimates the size of the LT term, and so a slight
asymmetry remains when plotting the transparency versus proton angle. This is the

cause of the slope in the transparency calculated using the nominal NE-18 spectral
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Figure A.9. TIMORA vs. NE-18 Transparency. The transparency calculated us-
ing the TIMORA (NE-18) spectral function is shown in open (filled) symbols as a
function of proton angle (zero is the conjugate angle) at Kinematics A. To facilitate
comparison of the shapes, the TIMORA-based transparency is offset vertically by
-0.12 such that it agrees with the NE-18 model-based transparency at the conjugate
angle. The error bars are statistical only.
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function (solid points in Figure A.9). However, there is no known physical mechanism
that can cause the shape seen in the TIMORA-based transparency (open points).
The unexpected fall-off at large proton angles is due to excess strength at large
missing momentum in the TIMORA-based spectral function.

Because of this result, and a desire to facilitate comparison with the results
of NE-18, the nominal NE-18 model spectral function was employed in the analysis
of the 5Fe data in E91-013. Because the TIMORA momentum distributions are so
wide as to be unphysical, the 10% discrepancy between it and the NE-18 model is
too large to use as an estimate of the systematic uncertainty. Figure A.9 was used to
conclude that the uncertainty is less than half of this discrepancy, or about 4%. The
constraint stability tests (Appendix B) show that the transparency is insensitive
to the missing energy cut-off at the 2% level, therefore this value is used for the
uncertainty on the transparency due to the model shell energy widths. The two
uncertainties added in quadrature total 4.5%, in qualitative agreement with the 6%

spectral function uncertainty quoted by Makins et al.



APPENDIX B

CONSTRAINT DEPENDENCY OF THE RESULTS

As discussed in Section 4.3.2, Tables B.1-B.6 list the average discrepancy
(nominal/modified) between the nominal data yield and the yield with the modi-
fied constraint. The discrepancy for each kinematics and each target is averaged

(weighted by charge) over each run for all proton angle settings.



198

Table B.1. Cut stability results for kinematics A. The weighted average of the
discrepancy (weighted by the number of counts in the adjusted transparency result).
Kine. | Target | Label Average Error | Label Average Error

Discrepancy Discrepancy

A C em100 0.9905 0.0026 | hsdelta6 0.9991 0.0029
A Fe em100 0.9800 0.0032 | hsdelta6 1.0009 0.0036
A Au em100 0.9836 0.0032 | hsdelta6 1.0048 0.0035
A C em120 0.9859 0.0025 | hsdeltalO 1.0000 0.0028
A Fe em120 0.9694 0.0030 | hsdeltalO 1.0007 0.0035
A Au em120 0.9717 0.0030 | hsdeltalO 1.0000 0.0034
A C pm200 1.0092 0.0033 | ssdelta8tol8 1.0054 0.0030
A Fe pm200 1.0086 0.0040 | ssdelta8tol8 1.0019 0.0037
A Au pm200 1.0043 0.0039 | ssdelta8tol8 1.0038 0.0037
A C pm250 1.0052 0.0030 | hsyptar35 1.0000 0.0028
A Fe pm250 1.0056 0.0036 | hsyptar35 1.0000 0.0035
A Au pm250 1.0082 0.0036 | hsyptar3s 1.0000 0.0034
A C pm320 0.9970 0.0028 | ssyptardd 0.9750 0.0028
A Fe pm320 0.9961 0.0034 | ssyptardd 0.9760 0.0034
A Au pm320 0.9942 0.0034 | ssyptardd 0.9771 0.0034
A C coin8 0.9999 0.0028

A Fe coin8 1.0000 0.0035

A Au coin8 1.0000 0.0034

Table B.2. Cut stability results for kinematics B. The weighted average of the
discrepancy (weighted by the number of counts in the adjusted transparency result).
Kine. | Target | Label Average Error | Label Average Error
Discrepancy Discrepancy

B C em100 0.9974 0.0032 | hsdelta6 0.9867 0.0037
B Fe em100 0.9869 0.0038 | hsdelta6 0.9946 0.0045
B Au em100 0.9877 0.0042 | hsdelta6 0.9750 0.0049
B C em120 0.9957 0.0031 | hsdeltalO 0.9992 0.0032
B Fe em120 0.9798 0.0036 | hsdeltalO 1.0008 0.0038
B Au em120 0.9806 0.0041 | hsdeltalO 1.0058 0.0043
B C pm200 1.0079 0.0038 | ssdelta8tol8 0.9935 0.0034
B Fe pm200 1.0063 0.0046 | ssdelta8tol8 0.9905 0.0041
B Au pm200 0.9884 0.0049 | ssdelta8tol8 0.9956 0.0045
B C pm250 1.0042 0.0035 | hsyptar35 1.0000 0.0034
B Fe pm250 1.0073 0.0042 | hsyptar3s 1.0000 0.0041
B Au pm250 1.0071 0.0046 | hsyptar3b 1.0000 0.0045
B C pm320 0.9980 0.0034 | ssyptardd 0.9770 0.0034
B Fe pm320 0.9968 0.0040 | ssyptardd 0.9777 0.0040
B Au pm320 0.9968 0.0044 | ssyptardd 0.9790 0.0044
B C coin8 1.0000 0.0034

B Fe coin8 0.9999 0.0041

B Au coin8 0.9999 0.0045
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Table B.3. Cut stability results for kinematics C. The weighted average of the
discrepancy (weighted by the number of counts in the adjusted transparency result).
Kine. | Target | Label Average Error | Label Average Error

Discrepancy Discrepancy

C C em100 0.9969 0.0033 | hsdelta6 1.0024 0.0039
C Fe em100 0.9870 0.0038 | hsdelta6 0.9840 0.0044
C Au em100 0.9854 0.0045 | hsdelta6 0.9804 0.0052
C C em120 0.9906 0.0032 | hsdeltalO 0.9919 0.0033
C Fe em120 0.9770 0.0036 | hsdeltalO 1.0006 0.0039
C Au em120 0.9726 0.0043 | hsdeltalO 0.9944 0.0046
C C pm200 0.9948 0.0041 | ssdelta8tol8 1.0020 0.0036
C Fe pm200 0.9942 0.0048 | ssdelta8tol8 0.9996 0.0041
C Au pm200 0.9811 0.0053 | ssdelta8tol8 0.9942 0.0048
C C pm250 0.9984 0.0037 | hsyptar35 1.0000 0.0035
C Fe pm250 1.0034 0.0043 | hsyptar35 1.0000 0.0041
C Au pm250 1.0068 0.0049 | hsyptar3s 1.0000 0.0048
C C pm320 0.9986 0.0035 | ssyptardd 0.9771 0.0034
C Fe pm320 0.9966 0.0040 | ssyptardd 0.9776 0.0040
C Au pm320 0.9952 0.0047 | ssyptardd 0.9819 0.0047
C C coin8 1.0000 0.0035

C Fe coin8 1.0000 0.0041

C Au coin8 1.0000 0.0048

Table B.4. Cut stability results for kinematics D. The weighted average of the
discrepancy (weighted by the number of counts in the adjusted transparency result).

Kine. | Target | Label Average Error | Label Average Error
Discrepancy Discrepancy

D C em100 0.9960 0.0034 | hsdelta6 0.9919 0.0039
D Fe em100 0.9906 0.0047 | hsdelta6 0.9980 0.0056
D Au em100 0.9901 0.0072 | hsdelta6 0.9821 0.0084
D C em120 0.9951 0.0033 | hsdeltalO 1.0003 0.0032
D Fe em120 0.9864 0.0047 | hsdeltalO 1.0020 0.0045
D Au em120 0.9871 0.0071 | hsdeltalO 1.0131 0.0069
D C pm200 1.0040 0.0036 | ssdelta8tol8 1.0029 0.0035
D Fe pm200 1.0106 0.0054 | ssdelta8tol8 1.0034 0.0050
D Au pm200 1.0021 0.0079 | ssdelta8tol8 1.0026 0.0076
D C pm250 1.0015 0.0035 | hsyptar35 0.9995 0.0035
D Fe pm250 1.0059 0.0050 | hsyptar35 0.9996 0.0049
D Au pm250 1.0060 0.0076 | hsyptar35 0.9997 0.0075
D C pm320 0.9998 0.0035 | ssyptarb5 0.9735 0.0034
D Fe pm320 0.9995 0.0049 | ssyptarb5 0.9743 0.0048
D Au pm320 0.9987 0.0074 | ssyptardb 0.9745 0.0073
D C coin8 1.0000 0.0035

D Fe coin8 1.0000 0.0049

D Au coin8 0.9998 0.0075
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Table B.5. Cut stability results for kinematics E. The weighted average of the dis-
crepancy (weighted by the number of counts in the adjusted transparency result).

Kine. | Target | Label Average Error | Label Average Error
Discrepancy Discrepancy

E C em100 1.0011 0.0073 | hsdelta6 0.9991 0.0085
E Fe em100 0.9938 0.0090 | hsdelta6 0.9958 0.0105
E C em120 0.9986 0.0071 | hsdeltalO 0.9914 0.0068
E Fe em120 0.9827 0.0087 | hsdeltal0 1.0069 0.0086
E C pm200 0.9949 0.0078 | ssdelta8tol8 1.0000 0.0075
E Fe pm200 0.9917 0.0098 | ssdelta8tol8 1.0001 0.0093
E C pm250 1.0012 0.0076 | hsyptar35 1.0000 0.0075
E Fe pm250 1.0021 0.0094 | hsyptar3s 1.0002 0.0093
E C pm320 0.9996 0.0075 | ssyptardd 0.9785 0.0073
E Fe pm320 0.9988 0.0093 | ssyptardd 0.9771 0.0091
E C coin8 0.9999 0.0075

E Fe coin8 0.9998 0.0094

Table B.6. Cut stability results for kinematics F. The weighted average of the dis-
crepancy (weighted by the number of counts in the adjusted transparency result).

Kine. | Target | Label Average Error | Label Average Error
Discrepancy Discrepancy

F C em100 0.9928 0.0078 | hsdelta6 1.0069 0.0088
F Fe em100 0.9821 0.0079 | hsdelta6 1.0071 0.0091
F Au em100 0.9853 0.0117 | hsdelta6 1.0055 0.0132
F C em120 0.9834 0.0076 | hsdeltalO 0.9939 0.0080
F Fe em120 0.9657 0.0076 | hsdeltalO 0.9922 0.0083
F Au em120 0.9706 0.0112 | hsdeltalO 0.9927 0.0121
F C pm200 1.0238 0.0093 | ssdelta8tol8 0.9851 0.0084
F Fe pm200 1.0258 0.0096 | ssdelta8tol8 0.9768 0.0085
F Au pm200 1.0269 0.0141 | ssdelta8tol8 0.9607 0.0122
F C pm250 1.0090 0.0084 | hsyptar3s 1.0001 0.0082
F Fe pm250 1.0151 0.0088 | hsyptar3s 1.0000 0.0084
F Au pm250 1.0196 0.0128 | hsyptar3s 0.9998 0.0123
F C pm320 0.9965 0.0081 | ssyptardd 0.9762 0.0080
F Fe pm320 0.9952 0.0083 | ssyptardd 0.9762 0.0082
F Au pm320 0.9946 0.0122 | ssyptardb 0.9779 0.0121
F C coin8 0.9997 0.0082

F Fe coin8 0.9997 0.0084

F Au coin8 0.9997 0.0123




APPENDIX C
INCLUSIVE CROSS SECTIONS

Tabulated below are the experimentally measured inclusive cross sections
plotted in Section 4.2 (Figs. 4.4-4.7). Tables C.1-C.3 list the hydrogen results for
Kinematics A and B, C and D, and E and F, respectively. Tables C.4—C.9 list the
cross sections for the solid targets at Kinematics A-F, respectively. The uncertainties
are statistical only and do not include the 10% systematic uncertainty discussed in
Section 4.2. Note that the results are not corrected for radiative effects or acceptance
(the latter comprising the bulk of the systematic uncertainty). For reference, the

kinematic settings are listed in Table 2.1.
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Table C.1. Inclusive Hydrogen Cross Sections, Kinematics A and B. Listed are the
inclusive cross sections for hydrogen as a function of energy loss, w. The uncertainties
are statistical .

| Kine. [ w (MeV) | o (nb/sr/MeV) | Kine. [ w (MeV) | o (nb/sr/MeV) |
276. 0.600E-05 £+ 0.10E-05 626. 0.000E-00 £ 0.00E-00
284. 0.190E-04 £ 0.80E-05 634. 0.000E-00 £ 0.00E-00
292. 0.820E-04 £ 0.23E-04 642. 0.800E-05 £ 0.20E-05
300. 0.156E-03 £+ 0.32E-04 650. 0.580E-04 £ 0.40E-05
308. 0.312E-03 + 0.46E-04 658. 0.728E-03 + 0.14E-04
316. 0.464E-02 £ 0.17E-03 666. 0.178E-02 £ 0.23E-04
324. 0.295E-01 + 0.40E-03 674. 0.257E-02 + 0.28E-04
332. 0.577E-01 £ 0.56E-03 682. 0.297E-02 £ 0.31E-04
340. 0.660E-01 £+ 0.61E-03 690. 0.310E-02 £ 0.32E-04
348. 0.705E-01 £ 0.64E-03 698. 0.309E-02 £ 0.32E-04
356. 0.709E-01 £ 0.65E-03 706. 0.297E-02 £ 0.31E-04
364. 0.664E-01 &+ 0.63E-03 714. 0.291E-02 £+ 0.31E-04
372. 0.608E-01 + 0.60E-03 722. 0.265E-02 + 0.29E-04
380. 0.560E-01 £ 0.57E-03 730. 0.246E-02 £ 0.28E-04
388. 0.518E-01 + 0.55E-03 738. 0.218E-02 + 0.26E-04
396. 0.453E-01 £+ 0.51E-03 746. 0.170E-02 £ 0.22E-04
404. 0.361E-01 + 0.45E-03 754. 0.119E-02 + 0.18E-04
412. 0.243E-01 £ 0.36E-03 762. 0.663E-03 £ 0.13E-04
420. 0.117E-01 + 0.25E-03 770. 0.311E-03 £+ 0.90E-05
428. 0.506E-02 £ 0.15E-03 778. 0.200E-03 £+ 0.60E-05

| | | | | | | B | | | | | | | | | | |
0| 0| 0| 00| 0| 8| 0| 0| 9| 0| 0| | 0| 8| 0| o| 8| o) 3| &
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Table C.2. Inclusive Hydrogen Cross Sections, Kinematics C and D. Listed are the
inclusive cross sections for hydrogen as a function of energy loss, w. The uncertainties
are statistical and do not include the 10% systematic uncertainty.

| Kine. | w (MeV) | o (nb/sr/MeV) | Kine. | w (MeV) | o (nb/sr/MeV) |
867. 0.000E-00 £ 0.00E-00 348. 0.210E-04 = 0.90E-05
878. 0.000E-00 £ 0.00E-00 349. 0.405E-03 £ 0.30E-04
889. 0.400E-05 + 0.10E-05 351. 0.190E-02 + 0.57E-04
900. 0.101E-03 £ 0.30E-05 352. 0.521E-02 £+ 0.91E-04
911. 0.387E-03 + 0.70E-05 354. 0.909E-02 + 0.12E-03
922. 0.659E-03 £ 0.90E-05 355. 0.118E-01 £+ 0.14E-03
933. 0.803E-03 + 0.10E-04 357. 0.135E-01 + 0.15E-03
944. 0.861E-03 £ 0.11E-04 358. 0.138E-01 £ 0.15E-03
955. 0.876E-03 + 0.11E-04 360. 0.140E-01 + 0.15E-03
966. 0.860E-03 £ 0.11E-04 361. 0.131E-01 £+ 0.15E-03
977. 0.823E-03 + 0.11E-04 363. 0.120E-01 + 0.14E-03
988. 0.760E-03 £ 0.10E-04 364. 0.980E-02 £+ 0.12E-03
999. 0.724E-03 + 0.10E-04 366. 0.781E-02 + 0.11E-03
1010. 0.675E-03 £ 0.90E-05 367. 0.582E-02 £+ 0.95E-04
1021. 0.631E-03 + 0.90E-05 369. 0.344E-02 + 0.75E-04
1032. 0.522E-03 £ 0.80E-05 370. 0.224E-02 £ 0.64E-04
1043. 0.416E-03 + 0.70E-05 372. 0.193E-02 + 0.61E-04
1054. 0.276E-03 £ 0.50E-05 373. 0.151E-02 £ 0.53E-04
1065. 0.148E-03 + 0.40E-05 375. 0.137E-02 + 0.51E-04
1076. 0.740E-04 £ 0.20E-05 376. 0.127E-02 £+ 0.51E-04

olleollellollollelollollollollollollollololololollol @)
wlivlivliiviviviiviviviiviviivlvivivliviv e lvie
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Table C.3. Inclusive Hydrogen Cross Sections, Kinematics E and F. Listed are the
inclusive cross sections for hydrogen as a function of energy loss, w. The uncertainties
are statistical and do not include the 10% systematic uncertainty.

| Kine. [ w (MeV) | o (nb/sr/MeV) | Kine. [ w (MeV) | o (ub/sr/MeV) |

E 953. 0.000E-00 £ 0.00E-00 F 1697. 0.100E-05 £+ 0.00E-00
E 956. 0.000E-00 £ 0.00E-00 F 1708. 0.800E-05 £ 0.10E-05
E 958. 0.100E-05 £ 0.00E-00 F 1719. 0.100E-04 £+ 0.10E-05
E 961. 0.100E-05 £ 0.00E-00 F 1730. 0.120E-04 £+ 0.10E-05
E 963. 0.110E-04 £+ 0.10E-05 F 1741. 0.130E-04 £+ 0.10E-05
E 966. 0.640E-04 £+ 0.20E-05 F 1752. 0.130E-04 £+ 0.00E-00
E 968. 0.141E-03 £+ 0.20E-05 F 1763. 0.110E-04 £+ 0.00E-00
E 971. 0.192E-03 £+ 0.30E-05 F 1774. 0.130E-04 £+ 0.00E-00
E 973. 0.244E-03 £+ 0.30E-05 F 1785. 0.120E-04 £+ 0.00E-00
E 976. 0.265E-03 £ 0.30E-05 F 1796. 0.130E-04 £+ 0.00E-00
E 978. 0.273E-03 £+ 0.30E-05 F 1807. 0.130E-04 £+ 0.00E-00
E 981. 0.277E-03 £ 0.30E-05 F 1818. 0.120E-04 £+ 0.00E-00
E 983. 0.260E-03 £+ 0.30E-05 F 1829. 0.130E-04 £+ 0.00E-00
E 986. 0.255E-03 £+ 0.30E-05 F 1840. 0.120E-04 £+ 0.00E-00
E 988. 0.223E-03 £+ 0.30E-05 F 1851. 0.110E-04 £+ 0.00E-00
E 991. 0.185E-03 £+ 0.30E-05 F 1862. 0.110E-04 £+ 0.00E-00
E 993. 0.141E-03 £+ 0.20E-05 F 1873. 0.800E-05 £ 0.00E-00
E 996. 0.103E-03 £+ 0.20E-05 F 1884. 0.700E-05 £+ 0.00E-00
E 998. 0.640E-04 £+ 0.20E-05 F 1895. 0.600E-05 £+ 0.00E-00
E 1001. 0.440E-04 £+ 0.10E-05 F 1906. 0.300E-05 £+ 0.00E-00

Table C.4. Solid Target Inclusive Cross Sections for Kinematics A (E = 2.445 GeV,
0. = 20.5°). Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

| w MeV) | C o (nb/sr/MeV) | *°Fe o (nb/sr/MeV) | TAu o (nb/sr/MeV) |

200. 0.111 £ 0.009 0.450 £ 0.036 1.13 £ 0.08
225. 0.376 £ 0.018 1.578 £ 0.070 5.02 £ 0.17
250. 0.622 £ 0.024 2.511 £ 0.088 8.05 £ 0.22
275. 1.041 £+ 0.031 4.013 £ 0.111 11.45 + 0.26
300. 1.324 £ 0.035 5.027 £ 0.125 16.07 £ 0.31
325. 1.592 4+ 0.038 5.997 £+ 0.136 18.88 £ 0.34
350. 1.880 & 0.042 7.032 £ 0.147 21.88 £ 0.36
375. 1.893 £+ 0.042 7.486 £ 0.152 23.38 £ 0.38
400. 2.031 £ 0.043 7.679 £ 0.154 24.98 £ 0.39
425. 2.014 £ 0.043 8.403 £ 0.161 25.84 £ 0.40
450. 1.991 £+ 0.043 7.855 £ 0.155 27.23 £ 041
475. 1.983 £+ 0.043 8.168 £ 0.159 27.58 £ 041
500. 1.875 + 0.042 8.113 £ 0.158 28.30 £ 0.42
925. 1.781 £ 0.041 7.964 + 0.157 27.21 £ 041
950. 0.030 £ 0.000 0.030 £ 0.000 0.03 = 0.00
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Table C.5. Solid Target Inclusive Cross Sections for Kinematics B (£ = 2.445 GeV,
0. = 32.0°). Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

| w MeV) | C o (nb/sr/MeV) | °Fe o (nb/sr/MeV) | TAu o (nb/sr/MeV) |

580. 0.012 £ 0.001 0.045 £ 0.002 0.141 £ 0.013
600. 0.035 £ 0.002 0.135 £ 0.003 0.423 £+ 0.022
620. 0.047 £ 0.003 0.174 £ 0.004 0.555 £ 0.025
640. 0.058 £ 0.003 0.213 £ 0.004 0.664 & 0.028
660. 0.059 £ 0.003 0.252 £ 0.004 0.762 £ 0.030
680. 0.068 £ 0.003 0.289 £ 0.005 0.794 £+ 0.030
700. 0.076 £ 0.003 0.312 £ 0.005 0.926 £ 0.033
720. 0.084 £ 0.004 0.341 £ 0.005 1.060 £ 0.035
740. 0.095 £+ 0.004 0.356 £ 0.005 1.141 £ 0.036
760. 0.097 £ 0.004 0.386 £ 0.005 1.209 £ 0.037
780. 0.112 £+ 0.004 0.414 £ 0.006 1.296 + 0.039
800. 0.105 £ 0.004 0.441 £ 0.006 1.382 + 0.040
820. 0.114 £+ 0.004 0.456 £+ 0.006 1.469 £ 0.041
840. 0.114 £ 0.004 0.487 £ 0.006 1.678 £ 0.044
860. 0.052 £ 0.003 0.206 £+ 0.004 0.686 £+ 0.028
880. 0.002 £ 0.000 0.002 £ 0.000 0.002 £ 0.000

Table C.6. Solid Target Inclusive Cross Sections for Kinematics C (E = 3.245 GeV,
f. = 28.6°). Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

| w MeV) | C o (nb/sr/MeV) | *°Fe o (nb/sr/MeV) | TAu o (nb/sr/MeV) |

800. 0.0018 £+ 0.0001 0.0050 £ 0.0004 0.014 £ 0.002
825. 0.0105 £ 0.0005 0.0363 = 0.0011 0.121 & 0.007
850. 0.0129 £ 0.0006 0.0462 £ 0.0012 0.153 £ 0.007
875. 0.0158 £ 0.0006 0.0592 + 0.0014 0.177 &+ 0.008
900. 0.0202 £+ 0.0007 0.0743 £ 0.0016 0.228 £ 0.009
925. 0.0231 £ 0.0008 0.0897 + 0.0017 0.272 £ 0.010
950. 0.0261 £ 0.0008 0.0992 £ 0.0018 0.319 £ 0.011
975. 0.0308 £ 0.0009 0.1142 + 0.0019 0.372 + 0.012
1000. 0.0326 £+ 0.0009 0.1276 £+ 0.0020 0.400 £ 0.012
1025. 0.0360 £ 0.0009 0.1363 £+ 0.0021 0.440 £ 0.013
1050. 0.0364 £+ 0.0009 0.1504 £ 0.0022 0.478 £ 0.013
1075. 0.0427 £ 0.0010 0.1663 £+ 0.0023 0.513 £ 0.014
1100. 0.0436 + 0.0010 0.1839 £ 0.0025 0.569 &+ 0.014
1125. 0.0474 £ 0.0011 0.1981 £ 0.0026 0.639 £ 0.015
1150. 0.0540 &+ 0.0012 0.2153 + 0.0027 0.680 £+ 0.016
1175. 0.0189 £ 0.0007 0.0710 £ 0.0015 0.265 £ 0.010
1200. 0.0010 £ 0.0000 0.0010 £ 0.0000 0.001 £ 0.000
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Table C.7. Solid Target Inclusive Cross Sections for Kinematics D (E = 0.845 GeV,
f. = 78.5°). Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

| w MeV) | 2C o (nb/sr/MeV) | *°Fe o (nb/st/MeV) | TAu o (nb/sr/MeV) |

325. 0.0020 £ 0.0000 0.002 £ 0.000 0.002 £ 0.000
330. 0.0126 £+ 0.0007 0.028 £ 0.006 0.115 £ 0.014
335. 0.1035 £ 0.0022 0.400 £ 0.024 0.995 £ 0.043
340. 0.1153 £ 0.0023 0.451 £+ 0.026 1.142 £ 0.046
345. 0.1234 £+ 0.0024 0.473 £ 0.026 1.177 £ 0.046
350. 0.1333 £ 0.0025 0.446 £ 0.025 1.351 + 0.050
355. 0.1374 £ 0.0026 0.573 £ 0.029 1.377 £ 0.050
360. 0.1437 + 0.0026 0.565 £ 0.029 1.431 £ 0.051
365. 0.1444 £+ 0.0026 0.556 £ 0.028 1.514 £ 0.053
370. 0.1465 + 0.0027 0.585 £ 0.029 1.577 £ 0.054
375. 0.1490 £+ 0.0027 0.531 £ 0.028 1.581 £ 0.054
380. 0.1566 + 0.0027 0.570 &+ 0.029 1.654 £ 0.055
385. 0.1571 £ 0.0027 0.661 £ 0.031 1.713 £ 0.056
390. 0.1520 + 0.0027 0.598 £ 0.029 1.710 £ 0.056
395. 0.1610 £ 0.0028 0.663 £ 0.031 1.795 £ 0.057
400. 0.1611 £ 0.0028 0.651 £ 0.031 1.870 £ 0.059

Table C.8. Solid Target Inclusive Cross Sections for Kinematics E (E = 1.645 GeV,
0. = 80.0°). Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

| w MeV) | C o (/nb/sr/MeV) | *°Fe o (nb/sr/MeV) |

910. 0.00020 £ 0.00000 0.0002 £ 0.0000
920. 0.00187 £ 0.00015 0.0074 £ 0.0006
930. 0.00253 £ 0.00018 0.0106 £ 0.0007
940. 0.00273 £ 0.00019 0.0104 £+ 0.0007
950. 0.00342 £+ 0.00021 0.0124 £+ 0.0007
960. 0.00362 + 0.00022 0.0135 £ 0.0008
970. 0.00401 £+ 0.00023 0.0142 £ 0.0008
980. 0.00437 £ 0.00024 0.0169 £ 0.0009
990. 0.00467 £ 0.00025 0.0185 £ 0.0009
1000. 0.00483 £ 0.00026 0.0190 £ 0.0009
1010. 0.00595 £ 0.00029 0.0242 + 0.0011
1020. 0.00563 + 0.00028 0.0235 £ 0.0010
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Table C.9. Solid Target Inclusive Cross Sections for Kinematics F (£ = 3.245 GeV,
Listed are the inclusive cross sections for carbon, iron, gold, as a
function of energy loss, w. The uncertainties are statistical and do not include the
10% systematic uncertainty.

0. = 50.0°).

| w MeV) [ C o (nb/sr/MeV) | "Fe o (nb/sr/MeV) | TAu o (nb/sr/MeV) |

1600. 0.00002 4 0.00000 0.0000 £ 0.0000 0.0000 £ 0.0000
1640. 0.00002 £ 0.00000 0.0000 £ 0.0000 0.0000 £ 0.0000
1680. 0.00028 4 0.00002 0.0011 £ 0.0001 0.0037 £ 0.0006
1720. 0.00068 £ 0.00003 0.0029 £ 0.0002 0.0074 £ 0.0009
1760. 0.00089 4 0.00003 0.0041 £ 0.0002 0.0113 £+ 0.0011
1800. 0.00121 £ 0.00004 0.0057 £ 0.0003 0.0148 £ 0.0012
1840. 0.00159 % 0.00004 0.0068 £ 0.0003 0.0191 £ 0.0014
1880. 0.00200 £ 0.00005 0.0081 £ 0.0003 0.0255 £ 0.0016
1920. 0.00263 4 0.00005 0.0112 £+ 0.0004 0.0332 £+ 0.0019
1960. 0.00315 £ 0.00006 0.0149 £ 0.0004 0.0410 £ 0.0021
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