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We investigate how the charge distributions of both the unpolarized and transversely polarized Δ baryon
change as the longitudinal momentum (Pz) of the Δ baryon increases from Pz ¼ 0 to Pz ¼ ∞ in a Wigner
phase-space perspective. When the Δ baryon is longitudinally polarized, its two-dimensional charge
distribution is kept to be spherically symmetric with Pz varied, whereas when the Δ baryon is transversely
polarized along the x-axis, the quadrupole contribution emerges at the rest frame (Pz ¼ 0). When Pz grows,
the electric dipole and octupole moments are induced. The induced dipole moment dominates over other
higher multipole contributions and governs the deformation of the charge distribution of the Δ baryon.
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I. INTRODUCTION

The electromagnetic (EM) form factors of the nucleon
have been one of the essential observables in understanding
its structure well over decades. They provide crucial infor-
mation on the charge and magnetization distributions inside
a nucleon. This interpretation assumes that the nucleon is at
rest in the Breit frame (BF) [1]. This assumption is valid only
if the nucleon’s spatial size RN were larger than the Compton
wavelength 1=MN , so the spatial wave functions could have
been well defined. In reality, however, the size of the nucleon
is comparable to 1=MN , so the nucleon wave function is no
longer localized below the Compton wavelength. It causes
ambiguous relativistic corrections that mar the probabilistic
interpretation of the 3D EM distributions in the BF [2–4].
This flaw of the 3D charge and magnetization distributions
was already pointed out in the 1950s [5]. To understand the
EM distributions of the nucleon without any ambiguity,
one needs to view the nucleon from the light front (LF) or,
equivalently, the infinite momentum frame (IMF), where the
relativistic corrections are kinematically suppressed. Then,
the charge distribution emerges in the two-dimensional (2D)
plane transverse to the nucleon momentum with the prob-
abilistic meaning properly borne [2,3]. It is obtained as the

2D Fourier transform of the EM form factors and called
the transverse charge distribution of the nucleon [6,7]. The
only problem with the transverse charge distribution is
that we lose information along the infinite momentum
direction. Since then, the transverse charge distributions
of the nucleon,Δ baryon, deuteron, pion, kaon, and ρmeson
have been extensively studied [8–33] (see also Ref. [34] for
a review).
When the transverse charge density of the neutron was

reported [6], many were perplexed by the result. While the
positive charge is centered in the 3D charge distribution of
the neutron, the negative one was situated in the center of
the neutron for the neutron 2D transverse charge density.
Recently, Lorcé resolved the discrepancy by showing that
when the longitudinal momentum increases from the rest to
infinity, the charge distribution in the transverse plane
undergoes drastic changes from the positive center value
to the negative one [35]. As the longitudinal momentum
grows, a Wigner rotation and a mixing of the four-current
components under Lorentz boost give rise to a magneti-
zation contribution [35–37], which makes the sign of the
neutron transverse charge density is changed to be negative.
In doing so, Lorcé introduced the elastic frame (EF)
to interpolate from the BF to the IMF in the Wigner
phase-space perspective, which makes it possible to
observe the change in the charge distribution explicitly
as the longitudinal momentum increases. This approach
was extended to the case of the polarized nucleon [38],
where the Abel tomography was emphasized and was
recently elaborated and enlarged by considering the EM
distributions for the spin-0 and spin-1=2 particles [39] and
the EM and energy-momentum tensor (EMT) distributions
of the spin-1 particle [25]. Compared to the spin-0 and
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spin-1=2 particles [35,39–41], the spin-1 particle reveals
rather complicated multipole structures [22,25,41]. In this
work, we want to investigate the multipole structure of the
EM distributions for the spin-3=2 Δ baryon and see how
they are altered under Lorentz boost.
The EM form factors of the Δ baryon can be para-

metrized in terms of four multipole form factors [42] (see
also Ref. [43]): electric monopole (E0), quadrupole (E2),
magnetic dipole (M1), and octupole (M3) ones. While it is
extremely difficult to measure them experimentally because
of the Δ’s ephemeral nature, the Δ EM form factors and
corresponding transverse charge densities were computed
in lattice QCD [19,42]. In the rest BF, we can define four
frame-dependent functions, which are respectively related
to the EM multipole form factors. The Lorentz boost
induces the electric dipole (E1) and octupole (E3) con-
tributions to the transverse charge densities of the Δ
baryon. In the IMF, all the frame-dependent functions
coming from the third spatial component of the EM four
current become equivalent to those from the temporal one.
It is crucial to analyze these consequences arising from the
Lorentz boost. In this work, thus, we examine the expres-
sions for theΔ baryon matrix elements of the EM current in
terms of the frame-dependent functions defined in the 2D
EF. They are given as the functions of the momentum
transfer t and the longitudinal momentum Pz. For any
values of Pz, we are able to define the frame-dependent
functions and their 2D Fourier transforms, so each con-
tribution to the transverse Δ charge densities can be
examined with the Pz given. If we take Pz ¼ 0, the
frame-dependent functions are reduced to the EMmultipole
form factors. To investigate the transverse charge densities
of the moving Δ baryon, we need information on the EM
form factors. In the present work, we will take the numeri-
cal results of the EM form factors obtained in the SU(3)
chiral quark-soliton model [44]. We will then visualize in
the 2D space how the charge distributions are deformed
under the Lorentz boost.
The present work is organized as follows: In Sec. II, we

construct the formalism for the multipole structure of the
transverse charge densities of the Δ baryon. In Sec. III, we
present the numerical results for the transverse charge
distributions interpolating from the BF to the IMF. We also
examine each contribution of the multipole components
to the transverse charge distributions of the moving Δþ and
Δ0 and discuss it. In Sec. IV, we summarize and draw
conclusions of the current work. In the Appendix, we list
the explicit expressions for the frame-dependent functions.

II. MULTIPOLE STRUCTURE OF THE
TRANSVERSE CHARGE DENSITIES

The matrix element of the EM current is defined as

JμðxÞ ¼ ψ̄ðxÞγμQ̂ψðxÞ; ð1Þ

where ψðxÞ denotes the quark field. The charge operator
of the quarks Q̂ is written in terms of the flavor SU(3)
Gell-Mann matrices λ3 and λ8

Q̂ ¼

0
B@

2
3

0 0

0 − 1
3

0

0 0 − 1
3

1
CA ¼ 1

2

�
λ3 þ

1ffiffiffi
3

p λ8

�
: ð2Þ

The matrix elements of the EM current between the Δ
baryon states with spin 3=2 can be parametrized in terms of
four form factors F�

i (i ¼ 1;…; 4) as follows:

hΔðp0; σ0ÞjeJμð0ÞjΔðp; σÞi

¼ −eBūαðp0; σ0Þ
�
γμ
�
F�
1ðtÞgαβ þ F�

3ðtÞ
qαqβ
4M2

Δ

�

þi
σμνqν
2MΔ

�
F�
2ðtÞgαβ þ F�

4ðtÞ
qαqβ
4M2

Δ

��
uβðp; σÞ; ð3Þ

whereMΔ denotes the mass of the Δ baryon, and eB stands
for the corresponding electric charge in unit of e. q
designates the momentum transfer q ¼ p0 − p and its
square is given as q2 ¼ t with −t > 0. uαðp; σÞ represents
the Rarita-Schwinger spinor, carrying the momentum p
and the spin component σ projected along the direction
of the momentum. The explicit expression for the Rarita-
Schwinger spinor is given by

uμðp; σÞ ¼
X
λ;s

C
3
2
σ

1λ1
2
s
usðpÞϵμλðpÞ;

and usðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MΔ þ p0

p �
1
σ⃗·p⃗

MΔþp0

�
ϕs; ð4Þ

where usðpÞ and ϕs stand for the Dirac and Pauli spinors

with its spin-polarization s, respectively. C
3
2
σ

1λ1
2
s
designate the

SU(2) Clebsch-Gordan coefficients. Here, we choose the
canonical spin states (see relevant discussions [35,45,46]).
By coupling the Dirac spinor to the spin-one polarization
vector, one can construct the Rarita-Schwinger spinor. The
spin-one vector ϵμ in any frame is expressed by

ϵμλðpÞ ¼
�
êλ · p⃗
MΔ

; êλ þ
p⃗ðêλ · p⃗Þ

MΔðMΔ þ P0Þ
�
; ð5Þ

where ê is the polarization vector in the rest frame.

êþ1 ¼
1ffiffiffi
2

p ð−1;−i; 0Þ; ê0 ¼ ð0; 0; 1Þ;

ê−1 ¼
1ffiffiffi
2

p ð1;−i; 0Þ: ð6Þ

In order to discuss the multipole structure of the EM
form factors in a systematical way, it is convenient to
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introduce the rank-n irreducible tensors and multipole
operators in 2D space. The rank-n irreducible tensors in
coordinate (or momentum) space are defined by

X0 ≔ 1; Xi1���in
n ≔

ð−1Þnþ1

ð2n − 2Þ!! x
n⊥∂i1 � � � ∂in ln x⊥

with n > 0; in ¼ 1; 2: ð7Þ

For a spin-3=2 baryon, the quadrupole- and octupole-spin
operators Q̂ijðrank-2 tensorÞ and Ôijkðrank-3 tensorÞ
appear in the matrix element of the EM current and are
respectively defined in terms of the spin operator Ŝi as
follows:

Q̂ij ≔
1

2

�
ŜiŜj þ ŜjŜi −

2

3
SðSþ 1Þδij

�
;

Ôijk ≔
1

6

�
ŜiŜjŜk þ ŜjŜiŜk þ ŜkŜjŜi þ ŜjŜkŜi þ ŜiŜkŜj

þ ŜkŜiŜj −
6SðSþ 1Þ − 2

5
ðδijŜk þ δikŜj þ δkjŜiÞ

�
:

ð8Þ

Since the tensor operators are irreducible, so they are fully
symmetrized under the exchanges of the indices i, j, k ¼ 1,
2, 3 and traceless (Q̂ii ¼ 0 and δijÔ

ijk ¼ 0). The spin
operators can be expressed in terms of SU(2) Clebsch-
Gordan coefficients in the spherical basis

Ŝaσ0σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
CSσ0
Sσ1a

with ða ¼ 0;�1: σ; σ0 ¼ 0;…;�SÞ: ð9Þ

To see how the matrix element of the EM current
undergoes changes under Lorentz boost, we use the elastic
frame (EF), where the spacelike momentum transfer q lies
in the transverse plane with conditions q0 ¼ 0 and P ≠ 0,
as proposed in Ref. [35]. It was introduced to study the
frame dependence of the nucleon EMT [47,48] and trans-
verse charge densities [35]. The EF offers an interpolation
between the rest frame (or Breit frame) and the infinite
momentum frame (or light-front frame) with the longi-
tudinal momentum P of a baryon varied. In the EF, without
loss of generality, the average momentum P ¼ ðp0 þ pÞ=2
and momentum transfer q satisfy the on shell constraint as
follows:

P ¼ ðP0; 0⃗; PzÞ q ¼ ð0; q⃗⊥; 0Þ;
P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ τÞM2

Δ þ P2
z

q
; ð10Þ

where τ ¼ −t=ð4M2
ΔÞ. Then, the matrix element of the

temporal component of the EM current J0 in the EF from
Eq. (3) is written in terms of the multipole n-rank
irreducible tensors in momentum space and in spin polari-
zation together with the frame-dependent scalar func-
tions GE0;E1;E2;E3:

hJ0iσ0σ
2P0

¼
�
GE0ðt;PzÞ −

2

3
τGE2ðt;PzÞ

�
δσ0σ þ

�
Ga0a

E0 ðt;PzÞ þ
4

3
τGE2ðt;PzÞ

�
δa0a

þ 2
ffiffiffi
τ

p �
GE1ðt;PzÞ −

2

5
τGE3ðt;PzÞ

�
iϵij3Siσ0σX

j
1ðθq⊥Þ

þ 2
ffiffiffi
τ

p fGa0a
E1 ðt;PzÞ þ τGE3ðt;PzÞgiϵij3Sia0aXj

1ðθq⊥Þ

þ 4

3
τGE2ðt;PzÞQij

σ0σX
ij
2 ðθq⊥Þ þ 8τ3=2GE3ðt;PzÞiϵ3jkOjml

σ0σ X
klm
3 ðθq⊥Þ; ð11Þ

where we introduce the following shorthand notation
δa0a ¼ δσ0a0δσaδσ0σ with a0; a ¼ − 1

2
; 1
2

and hJμiσ0σ ≔
hΔðp0; σ0ÞjĴμð0ÞjΔðp; σÞi. Here, θq⊥ denotes the 2D angle
of the qi⊥ variable.
Before discussing the EM form factor in the 2D EF,

we want briefly to mention the 2D and 3D BFs. To study
the 3D spatial distributions, the 3D BF is adopted, where
q0 ¼ 0 and P ¼ 0. It yields the well-known Sach-type or
multipole form factors. Since we interpolate the 2D BF to
2D IMF distributions in this work, we introduce the 2D BF,
where each component of the four momenta P and q are
taken to be the same as in the 3D BF. It can simply be
achieved by taking qz ¼ 0.

In the 3D BF, hJ0iσ0σ yields normally two contributions;
the electric monopole (E0) and electric quadrupole (E2)
ones. However, the projection from the 3D BF to the 2D
one and the Lorentz boost induce various contributions.
Firstly, in the presence of the E2 contribution, the projec-
tion from the 3D BF to the 2D one induces the monopole
contribution. In addition, it is split into the spin-
polarizations σ ¼ − 3

2
;…; 2

3
and its subsystem a ¼ − 1

2
; 1
2
.

Secondly, under the Lorentz boost, the matrix element of
the temporal component of the EM current J0 is subject to
the Wigner spin rotation and the admixture with the spatial
component of the EM current. It results in the induced
electric dipole (E1) and induces the E3 contributions, and
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the Lorentz boost brings about the frame dependence on Pz in the matrix element of J0. These effects from the Lorentz
boost are conveyed to the frame-dependentGE0;E1;E2;E3 given as the functions of Pz and t. The explicit expressions for them
are listed in the Appendix. In the BF (Pz ¼ 0), these frame-dependent functions are reduced to the 2D BF expressions:

hJ0iσ0σ
2P0

¼Pz→0 1ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
��

GE0ðtÞ þ
1

3
τGE2ðtÞ

�
δσ0σ −

2τ

3
GE2ðtÞδa0a −

2τ

3
GE2ðtÞQij

σ0σX
ij
2 ðθΔ⊥Þ

�
: ð12Þ

In the 2D BF limit, we recover the traditional definitions of the Sach-type EM form factors together with the relativistic
factor 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
, which comes into play when interpolating the BF expressions to the IMF ones,

GE0ðt;Pz ¼ 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GE0ðtÞ; Ga0a
E0 ðt;Pz ¼ 0Þ ¼ 0; GE1ðt;Pz ¼ 0Þ ¼ 0;

Ga0a
E1 ðt;Pz ¼ 0Þ ¼ 0; GE2ðt;Pz ¼ 0Þ ¼ −

1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GE2ðtÞ; GE3ðt;Pz ¼ 0Þ ¼ 0; ð13Þ

where the EM multipole form factors are expressed in terms of F�
i ,

GE0ðtÞ ¼
�
1þ 2

3
τ

�
½F�

1ðtÞ − τF�
2ðtÞ� −

1

3
τð1þ τÞ½F�

3ðtÞ − τF�
4ðtÞ�;

GE2ðtÞ ¼ ½F�
1ðtÞ − τF�

2ðtÞ� −
1

2
ð1þ τÞ½F�

3ðtÞ − τF�
4ðtÞ�;

GM1ðtÞ ¼
�
1þ 4

5
τ

�
½F�

1ðtÞ þ F�
2ðtÞ� −

2

5
τð1þ τÞ½F�

3ðtÞ þ F�
4ðtÞ�;

GM3ðtÞ ¼ ½F�
1ðtÞ þ F�

2ðtÞ� −
1

2
ð1þ τÞ½F�

3ðtÞ þ F�
4ðtÞ�: ð14Þ

They are called, respectively, the electric monopole (E0), electric quadrupole (E2), magnetic dipole (M1), and magnetic
octupole (M3) form factors. TheM1 andM3 form factors will be obtained in the matrix element of the spatial component of
the EM current Ji. By taking Pz → ∞ in Eq. (11), we can naturally recover the results from the LF formalism [19],

GE0ðt;Pz → ∞Þ ¼ 1

1þ τ

�
GE0ðtÞ þ

1

3
τGM1ðtÞ −

4

15
τ2GM3ðtÞ

�
;

Ga0a
E0 ðt;Pz → ∞Þ ¼ −

4τ

ð1þ τÞ2
�
GE0ðtÞ þ

1

3
τGE2ðtÞ −

1

3
ð2 − τÞGM1ðtÞ −

τ

15
ð2 − τÞGM3ðtÞ

�
;

GE1ðt;Pz → ∞Þ ¼ −
1

ð1þ τÞ2
��

1þ τ

15

�
GE0ðtÞ þ

2τ

15

�
2 −

τ

3

�
GE2ðtÞ −

1

3

�
1 −

9

5
τ

�
GM1ðtÞ þ

14

75
τ2GM3ðtÞ

�
;

Ga0a
E1 ðt;Pz → ∞Þ ¼ 2τ

3ð1þ τÞ2
�
GE0ðtÞ −GM1ðtÞ þ

τ

3
GE2ðtÞ −

τ

5
GM3ðtÞ

�
;

GE2ðt;Pz → ∞Þ ¼ 1

2ð1þ τÞ2
�
3GE0ðtÞ − GE2ðtÞ − ð2 − τÞGM1ðtÞ −

τ

5
ð7þ 4τÞGM3ðtÞ

�
;

GE3ðt;Pz → ∞Þ ¼ −
1

6ð1þ τÞ2
�
GE0ðtÞ −GE2ðtÞ

�
1þ 2τ

3

�
− GM1ðtÞ þ

�
1þ 4τ

5

�
GM3ðtÞ

�
: ð15Þ

At the zero momentum transfer t ¼ 0 in Eq. (15), we have
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GE0ðt;Pz → ∞Þ ¼ GE0ðtÞ; Ga0a
E0 ðt;Pz → ∞Þ ¼ 0; GE1ðt;Pz → ∞Þ ¼ −

�
GE0ð0Þ −

1

3
GM1ð0Þ

�
;

Ga0a
E1 ðt;Pz → ∞Þ ¼ 0; GE2ðt;Pz → ∞Þ ¼ 1

2
½3GE0ð0Þ −GE2ð0Þ − 2GM1ð0Þ�;

GE3ðt;Pz → ∞Þ ¼ −
1

6
½GE0ð0Þ −GE2ð0Þ −GM1ð0Þ þGM3ð0Þ�: ð16Þ

The above results are consistent with those in Ref. [19]. It is also interesting to study how the spatial components of the EM
current varies under the Lorentz boost. Since we take the z-axis as a boost direction, J3 and Ji⊥ with i ¼ 1, 2 will behave
differently under the Lorentz boost. In the 2D EF, the matrix element of the transverse component of the EM current Ji⊥ is
given by

hJi⊥iσ0σ
2P0

¼ 2
ffiffiffi
τ

p �
G⊥

M1ðt;PzÞ −
1

5
τG⊥

M3ðt;PzÞ
�
iϵi3kS3σ0σX

k
1ðθΔ⊥Þ

þ 2
ffiffiffi
τ

p ½G⊥;a0a
M1 ðt;PzÞ þ 2τG⊥

M3ðt;PzÞ�iϵi3kS3a0aXk
1ðθΔ⊥Þ þ 4τG⊥

M2ðt;PzÞQl3
σ0σX

li
2 ðθΔ⊥Þ

− 2τG⊥
M2ðt;PzÞQi3

σ0σ þ 4τ
ffiffiffi
τ

p
G⊥

M3ðt;PzÞiϵi3kð2O3ml
σ0σ X

klm
3 ðθΔ⊥Þ þO3kl

σ0σX
l
1ðθΔ⊥ÞÞ: ð17Þ

The frame-dependent functions from the transverse components of the EM current are labeled by ⊥ in the superscript. The
matrix element of the transverse EM current yields the magnetic dipole and octupole contributions together with the
induced magnetic quadrupole one. In the 2D BF limit, the frame-dependent functionsG⊥

M1,G
a0a;⊥
M1 ,G⊥

M2,G
⊥
M3 are reduced to

the Sach-type magnetic dipole (M1) and magnetic octopole (M1) form factors given in Eq. (14):

hJi⊥iσ0σ
2P0

¼Pz→0 2

3

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r �
GM1ðtÞ −

τ

10
GM3ðtÞ

�
iϵi3kS3σ0σX

k
1ðθΔ⊥Þ −

2

3
τ

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
GM3ðtÞiϵi3kS3a0aXk

1ðθΔ⊥Þ

−
2

3
τ

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
GM3ðtÞiϵi3kð2O3ml

σ0σ X
klm
3 ðθΔ⊥Þ þO3kl

σ0σX
l
1ðθΔ⊥ÞÞ; ð18Þ

where

G⊥
M1ðt;Pz ¼ 0Þ ¼ 1

3
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GM1ðtÞ; G⊥;a0a
M1 ðt;Pz ¼ 0Þ ¼ 0;

G⊥
M2ðt;Pz ¼ 0Þ ¼ 0; G⊥

M3ðt;Pz ¼ 0Þ ¼ −
1

6
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GM3ðtÞ: ð19Þ

Note that the induced magnetic dipole contribution G⊥
M2 vanishes. Thus, we can regain the results from the LF formalism

[19] as in the electric case. We observe that the unusual structure O3klXl
1 in the last term in Eq. (18) is induced by the

projection from the 3D space to 2D one. As shown in the case of the nucleon [39], all the relevant frame-dependent
functions go to zero in the IMF due to the Pz suppression:

G⊥
M1ðt;Pz → ∞Þ ¼ 0; G⊥;a0a

M1 ðt;Pz → ∞Þ ¼ 0; G⊥
M2ðt;Pz → ∞Þ ¼ 0; G⊥

M3ðt;Pz → ∞Þ ¼ 0; ð20Þ

so that the matrix element of the transverse components of the EM current Ji⊥ becomes zero in the IMF, i.e., hJ
i⊥i

2P0
¼Pz→∞

0.
Lastly, we obtained the expression of the matrix element of the z-component of the EM current as follows:

hJ3iσ0σ
2P0

¼
�
G3

M0ðt;PzÞ −
2

3
τG3

M2 − 4τG⊥
M2

�
δσ0σ þ

�
G3;a0a

M0 ðt;PzÞ þ
4

3
τG3

M2ðt;PzÞ þ 8τG⊥
M2ðt;PzÞ

�
δa0a

þ 2
ffiffiffi
τ

p �
G3

M1 −
2

5
τG3

M3

�
iϵ3jkSjσ0σX

k
1ðθΔ⊥Þ þ 2

ffiffiffi
τ

p ½G3;a0a
M1 þ τG3

M3�iϵ3jkSja0aXk
1ðθΔ⊥Þ

þ 4

3
τG3

M2Q
lm
σ0σX

lm
2 ðθΔ⊥Þ þ 8τ

ffiffiffi
τ

p
G3

M3iϵ
3jkOjml

σ0σ X
klm
3 ðθΔ⊥Þ: ð21Þ
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The frame-dependent functions from the z-component
of the EM current are labeled by the 3 in the superscript.
The J3 matrix element produces the M1 and M3 contri-
butions together with the induced M0 and M2 contribu-
tions. Similar to the transverse component of the EM
current Ji⊥, the z-component of the EM current is reduced
to the Sach-type magnetic dipole and octupole form
factors at Pz ¼ 0, and the other frame-dependent functions
vanish,

hJ3iσ0σ
2P0

¼Pz→0 2

3

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r �
GM1 þ

τ

5
GM3

�
iϵ3jkSjσ0σX

k
1

−
1

3
τ

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
GM3iϵ3jkS

j
a0aX

k
1

−
4

3
τ

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
GM3iϵ3jkO

jml
σ0σ X

kml
3 ; ð22Þ

where

G3
M0ðt;Pz ¼ 0Þ ¼ 0; G3

M1ðt;Pz ¼ 0Þ ¼ 1

3
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GM1; G3;a0a
M1 ðt;Pz ¼ 0Þ ¼ 0;

G3;a0a
M0 ðt;Pz ¼ 0Þ ¼ 0; G3

M2ðt;Pz ¼ 0Þ ¼ 0; G3
M3ðt;Pz ¼ 0Þ ¼ −

1

6
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p GM3: ð23Þ

In the IMF, all the frame-dependent functions of the J3 turn out to be equivalent to those of the J0:

G3
M0ðt;Pz → ∞Þ ¼ GE0ðt;Pz → ∞Þ; G3;a0a

M0 ðt;Pz → ∞Þ ¼ Ga0a
E0 ðt;Pz → ∞Þ;

G3
M1ðt;Pz → ∞Þ ¼ GE1ðt;Pz → ∞Þ; G3;a0a

M1 ðt;Pz → ∞Þ ¼ Ga0a
E1 ðt;Pz → ∞Þ;

G3
M2ðt;Pz → ∞Þ ¼ GE2ðt;Pz → ∞Þ; G3

M3ðt;Pz → ∞Þ ¼ GE3ðt;Pz → ∞Þ; ð24Þ

so we have hJ3i
2P0

¼Pz→∞ hJ0i
2P0

. A similar relation for the nucleon
was first derived in Ref. [39], and we see that such a
relation is also satisfied for the Δ baryon as shown in the
current work.
We are now in a position to define the transverse charge

distributions. In this work, we will consider the temporal
component of the EM current only, i.e., J0. In the BF, the
3D distribution is traditionally defined as a 3D Fourier
transformation of the corresponding form factor. As men-
tioned in the Introduction, the baryon cannot be localized
below the Compton wavelength, which causes ambiguous
relativistic corrections. Recently, these 3D distributions in
the BF and the 2D distributions of the moving baryon in the
EF were understood as quasi-probabilistic distributions in
the phase space or the Wigner distributions [25,35,48,49].

We will first construct the transverse charge distribution
of the moving Δ baryon by introducing the EF and will
show the connection between the 2D BF and 2D IMF
distributions.
In the Wigner phase-space perspective, the Fourier trans-

form of the matrix element of the EM current conveys
information on the internal structure of the particle. Since the
average momentum and momentum transfer of the initial
and final states are respectively given by P ¼ ðP0; 0⊥; PzÞ
and q ¼ ð0; q⊥; 0Þ in EF, the EF distributions depend on
the impact parameter x⊥ and momentum P ¼ ð0; PzÞ, where
the Δ baryon moves along the z-direction without loss of
generality. Thus, the charge distribution can be expressed
as the 2D Fourier transform of the matrix element
hΔðp0; σ0ÞjĴμð0ÞjΔðp; σÞi:

ρchðx⊥; σ0; σ;PzÞ ¼
Z

d2q⊥
ð2πÞ2

hJ0iσ0σ
2P0

e−iq⃗⊥·x⃗⊥

¼ ρ0ðx⊥;PzÞδσ0σ þ ρa
0a

0 ðx⊥;PzÞδa0a þ ρ1ðx⊥;PzÞϵij3Xj
1ðθx⊥ÞSiσ0σ þ ρa

0a
1 ðx⊥;PzÞϵij3Xj

1ðθx⊥ÞSia0a
þ ρ2ðx⊥;PzÞQij

σ0σX
ij
2 ðθx⊥Þ þ ρ3ðx⊥;PzÞϵ3jkOjml

σ0σ X
klmðθx⊥Þ; ð25Þ

where

ρ0ðx⊥;PzÞ ¼ G̃0ðx⊥;PzÞ; ρa
0a

0 ¼ G̃a0a
0 ðx⊥;PzÞ; ρ1ðx⊥;PzÞ ¼ −

1

MΔ

d
dx⊥

G̃1ðx⊥;PzÞ;

ρa
0a

1 ðx⊥;PzÞ ¼ −
1

MΔ

d
dx⊥

G̃a0a
1 ðx⊥;PzÞ; ρ2ðx⊥;PzÞ ¼ −

1

3M2
Δ
x⊥

d
dx⊥

1

x⊥
d

dx⊥
G̃2ðx⊥;PzÞ;

ρ3ðx⊥;PzÞ ¼
1

M3
Δ
x2⊥

d
dx⊥

1

x⊥
d

dx⊥
1

x⊥
d

dx⊥
G̃3ðx⊥;PzÞ: ð26Þ
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The variable θx⊥ denotes the 2D angle of the xi⊥. Here we have used the 2D Fourier transform of the generic function
F ¼ fG0; Ga0a

0 ; G1; Ga0a
1 ; G2; G3g,

Z
d2q⊥
ð2πÞ2 e

−iq⃗⊥·x⃗⊥Fðt;PzÞ ¼ F̃ðx⊥;PzÞ; ð27Þ

where we define the following functions for convenience

G0ðt;PzÞ ¼
�
GE0ðt;PzÞ −

2

3
τGE2ðt;PzÞ

�
; Ga0a

0 ðt;PzÞ ¼
�
Ga0a

E0 ðt;PzÞ þ
4

3
τGE2ðt;PzÞ

�
;

G1ðt;PzÞ ¼
�
GE1ðt;PzÞ −

2

5
τGE3ðt;PzÞ

�
; Ga0a

1 ðt;PzÞ ¼ fGa0a
E1 ðt;PzÞ þ τGE3ðt;PzÞg;

G2ðt;PzÞ ¼ GE2ðt;PzÞ; G3ðt;PzÞ ¼ GE3ðt;PzÞ: ð28Þ

Thus, one can clearly see that the multipole patterns ρmon,
ρdip, ρquad, and ρoct of the charge distributions are given by
the combinations of the ρ0, ρ1, ρ2, and ρ3.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the numerical results of the
transverse charge distribution of the spin-3=2 baryon and
discuss them. We consider those of Δþ and Δ0, regarding
them as representatives for a spin-3=2 baryon. To study the
charge distribution in the Wigner phase-space perspective,
we need information on theΔ EM form factors. While there
is plenty of available experimental data on the EM form
factors of the nucleon, those of the Δ baryons are almost
unexplored on the experimental side due to their short-lived
nature. One could import the lattice data [19] but it does not
consider the EM form factors of the Δ0, where the trans-
verse charge distribution undergoes a remarkable change

under the Lorentz boost as in the case of the neutron [6,35].
Thus, we will take the results from the SU(3) chiral quark-
soliton model (χQSM) [44], where the available data of the
EM form factors of the baryon decuplet exist. Note that the
electric monopole, quadrupole, and magnetic dipole were
calculated in the χQSM, but the magnetic octopole was
ignored. This form factor is strongly suppressed in the large
Nc expansion, which is consistent with the lattice QCD data
on the GM3 form factor [19]. It is compatible with zero
within the statistical accuracy.
In Fig. 1, we show the y–axis profiles of the transverse

charge distribution of the moving Δþ baryon with the
longitudinal momentum Pz varied from Pz ¼ 0 to Pz ¼ ∞.
Its spin is polarized along the z-axis with sz ¼ 3=2 and
sz ¼ 1=2, respectively. Taking Pz ¼ 0, we obtain the 2D
BF charge distribution. Here one should keep in mind that
the 2D BF distribution is distinctive from the 3D one [41].
By carrying out the Abel transformation, one can project

FIG. 1. The y-axis profiles of the transverse charge distributions of the movingΔþ baryon as the longitudinal momentum Pz increases
from Pz ¼ 0 to Pz ¼ ∞. Its spin is polarized along the z-axis with sz ¼ 3=2 and sz ¼ 1=2, respectively. In the left (right) panel, ρch with
sz ¼ 3=2 (sz ¼ 1=2) is depicted.
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out the 2D distribution from the 3D one. In the projection,
the quadrupole structure induces the monopole contribu-
tion, so the monopole charge distribution is subjected to the
quadrupole contribution [41,50]. In addition, this projec-
tion brings about the spin-polarization dependence of the
monopole charge distribution and under the Lorentz boost,
the transverse charge distributions with sz ¼ 1=2 and sz ¼
3=2 are altered in a different manner. As demonstrated in
Fig. 1, ρch with sz ¼ 1=2 changes stronger than that with
sz ¼ 3=2 as Pz increases.
In Fig. 2, we draw the y-axis profiles of the transverse

charge distributions of the moving Δ0 baryon as Pz
increases from Pz ¼ 0 to Pz ¼ ∞. Again, its spin is
polarized along the z-axis with sz ¼ 3=2 and sz ¼ 1=2,
respectively. We observe that the relativistic effects (or
Lorentz-boost effects) are prominent in the neutral Δ0

baryon. Note that the transverse charge distribution of the
neutral Δ0 is normalized to its zero charge. It indicates that
ρch must at least have one nodal point. For sz ¼ 3=2, the
charge distribution spread widely and its nodal point is

placed at a distance. As Pz increases from Pz ¼ 0 to
Pz ¼ ∞, the core part of the charge distribution gets
weaker, whereas the tail part slowly gets lessened. So,
the nodal point moves away to the outer part of the baryon.
When it comes to sz ¼ 1=2, the configuration of the
transverse charge distribution is dramatically changed
under the Lorentz boost. In the rest frame (Pz ¼ 0), the
center of the Δ0 baryon is positively charged, whereas the
outer part is negatively charged. When the system is
boosted, the positive core gets weaker and then turns
negative at around Pz ∼ 2.8 GeV. It is very similar to
the behavior of the transverse neutron charge distribution
under the Lorentz boost [35].
If the baryon is longitudinally polarized, then one can get

access to the electric monopole and quadrupole form
factors only. To see the additional contributions from the
other form factors, the spin of the Δ baryon should be
polarized transversely. We express the transverse spin basis
sx in terms of the sz basis. Then the spin states sx ¼ 1=2
and sx ¼ 3=2 are given [19] by

jsx ¼ 3=2i ¼ 1ffiffiffi
8

p ðjsz ¼ 3=2i þ
ffiffiffi
3

p
jsz ¼ 1=2i þ

ffiffiffi
3

p
jsz ¼ −1=2i þ jsz ¼ −3=2iÞ;

jsx ¼ 1=2i ¼ 1ffiffiffi
8

p ð
ffiffiffi
3

p
jsz ¼ 3=2i þ jsz ¼ 1=2i − jsz ¼ −1=2i −

ffiffiffi
3

p
jsz ¼ −3=2iÞ: ð29Þ

When the Δ baryon is transversely polarized along
the x-axis, its transverse charge distribution starts to get
deformed as Pz increases. In the presence of the external
magnetic field B, the electric dipole moment is induced
by the moving Δ baryon, which produces the electric field
E0 depending on the velocity v of the moving Δ, i.e.,
E0 ¼ γðv × BÞ. A similar feature was also observed in the

case of the neutron [7]. In addition, the induced electric
octupole moment is also caused by this relativistic motion
and results in the deformed charge distribution with the
octupole pattern, unlike the nucleon. Figures 3(a)–3(d)
depict the numerical results of the monopole, dipole,
quadrupole, and octupole patterns of the Δ baryon charge
distribution, respectively, when the Δ is polarized along the

FIG. 2. The y-axis profiles of the transverse charge distributions of the moving Δ0 baryon as the longitudinal momentum Pz increases
from Pz ¼ 0 to Pz ¼ ∞. Its spin is polarized along the z-axis with sz ¼ 3=2 and sz ¼ 1=2, respectively. In the left (right) panel, ρch with
sz ¼ 3=2 (sz ¼ 1=2) is depicted.
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FIG. 3. (a) Monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) transverse charge
distributions of the Δþ baryon when its spin is polarized along the x-axis with sx ¼ 3=2.

TWO-DIMENSIONAL TRANSVERSE CHARGE DISTRIBUTIONS … PHYS. REV. D 107, 074004 (2023)

074004-9



FIG. 4. (a) monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge distributions
of the Δþ baryon when its spin is polarized along the x-axis with sx ¼ 1=2.
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x-axis with sx ¼ 3=2. One can obviously see that while the
higher multipole contributions are found to be marginal, the
dipole contribution arises as the most dominant one to
deform the transverse charge distribution. At the rest frame,
the dipole contribution is null, so the charge distribution
is symmetric with respect to y ¼ 0. Once the Δ is boosted,
the dipole contribution starts to increase and reaches its
maximum value at around Pz ∼ 1.4 GeV. Then it dimin-
ishes gradually. At Pz ∼ 10 GeV, the size of the dipole
contribution arrives at the minimum and then it starts to
increase again but its sign is reversed [see Fig. 3(b)].
In the rest frame, the quadrupole contribution survives

and makes the transverse charge distribution broaden. If the
Δ is boosted, the positive quadrupole contribution turns
negative at around Pz ∼ 1.4 GeV. Figure 3(e) draws the
charge distribution of the Δþ baryon with sx ¼ 3=2, which
is the sum of Figs. 3(a)–3(d). As shown in Fig. 3(e), the
transverse charge distribution starts to be tilted to the
positive x⊥-direction till Pz ¼ 1.4 GeV and becomes sym-
metric with respect to x⊥ ¼ 0 at around Pz ∼ 10 GeV
again. When Pz increases more, the charge distribution
starts to move to the left x⊥-direction. In the IMF
(Pz ¼ ∞), we obtain the Δþ charge distribution with
sx ¼ 3=2 shifted to the left direction, which is consistent
with the results from the lattice QCD [19]. Note that the
induced electric dipole moment of the proton is defined as
GN

M1ð0Þ −GN
E0ð0Þ > 0, whereas that of the Δ baryon is

proportional to GΔ
M1ð0Þ − 3GΔ

E0ð0Þ < 0, so that charge
distribution of the Δþ is shifted to the left, which is

opposite to the transverse proton charge distribution (see
also Ref. [19]).
In Figs. 4(a)–4(d) we present the numerical results for

the monopole, dipole, quadrupole, and octupole patterns of
the transverse Δþ charge distribution when it is polarized
along the x-axis with sx ¼ 1=2. The sum of the total
contributions is drawn in Fig. 4(e). They show a tendency
similar to the sx ¼ 3=2 case. However, the strength of the
dipole contribution is almost a half of that with sx ¼ 3=2.
So, the shape of the charge distribution is almost kept to be
symmetric, and in the IMF they are shifted to the negative
x⊥-direction with respect to x⊥ ¼ 0, which is also con-
sistent with the results from Ref. [19].
In the upper panel of Fig. 5 we illustrate the transverse

charge distributions of the moving Δþ baryon transversely
polarized along the x-axis with sx ¼ 3=2. As shown in
Figs. 3 and 4, the charge distribution is deformed along the
y-axis due to the presence of the quadrupole contribution,
so that it is not spherically symmetric. Of course, there are
no induced electric dipole and octupole contributions. The
first column in Fig. 6 [Figs. 6(a), 6(e), 6(i), and 6(m)] shows
the separate multipole contributions when the Δþ is at rest.
Since the electric dipole moment is induced as the Δþ
baryon is boosted along the z-axis, the transverse charge
distribution starts to get deformed. At around Pz ¼ 2 GeV,
the charge distribution is shifted to the positive x⊥-axis due
to the induced dipole contribution. On the other hand, the
quadrupole contribution is relatively small in comparison
with the dipole one. One of the remarkable features is that

FIG. 5. (a)–(d) 2D charge distributions of the movingΔþ baryon transversely polarized along x-axis with sx ¼ 3=2; (e)–(h) 2D charge
distributions of the moving Δþ baryon transversely polarized along x-axis with sx ¼ 1=2.
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the sign of the quadrupole contribution is reversed at
around Pz ∼ 1.4 GeV. See the second column in Fig. 6
[Figs. 6(b), 6(f), 6(j), and 6(n)]. However, when the system
is boosted larger than Pz ∼ 10 GeV, the sign of the induced
dipole contribution is reversed, so the charge distribution is

moved to the opposite direction, while the higher multi-
poles contribute marginally to the charge distribution. In
the IMF, however, the quadrupole contribution dominates
over the dipole contribution. See the last column in Fig. 6
[Figs. 6(d), 6(h), 6(l), and 6(p)]. When it comes to the

FIG. 6. (a)–(d) monopole, (e)–(h) dipole, (i)–(l) quadrupole, and (m)–(p) octupole contributions of Δþ with sx ¼ 3=2 to the 2D charge
distribution.
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sx ¼ 1=2, the tendency is almost the same as the case of
sx ¼ 3=2, but the quadrupole contribution has the opposite
sign at the rest frame. So, the charge distribution broadens
along the x-axis instead of the y-axis. See the first column
in Fig. 7 [Figs. 7(a), 7(e), 7(i), and 7(m)].

We also examine how the transverse charge distribution
of the Δ0 baryon transversely polarized along the x-axis
varies under the Lorentz boost. In Fig. 8, we draw the
transverse charge distributions of the Δ0 baryon when its
spin is polarized along the x-axis with sx ¼ 3=2. See Fig. 8

FIG. 7. (a)–(d) monopole, (e)–(h) dipole, (i)–(l) quadrupole, and (m)–(p) octupole contributions of Δþ with sx ¼ 1=2 to the 2D charge
distribution.
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[Figs. 8(a)–8(e)]. We found that the transverse Δ0 charge
distribution is dramatically changed under the Lorentz
boost, in contrast with that of the Δþ baryon. At the rest
frame, the monopole contribution is positive at the inner

part, whereas the quadrupole contribution is negative over
r. Obviously, there are no induced dipole and octupole
contributions. So, while the transverse charge distribution
is kept to be positive at the core part, the quadrupole

FIG. 8. (a) Monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge distributions
of the Δ0 baryon when its spin is polarized along the x-axis with sx ¼ 3=2.
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contribution pulls it down to be negative at the outer part.
As a result, the nodal point of the transverse charge
distribution gets close to the center of the Δ0 baryon
due to the quadrupole contribution. As Pz increases, the

charge distribution starts to be deformed. The dominant
contribution to ρchðx⊥Þ is the monopole one, and it is
always kept to be positive at the core part. As we explained
before, the monopole contribution to the transversely

FIG. 9. (a) monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge distributions
of the Δ0 baryon when its spin is polarized along the x-axis with sx ¼ 1=2.
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polarized charge distribution under the Lorentz boost turns
out to be always positive at the core part, though there is a
sign flip of the longitudinally-polarized charge distribution.
The quadrupole contribution turns positive at around
Pz ∼ 4.0 GeV at the core part. At the same moment, the
induced dipole contribution pushes the charge distribution
to the negative y-direction, which dominates over the
higher multipole contributions. The value of the GΔ0

M1ð0Þ ∼
−0.3μN [44] is solely governed by the induced dipole
moment because of the GΔ0

E0ð0Þ ¼ 0. This is the reason why
the transverse charge distribution of the Δ0 is deformed as
that of the neutron, i.e., Gn

M1ð0Þ ¼ −1.91μN [51], as shown
in Fig. 8(e).
In the IMF, we finally obtain the transverse charge

distribution shifted to the negative y-axis. When the spin
projection is sx ¼ 1=2, we are able to see that quadrupole
contribution is opposite to the sx ¼ 3=2 case in the rest
frame. See Fig. 9 [Figs. 9(a)–9(d)]. The quadrupole
contribution makes a rather weak plateau at the core part
of the charge distribution, which is a similar feature to the
deuteron charge distribution [25,41]. When the system is
boosted, the quadrupole contribution is relatively sup-
pressed and the induced dipole contribution dominates
over it. In the IMF, we obtained the Δ0 charge distribution
sx ¼ 1=2, which has a similar shape and strength to that
with sx ¼ 3=2.
In the upper panel of Fig. 10, we draw the 2D charge

distributions of the moving Δ0 baryon transversely polar-
ized along the x-axis with sx ¼ 3=2. As shown in Figs. 8

and 9, the charge distribution is squeezed along the y-axis
due to the presence of the quadrupole contribution at
the rest frame. See the first column in Fig. 11 [Figs. 11(a),
11(e), 11(i), and 11(m)]. If the Δ0 baryon starts to move
along the z-axis, the electric dipole is induced and deforms
the charge distribution. So, the charge distribution starts to
be tilted to the negative y-direction, and the dipole con-
tribution is saturated to GΔ0

M ∼ −0.3 in the IMF. Together
with the quadrupole and octupole contributions, we
obtained a rather complicated structure of the charge
distribution of the Δ0 with sx ¼ 3=2 in the IMF in
Fig. 10. When it comes sx ¼ 1=2, the tendency is almost
kept to be the same as sx ¼ 3=2, but the opposite sign of the
quadrupole contribution squeezes the charge distribution
along x-axis instead of y-axis at the rest frame. See the first
column in Fig. 12 [Figs. 12(a), 12(e), 12(i), and 12(m)].

IV. SUMMARY AND CONCLUSIONS

In the present work, we aimed at investigating how the
transverse charge distributions of both the unpolarized and
transversely polarized Δ baryon change under the Lorentz
boost from Pz ¼ 0 to Pz ¼ ∞ in the Wigner phase-space
perspective. We first observed that the elastic frame
naturally interpolates the transverse charge distributions
between the Breit frame and infinite momentum frame,
even for the spin-3=2 particle. In this elastic frame, the
transverse charge distributions acquire four different con-
tributions: the monopole, quadrupole, induced dipole, and

FIG. 10. (a)–(d) 2D charge distributions of the moving Δ0 baryon transversely polarized along x-axis with sx ¼ 3=2; (e)–(h) 2D
charge distributions of the moving Δ0 baryon transversely polarized along x-axis with sx ¼ 1=2.
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induced octupole contributions. To visualize them in the
2D space, we employed the electromagnetic form factors
of the Δ baryon extracted from the SU(3) chiral quark-
soliton model. The Lorentz boost and the geometrical
projection from the 3D to 2D spaces yield a split in the
spin-polarization of the monopole and induced dipole

contributions. When both the Δþ and Δ0 baryons are
polarized along the z-axis, we found that their charge
distributions are always kept to be spherically symmetric
under the Lorentz boost. For the Δ0, the shape of the
transverse charge distribution was dramatically changed
under the Lorentz boost, which is similar to the neutron

FIG. 11. (a)–(d) monopole, (e)–(h) dipole, (i)–(l) quadrupole, and (m)–(p) octupole contributions of Δ0 with sx ¼ 3=2 to the 2D
charge distribution.
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case. When the Δ baryon is transversely polarized along
the x-axis, all the multipole structures start to appear.
In the rest frame, the quadrupole contribution does not
vanish and makes the charge distribution deformed. When
Pz increases, the dipole and octupole contributions are
induced and cause the asymmetry of the transverse charge

distribution. For the Δþ baryon with sx ¼ 1=2 and
sx ¼ 3=2, the charge distributions start to be shifted to
the positive y-direction and reach the maximal values of the
electric dipole moments at around Pz ∼ 1.4 GeV and gradu-
ally diminish. They turn negative at around Pz ¼ 10 GeV.
As a result, the transverse charge distributions of the

FIG. 12. (a)–(d) monopole, (e)–(h) dipole, (i)–(l) quadrupole, and (m)–(p) octupole contributions of Δ0 with sx ¼ 1=2 to the 2D
charge distribution.
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transversely polarized Δþ baryon along the x-axis is moved
to the negative y-direction in the infinite momentum frame.
We found that these results are consistent with the results
from the lattice QCD for the Δþ. For the Δ0 baryon, the
positive charges, which represent the up quark inside the Δ0

baryon, were displaced to the negative y-direction whereas
the negative charges or the down quarks were moved toward
the positive y-direction. This is due to the negative values of
the electric dipole moment (GΔ0

M1 ∼ −0.3) of the Δ0 baryon.
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APPENDIX: FRAME-DEPENDENT FUNCTIONS

In this appendix we list the explicit expressions of the
frame-dependent functions for both temporal and spatial
components of the EM current. To express them in a
compact way, we introduce the following functions:

A ¼ 1

MðM þ P0Þ
; β⊥n ¼ 1þ q⃗2⊥

nMðM þ P0Þ
;

βzn ¼ 1þ P2
z

nMðM þ P0Þ
: ðA1Þ

All the frame-dependent functions appearing in the matrix
element of the temporal component of the EM current are
listed as follows:
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All the frame-dependent functions appearing in the matrix element of the spatial components of the EM current are listed as
follows:
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Negele, V. Pascalutsa, A. Tsapalis, and M. Vanderhaeghen,
Nucl. Phys. A825, 115 (2009).

[20] D. Chakrabarti and C. Mondal, Eur. Phys. J. A 52, 285
(2016).

[21] H. Alharazin, B. D. Sun, E. Epelbaum, J. Gegelia, and U. G.
Meißner, J. High Energy Phys. 02 (2023) 163.

[22] C. E. Carlson and M. Vanderhaeghen, Eur. Phys. J. A 41, 1
(2009).

[23] C. Mondal, D. Chakrabarti, and X. Zhao, Eur. Phys. J. A 53,
106 (2017).

[24] C. Huang and B. Q. Ma, Nucl. Phys. A968, 14 (2017).
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