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ABSTRACT
The (e, e'p) Reaction Mechanism in
the Quasi-Elastic Region
Dipangkar Dutta

Coincidence (e, e'p) yield for the quasi-elastic scattering of electrons from hydrogen,
carbon, iron and gold nuclei were measured at squared four momentum transfer of
0.64, 1.28, 1.79 and 3.25 (GeV?). The experimental yield divided by the yield from
a Plane Wave Impulse Approximation simulation of the experiment was used to
calculate the transparency of the nuclear medium to the recoiling proton. Trans-
parency is studied as a function of momentum transfer and nuclear size. The
experimental yield was also used to extract deradiated spectral function for car-
bon, iron and gold. These spectral functions were used to separate the longitudinal
and transverse components of the spectral function for carbon, iron and gold at
squared four momentum transfer of 0.64 (GeV?) and carbon and iron at squared

four momentum transfer of 1.79 (GeV?).

The goal of this experiment was to study the reaction mechanism of the quasi-
elastic scattering process and the propagation of protons through atomic nuclei.
The results of this experiment identify important aspects of the final state inter-
actions between the recoiling proton and the residual nucleus. The results also
provide insight into the single-nucleon knockout picture of the quasi-elastic re-
action mechanism and verify the validity of approximations such as the Impulse

Approximation and other reaction mechanisms used to describe (e, ¢'p) scattering.
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Chapter 1

Introduction

In 1962 Jacob and Maris [1] pointed out that quasi-elastic (e, €'p) scattering had
the potential to be a powerful experimental technique to probe the energy lev-
els and structures of the shells of light and medium nuclei. In the same year M.
Croisssiaux [2] was able to detect electron-proton coincidences in inelastic electron-
Deuteron scattering, using the Stanford Mark III linear accelerator and a pair of
spectrometers at R. Hofstadter’s laboratory. This was followed by measurements
of the coincidence cross-section of quasifree electron-proton scattering from *H and
3He in 1964 [3]. The shell structure of 12C and 2"Al and the shell binding energies
were first measured with quasi-elastic (e, €'p) scattering in 1964 by U. Amaldi et
al. [4] at the Frascati synchrotron. These results convinced experimenters that
quasi-elastic (e, €'p) scattering was a very versatile tool indeed. Ever since it has
lent itself dutifully as an excellent tool for studying nuclear structure. The advan-
tages of (e, e'p) scattering are the relative weakness of electro-magnetic interaction
which enables the electron to probe the entire nuclear volume and the thorough
knowledge of the electron-photon vertex, which helps isolate the strong interaction
in the nucleus. Over the last three decades the results of quasi-elastic (e, e'p) scat-

tering from a host of nuclei have provided very convincing evidence of the nuclear



shell structure and precise information about the properties of these shells. Many
results of the quasi-elastic scattering can be explained in terms of Plane Wave Im-
pulse Approximation (PWIA) and an Independent Particle Shell Model (ISPM).
However, these models cannot reproduce some of the observations, such as the
20-30% reduction in the occupancy of orbitals deduced from the data [4, 5, 6, 7, 9]
and the indications of contributions from multi-nucleon currents [10, 12, 11]. In
order to understand these observations one needs to study the mechanism of the

(e, €'p) scattering carefully and systematically.

The (e, €'p) reaction has three basic components:

e (7) the electron-proton coupling, ie. the interaction of the incident electron

with a proton embedded in the nuclear medium.
e (7i) the single particle structure of the target nucleus.

e (7i7) the final state interaction, ie. the interaction of the knocked out proton

with the residual nucleus.

The careful investigation of the primary electron-proton coupling can tell us if
there are any media modifications of this coupling or if there are signatures of non-
nucleonic effects in the nuclei. It is common practice to describe the e-p coupling
as a interaction between an electron and a free proton with some corrections for
the binding of the proton (for example the prescription due to T. de Forest [13]).
The nuclear medium may modify this coupling, as suggested by inclusive electron
scattering experiments [14] which have shown that the ratio of the transverse to
the longitudinal response functions in the quasi-elastic region deviates significantly
from what is expected if the coupling is same as that for a free proton. There are
several theories which can be used to account for these effects in terms of modifi-

cation of the electromagnetic properties of the nucleon in the nuclear environment.



Some of these theories propose partial de-confinement of the quarks [15, 16], while
others predict similar effects with meson models [17]. The correct descriptions can

only be picked out with further experimentation.

The final state interactions (FSI) provide information about the proton prop-
agation through the nuclei and about the coupling between the various reaction
channels. An elegant method to study proton propagation is to measure the nu-
clear transparency via (e, e'p) reactions. Transparency is the fraction of the pro-
tons which escape from the nucleus without interaction. The (e, e'p) reaction is
especially suited for studying proton propagation since the electron can probe the
entire nuclear volume, unlike proton-nucleus scattering which primarily probe the

surface.

In theoretical models FSI are usually (in distorted wave impulse approxima-
tion, DWIA) incorporated in terms of proton optical potentials, the parameters of
which are obtained from proton-Nucleus elastic scattering experiments. There are
indications that FSI need more detailed investigation [18], of effects such as the

role of channel coupling in the final state of (e, ¢'p) scattering.

Thus both the electron-proton coupling and the FSI need to be studied in order
to decipher the momentum distribution of the nucleons, the occupation numbers
of nuclear shells and the ground-state correlations in nuclei. Part of the work
described in this thesis is intended for this very purpose. The aim of the study
described here is to understand FSI by comparing measured cross-sections with
various model calculations and to provide momentum distributions of the nucleons

to help understand the nuclear structure and the reaction mechanism.

With the advent of CW (continuous wave) electron accelerators and high res-
olution and large acceptance spectrometers it has become possible to probe the

nuclear structure very accurately. The experiment to study proton propagation



and the reaction mechanism of quasi-elastic (e, ¢'p) scattering was carried out at
the Thomas Jefferson National Accelerator Facility (TJNAF, a CW accelerator)
in experimental Hall C, using the High Momentum Spectrometer (HMS) and the
Short Orbit Spectrometer (SOS) in coincidence. Data were collected on three
nuclear targets Carbon, Iron and Gold, at four momentum transfer squared Q2
ranging from 0.6 to 3.2 GeV? (in this thesis we use the convention; speed of light, ¢
= 1 and Planck’s constant divided by 27, i = 1), and over a range of final proton

angles to span the typical initial momentum of the nucleons in the nucleus.

This thesis presents the analysis of the aforementioned data to better under-
stand the quasi-elastic (e, e'p) reaction mechanism. Chapter 2 contains a survey of
the formalism of the (e, e'p) reaction, the physics picture that can be derived from
existing data and also some results from previous experiments which help motivate
this experiment. Chapter 3 and chapter 4 describe the experiment and the data
analysis. Chapter 5 contains the final results which include extraction of nuclear
transparency and momentum distributions of the protons in the nucleus and the
separated longitudinal and transverse response functions. Finally Chapter 6 has

the conclusions and the summary.



Chapter 2

Quasi-Elastic Scattering

2.1 Introduction

This chapter presents a brief survey of the quasi-elastic (e, ¢'p) reaction. A simple
schematic (Figure 1) is used to introduce the scattering process followed by a
discussion of a general formalism of the process under the Born approximation.
Next the plane wave impulse approximation (PWIA) is described followed by a
discussion of an improvement to this approximation, the distorted wave impulse
approximation (DWIA). Finally some alternative approximation schemes called
high energy or Glauber approximations are described. The approximation schemes
discussed in this chapter are the ones used in the different theoretical calculations
which will be compared to the experimental data presented in this thesis. A more
general discussion and detailed derivation of the cross-sections for this process can
be found in any of the several review articles on the subject. The most notable
among them are the extensive review by Frullani and Mougey [19] and the recent
review by J. Kelly [20]. Only aspects of the theory needed to interpret the present
data are reviewed. The final section of this chapter reviews some of the existing

(e, €'p) scattering data and their physical interpretation.
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Figure 1: A schematic of the (e, ¢'p) scattering process

The (e, €'p) scattering process involves an incoming electron scattering off a
proton in the target nucleus knocking it out of the target, the scattered electron
and the knocked out proton being detected in coincidence. The schematic is shown

in Figure 1 and the process can be written as:

et+A—e+p+B (1)

One would like to describe this process as generally as possible. However, due
to incomplete knowledge of the nuclear interactions, one is forced to make some
approximations. The first approximation is that the interaction responsible for the
electron-nucleus scattering (denoted by Hy) can be separated from the other inter-
actions which are treated as distortions to the particle waves. Denoting the various
electron-nucleus interactions as h; and hy (Figure 2), and the distorting potential
between p and B as V, the process can be described in the complete distorted
wave Born approximation. The diagram for the process under this approximation

is shown in Figure 2. The total Hamiltonian for the initial state is,

H = H; + h; + Hy, (2)
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Figure 2: (e, €'p) scattering diagram under complete distorted wave Born approx-
imation

where H; is the free Hamiltonian describing the initial asymptotic state where the
different particles (the electron and the nucleus) are free from interaction. Similarly

the total Hamiltonian for the final state is,
H=H;+h;+V+Hy, (3)

here Hy is the free Hamiltonian describing the final asymptotic state where the
particles (the scattered electron, proton and B) are free from interaction. Under
the Born approximation ( the interaction Hy acts only once or a single photon is
exchanged) and considering the distorting electron-nucleus interaction h and the
the distorting potential V' to all orders one gets the transition matrix between the

initial and final state as:
Ty =< 8 |Hld" > . (4)

Here |gz_5§c_) > and |gz_5£+) > are the distorted state-vectors, which are the solutions of

H;+hs+V and H,+ h; respectively. Here the approximation about the separation



of the interactions ensures that transition amplitude arising due to the distorting
potentials (A and V') vanish, because these interactions cannot connect the initial
and final channels. These set of approximations are called the complete distorted

wave Born approximation (CDWBA).

The most general expression for electron-nucleus interaction is ,
H[(IB)\) = —€A’U(IB)\)JH(£L’)\), (5)

where A*(z,) is the Moller potential at 4-space point z, representing the electro-
magnetic field associated with the electron and j,,,(x,\) is the nuclear current density
operator at the same 4-space point. The Moller potential is related to the electron

current density operator according to the Maxwell equation:

DA (22) =< julza) > (6)
where,

< Julea) >= e¥(ar)y, (), (7)

here ¥ and ¥ are the positive energy solutions to the Dirac equation for free

particles.

One can substitute Equation 5 as the expression for the electron-nucleus inter-
action in the expression for the transition amplitude (Equation 4), to derive the
general expression for the coincidence cross-section by evaluating the square of the
transition amplitude over all initial and final states 3, 5, |T:|*. The distorted

state-vectors are calculated in terms of the expansions -

|€l—57(:+) >= ¢ > +

B (ot )+ il 10> (®)



and

1
E—(Hf+hy+ V) +ic

165 >= ¢, > + (hy +V)|os > . (9)

Here |¢; > and |¢f > are the stationary solutions of H,; and Hj respectively
and are products of electron state vectors and nuclear state vectors. Using this
formulation one can derive the most general expression for the coincidence cross-
section for the (e, e'p) scattering process. However, these calculations can be done
only be done by employing further approximations, as the exact nature of all the
interactions are not known. Various approximation schemes were developed which
help calculate the coincidence cross-section much more easily and elegantly. Some

of these approximations are explained in the following sections.

2.2 Plane Wave Born Approximation

The simplest method to make the above problem tractable is called Plane Wave
Born Approximation. In this scheme the distorted state vectors shown in Equa-
tion 8 and 9 are approximated by the plane waves which form the first terms of

those expansions. This reduces the transition amplitude (Equation 4) to:
Tyi =< ¢g|Hy|gi > (10)

and the square of the transition amplitude over all initial and final states 3=, 5, |Ts:]
can be obtained as the contraction of the electron tensor ., A#A** = n*” and

the nuclear tensor W, = > h; < j,,, > j:,‘ >,

Y ThPP = KW, (11)

ss!
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Under this assumption one gets the coincidence cross-section to be of the form

dSc

m = K(Poofoo + p++fr+ + por for + p+_f+_), (12)

where K is a kinematic factor and p,, are the nonzero components of the electron
current density tensor, while the form factors f,, are components of the nuclear

current density tensor and their physical significance is listed below.

foo describes the nuclear response function for a purely longitudinal virtual

photon coupling to an electron.

f+4+ corresponds to the response to coupling between a purely transverse

virtual photon with an electron.

fo+ 1s a longitudinal-transverse interference term.

f+— 1s a transverse-transverse interference term.

2.3 Plane Wave Impulse Approximation

The elastic electron-proton scattering is the simplest (e, e'p) reaction where plane
wave initial and final states are an excellent approximation. The scattering cross-
section calculated for one photon exchange is called the Rosenbluth cross-section.

It has the form:

do do Q?
- — = X G2 2 T T€_1G2 2 13
5= (5)  hee e (13
where 7 = gij—l, ¢ 1s the virtual photon polarization parameter, ¢ = m
and @? is the momentum transfer squared given by Q* = —g,q", here ¢* is the

4-momentum transfer given by ¢* = (w,q), where w is the energy loss given by
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the difference between the incident and the final electron energies while ¢ is the
vector difference between the initial and final electron momenta. The differen-
tial cross-section for elastic scattering off a point charge (%)Motb called the Mott
cross-section, is given by,

do a? (:052(9/2)

(E)Mott = s (0)2) (14)

Here a is the fine structure constant. In this picture the structure of the
proton is accounted for in terms of the electric and the magnetic form factors Gg
and Gy respectively. These form factors can be approximated in terms of the

dipole form [22], shown below:

2y A Q_2 -
Ge(@) ~ (14 577) ’

u(Q%) = 1, Ge(Q?), (15)

where p, is the magnetic moment of the proton. These forms were determined
by parameterizing elastic electron-proton scattering data over a wide range of

momentum transfer ¢) (Figure 3).

When we study (e, e'p) scattering from nuclear targets, this simple picture is
no longer valid. The bound nucleon is off shell and the electro-magnetic current
which couples to the virtual photon is now dependent on the interaction of the
nucleon with the surrounding nuclear matter. Also the initial and the final energy
and momentum of the particles involved can be modified by initial state and final
state interactions. Initial state interactions include Coulomb distortions of the in-
coming electron and the correlations between the primary nucleon involved in the
scattering with the other nucleons in the target. Final state interactions include
rescattering of the knocked out proton and other interactions of the outgoing pro-

ton with the rest of the nucleons. These processes are described by adopting a
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set of approximations known as the plane wave impulse approximation (PWIA).
The kinematics of the (e, €'p) reaction under PWIA is shown in the Figure 4. The
incoming electron with momentum k emits a virtual photon with energy w and
momentum ¢, the scattered electron has momentum k. The photon 1s assumed to
couple to a single proton in the target nucleus which is knocked out of the nucleus
with momentum ]5; . The scattered electron and the scattered proton are detected
in coincidence. The PWIA includes a set of approximations known as Impulse Ap-
proximation (IA) whereby the nucleons are treated as independent current /charge
distributions interacting in the mean field of the rest of the nucleons, neglecting all
exchange currents between the nucleons. The other assumptions used are; undis-
torted plane waves can be used to describe the incident and the final electron and
nucleon wave functions, single photon exchange is sufficient to describe the scatter-
ing process, free nucleon form factors can be used to describe the bound nucleons
and the kinematics of the reaction is not changed by the final state interactions.
Several of these approximations improve with increasing energy and momentum
transfer, as the strength of the higher order terms and the effect due to the final
state interactions of the knocked out nucleon with the residual nucleons decreases

(although FST increases) at higher energies.

Important kinematic quantities which can be measured under these assump-
tions (PWIA) are the missing energy, F,, and missing momentum, p,,. These can
be interpreted as measures of the separation energy and initial momentum of the
proton in the nucleus. The definitions of these quantities in the lab frame, where

E4 = M4 and separation energy Fy = Ma_1 + M, - M4 are given below;

E,=w-— Tp/ —Th 1 =w-— Ep/ + M, —Ta_y, (16)

Pm=p —q. (17)
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(EA-1PA-1)

Figure 4: (e, €'p) scattering diagram under plane wave impulse approximation

Here w is the energy transfer, ¢ is the 3 momentum transfer from the electron
to the nuclear system, 7' is the momentum of the outgoing proton, M, is the
proton mass, 7,y and T4_; is the kinetic energy of the outgoing proton and the
recoiling A-1 nucleons respectively. There are two kinematic configuration which
are commonly used in (e, ¢'p) experiments, parallel kinematics where ﬁ is parallel
to ¢ and perpendicular kinematics where ¢ and w are kept constant and the p,, is

varied by changing the angle between ¢ and p/.

Under the PWTA the coincidence (e, €'p) cross-section is expressed in terms of
four form factors [23],
d®c
dEy dQedEy dSl,y

= plEp’UMott
)2 5 2 Q
Wa(g,) + (5 + tan*(5)Wala, )+

A(A+ tanQ(g))l/QWLT(q, w)cos(¢) + %WTT(q, w) cos(29)]. (18)
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Where \ = %—z, 6 1s the scattering angle and ¢ is the azimuthal angle between
the scattering plane and the plane containing ¢ and ];7 The response functions
Wi r.Lrrr contain the information about the nuclear structure and the electron-
photon coupling which we aim to learn from (e, e'p) experiments. These response
functions can be expressed in terms of the product of matrix elements A, of the

nucleon current between the initial and final nuclear states [24]:

M, = /dPid85(Pm, —pi)Ju(q, pi, o) Pir(Pis 9). (19)

Here we have used the plane wave approximation to represent the wave function
of the outgoing proton, u corresponds to a particular component of the nucleon
current operator, p; is the initial momentum of the proton in the nucleus, s is the
nuclear spin, o is the spin operator, J, is the nucleon current operator and ®;;
is the overlap integral between the initial and the final nuclear states. A detailed
description of the nucleon current J, and its connection to the response function

is discussed at the end of this section.

When summed over all spins Equation 19 becomes:
MM = JN(q7 Pm)q)ff(pm) (20)
The overlap integral ®,;;(p,,) can also be written as:
1 .
®(bu) = oy / ®;(r)ewp(—ipy.r)dr. (21)
In the independent particle shell model (IPSM) [24]:
®;f(r) = Si(Ei)"* Ruj(r)Yim(©, 9), (22)

here S;(E;) is the probability of finding a proton with binding energy E; and

quantum number ¢ while R,;; and Y}, are the radial and angular part of the
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wave function. This is valid only in IPSM. If one were to consider the final state
interaction and the ground state correlations in the wave function of the target

nucleus then the overlap integral would have a much more complicated form.

If one substitutes the expression for the matrix element Equation (19) into the

cross-section expression Equation (18), then the cross-section factorizes as [19]:

dSc
dE.dQdE,dQ,

= plEp’O-epS(Es;pm) (23)

where o, is the off-shell electron-proton cross section, which is calculated in
terms of the on-shell nucleon form factors with corrections for the binding of the
nucleon. For o, a prescription based on current conservation developed by de
Forest [13] is most commonly used. S(E, p.,) is called the spectral function
which is the probability of finding a proton, with momentum p,, and separation

energy F,, inside the nucleus. It is given by:
S(Ey,puw) = Y Nyl ®ig(Pu)[P6(E, — Ef — Ej). (24)
!

Ny is the occupation number of the orbital f with 35; Ny = Z. The normalization

of the spectral function S(Es, p,,) is given in terms of the spectroscopic sum rule:
Z = /S(Eb‘)p'm)dgpdes, (25)

2.3.1 The Nucleon Response Functions

We have seen from Equation (19) above that the nucleon response functions arise
from the products of different components of the nuclear current. Here we take a
closer look at each of these components. The matrix element of the nuclear current

density between the initial and the final states is J}; = (pyi,J ;). Choosing the z
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direction to be along ¢ we see that there are three independent components of the

nuclear current [24, 20].

Jﬁ(@ = %J]q‘i(cf)a
@) = F U@ % i), (26)

Using this one can write down the four response function as [24, 20]:

Wy = [JADP = lpr(DP,
Wr = [JFHDP+ TN =< JpJ) + JuTl >,
_ +1/ % 7—1 _ il T
WTT = 2R6J1 (q) ‘]f7 (@ = COS2¢ < J”J” - JJ_JJ_ >,
. _ 1
Wir = —QREPfi(‘f) (J}tl(‘f) - szl(‘.m = _@ < PJ|J|r + JIIPJr > (27)

Here Jj is nuclear current in the scattering plane, and .J; is the current orthog-
onal to the scattering plane. ¢ is the angle between the scattering plane and the
plane containing the incident electron and the scattered proton. The longitudinal
response function Wy, is due to the charge only ( longitudinal component of the
current ), while the transverse response function Wy is the incoherent sum of con-
tributions from the components transverse to the direction of the virtual photon
q. The other two terms are interference terms. From these expressions one also
notices the advantages of parallel kinematics (which was introduced in the previ-
ous section). In parallel kinematics the scattered proton is detected parallel to the
direction of ¢ thus the two interference terms drop out since they are averaged over

all out of plane angles ¢ and also because they are functions of sin#° and sin? #°
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respectively with §° being the angle between the ¢ and the outgoing proton (8¢ =
0 for parallel kinematics). This implies one can separate the longitudinal and the
transverse response functions by keeping the momentum transfer constant while
varying the scattering angle. This technique is known as the Rosenbluth separa-
tion. The interference response functions Wrr can be extracted by measuring the
proton out of plane with respect to the scattering plane, while the Wy response
function can be extracted in plane by making measurements away from parallel

kinematics.

2.4 Distorted Wave Impulse Approximation

In the previous section we made an assumption that there is no interaction between
the knocked out proton and the residual nucleons, that is, no final state interactions
(FSI). However, to calculate the coincidence cross-section accurately one has to
relax this approximation. In this section we will examine one such model, the
distorted wave impulse approximation (DWIA) where this assumption is discarded.
We still retain the assumption that a single photon is exchanged in these reactions.

The Feynman diagram for the process is shown in Figure 5.

In the previous section the matrix element of the nucleon current (Equation 19)
was simplified by using a plane wave for the outgoing proton. In this section these
matrix elements have to be evaluated in terms of the distorted wave function, &

of the outgoing proton. So the equation for the matrix element now becomes:

Mlt = /dpidsgp*’(q+pizS)Jﬂ(q’pha)@if(pias)- (28)

The distorted wave functions, £ are usually single particle wave functions in

an average optical potential and are calculated by doing a partial wave expansion
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(EaPn)

Figure 5: (e, €'p) scattering diagram under distorted wave impulse approximation

(Equation 29). The partial waves are computed by solving the radial Schroedinger

equation (Equation 30):

; AT 4 f1(7) ;
é.p' (I') = ? Z ll [T Z }/ZWL(H(i) Qse)}/lm(epU ¢p')7 (29)
l m
d? fr(k'r) (l+1) U*r)
_— 1— — “(kr) = 0. 30
d(k’r)Q +( (k’T’)Q Ek )fl( T) ( )
Here E), = (hik)*/2u, where u is the reduced mass %Mproton and U(r) is the

optical potential which usually has a real and an imaginary part. The central

potential of a typical optical potential is shown below,

1 . 1
1+exp(r— R)/a Z|VV|1 + exp(r — R')/a/
exp(r — R')/d
(1+exp(r — R')/a')?

U(r)=Ve(r) = VI

+i|[ W
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where Vi is the standard Coulomb potential and the next two terms of the
potential have the Wood-Saxon shape, while the last term is a differential of the
Wood-Saxon shape. The different parameters of the optical potential are deter-
mined from proton-scattering data. A realistic optical potential must also have a
spin-orbit term. Calculations which include the spin-orbit term (Equation 32) in

the optical potential are called a generalized DWIA.

!

exp(r — R.)/d,
(1 + eap(r — R)/d,)?

exp(r — Rs)/as
(14 exp(r — Ry)/as)

USO(T) = [V;OT 2 + Z.T/Vsor ]l . 0'(32)

In the DWIA approach the (e, e’p) cross-section can be factorized in terms of
the e-p cross-section o, and a distorted spectral function SD(E',,,L, P, P’) as shown
below,

dSo
dEdQydE,dQ,

= p'Ey0eySP(Em, P, P'), (33)
where the distorted spectral function is given by

! 1 !
SP(E, pm,P') = mWD(Pm,P )?6(E — € + €a)), (34)

where ¢, and ¢, are the energy eigenvalues of the residual and initial nucleus and

P (P, P') is the overlap function given by:

87 (P D) = [ dpicy(a+ ) Pir(py). (35)

These are calculated by doing a Fourier expansion in r-space which gives

, A—
¢D(pm7pl) = %/@j(I') eXp<i A 1C1.I‘)(I’7‘,f(r)dr. (36)

*

where the wave function, §;

(r) are calculated using an optical potential as described

earlier.
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In the generalized DWIA calculations however, factorization is not possible and
one has to calculate the one-photon exchange amplitude of the process, using the
distorted wave function for the outgoing protons. The difference between these
two approaches are shown in the Figure 6. Various improvements which can be

included in the generalized calculation are examined below.

Some of the important improvements involve including effects due to the the en-
ergy dependence of the optical potentials. The energy dependence in general arises
partly because the effective interaction is non-local and partly because of an in-
trinsic energy dependence. The intrinsic energy dependence is included by varying
the parameters of the potential with proton energy, using proton-scattering data
to constrain the variations. The non-locality of the optical potential is included

by using an ansatz, first suggested by Perey [25], called the Perey factor :

¥hon-local = CPerey\Ijlocalv
m,3° _1/9
CPerey =[1- 2’%2 V(r)] 172, (37)

Here 3 is the range of the non-locality and is usually taken to be 0.85 fm. This
ansatz is based on an assumption that well inside the nuclear surface the non-local
potential function is constant. In addition it is based on the empirically observed
fact that the predictions of a given non-local model can be fitted almost perfectly
with a purely local calculation. This implies that the wave functions produced
by local and non-local calculations are closely similar. The ansatz follows from
a comparison of the non-local wave equation with the local wave equation under

the afore mentioned assumptions. Alternatively it can be seen to arise from the
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dispersion relation of the nucleons :

2

E(k,r) = ey V(k,r) (38)

2m

here k is the momentum of the nucleon. Although this is used as a general rela-
tionship, it has been shown [26] that the Perey factor can be different depending

on the source of the non-locality.

The calculations can also be further improved by including distortions of the
electron waves (Coulomb distortions). This can be done by expanding the elec-
tron wave, which satisfy Dirac equation, in inverse powers of the electron energy,
retaining terms up to order Za, an alternative approach to treating Coulomb dis-
tortions is discussed in Section 2.5.2. These distorted electron waves are then used
to evaluate the nucleon-current matrix elements in r space. It has been shown by
Giusti and Pacati [24] that for heavier nuclei one needs to include the second order
term in Za. Figure 6 compares momentum distributions for ?C'(e, e'p) based on

DWTIA and with different corrections added on.

2.5 Additional Corrections to The DWIA
2.5.1 Nuclear Density Dependent Coupling

One of the improvements involves including the nuclear density dependence of the
electron-proton coupling. This effect is more important for heavier nuclei. If the
coupling term is density dependent then we can no longer factorize the cross-section
into the coupling term (o,,) times the spectral function, as shown in Equation 33.
In the density independent case the spectral function involves the square of the ra-
dial integral over the initial and the final wave functions Equation 36. However, in

the density dependent case since the form factors (coupling constants) are density
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dependent, they must be included in the radial integral. Thus we have to redefine
the radial integral Equation (36) by a pair of density (p(r)) dependent radial in-
tegrals ¢r(E,n, Pm, P, p) and ¢r(E,,, Pm,P', p), corresponding to the longitudinal

and the transverse form factors [24]

(B, Pm, P, p) = 2—; / 6;(r)exp(i q.r)1/)a(r)F1;(Q2, p(r))dr. (39)

Where f;(r) is the outgoing proton wave function, 1,(r) is the proton bound state
wave function and F;(Q?, p(r)) is the density dependent form factor. Using these

integrals we get the density dependent spectral function as:

€07 (Ermy P> Py p) + 07 (Eomy Prns P’ P)
elFE(Q% p =0) + FZ(Q% p =0)

S By P, P, p) = (40)

Where F(Q%p = 0) = Gp(Q?) and Fp(Q2p = 0) = (£;)/2G5(Q?) are the
free nucleon form factors. This formalism is valid only for parallel kinematics
since the interference terms are neglected. There are various approximations to
the density dependence of the form factors which can be used to look at the effect
of density dependent coupling utilizing the spectral function Equation (40). One
such approximation is the local density approximation where m is replaced by an

effective mass m* which is defined as m* = m + S[p(r)/p(r = 0)], where S is a

scalar potential.

2.5.2 Coulomb Corrections

The calculations are further improved by considering distortions of the electron
waves. These distortions are primarily Coulomb distortions of the electron waves
and are due to the fact that the incoming and outgoing electron interacts with
the long range Coulomb field of the target nucleus. The effect of the Coulomb

potential is to increase the momentum transfer ¢ and also to cause an increase
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in the electron flux in the vicinity of the target nucleus. These effects can be
accounted for by appropriately changing the electron wave used to calculate the
coincidence cross-section of the (e, €'p) reaction. This approach is also equivalent
to summing the contributions from Feynman diagrams in which the electron and
the nucleus exchange one,two,... photons while the nucleus still remains in its
initial state. It can be shown that this kind of distortion of the electron wave can
be approximated by attaching a phase factor to the plane wave expansion [27],
which scales with the nuclear dimension and the strength of the Coulomb field. In
addition the effective momentum of the electron is changed to k = k — Ak , where
Ak is the average electro static field around the electron, given by,

IV o
Ak = [¥2(r)dr " R,

(41)

here the R¢ is the Coulomb radius and the factor f varies between 1.1 and 1.5
depending on the size of the nucleus. Such calculations have been done by Knoll
et al. [27], and they provide an useful formula to estimate the effect of the Coulomb

distortion on the quasi-elastic cross-section:

29 (%) ~ 0.3k_i,z (42)

Omaz o

Where 0,4, 1s the cross-section at the maximum of the distribution and k; is the
momentum of the incident electron. This equation suggests that the Coulomb

corrections becomes smaller with increasing energy of the incident electron.

2.5.3 Meson Exchange Currents and Isobar Currents

Up to this point we have looked at the nucleus in terms of the A nucleons and
the binding forces have been considered through an effective potential and nucleon

wave functions. However, if this binding is considered in-terms of virtual mesons
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Figure 7: Feynman diagram for MEC and IC contributions to the two-body cur-
rent. Jo is the contact, J; the pion in flight, Jp the pair contribution to MEC and

Ja 1s the isobar current term.
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then in the effective potential picture we are neglecting the direct interactions of
the virtual photon with the virtual mesons. In addition the interaction of the
virtual photon with the nucleon pairs which modify the nucleon wave function are
also neglected. We have also overlooked possible coupling of the virtual photon
with the virtual excitation of the nucleon resonances like the Delta(A) resonance.
The first two kinds of interaction are computed by evaluating Feynman graphs
shown in Figure 7 as the contact, pair and pion exchange diagrams. The later
is calculated by evaluating the diagrams in Figure 7 showing the coupling of the
photon to the delta resonance. These diagrams are usually evaluated by using a
phenomenological effective Lagrangian. It is found that in the nonrelativistic limit
these two-body currents just have transverse components, thus only the transverse
component of the current operator are affected by these two-body currents. Most
recently two groups Boffi et al. [28] and Ryckebusch et al. [29], have calculated
the contributions of MEC and IC to the coincidence (e, e'p) cross-section. This
has been reviewed extensively in Reference [20]. Although the two groups predict
very different effects both calculations agree that two-body currents play very im-
portant role in single-nucleon knockout. The differences between the two groups
can only be resolved through systematic experimentation. Since MEC contribu-
tions are primarily transverse in nature, experiments measuring the transverse and
the interference response functions in (e, €’p) scattering are the best candidates to

investigate the role of MEC.

2.5.4 Relativistic Distorted Wave Models

Relativistic DWIA models use the Dirac equation instead of the Schroedinger
equation to calculate the electron and nucleon wave function. Such treatment

implies an exact calculation of the Coulomb distortion of the electron wave and
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of the final proton wave. In addition Dirac Phenomenology is used to arrive at
the effective optical potential from the proton scattering data. These effective
potentials usually still use the Wood-Saxon (some authors also use other forms
like the wine bottle shape, etc.) as in conventional optical potentials, however,
the strength of the potential is usually higher by a factor of 3 - 4. Although a
relativistic approach would seem preferable because the spin and the spin-orbit
term occurs more naturally, it should be remembered that the Dirac equation
applies to point particles only. It would be of considerable interest to compare
(e,€e'p) data at high proton energies with relativistic and non-relativistic DWIA

calculations.

2.6 Glauber and Other High-Energy Approxi-
mations

Final state interactions and other deviations of realistic nuclear systems from the
PWIA can also be evaluated in terms of some high energy approximations reviewed

in this section.

2.6.1 Glauber Approximation

The high energy approximation (also called Glauber approximation) to scattering

theory was developed by R. J. Glauber [30], and involves two basic assumptions:

e 1. The incident energy is much larger than the magnitude of the interaction

potential and

e 2. The particle wavelength is much smaller than the potential width ‘a’; and

the linear term in the potential dominates.
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V
7 << 1, ka>>1. (43)

Here V is the magnitude of the potential while E and k are the energy and
momentum of the incident particle, respectively. Under these conditions we can
assume that back-scattering will be very weak and the wave function of the particle

can be separated as [30]:

() = 77 (44)
Substituting this wave function in a Schroedinger equation gives us an integral

equation of the form:

o f eik|r—r'|

4z ) e =]

i (7) = 7 V(r') i (v)dr (45)

An important point to note is that this wave function does not have a spherically
outgoing wave this is because it is necessary to know the wave function only within
the volume of the potential in order to find the scattering amplitude; therefore it
need not represent the wave function elsewhere. Another important consequence
of this approximation is that this formalism describes small angle scattering only,

limits of which are given in terms of #? << ﬁ
From this one obtains the function ¢(7) as:

T e T
. ezk|r |—ik.r

2m " "
A=1-0s V(r—")p(7 — 7 "ydr " 46
o) =1 = oz [ Vi == 7) (16)
where 7 = 7 — /. Now we have to use the small angle approximation to neglect

terms of the order 1/ka. Another approximation is that the product V ¢ varies very
slowly within a particle wavelength, ensuring that the largest contributions to the

integral (Equation 46) comes from points 7 which lie close to the direction of k.
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This is one of the most important and reoccuring approximation in this formalism.
Carrying out the angular integration using these approximations gives,

v

¢(77):1—%

/O TV =)= 1) (47)

which is approximately,

i

$(7) = e we Jo VO, (48)
This implies the wave function can be written as
Y(7) = R [V, (49)

Now one is interested in evaluating the scattering amplitude and it is useful to
redefine the problem in terms of some alternative coordinate vectors. We take k as
the unit vector in the direction of k and define 7 = b —I—/;’z, where b is perpendicular
to the incident propagation direction /2, hence |b| can be thought of as the impact

parameter. Using this notation the wave function can be rewritten as :
¢(F) — eik.F—% f: V(i;—fcz’)dz’ (50)

Substituting this wave function into the standard expression for scattering am-

plitude we get,

2m 5

FR.R) = =5 [ v (et VIR gz, (51)
™

Once again we use the small angle approximation such that exp[i(l:c' — l;’)k,%] ~
1 +6%ka ~ 1. This simplifies the integration over z to a exact differential, carrying

out the integration over gives,

FOELE) = [ e LV gy, (52)
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From this one gets the expression for total scattering cross-section as

4 . L
o = 7T f(F, ) = 2/(1 — Re(e#®Y)d@p, (53)
where
. 1 foo o .
¢() = —ﬂ/_wV(b—k kz)dz. (54)

2.6.2 High Energy Approximation for Final State Interac-
tions

An alternative formalism for a realistic many body calculation which includes the
final state interactions (FSI) between the knocked out nucleon and the recoiling

spectator system, is shown here. [31]

The nuclear matrix element, for (e, e’p) process in which the recoiling system

is left in a bound state 1is,
M,(p,q) =< ‘I!((I;)| Zaz+qak|qf0 > . (55)
k

where a,t,+q(ak) is the creation (annihilation) operator and the |¥y > is the
target ground state. To isolate the effects of FSI the nuclear Hamiltonian is split
up as :
A A
HA:Zti—I_ Z UU:H()—I-Hl, (56)
=1 1>i=1
where ¢, is the kinetic energy of the i-th nucleon and v;; is the interaction potential

between i-th and j-th nucleon. The final scattering state |\11£l;) > is decomposed

as!:

) >= 070l >, (57)
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where |<I>&;) > denotes the eigenstate of H, with no interaction between the parti-
cles and the spectator, while the operator Qz(f) describes the distortion to the wave
function by the rescattering of the knocked out nucleon. It is written as:

=) — —i [ dt' Hy(¢))
Q,”) = lim Te Jo @) (58)

t—oo

where 7' is the time ordering operator.

The so called high-energy approximation is used in evaluating Q},_). The basic
assumption is that the kinetic energy of the knocked out nucleon is much larger
than that of the spectator system, so after rescattering of the knocked out nucleon
off the spectator, we get py = p; + A, with A << p;, which means the kinetic
energy can be written as 2%2% R~ % + P”m—A This implies that after the rescattering
process, the struck nucleon moves undeflected along a straight trajectory parallel
to its original direction. When extended to the case of many spectators it also
means the spectators can be regarded as a collection of fixed scattering centers.

These two approximations are called the eikonal and the frozen approximations.

These approximations imply that the distortion operator QZ()_) can be written as :

91(7_) =e Zfzz Io% df/WIJ(|I“1+‘”f/—‘fj|)7 (59)

where v is the velocity of the struck nucleon and W, is the complex effective two
body interaction. Now putting together all these components one can evaluate
the nuclear matrix element and arrive at observables like the scattering cross-

section. [31]
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2.6.3 Correlated Glauber Approximation

We have seen in the section 2.6.1 that the wave function of the struck proton with

momentum k can be written as:

P(r) = eiE‘Fexp[—% /; dz"W(k, p(r"))]. (60)

The imaginary part of the optical potential W (k, p) is related to the partial
lifetimes of the proton due to n-p and p-p collisions by,

m*(k,p) h
27 (k)

Wk, p) = (61)

where 4 %, and 7, are the partial lifetimes due to p-a collisions. Here

1

(k) = (k)
m™* is the effective mass which is related to the dispersion relation of nucleons in
the nuclear matter. The dispersion relation is:

2

A
E(k,p) =

2m

k* + U(k, p), (62)

and the effective mass is defined as :

rk 1dE(k,p)
_1 , 63
m*(k,p) R dk (63)

The effective cross-section for scattering off a proton with momentum k by

neutrons or protons in nuclear matter of density p is defined as:

O'* — m*(k7 p)
pp hkppr(k))

= e 64
T " Rkpara(k)’ oY

This implies that the imaginary part of the optical potential W (k, p) can be

written as:

k * *
W(k7 p) = Ea[ppapp + p”bo-'np]' (65)
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The effective cross-sections o* is the medium corrected (including Pauli-blocking)
cross-sections. Now we can put this back into the the wave function of the struck

proton to get:

0(x) = e 7expl=1/2 [ d2" (o, ()07, (,p) + pule”) %, )] (66)

However, the absorption of the struck proton is due to the A-1 remaining nucle-
ons, so it is wrong to use just the density p(r"); instead one must also include the
distribution of other nucleons. These distributions are given by pair distribution

functions gp,(r’,r") defined as

o) — Ppa(r’s ")
gp“( ! ) pp(r/)pa(r//)' (67)

Here pp.(r',x") is the two-body density which gives the joint probability of
finding a proton at r’ and another nucleon at r”. The pair distribution function
is usually < 1 at small distances, because p,(r')p.(r") — p,a(r’,r") (also called the

correlation hole) is positive.

Now the wave function of the struck proton becomes:
P(r) = e”:"?exp[—l/Q /;' d2" (gpp(r', 2" ) pp(x") o7 (K, p)
+9up (', ") pu (v") 7 (K, )] (68)

This modification of the standard Glauber approximation is known as the cor-

related Glauber approximation.

2.7 Interpretation of Existing (e,e'p) Data

The reaction mechanism of quasi-elastic (e, e'p) scattering had been explored by

several experiments performed at Saclay, MIT-Bates, NIKHEF-K, Mainz and other
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laboratories around the world, on a host of nuclear targets. A brief survey of some

key experiments and their interpretation is provided in this section.

2.7.1 Spectral Functions from (e, e'p) Data

In Section 2.3 it was mentioned that under the PWIA one can factorize the (e, ¢'p)

cross-section as a product of an elementary cross-section o., and a probability
S(Es, Pm):

dSo
dE.dQ dE,d,

= p,Ep'UepS(E57p7rb)~ (69)

Here the spectral function S(Ej, p,, ) is the probability that the knocked out proton

will have a missing momentum p,,, and have a separation energy of FE,.

Over the last two decades numerous (e, ¢'p) experiments have been performed
at electron accelerators around the world. Data have been collected on various
complex nuclei ranging from 2H to 2°8Pb. Spectral functions were extracted from
many of these data. Some of the experimental measurements of the spectral func-
tion and their comparison with various theoretical calculations is examined in this
sub-section. The spectral functions from '?C(e, e'p)''B experiments will be used
to get an overview of experimental spectral functions. The next subsection will
discuss other important properties like occupation probability, mean and peak

energies, which can be extracted from these spectral functions.

The recoill momentum distributions from the first generation of experiments at
Saclay [7], Tokyo [32] and Frascati [5] are shown in Figure (8). The characteristic
shape of the 1p and 1s momentum distributions is seen in these distributions. They
have been compared with DWIA calculations in the same figure, showing that the
experimental spectral functions can be described reasonably well by DWIA spectral

functions.
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Figure 8: The recoil momentum distribution for '2C(e, €/p) measured at Saclay,

Tokyo and Frascati
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However, these comparisons between data and DWIA calculations are sensi-
tive to various parameters of the optical potential used in the calculations. The
influence of variation in these parameters were studied by Royer et al. [33]. They
found a strong influence of the RMS radius on the momentum distribution and also
found that the imaginary part of the optical potential effects the higher momen-
tum components of the distribution. Since one uses the factorization assumption
of DWIA ( introduced in Section. 2.4) one can test this assumption by comparing
with data at different angles ©, (the angle between recoil momentum direction

and the scattered proton direction).

Other checks of the adequacy of DWIA calculations involve comparing with
data at parallel and perpendicular kinematics ( Section. 2.3). In perpendicular
kinematics the spectral function was expected mainly to be symmetric around the
momentum transfer ¢ direction, while in parallel kinematics a slight asymmetry is
expected due to the fact that value of ¢ is different for recoil momentum parallel or
anti-parallel to the scattered proton direction for fixed proton momentum. Results
from a measurement done at Saclay in parallel and perpendicular kinematics is

shown in Figure 9 [18].

The asymmetry in the parallel kinematics can be explained by DWIA however
the asymmetry in perpendicular kinematics is unexplained. It can be accounted for
by introducing a symmetry breaking spin-orbit term in the optical potential ( eg.
in a GDWIA calculation), which also destroys the factorization assumption. Thus
more complete and systematic experimental and theoretical studies are needed to

establish the magnitude and the causes of this asymmetry.
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Figure 9: The recoil momentum distribution for *C(e, ¢’p) measured in parallel
(top) and perpendicular (bottom) kinematics
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2.7.2 Excitation Energies and Occupation Probabilities

The proton occupation number for a given orbital « is obtained by integrating
the energy distribution w,(£), so Ny = [w.(E)dE. This is same as zeroth-order

moment of the spectral function,

PO =< o lal ag)tha > . (70)

The occupation number N, is also related to the spectroscopic factors S, ¢, where

fa 1s the subset of states of the orbital a which contribute to the sum. N, =
me Sa,f(,'

Similarly, the mean removal energy is the energy weighted integral of the energy

distribution P,(E),
mean 1 p
B = — /EPQ(E)dE. (71)

This is also the first-order moment of the spectral function,

1
Pfxl) =0 < ¢a|aTa[a'a7H]|¢a >, (72)

[0

and is also the energy weighted sum over the spectroscopic factors S, ¢, ,

1
E;ne(m, - Z Sa.fa(efa _ 60). (73)
N, &7

Another quantity which can be measured experimentally is the peak energy E? of

the distribution.

The experimentally measured occupation number and mean removal energies
are listed in Table 1. The occupation number is found to be typically 20-30%
less than shell-model predictions, but the relative occupation numbers agree very

well with shell-model predictions. The absolute value of occupation numbers are
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Table 1: Occupation Numbers N, and Separation Energies E, from DWIA analysis
of (e, €'p) experiments.

Nucleus | State | NP SM 1'N, Tokyo | N, Saclay | E, Tokyo | E, Saclay
SLi 1s 2 1.464+0.04 22.6+0.2
1p 1 0.7240.03 4.540.2
i 1s 2 1.88+0.04 26.0+£0.2
1p 1 0.79+0.03 10.1+0.2
‘Be 1s 2 0.74+0.04 1.4 27.1+£0.4 32+1
1p 2 1.40+0.05 1.4 18.14+0.2 | 18.040.3
12¢C 1s 2 1.34 1.0 36.9+£0.3 | 38.1£1.0
1p 4 2.6 2.5 15.5+0.1 | 17.5+0.4
160 1s 2 1.6 4442
1p 6 3.6 17.7 £0.8
2TAL 1s 2 - 57 £ 3
1p 6 2.440.2 3243
1d 5 1.6+0.1 14.0+0.6
2s - 0.1240.01 14.3+0.2
2864 1s 2 0.9 51
1p 6 2.9 32
1d 6 3.6 16.14+0.6
2s - 0.4 13.8 £0.5
0Ca 1s 2 3.74+0.2 1.5 58.7+1.2 56
1p 6 10.240.9 5.7 35.3+0.5 41
1d 10 4.7+1.6 7.7 18.4+1.6 14.940.8
2s 2 2.040.2 1.3 13.6+£0.4 | 11.240.3
2V 1s 2 - 60+3
1p 6 1.1+0.1 4041
1d 10 1.740.3 19.54+0.5
2s 2 0.3+0.1 15.1+0.2
1f 3 0.4+0.1 10.3£1.1
%8Ni 1s 2 1.0 62
1p 6 6.8 45
1d 10 8.9 21
28 2 1.9 14.7+£0.5
1f 8 7.5 9.34+0.3
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Figure 10: The occupation number for 2®Pb from (e, €’p) data is shown along
with various theoretical calculation. The solid curve represents the nuclear matter
occupation probability [34], the long dashes include an RPA correction [35], the
medium dashes is n~0.75(n,,,, + dngpy) fitted to the data [20], the dot dash is the
quasi-particle strengths for nuclear matter and the short dash is the quasi-particle
strengths for lead.

very difficult to determine, because of the uncertainties in the various approxima-
tions used (such as the truncation of high energy strength etc.), so the occupation
number is usually determined to about & 20 %. Within these uncertainties the oc-
cupation number agrees with various theoretical calculations as shown in Figure 10.
In this figure (Figure 10), the occupation numbers for ***Pb were determined by
Quint et al. [36] from (e,e’p) data. They integrated the experimental spectral
function for excitation energies up to 25 MeV, and for deeply bound orbitals the
spectral function was extrapolated beyond the measured range using a Gaussian
parameterization. However more recent analysis of the same data give different

results, making 1t fair to say that the occupation number is known to about =



42

20 %. These results are compared with theoretical calculations of Pandharipande
et al. [35] and Benhar et al. [37]. Pandharipande et al. calculate the occupation
probabilities of nuclear matter using correlated basis function (CBF) [34] and the
Urbana v14 + TNI interaction [38]. However, 2*®Pb being a finite nucleus, there
is additional depletion of states near the Fermi surface due to long range correla-
tions and collective mode interactions at the surface of the nuclei. These effects
are accounted for by using the RPA theory of Gogny [39]. Benhar et al. on the
other hand argue that integrating the (e, e'p) data with respect to missing energy
does not include a significant part of the background contributions of the spectral
function, which is spread thinly over a wide range of energy. Hence they should
be compared to quasi-particle strength rather than occupation probability. Their
calculation of the quasi-particle strength using the CBF theory for the nuclear
matter is also shown in Figure 10. They account for the finite nuclei by modifying
the imaginary part of the CBF mean field to reproduce the experimental spreading

of widths.

2.7.3 The Koltun Sum Rule

A general property of the spectral function, known as the energy weighted sum
rule or the Koltun sum rule [40], relates the total binding energy per nucleon to
the average removal and kinetic energy. The average kinetic energy < 1" > and

< E > is the average removal energy is given by:

<T>= l/p—QS(E VdEd®
- A. 2M 7p p

1 .
<B>=< / ES(E,p)dEdp (74)
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The spectral function can be written in the form,

S(E,p) =<4adlat (p)§(E — H)a(p)|ta > (75)

where at and a are the creation and annihilation operators and the Hamiltonian
H is given by H = T 4+ V (contains just one body and two body terms), and the
total binding energy E4 is given by B4 = A < T > + < 94|V |, >. Using these
relations one can show that [19],

La

A:%(<T>—<E>) (76)

This is known as the Koltun sum rule. The (e,e'p) data from Saclay, Tokyo
and Frascati shown in the last two subsections were used to test the Koltun sum
rule [19], but because the experimental spectral functions are not the true but
distorted spectral functions it 1s necessary to correct for this fact. These correc-
tions are of the order of 10%. It was found that except for the *°Ca case there is
significant deviation from the predictions of the sum rule (ranging from 1.4 MeV
for ?Be to 3.9 MeV for °® Ni). Some of the explanations for this divergence from
the Koltun sum rule include; the limited energy-momentum range covered in an
experiment and breakdown of the assumption that the three body and other many
body interactions can be neglected. Thus the measurement of the spectral func-
tions over a wide range of E and p is very desirable in order to have a better

understanding of this problem.

2.7.4 The L and T Response Functions

The longitudinal and the transverse response functions for **C(e,e’p) in the quasi-
elastic region were separated by Ulmer et al. [10], at MIT-Bates using the Rosen-

bluth method outlined earlier in Section. (2.3.1). The momentum transfer for



44

the experiment was Q* ~ 0.16 GeV?. The separated response function and their
difference is shown in Figure 11. The MIT data demonstrates that the transverse/
longitudinal coupling for the 1p-shell of Carbon is same as that of a free proton.
The broad peak for 1s-shell is difficult to separate from the underlying continuum
that begins beyond the two nucleon knockout threshold. However, the transverse

response function is significantly enhanced in the continuum region.

Similar experiments were also performed at NIKHEF with higher momentum

resolution but at lower momentum transfer on C [12], Li [11] and Ca [41] targets.

Re(expt)

They have plotted their data in terms of a ratio 7 which is defined as n = R (DWTA)

where Rg is the ratio of the transverse to the longitudinal response function in-
tegrated over the quasi-free peak. The results are shown in Figure 12. This data
shows that the ratio below the 2-nucleon threshold is unity but at higher missing

energy there is enhancement of the ratio.

The available data shows that the response functions are similar to free nucleon
response functions at small missing energy but there is excess transverse strength
above the 2-nucleon knockout threshold. This suggests additional transverse cur-
rents are involved in the process. Since multi-nucleon currents like the meson
exchange currents are primarily transverse in nature (Section 2.5.3) it has been
suggested that these and other multi-nucleon processes give rise to the observed
enhancement in the transverse response function. Although some fraction of the
effect might be due to the modification of the single nucleon currents in the nuclear
medium, the large excess in the transverse strength points towards multi-nucleon
currents. However at the low proton energies and for light targets, there is consid-
erable uncertainty due to final state interactions, in the available data. There is a
clear need for more systematic data on the separated response functions at higher

proton energies and heavier targets.
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Figure 11: Separated transverse and longitudinal response functions Ry and R
and the difference Sy - S, for >C/(e, €'p) as a function of missing energy. Data
taken in parallel kinematics near the quasi-free peak with Q?=0.16 GeV? [10].
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Figure 12: The transverse enhancement factor n as a function of missing en-
ergy above the two-nucleon knockout threshold. '2C'(squares), 6 Li(triangles) and
19 B(circles) [20]

2.7.5 Multi-nucleon Knockout

There is a host of experimental evidence suggesting contributions from multi-
nucleon currents. Some of the experimental evidence are discussed here. Fig-
ure 13 [43] shows the missing energy spectrum for >C/(e, e'p) in the dip region (w
= 0.2 GeV for Q% = 0.16 GeV?/c) between the quasi-free region and the delta
resonance region. This region is known to be predominantly transverse in nature.
The figure also shows that the continuum extends to large missing energies. The
area above the dotted line shows the expected strength from 1s knockout, while
the solid curve is from a quasi-deuteron calculation by Laget [44]. The dotted
line suggests that the multi-nucleon contributions start close to the two-nucleon
knockout threshold and are nearly uniform over a large range of missing energy.
The quasi-deuteron calculation can account for some of the excess strength at low

missing energy but cannot explain the large excess beyond 80 MeV in missing
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Figure 13: The missing energy spectrum for *C(e, ¢'p) in the dip region, with w
= 0.2 GeV and g = 0.4 GeV [20]. The area under the dotted line is attributed to
the 1sq/o shell and the solid line is the quasi-deuteron calculation [44].

energy.

There are similar data from Weinstein et al. [45] of missing energy spectra for
12C(e, e'p) at 0.58 < ¢ < 0.82 GeV in the quasi-free region (Figure 14). These
spectra show that the strength at large missing energies (> 80 MeV) increases
with momentum transfer ¢ and is a significant fraction of the total yield. However,
the ratio of the continuum yield to the quasi-free yield is relatively constant in this

range of q.

Various authors [46, 45] have estimated the contribution to the excess contin-
uum strength in terms of proton re-scattering. These estimates indicate that a

very small fraction of the continuum yield arises from proton re-scattering. These
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Figure 14: The missing energy spectrum for >C/(e, €'p) in the quasi-elastic region,
at 0.58 < ¢ < 0.82 GeV [45]. (a) q =585 MeV/c, w =210 MeV; (b) q = 775 MeV/c,
w = 355 MeV; and (c) q = 827 MeV/c, w = 325 MeV. The recoil momentum range
at each missing energy is indicated by the dashed curve.
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observations indicate that multi nucleon absorption must have a big role in the
continuum yield. Multi nucleon mechanisms involving meson-exchange currents,
pion production and reabsorption are dominantly transverse in nature and are thus
expected to play a major role in explaining the continuum yield. And once again
to study these effects it is necessary to obtain separated response functions at large

missing energies.

2.7.6 Nuclear Transmission

Final state interactions and proton propagation can be studied in terms of nu-
clear transmission, which is defined as the probability of escape of a knocked out
proton in a quasi-elastic scattering process. The knocked out proton can be de-
flected or absorbed in the spectator nuclei and hence the nuclear transmission is
expected to be governed by the total NN cross-section, which should increase with
energy till the inelastic NN cross-section reaches its asymptotic value. Transmis-
sion/transparency measurements are expected to be simpler to interpret at higher
energies because of the relative independence of the NN cross-section with energy
at high energies. In addition (e, €e'p) scattering is an ideal tool to study proton
propagation since the electron can probe the entire nuclear volume, unlike proton-
nucleus scattering experiments which can primarily probe just the surface of the
nucleus and have the additional problem of requiring separation the incident pro-

tons from the knocked out protons.

At low energies the nuclear transmission was measured experimentally in terms
of the ratio of the coincident (e, e'p) cross-section to the inclusive quasi-free electron
scattering cross-section. Transmission data from an experiment at Bates using 780

MeV electrons at Q% = 0.34 GeV? on '2C, 2"Al, *®Ni and ¥ Ta targets is shown in

Figure 15 [47]. The curves in the figure show the contributions of different effects
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Figure 15: The dotted line is a calculation using free N-p cross-section, dashed line
is when Pauli blocking is included, dot-dashed includes density dependent effects
too and solid has the correlation hole effect as well.

like Pauli blocking, density dependent effects and correlation hole effects added
to a semi-classical proton multiple scattering calculation using free p-n scattering
cross-sections [48]. The solid curve which includes all the effects mentioned above

seems to agree very well with the data.

At higher energies this technique cannot be used to measure the nuclear trans-
mission because there are significantly large contribution from inelastic processes
to the inclusive quasi-elastic cross-section. Thus at higher energies the nuclear
transmission is usually measured in terms of the ratio of the experimentally mea-

sured coincidence cross-section to the cross-section calculated under the plane wave
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Figure 16: Measurement of nuclear transmission at Q? ranging from 1 to 6 GeV?2.

impulse approximation (PWIA). Since in the PWIA it is assumed that there is no
final state interactions, the ratio of the experimental cross-section to the PWIA
cross-section gives the fraction of the knocked out protons which make it out of
the target nucleus without further interactions on their way out. The measured
nuclear transmission from experiment NE18 at SLAC [49], at Q? ranging from
1.0 to 6.8 GeV? on 2C, %Fe and 7Au targets are shown in Figure 16 . Various
Glauber type calculations are shown along with the data. Its clear that one needs
more accurate measurements in order to discriminate between the various theoret-
ical calculations. One should note that there is a continuous ambiguity between
transparency and spectroscopic factor, since the measured cross-section is actually

a product of the transparency and the spectroscopic factor.
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2.8 Summary

A general formalism to calculate the (e, e'p) cross-section was introduced in this
section, however, it was shown that to make the calculations more tractable certain
approximations are essential. Many approximation schemes were discussed, start-
ing with the PWIA which does not include any final state interactions. Then two
different schemes for doing a more complete calculations including final state inter-
actions and other distortions not included in the simplistic PWIA, were described.
These schemes are the DWIA and the Glauber approximations. Calculations based
on these approximation schemes were compared the experimental data and will be
presented in Chapter 5. Finally the existing data from a host of experiments were
examined. The sum total of existing data answer many questions about the va-
lidity of the different approximations, but they also raise many new questions and
point to a great need for more precise data over a wide range of proton energies

and momentum transfer. The unresolved issues can be summarized as :

e Validity of the factorization assumption of DWIA. This can be tested by

comparing data at different proton angles.
e The asymmetry in perpendicular kinematics.

e The mechanism which gives rise to the 20-30% depletion of the experimen-

tally measured occupation numbers compared to shell model predictions.
e The breakdown of the energy weighted sum rule (Koltun sum rule).

e The mechanism which gives rise to the excess transverse strength observed

in separated response functions.

e Theimportance of and contributions from final state interactions and nucleon-

nucleon correlations in knockout reactions.
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e Extent of the modification of the electron-proton coupling in the nuclear

medium.

Experiment E91-013 which is described in the remaining chapters of this thesis
was designed to address this need for more data. It was also tailored to investigate

some of these aforementioned questions about the reaction mechanism.



Chapter 3

The Experimental Apparatus

3.1 Introduction

The experiment titled “Energy Dependence and A Dependence of Proton Propaga-
tion in Nuclei Studied with Quasi-Elastic (e, €'p) Scattering” (experiment E91-013),
was carried out using the 100% duty factor beam at the Continuous Electron Beam
Accelerator Facility, (CEBAF, now called Jefferson Lab). Data were collected in
two time periods, the first period was in November-December 1995 and the exper-
iment was completed in April-May 1996. The experiment involved impinging the
electron beam onto a nuclear target and knocking out a proton from within the
target nucleus. This knocked out proton was then detected in coincidence with
the inelastically scattered electron, using the two Hall C spectrometers, the High
Momentum spectrometer (HMS) and the Short Orbit Spectrometer (SOS). Data
were taken on three nuclear targets, C, Fe and Au, and a liquid Hydrogen target
was used for calibration. In this chapter the experimental equipment and setup is

described.

54
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3.2 Accelerator

The experiment was conducted at CEBAF which is a continuous wave ( CW )
machine, accelerating electrons to energies up to 4.0 GeV. The machine has a
racetrack-shaped layout with two super-conducting linacs (north and south) con-
nected by super-conducting magnetic arcs on either end (Figure 17). Each of the
two linacs consists of 160 niobium super-conducting rf (SRF) cavities. These cav-
ities are grouped in pairs and four pairs of cavities are put in thermally insulated
tanks which are called cryo-modules. The cavities have an active length of 0.5 m
and are operated at a temperature of 2 K. Each cavity is separately powered by a 5
kW klystron which produces an accelerating gradient of about 5 MV /m which can
be increased to about 8 MV /m. The two arcs house the super-conducting bending
magnets; there is one layer of magnets for each pass the beam makes through these

arcs and the magnets are stacked on top of each other.

The injector to the accelerator is situated at the start of the north linac; it
consists of a thermionic electron gun and 18 SRF cavities. Here the beam is
accelerated to 45 MeV and injected into the machine. The beam is then accelerated
by 800 MeV on each pass through the entire circuit. A maximum of five passes
is possible, hence a maximum beam energy of 4.045 GeV. The beam switch-yard
situated at the west end of the south linac houses the extraction and recombination
magnets. The switch-yard can extract the beam at any pass to any of the three
experimental halls. This experiment was carried out in Hall C which was the only

hall operational during the experiment.
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Figure 17: Complete layout of the CEBAF Accelerator
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Figure 18: Top view of the components and the layout of the arc which transports
the beam from the switch-yard to the hall.

3.2.1 Beam

An unpolarized CW electron beam of energy ranging from 0.8 - 3.2 GeV and of
beam currents ranging from 10-50 puA was used in the experiment. The beam
consists of 1.67 ps bursts coming at 1497 MHz. Each hall receives a third of these
bursts, which results in a frequency of 499 MHz per hall. The beam had a frac-
tional energy spread of 2.5x107%. The relative beam energy can be measured in
principle to 10™* using the bending magnets in the Hall C arc (used to trans-
port beam from the switch-yard to Hall C, Figure 18) while measuring the beam
position with super-harps. The beam energy was determined absolutely to 1073
(for one pass only) using kinematic methods which are described in Section 4.5.1.
The CW nature of the beam is very important to coincidence experiments. Since
the yield of real events is proportional to the current while the yield of random
events is proportional to the square of the current, the CW beam ensured orders of
magnitude improvement in the real-to-randoms ratio compared to previous (e, ¢'p)
experiments, conducted at MIT/Bates ( beam duty factor ~ 1.0%) and SLAC (

beam duty factor ~ 0.03%) and enabled collection of much higher statistics data.
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Figure 19: The components and the layout of the Hall C beamline

The beam profile was recorded by several harps located throughout the accel-
erator and by super-harps located in the Hall C arc. A harp consists of a frame
with three wires, two vertical wires and one horizontal wire. Analog to Digital con-
verters (ADCs) connected to each wire read the signal on the wires as the frame
is moved in and out of the beam, while an encoder determines the position where
the wire intercepts the beam. Thus the two vertical wires measure the horizontal
beam profile while the horizontal wire measures the vertical beam profile. The
super-harps are essentially the same as the harps, but more accurately surveyed
to enable absolute position measurements. Three pairs of super-harps are located
on aligned granite tables at the beginning, middle, and end of the Hall C beamline
(Figure 19). They are used along with the field maps of the bending magnets in

the arc to determine beam energy and emmitance.

The beam position in the Hall C arc was measured using four beam position
monitors (BPMs). These are cavities with four antennae that pick up the harmon-
ics of the fundamental frequency of the beam passing through the cavities. The

signals are proportional to the distance between the beam and the antennae. The
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relative position of the beam is determined by using the amplitude of the signals
from the antennas and the absolute position is determined by calibrating the BPMs
with the super-harps. The beam position was monitored with an accuracy of ~ +
0.5 mm. Accurate knowledge of the beam position is very important since the

experimental goal is to measure cross-sections with an accuracy of a few percent.

3.2.2 Current Monitors

A precise measurement of the charge is needed to convert measured counts to cross
sections. To this end the Hall C experimental setup includes three beam current
monitoring microwave cavities (BCMs) and an Unser cavity (a parametric DC cur-
rent transformer). The beam current being delivered to the hall is measured with
the three microwave cavities. The beam excites resonant modes in the cylindrical
cavities/wave guides and the wire loop antennas in the cavities couple to these
resonant modes. The signal in the antenna is proportional to the beam current
for all resonant modes. In addition, for certain modes like the T'My;y mode, the
signal 1s insensitive to the beam position. By varying the size of the cavity, one
can choose the frequency of the 1'M;;y mode to be identical to the accelerator RF
frequency, making the cavity selectively sensitive to this mode. The quality factor
of the cavity, defined as the ratio of stored energy to dissipated power, weighted by
the resonant frequency, @ = woW/ Py, can be changed by varying the material and
the length of the cavity. The @ of the cavity affects the temperature dependence
of the current measurement, hence the @) is optimized to lower the temperature
variation of the measurement. The signal from the antenna is amplified and con-
verted to a DC level which is then converted to a rate by a V-F converter and
counted in a scaler. However, these cavities cannot measure the current absolutely

as the power output is dependent on factors like surface finish which cannot be
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Figure 20: Schematic of the Unser Monitor

quantified easily. Hence the current monitors were calibrated using a parametric
DC current transformer (Unser monitor). This transformer measures the total
charge passing through the device. A simplified schematic of the Unser monitor
is shown in Figure 20 [50]. One of the toroids measures the AC fluctuations while
the other picks up the DC fluctuations. An AC modulator is used to drive the
toroid along its hysteresis curve, which is symmetric for zero DC fluctuations. In
the presence of DC fluctuations however, the hysteresis curve is biased and loses
its symmetry. A feedback loop is used to restore the symmetry of the hysteresis
curve and the amount of current needed to restore symmetry is the output of the

device. This output is also converted in a V-F converted and counted by a scaler.

The Unser monitor is known for its linearity over a wide range of currents and
its very stable gain. The absolute gain of the Unser can be measured to 10~*. The
gain of the Hall C Unser was measured to £+ 2.0x10™* using a precision voltage

source and resistor. However, the baseline of the Unser monitor tends to drift
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with time (~ 1pA per day) making it inaccurate for direct current measurements.
On the other hand the BCMs have negligible baseline drifts but their gains can
drift slowly with time and they are not linear over the whole range of currents
to be measured. The calibration scheme used the gain stability of the Unser to
periodically re-calibrate the other three BCMs. The calibration procedure involves
changing the beam current in a series of steps, each two minutes long, going from
zero to the maximum. Each step was inter-spaced by 2 minutes of zero current.
The zero current intervals were used to determine the baseline for all four monitors.
Once the baseline is determined, one uses the known and stable gain of the Unser
to determine the gains of the three BCMs. The beam current was measured with
an accuracy of 1.0%. The current can be measured more accurately (~ 0.5%) at
higher currents. This is because the BCMs have better linearity at higher currents

and the measurement is less sensitive to the drifts in the offsets.

3.3 Target

This experiment used three solid targets suspended on a steel ladder and a liquid
hydrogen cryogenic target hung on a separate ladder. During the first part of
the experiment (Dec. 1995) the cryo-target was not operational, hence only the
solid target ladder was used. During the later part of the experiment (Apr. 1996)
both the cryogenic target and the solid targets ladders were used. Both ladders
were housed in a scattering chamber and either one of them could be rotated
into the beam. The scattering chamber is a large Al cylinder, with 2.5 inch thick
walls and an inner diameter of 48.5 inches. The cylinder has cutouts for the two
spectrometers and entrance and exit snouts for the beam. There are also pumping
and viewing ports. The HMS cutout is eight inches tall and covered with an

aluminum window 0.016 inches thick. The SOS port is five inches tall and covered
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with a 0.008 inch Al window. The top cover plate contains openings for the cryo-

target plumbing and lifting mechanisms and the solid target ladder mechanism.

3.3.1 Solid targets

The solid target ladder held target foils each 0.75 inches by 1.5 inches in size. This
ladder could be lifted and rotated in and out of the beam remotely. In addition it
could be manually rotated about its vertical axis; this feature was used to minimize
losses due to traversal through the target at large scattering angles. The target
angle was known with an accuracy of about 2°. Figure 21 shows the convention
used to define the target rotation angle. For the forward electron angle kinematics
the target angle was usually set between 10 - 20° with respect to the beam, while
at the backward angle kinematics the target angle was set at -20° with respect to

the beam.

In the experiment carbon, iron, and gold targets were used. The main proper-
ties of the targets are listed in Table. 2. The iron and one of the gold targets had
two foils sandwiched together. A microscope was used to measure the dimensions
of the foils (accuracy = 8um) and a balance was used to measure their masses
(accuracy = bmg). Assuming uniform density and thickness the areal density of
the targets were calculated (Table. 2). The isotopic abundances of the targets were
as follows: carbon 89.9 % '2C with 1.1 % '3C contamination, iron 91.76 % °°Fe
with 5.9 % ®*Fe and 2.1 % 5"Fe contamination and gold 100 % '97Au. The largest
contaminant, >*Fe, had only a 0.3% effect on the target thickness, thus the target

impurities are neglected in the analysis.
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Figure 21: The angle of the solid target with respect to the beam. The target
angle, t, is defined to be positive when the normal to the target, n is directed
towards the SOS.

Table 2: List of solid targets and their properties

Target | % of radiation length | density | Thickness | Thickness uncertainty
% (/cm?) | (mg/cm?) %

C 0.5 2.27 230.3 0.23

Fe 2.2 8.11 309.1 0.07

Au 3.1 19.28 195.9 0.10
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3.3.2 Cryotarget

The cryotarget system had six target cells and 2 dummy cells. There were three
4 cm cells and three 15 cm cells. Each cell is a thin aluminum cylinder made
from beer can stock. The can bottoms which are 0.31 mm thick formed the exit
windows. The entrance window was made of 0.18 mm thick aluminum. The four
cells of each type were designed to hold liquid hydrogen, deuterium and helium
and one set of dummy cells to measure background from the Al end caps. In the
experiment only the 4 cm hydrogen cell (exact length 4.20+ 0.01 cm, the spherical
shape of the end cap caused a variation in target length of about 0.05% for a 1.0
mm change in beam position), and the 4 cm dummy cells were used. The dummy
cells consisted of two Al plates to simulate the end caps of the normal cells. The
plates were about 10 times thicker than the end caps. A schematic of the cells is

shown in Figure 22.

The cryotarget system has three separate cryogenic loops, each loop linked to
a short and long target cell. Each target loop consists of a circulation fan, a target
cell, heat exchangers and high and low powered heaters, which formed the cooling
and regulating units of the target system. During the experiment hydrogen in its
liquid phase was kept in the 4 cm cell. The hydrogen was maintained in the liquid
phase by flowing it continuously through a heat exchanger. The heat exchanger
was cooled to 15 K by a constant flow of cryogens maintained by the end station
refrigerator (ESR). The hydrogen in the target cell had a temperature of 19 K and
a pressure of 29 PSIA. Under these conditions the hydrogen is 3 degrees below
its boiling point. The target had to be regulated very carefully to keep the tem-
perature and pressure steady, since the density of hydrogen changes very steeply
with temperature and pressure (-1.25%/K and 0.01%/PSIA respectively). This

was achieved by monitoring the temperature very precisely with Cernox resistor
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Figure 22: Schematic of the Cryotarget Cells

thermometers (with an accuracy of 50 mK corresponding to 0.1% uncertainty in
the density). The effects of local boiling were studied with elastic scattering from
liquid hydrogen and liquid deuterium targets and the yields were found to follow
the change in beam current to better than 1 % up to 70 x A. The main contamina-
tion in the hydrogen target comes from deuterium which was found to be less than
0.3% from analysis of the gas after the experiment. A more complete description

of the Hall C cryogenic target system can be found in reference [51].
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3.4 Spectrometers

The major experimental equipment in Hall C at CEBAF consists of two magnetic
spectrometers, a medium resolution, large acceptance super-conducting spectrom-
eter for central momentum up to 7.4 GeV/c called the High Momentum Spectrom-
eter (HMS) and a medium resolution, large acceptance spectrometer with a shorter
flight path called the Short Orbit Spectrometer (SOS). The SOS has a maximum
central momentum of 1.5 GeV/c. In this experiment the HMS was used to detect
electrons while the SOS was used to detect protons, except at the highest Q? point
where the roles of the spectrometer were reversed. The co-ordinate system used
in the two spectrometers is shown in the Figure 23. In this system (also called
the transport system) the Z axis is along the central ray of the spectrometer with
positive in the direction of the particle trajectory. X is the bend direction with X
and 7 forming the bend plane. The positive X is defined as the direction towards
which higher momentum particles bend; this is vertically down for both of these
upward bending spectrometers. Thus the Y axis is along the horizontal with pos-
itive directed to the left as seen by the particle. The Y and 7 at the target form

the scattering plane.

3.4.1 High Momentum Spectrometer

The HMS is a 25° vertical bend spectrometer, with three super-conducting quadrupole
magnets and one super-conducting dipole magnet in a QQQD configuration. The
four magnets and the detector stack are supported on a single carriage that rotates
around a central bearing. The detector shielding hut, built around the detector
stack, 1s supported on an independent carriage. The whole spectrometer rotates

on a pair of rails between 12.5° and 90° with respect to the beam line. The HMS
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\

Figure 23: Side view of the spectrometer co-ordinate system

can analyze particles with central momentum up to p,,e. = 7.4 GeV/c and has a
momentum acceptance of & 10% about the central momentum. The momentum
resolution of the HMS is 2.0x10~3 and the angular resolutions are 0.8 mrad and 1.2
mrad, for scattering in and out of the scattering plane, respectively. The procedure
for optimizing these performance parameters is described in the next chapter in
Section 4.5. Figure 24 shows a side view of the HMS spectrometer and detector

hut.

The quadrupoles determine the transverse focusing properties of the spectrom-
eter and to a large extent its acceptance. The HMS quadrupoles are all cold iron
super-conducting magnets, with soft iron around the super-conducting coils to en-
hance the field at the center and also reduce stray field. The quadrupoles are
powered by three Danfysik System 8000 power supplies which can provide up to
1250 amps at 5 volts. The quadrupoles are maintained on a stable hysteresis curve

by running the currents up to 20% higher than their 4 GeV/c values and then
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Figure 24: Side view of the HMS

bringing the current down to the desired set point. In addition to the quadrupole
coils, each magnet has multipole windings. These correction coils can be powered
by three Oxford power supplies, capable of providing up to 100 amps at 5 volts,

but were not used during this experiment.

The dipole is the dispersive element in the system and determines the central
momentum of the spectrometer. To date the dipole magnet has been operated and
tested at currents up to 1300 Amps. This corresponds to a central momentum of
just over 4 GeV/c. The HMS dipole has an effective length of 5.26 meters, a bend
radius of 12.06 meters, and a gap width of 42 cm. Its actual dimensions are 5.99
meter long, 2.75 meters wide, and 4.46 meters high. It is configured to achieve a 25
degree bending angle for 4 GeV/c momentum particles at a central field excitation
of 1.11 T. It was determined that the hysteresis for the dipole was sufficiently small

that no special setting procedure was required to reproducibly set the magnet.

An NMR probe is used to monitor and regulate the dipole field. The set point
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currents are used to monitor the field settings for the quadrupoles. The fields were
stable at the 10™* level. The magnets are precooled with liquid nitrogen and cooled
to the operating temperature with 4.3 K liquid helium, provided by the CEBAF
Central Helium Liquefier (CHL). Under standard operating conditions, the HMS
magnets require a flow of approximately 100 liters per minute, running in parallel
to the four magnets. The power supplies are all cooled with water from the Hall C

low conductivity water (LCW) system.

A collimation mechanism is attached to the entrance of the spectrometer. This
mechanism consists of a slit box which allowed remote insertion of three differ-
ent collimating slits. All three slits were made from HEAVYMET (machinable
Tungsten with 10% Cu Ni; density=17 g/cm?®). The first slit is a 1.25 inch thick
array of small holes (0.2 inch in diameter), called the sieve slit. The sieve slit was
used to tag the trajectories of the electrons in order to study the optics of the
spectrometer. The other two slits are octagonal apertures designed to define the
solid angle acceptance of the HMS. Each of these slits is 2.5 inch thick and has
flared apertures. The larger of the two slits subtends a solid angle of ~ 6.8 msr
and was designed to accept trajectories which pass cleanly through the rest of the
spectrometer for a point target (for a momentum bite of £8%). The small slit
was designed to only accept trajectories with large spectrometer acceptance for an
extended target. In this experiment all data was taken with the large octagonal
collimator. The spectrometer was operated under vacuum of the order of 10~*

PSI. The entrance and exit vacuum windows were made of aluminized mylar.

The HMS was operated in a point-to-point tune in both the dispersive and
non-dispersive direction. This tune provides a large momentum, solid angle, and
extended target acceptance. In this tune, Q1 and Q3 focus in the dispersive di-

rection and Q2 focuses in the transverse direction. Figure 25 shows the extreme
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Table 3: Measured HMS Performance

Maximum central momentum (for normal use) | 4.4 GeV/c*
Momentum bite[(pmaz — Pimin)/Po] 20%
Momentum resolution [§p/p] 0.2%
Solid angle (no collimator) 7 msr
Angular acceptance - scattering angle +42mr
Angular acceptance - out of plane +82mr
Reconstructed non bend plane angle resolution 0.8 mr
Reconstructed bend plane angle resolution 1.2 mr
Extended target acceptance +8 cm
Vertex reconstruction accuracy +1 mm
*Not the maximum limit of the spectrometer

beam envelopes of the HMS for a point-to-point tune.

The optical axis of each magnet was determined using a magnetic colloidal
solution [52]. The optical axes were found to be different from the mechanical axes
by up to 2 mm, and all magnets were aligned with respect to the optical axis. When
installed, the magnets were aligned to 0.2 mm, but they can move out of alignment
when the spectrometer is rotated. The magnets can move out of alignment by up
to 1.0 mm, but the positions are reproducible up to 0.5 mm. The nominal focal
plane is defined to be the plane perpendicular to the central trajectory, positioned
halfway between the two drift chambers. The true focal plane of the spectrometer

is tilted ~ 85° to the ‘nominal’ focal plane.

The quadrupoles fields were mapped, and these field maps were used to deter-
mine the current required for a given field integral. The final field values were fine
tuned in order to give the best focus at the focal plane and these fields were then
checked against those calculated using a optics model of the HMS generated by
the COSY INFINITY program [53]. The fine tuning procedure involved varying
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Figure 25: Extreme beam envelope of the HMS for a point-to-point tune
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the quadrupole fields in order to determine the derivatives of the z and y posi-
tions of the focal point(zy,, yf,) with respect to the quadrupole fields. Once these
derivatives were measured, Q2 and Q1 were adjusted in order to center the z (ver-
tical) and y (horizontal) position of the focal point. This procedure was iterated
to get the best focus at the focal point. The focus is relatively insensitive to the
Q3 setting, so Q3 was fixed during the Q1 and Q2 adjustments. The ratio of Q1
to Q2 after making these adjustments was consistent with the COSY model and
consequently Q3 was set to the field determined from the COSY model. From
analyzing elastic (e, e'p) data at several energies, it was found that the dipole field
was 0.9% below the desired value, and the dipole field was readjusted. The final
tune gives momentum and field ratios that are consistent with the COSY model.
Table. 3 summarizes the final performance of the HMS and is described in more

details in Section 4.5.

3.4.2 The HMS Detector Package

The detector packages in the HMS contains a pair of drift chambers, two sets of
x-y hodoscopes, a gas Cerenkov detector, and a lead-glass calorimeter. The drift
chambers were used for tracking, the hodoscopes were used to form the trigger
and for time of flight information, and the calorimeter and Cerenkov were used for
particle ID (pion rejection). All of the detector systems were powered by CAEN
high voltage power supplies. A schematic of the HMS hut is shown in Figure 26.

Drift Chambers

The HMS drift chambers consists of six planes, two provided z (the dispersive
direction) information another two gave y (the non-dispersive direction) informa-

tion, and the remaining two were rotated +15° from the z planes ( called the u
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Figure 26: Schematic diagram of the HMS detector hut

and v planes). As seen by incoming particles the planes are encountered in the
order z,y,u, v,y , 2. The chambers had an active area of approximately 107 cm
() by 52 cm (y) with a sense wire spacing of 1 cm. The planes were spaced 1.8 cm
apart and the two drift chambers were separated by 81.2 cm. There are planes of
field/guard wires in between each plane that maintain the high voltage. The sense
wires and the field wires are in a staggered arrangement with respect to each other.
The sense wires detect the particles, and the field/guard wires are maintained at
negative high voltage in order to isolate the sense wires. The voltage for the guard
wires varied from -1800 V to -2500 V, depending on the distance of wire from the

nearest sense wire. A schematic of the arrangement of wire is shown in Figure 27.

The signals from the sense wires were amplified and discriminated by LeCroy
2735DC or Nanometric N-277-L amplifier /discriminator cards. They were read out
in groups of 16. The discriminator thresholds were provided by an Acopian low
voltage supply, which was set at 4.5 Volts. The discriminated signals were then fed
into LeCroy multi-hit TDCs (LC1877). On receiving a trigger the TDCs read out
all hits (up to 16 per wire) in the last 32 us. The particle position is determined by
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Figure 27: Schematic of the wire arrangement in the HMS Drift Chambers

using the TDC to determine the drift time, which is the time between the particle
passing through the chambers and the wire detecting the electrons created by the
ionization of the chamber gas. This drift time is converted into a drift distance
using drift time to distance maps ( during analysis). The time to distance maps
were generated from high statistics calibration runs where the drift chambers were
uniformly illuminated. The drift distance along with the position of the wires gives
the position of the event. The hits in all the six planes are used to determine the
trajectory of the particle passing through the chamber. The position resolution
per plane is 250 um. The HMS chambers are filled with an argon/ethane mixture
(equal amounts by weight) with 1% isopropyl alcohol (as a dehydrating agent). The
gas mixing system provides two parallel gas lines from a single source. The gas flow
is controlled with proportional mass flow control valves. There are temperature

controlled alcohol bubblers on the flow to and from the chambers, which monitor
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the gas flow.

Hodoscopes

The HMS has two pairs of hodoscope planes, each pair has one plane stacked in
the x direction and the other stacked in the y direction. The x planes are made
of sixteen elements/paddles, while the y planes are made of ten elements. The
hodoscope elements are long narrow strips of BC404 scintillator with light guides
and photo multiplier tubes (PMT) on each end (Figure 28). The scintillators
are wrapped with one layer of Aluminized Mylar and two layers of Tedlar (PVF)
to make them light tight with a minimum amount of external material. The
scintillators have approximately 0.5 cm of overlap between the elements in order
to avoid missing particles. In the HMS, all of the scintillators are 2.12 cm thick
and 8 cm wide. The x elements are 75.5 cm long, and the y elements are 120.5 cm
long. The front and back pair of planes are separated by approximately 230 cm.
The scintillators are read out from each end by Phillips 2282 PMTs. The output
from the PMT is sent to a patch panel in the counting house through ~30 feet of
RG58 cable, and then ~450 feet of RG8 cable. The signals are then split, giving
two signals with 1/3 and 2/3 of the input signal. The smaller signal goes to a bank
of ADCs through ~ 400 ns of RG58 cable delay. The other output is discriminated
with Phillips PS7105 discriminators; one set of outputs from the discriminators
goes to TDCs and VME scalers through some delays. The other set of outputs is
sent to a LeCroy 4654 logic module. This module generates the OR of all tubes
on one side (labeled as + while the other side is labeled -) of a given plane (e.g.
S1X+). Next the AND of all tubes on each side of a plane, is generated (e.g. (S1X
=S1X+ & S1X-). These outputs are used for the trigger logic. A more detailed

description and figure is shown in the trigger subsection.
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Figure 28: A perspective view of the hodoscope planes is shown

The hodoscopes were calibrated by gain matching the tubes with a °°Co gamma
ray source. The tube voltages are set such that the Compton edge from the gamma
rays gives a pulse height of 500 mV at the output of the base. Timing calibrations
of the scintillators is done using data taken during running. Various corrections

and fine tuning were done by an off-line fitting procedure.

Gas Cerenkov Detector

The HMS Cerenkov detector consists of a cylindrical tank ~ 160 cm long and
with an inner radius of ~ 75 cm. The tank is designed to run at gas pressures
ranging from below atmospheric pressure to pressures up to 3 atmospheres. For
this experiment, the tank was filled with just under 1 atmosphere of nitrogen,
giving a pion threshold of 6.3 GeV/c (and electron threshold of 22 MeV/c). The
average signal from an electron was ~7 photo-electrons. There are two mirrors at
the back of the tank which reflect the Cerenkov light into the two PMTs on the side
of the tank. The light was detected with two 5-inch Burle 8854 PMTs. In addition,
the PMT front surfaces were coated with a wavelength shifting coating in order
to better match the wavelength of the Cerenkov light with the PMT collection

efficiency. The tank has circular entrance and exit windows of 0.04 inch Al. In the
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HMS the electron detection efficiency for a 2 photo-electron cut is ~ 98%.
Lead Glass Calorimeter

A lead glass calorimeter is used to measure the energy of the electrons in the
spectrometer. The electron is accelerated in the field of a Pb nucleus, emitting
Bremsstrahlung radiation. The Bremsstrahlung photons in turn create electron-
positron pairs which produce more v ray photons thus resulting in an avalanche
of electron-positron pairs. These electrons (positrons) radiate Cerenkov light in
the glass which is collected in phototubes. The total amount of light collected is

proportional to the energy of the incident electrons.

The HMS lead glass calorimeters is constructed from 10 cm x 10 cm x 70
cm blocks of TF1 lead glass. The blocks are stacked transverse to the incoming
particles, four layers deep. The stack is 13 blocks high , for a total of 52 modules
and an active area of 130 cm x 70 cm. The calorimeter is rotated ~ 5° from the
optical axis in order to avoid loss through the cracks between the modules (see
Figure 26). Each block is wrapped with one layer of aluminized mylar (25 pm)
and 2 layers of TEDLAR PVF film (38 pm each) to increase reflection and make
the modules light tight. Each module was read out from one end by an 8-stage
Phillips XP3462B 5 inch photo-tubes. The operating voltages were set to match
the gain of the individual modules. A detailed description of the calorimeter design

and performance can be found in ref [54].

The signals from the photo-tubes are taken upstairs to the counting house
through ~30 feet of RG58 and ~450 feet of RG8 coaxial cable. The signal is then
split, one set of outputs is sent to an ADC through delay cables and the other set
is sent to LC740 linear fan-in modules to be summed. The sum in the first layer

(PRSUM) and the sum in the entire calorimeter (SHSUM) are discriminated to give
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three logic signals (PRHI, PRLO and SHLO) for the trigger. PRHI and PRLO are
high and low thresholds on the energy in the first layer, and SHLO is a threshold set
on the total energy in the calorimeter. Also, each group of four modules is summed
and sent to scalers for trouble shooting purposes. The electronics diagram of the

calorimeter is shown in Figure 32 in the trigger subsection.

The ADC values are corrected in two ways. First, the signal is corrected for
attenuation thru the blocks to remove any dependence on the distance from the
PMT. Each channel has a gain correction factor, determined by fitting a value for
each block in order to match the sum of the blocks to the energy as determined

from the momentum reconstruction.

3.4.3 Short Orbit Spectrometer

The SOS is composed of one quadrupole(Q) and two dipole magnets (BM01 and
BMO02) in a QDD arrangement. The quadrupole focuses in the horizontal (non-
dispersive) direction and is followed by the two dipoles. The first dipole deflects
particles by 33 degrees, while the second dipole deflects by 15 degrees in the op-
posite direction, such that the total bend of the SOS dipoles is 18 degrees. The
two dipole magnets are enclosed in a common yoke. All three magnets (as well as
the concrete detector hut) rest on a common carriage assembly. The carriage can
be elevated out of plane by hydraulic jacks, allowing the SOS to go out of plane
by up to 20°. The spectrometer rests 0.15° below the horizontal without the jacks.
The jacks were not used during this experiment. The quadrupole and dipoles are
water cooled conventional resistive magnets. They are powered by three sepa-
rate InverPower power supplies. The quadrupole and BM02 supplies provide 1000
Amps at 160 Volts and the BM01 supply provides 1000 Amps at 250 Volts. The

magnets and power supplies are cooled by the Hall C LCW system which provides
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Figure 29: Side view of the SOS

water at 250 PSI. The SOS magnet system combines a large acceptance (both
solid angle and momentum bite) with a relatively short path length to the focal
plane. The primary object of this spectrometer is to detect short-lived particles
like pions and kaons. It has a somewhat limited extended target acceptance (£ 2-3
cm). The maximum central momentum attainable with the SOS magnet system
is 1.5 GeV/c. Figure 29 shows a side view of the SOS magnets. A slit box, nearly
identical to that in the HMS, was installed in front of the SOS quadrupole allowing
remote insertion of different collimators. There are three HEAVYMET collimators
and one blank space in the slit box. The first slit is a sieve slit; a 1.25” thick array
of small holes (0.2” in diameter). The sieve slit is used to tag the trajectories of the
electrons in order to study the optics of the spectrometer. The other two slits are
octagonal apertures designed to define the solid angle acceptance of the SOS. Each
of these slits is 2.5” thick and has flared apertures. The large slit has a solid angle
of ~ 7.55 msr and was designed to keep losses within the spectrometer low for a
point target (< 2% for a momentum bite of +15%). The small slit was designed
to give small losses in the spectrometer for an extended target (almost no loss for

+20% for a 2 cm target). All of our production data were taken using the large
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octagonal collimator.

The SOS optical axis of each magnet is the same as its mechanical axis, and
so the magnets were positioned using the mechanical axes. When installed, the
magnets were aligned to 0.2 mm, but the magnets can move out of alignment when
the spectrometer is rotated. The magnets move up to 2 mm, but the positions are
reproducible down to 0.5 mm. The dipoles and quadrupole all have Hall probes

which measure the fields and are used to regulate the magnet settings.

The SOS was operated in the point-to-point tune, with point to point focus-
ing in both the dispersive and non-dispersive directions. This tune has a large
solid angle and very large momentum bite, but a small extended target acceptance
(see table 4). The ratio of the dipole fields (D /D) was determined by integrating
the field for the central trajectory using field maps of the dipoles. Because the
quadrupole magnet was never mapped, the field settings were determined using
optics models generated with the COSY INFINITY program [53], assuming that
quadrupole to be a perfect quadrupole. These settings were examined by compar-
ing the model to elastic scattering data taken with a sieve-slit, and the quadrupole
field was found to be higher than expected for the current. The quadrupole current
was lowered by 7% in order to match the field used in the model. The nominal
focal plane is defined to be perpendicular to the central ray, and located 6 cm in
front of the first drift chamber. The true focal plane of the spectrometer is tilted
forward with respect to the nominal focal plane by ~ 70°. Table 4 summarizes the

performance of the SOS, which is also described in greater detail in Section 4.5.

3.4.4 The SOS Detector Package

The detector packages in the SOS is almost identical to the one in the HMS. Just

as in the HMS it consists of a pair of drift chambers, two sets of x-y hodoscopes,
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Table 4: SOS Performance

Measured
Maximum central momentum 1.5 GeV/e
Momentum bite[(pimaz — Pmin)/Po) 40%
Momentum resolution [6p/p] 0.15%
Solid angle (no collimator) 9 msr
Angular acceptance - scattering angle +60mr
Angular acceptance - out of plane +40mr
Reconstructed non-bend plane angle resolution 7 mr
reconstructed bend plane angle resolution 0.5 mr
Extended target acceptance +2 cm
Vertex reconstruction accuracy 4+ 1.0 mm

a gas Cerenkov detector, and a lead-glass shower counter. In addition, the SOS
has an aerogel Cerenkov detector between the back hodoscope pair. The aerogel
Cerenkov was not used for this experiment. The layout of the SOS detector package

is similar to the HMS apart from it being more compact.
Drift Chambers

The SOS drift chambers were built at Brookhaven National Laboratory (Figure 30.
Each chamber consists of sixteen layers of 1/8 inch G10 plates, sandwiched between
two 1/2 inch Al plates. The G10 plates consist of alternating planes of wires and
cathode foils. The wire planes have alternating sense and field wires. The sense
wires are separated by 1 cm and are 30 um in diameter, they detect the electrons
and ions created by the incoming particle ionizing the gas in the chamber. The
field wires are 60 pm in diameter. The field wires and cathode foils are maintained
at a large negative high voltage (-1975 V) in order to isolate the sense wires. The
wire planes come in pairs that measure position in the same direction and have

their wires offset by 0.5 cm. There were 6 wire planes ordered as, u and v’ planes
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Figure 30: Front and Top Views of the SOS Drift Chambers. The position of the
readout cards is shown on the outside of the chamber.

rotated 60° clockwise to the horizontal, z and 2’ planes measuring the position in
the dispersive direction and v and v’ planes rotated 60° counterclockwise to the x.
There are 64 wires in the x and ' planes, 48 wires in the u, v, v, and v’ planes.

The active area of the chambers is 63 cm by 40 cm with cutoffs in the corners.

The SOS used the same gas mixture and gas handling system as the HMS and
identical readout electronics. The threshold voltage was set at 1.5 V for the SOS
chambers. The final position resolution(c) per plane for the SOS drift chambers

is 200 pm.
Hodoscopes

The SOS also has two pairs of hodoscope planes, one stacked in the x direction
and the other stacked in the y direction. They are identical to the HMS hodoscope

planes except for the size and number of elements and the distance between the
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pair of planes. In the SOS, the front hodoscope pair is smaller than the back.
The front x plane (S1X) has 9 elements, with dimensions 36.5 cm x 7.5 cm x 1.0
cm and the front y plane (S1Y) has 9 elements that are 63.5 cm x 4.5 cm x 1.0
cm. The total active area of the front hodoscope is 63.5 cm x 365 cm. The rear
hodoscope planes are larger versions of the front planes. The S2X plane is made
of 16 elements, each 36.5 cm x 7.5 cm x 1.0 cm and S2Y has 9 elements, 112.5 cm
x 4.5 cm x 1.0 cm. Once again, the widths and lengths of the planes are matched
so that the full area (112.5 cm x 36.5 cm) is active. The front and back planes in

the SOS are separated by roughly 180 cm.

The scintillators are read out from each end by Phillips 2282 PMTs, and the rest
of the readout and the electronics is identical to that of the HMS. The calibration

and data acquisition of the SOS hodoscopes are also identical to those of the HMS.

Gas Cerenkov Detector

The SOS gas Cerenkov was designed and built at the University of Colorado. A
complete description of the detector can be found in the CEBAF SOS Cerenkov
Detector Handbook [55]. The SOS Cerenkov detector is a nearly rectangular alu-
minum box, 99 cm high, 73.7 cm wide, and 111 cm long. The detector was filled
with 1 atmosphere of Freon 12 (CCLF3). The index of refraction for Freon 12
is 1.00108, giving an electron threshold of 11 MeV and a pion threshold of 3
GeV (well above the SOS maximum momentum). The light is reflected onto four
photo-tubes by four spherical mirrors. The expected signal is 11 photoelectrons
for a relativistic electron. Each photo-tube has a Winston cone (a reflective cone
around the photo-tube front face) designed to increase the effective solid angle of

the tube. The entrance window is a rectangle, 11”7 high and 24” wide, with 12”



84

radius half circles on the top and bottom. The exit window is a 9” by 24” rectan-
gle with 13" radius half circles above and below. Both windows are made of 254
pm Lexan graphics film covered with 50.8 ym Tedlar film. The front window has
a total thickness of 39 mg/cm?, which is small compared to the thickness of the
scintillator material in front of the window and the thickness of the Freon gas (530
mg/cm?), and therefore does not significantly increase the number of energetic

d-rays that are the dominant contribution to pion misidentification.

The Freon pressure is maintained by the SOS Cerenkov gas handling system.
There is a relief valve that opens at 0.5 PSI overpressure, and a solenoid valve
that will open to allow freon to flow into the tank at 0.2 PSI underpressure. The
solenoid valve is controlled by an Omega pressure meter and a display of the
differential pressure is displayed on a monitor in the counting house. Typical
pressure variations are at the 0.05 PSID level, corresponding to normal atmospheric
pressure changes. The tank is filled by manually opening a release valve at the top
of the tank and the freon input valve. The freon valve must be manually adjusted
to maintain a pressure of about 40.07 PSID. The tank is filled with approximately
30 Ibs of Freon, giving better than 95% purity (for perfect mixing, the final gas
purity would be 95%, but since Freon is denser than air and we fill from the bottom,
the final purity is higher). The electron detection efficiency for a 2 photo-electron
cut is ~ 98%.

Lead Glass Calorimeter

The SOS lead glass calorimeter is identical in design and construction to the HMS
calorimeter, except for its size. It was also constructed from 10 cm x 10 cm x 70
cm blocks of TF1 lead glass. The blocks are stacked transverse to the incoming

particles, four layers deep. The stack is 11 blocks high in the SOS, for a total of
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44 modules and an active area of 110 x 70. Just as in the HMS the calorimeter is
rotated ~ 5° from the optical axis in order to avoid loss through the cracks between
the modules. The electronics and the data acquisition of the SOS calorimeter is

identical to that of the HMS calorimeter.

3.5 Detector Electronics

3.5.1 Introduction

The design of the electronics for Hall C was such that the signals from particles
traveling at the speed of light in both the spectrometers arrive in the counting
house at approximately the same time. This meant that the SOS signals from
particles which had a shorter flight path, had to be delayed with cable delays in
order to achieve this goal. Once the signals were in the counting house, signals
from each of the detectors had dedicated electronic logic units to process them and
prepare the inputs for the trigger logic units to generate the pretrigger and trigger
signals. These were then passed on to the trigger supervisor which generated the
final gates and starts/stops for the ADCs and TDCs of each detector element. The

electronic logic for each detector element is described below.

3.5.2 Hodoscope

Each hodoscope plane consisted of 9-16 individual elements; each of which was read
out on both sides (the ‘positive’ and ‘negative’ ends). The signals from the tubes
were discriminated and the tubes from the positive (and negative) ends were ORed
together (e.g. S1X4, S1X-, ...). A hit in a given plane was defined as a coincidence
of a hit in one of the positive tubes and a hit in one of the negative tubes, (e.g. S1X

= S1X+ OR S1X-). This definition does not require both tubes to be on the same
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Figure 31: Hodoscope electronics with the number of channels in HMS/SOS

scintillator, but requires much less electronics and did not cause any significant
number of random signals. T'wo scintillator triggers are then formed. ‘STOF’ was
defined as the coincidence of one of the front planes and one of the back planes,
to give the minimum signals that provides a time of flight measurement in the
hodoscopes. ‘SCIN’ required that 3 out of 4 planes fired, and provided a tighter

scintillator trigger. The logic diagram is shown in Figure 31.

3.5.3 Shower Counter

The signals from each block of the shower counter were summed to get the total
energy deposited in each layer. The sum in the first layer formed the signal PRSUM
and the sum of the entire calorimeter gave SHSUM. They were discriminated to
give three logic signals PRHI, PRLO and SHLO for the trigger. PRHI and PRLO
are high and low thresholds on the energy in the first layer, and SHLO is a cut
on the total energy in the calorimeter. Also, the sum of each group of four blocks
was send to scalers for trouble shooting purposes. The electronics diagram of the

calorimeter is shown in Figure 32.
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Figure 32: Calorimeter electronics, with the number of channels used in the

HMS/SOS.
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Figure 33: Gas Cerenkov Electronics, with number of channels used in the

HMS/SOS.

3.5.4 Cerenkov Counter

The signals from the Cerenkov were summed and used to generate a veto for the

trigger. The electronic diagram is shown in Figure 33.

3.5.5 Trigger

The HMS and SOS had separate but identical trigger components. The SCIN
signal described earlier formed the basic pretrigger signal. There was an option
to clean up the pretrigger with PID signals from the calorimeter and Cerenkov.
In case of electrons, the calorimeter and Cerenkov were used to generate ELHI
and ELLO, and the final clean electron trigger was an OR of these two called
ELREAL. ELHI required a high calorimeter signal (SHLO and PRHI described
above), with no cerenkov requirement, while ELLO required a Cerenkov signal,
but not a calorimeter signal. In this experiment the PID signals were not used in
the trigger since coincidence requirements cleaned up the signals sufficiently. Thus
both the HMS and SOS pretriggers were just the SCIN signal which is 3 out of 4

hodoscope planes in coincidence.
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Figure 34: HMS/SOS single arm trigger electronics

There was also a pion trigger to provide the possibility of obtaining a sample
of pions in case it was needed to study the pion background. The raw PION signal
was defined as a good hodoscope trigger (SCIN) vetoed by the CER signal. This
PION trigger was prescaled using a dynamic prescaling circuit. The pion trigger
was not used in this experiment. The full trigger logic for the single spectrometer

trigger is shown in Figure 34.

The pretriggers are next sent to the 8LM programmable logic(8-Fold logic unit).
If the HMS and SOS pretriggers are in coincidence then the 8LM generates a
coincidence trigger. After the 8LM the triggers are split, and one copy of the
signal is sent to the trigger supervisor (with appropriate delays to ensure that the
coincidence triggers reaches the TS before the HMS or SOS trigger), and the other
copy is used as the re-timing signals. The re-timing is necessary to ensure that the
ADC gates arrive at a fixed time with respect to the time the particle passed thru
the detector. The trigger for any given spectrometer comes at a nearly fixed time

with respect to the detected particle, but a coincidence trigger has its timing set by
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the later of the two spectrometers. For example if the HMS came first, the timing
of its ADC gates would be set by the SOS trigger for coincidence events, and the
ADC might fail to integrate the signal properly. This is avoided by re-timing the
signals with delayed copies of the triggers. These re-timed triggers form the gates

and start/stops sent to the various ADCs and TDCs.

3.5.6 Trigger Supervisor

The trigger supervisor (TS) is a piece of electronic hardware build at CEBAF, and
was the interface between the trigger hardware and the computer data acquisition.
The TS makes all of the decisions about which triggers to respond to as well as
determining to what trigger type it belongs. The trigger supervisor determines
what hardware needs to be read out based on the trigger type. When a trigger
arrives at the TS, it waits &~ 10ns and then latches all of the enabled trigger
types into a data word. It then uses a lookup table to determine what event
type the trigger corresponds to and what gates need to be generated. There are
four defined event types: HMS, SOS, COIN, and PED events, they correspond
to a HMS, a SOS, a coincidence and a pedestal event. The pedestal events were
triggers generated by a random signal generator which was used to determine the
pedestals of all the ADCs. If multiple triggers come in the 10 ns window, the TS
has to decide what kind of trigger it is. For example, if both the HMS and SOS
triggers come within 10 ns, the TS treats the event as a coincidence. Normally, this
should be very rare because the coincidence window in the 8LM is larger than the
10 ns, so any HMS and SOS overlap in the TS should also form a COIN trigger
in the 8LM, and the singles triggers are delayed so that the COIN trigger will
always reach the TS first. For PED and COIN triggers, gates go out to all of the

fastbus modules, while for the singles triggers, only the appropriate spectrometer
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Table 5: 8LM Trigger Logic

output signal definition
HMS PRETRG = (HMS)&(EN1)
SOS PRETRG = (SOS)&(EN1)
COIN PRETRG = (COIN)&(EN1)
PED PRETRG = (PED)&(GO)&(ENT)
HMS TRIG = (HMS)&(EN1&(B SY)
SOS TRIG = (SOS)&(EN1)&(BU )
COIN TRIG = (COIN)&(EN1)&(BUSY)
PED TRIG = (PED)&(GO)&(EN1)&(BUSY)

and beamline Fastbus modules receive gates and starts. In order to reduce the
event size, the TDCs normally operated in sparsified mode, not giving an output
for a channel if there was no stop signal after the common start, and the ADCs
were programmed to ignore all channels that have a signal smaller than a threshold
value for that channel. To determine this threshold values, the run was divided
into two different data acquisition modes. First, a fixed number of events (usually
1000) generated by a random trigger were recorded with the data sparsification
disabled. This allowed measurement of the pedestal values for the ADCs. The rest
of the run was recorded with sparsification enabled and with real triggers. The
data acquisition mode is controlled using the TS status outputs. There are two
outputs from the TS that determine the modes. The TS GO signal is active at
all times when a run is in progress. The TS ENI1 signal indicates that a run is in
progress and normal data taking in enabled. Finally, the T'S BUSY signal is active
whenever the TS is busy processing an event. These control signals were sent
to the 8LM logic module along with the trigger signals, HMS, SOS and Pedestal

(PED,from a pulser). The programmed logic the 8LM is shown in table 5.

Figure 35 shows the trigger supervisor related electronics.
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Figure 35: Trigger Supervisor Electronics

The 8LM has eight outputs. Four are used for the HMS, SOS, COIN, and
PED pretriggers. A pretrigger is generated for each incoming pretrigger during
the appropriate part of the run, even if the TS was busy (i.e. PED pretriggers
are passed during the beginning of the run, the physics pretriggers are passed, and
coincidence triggers generated, during the normal running). The other four outputs
are the HMS, SOS, COIN, and PED triggers. These are identical to the pretriggers
except that they also require that the BUSY signal is not on. These triggers are
fed directly to the TS. After the TS sends out the gates, each spectrometer retimes
the gates it receives with respect to the single arm trigger for that spectrometer,
as described in the last subsection. The gates from the TS are then delayed and
have their widths fixed so that they are timed properly for use as ADC gates and
TDC starts.

3.5.7 Other Diagnostic Signals

All intermediate signals are sent to scalers and TDCs. The TDCs are used mainly
as latches, and tell which signals were present when the trigger was taken. The

scalers allow diagnosis of certain types of electronics problems in the intermediate
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steps of trigger formation. We also use the scalers to measure computer and

electronics dead time.

3.6 Data Acquisition

The CEBAF Online Data Acquisition (CODA) system was used for this experi-
ment. This system is the standard data acquisition component of the experimental
equipment of Hall C and is described in Reference [56]. The schematic of the sys-

tem is shown in Figure 36.

CODA provides the user interface and manages the DAQ sub-systems. During
data taking CODA handle the triggers from the trigger supervisor (T'S) module.
Depending on trigger type the event builder (EB) reads data fragments from the
fastbus and VME crates also called Readout Controllers (ROCs). The EB reads
data from these crates, or ROCs, and adds on the header information into the
event word. These event words are then written into the event file. Depending
on event type, each event had information from HMS, SOS or both crates. In
addition to the spectrometer information, some beam related quantities like beam
position, beam loss and beam raster readback values were recorded for each event.
Typical event sizes were ~ 500 B/event, which gave a data rate of ~ 1 Megabyte

per second for an event rate up to 2 kHz.

3.7 Kinematics

Table 6 lists the kinematic settings of experiment E91-013.
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Table 6: Table of Kinematics for Experiment E91-013, the central proton angles

in bold represent the conjugate angle.

Label

Beam
Energy
(GeV)

Central
electron
Energy

(GeV/c)

Central
electron
Angle

Central
proton
Energy

(MeV)

Central
proton
Angle

(GeV/c)?

kine A

2.445

2.075

20.5

350

36.4,39.4
43.4,47.4,51.4
55.4,
59.4,63.4
67.4,71.4,
75.4

0.64

0.93

kine D

0.845

0.475

78.5

350

278
31.8
35.8,39.8,
43.8,47.8

0.64

0.38

kine C

3.245

2.255

28.6

970

32.6.36.6,
40.6,
44.6,48.6,
52.6

1.82

0.83

kine E

1.645

0.675

80.0

970

22.8,
26.8,30.8
34.8

1.82

0.31

kine B

2.445

1.725

32.0

700

31.5,35.5
39.5,43.5
47.5,51.4,55.4

1.28

0.81

kine F

3.245

2.550

50.0

1800

25.5
28.0,30.5

3.31

0.67




Chapter 4

Data Analysis

4.1 Introduction

The offline analysis of the raw data were done using the Hall C analysis software
called the Hall C Engine. In this chapter the analysis code is discussed and its
major components such as tracking and event reconstruction are elaborated along
with calibration and optimization procedures. The analysis also relies on calibra-
tion of the detectors, beam and the spectrometers themselves so these topics are
also elaborated in this chapter. The physics simulation and the other analysis tools

are also discussed.

4.2 Analysis Engine

The flowchart of the analysis code is shown in Figure 37. The engine reads and
decodes the detector information, generates tracks and particle identification in-
formation for each event and then reconstructs the basic physics quantities for
that event. The various detector parameters and calibration parameters are then
submitted to the engine as separate input files. The output from the engine are

arranged in three forms:

96



97

e Report files which contained the hardware and software scalars and the var-

ious detector efficiencies.

o A set of histograms, which were used to monitor the detectors and other

hardware during the run and also for trouble shooting and testing.

e The event by event information on the tracking, particle identification and
the basic physics quantities such as missing energy and momentum. These
were written in the Ntuple format of Physics Analysis Workstation (PAW) [57]

available from the CERN program library.

Input parameters, software scalars, histograms and tests are handled using the

Cebaf Test Package (CTP) [58].

The initialization section defines the various run parameters such as the input
and output filenames and the histogram definition files. Some of these files are
then read to set various detector parameters that define the locations, calibrations
coeflicients and other decoding information relevant to the detector elements. After
all of the run parameters are defined, the first few events are analyzed. These are
initialization type events. These events contain the runtime options and kinematics
of the run. Once these initialization events have been analyzed, the engine passes

onto the main event loop.

In the main event loop each event is processed according to the event type.
For scalar events the relevant scalars are incremented. For physics events, they are
analyzed according to trigger type, if the particular trigger type is requested to be
analyzed. As described in Section 3.5.5 there are four types of physics triggers. The
physics events are passed to the main reconstruction routine for each trigger type,
where the event is reconstructed, particle identification information is recorded

and the physics quantities are calculated. The event reconstruction is described in
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Hall C analysis engine routine flow
CSA 7/95
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h_tracks cal
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h_physics stat
: h_cal_eff

Figure 37: Software Flow Chart for the Hall C Analysis Engine.
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the next subsection.

After running through the data file the engine writes the output files. As
mentioned earlier these output files consist of scalar report files with the final
values for the hardware and software scalers, the histogram files containing detector
summary histograms and Ntuple files containing event by event information. An

elaborate description of the Hall C engine can be found in Reference [59].

4.2.1 FEvent Reconstruction

The reconstruction code is split into two sections, one for each spectrometer. The
data structures and analysis code are the same for the two spectrometers. Figure 38
shows the flow chart for the HMS reconstruction. The SOS reconstruction is

identical.

The hodoscope hits are the first to be decoded. This decoded information is
used to determine a preliminary velocity and start time of the particle. The start
time is the time when the particle passed through the drift chamber. The start
time is used to calculate the distance of the particle trajectory from the wires which
recorded the hits. After the hodoscopes have been processed the drift chamber,

calorimeter and Cerenkov counter hits are decoded.

After all detector information is decoded, the tracking routine is called. The
tracking algorithm and the tracking efficiency is discussed in Section 4.3. Once a
track has been determined the position and angles of the track at the spectrometer
focal plane (Figure 39) is recorded. Next the time of flight between the front and
back planes of the hodoscopes and the energy deposited in the calorimeter for each
track is calculated. Finally, each track is reconstructed back to the target to give
the momentum, the angle in the dispersive direction and the position and angle

in the non-dispersive direction. The reconstruction is done by a Taylor expansion
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h reconstruction (called once per event)

h_trans_scin [gets corr scin times, hit pos, start time; calc initial beta, fit beta if enough times]
h_strip_scin [finds scin w/ real hits (good tdc), converts raw hits to arrays over hits]
h_tof_init [initializes track-indep qties for tof fit]
h_fill_scin_raw_hist
h_tof_fit [fits beta from t and z]
h_trans_misc [fills hms_decoded_misc common block]
h_trans_cal
h_sparsify_cal [computes energy dep using only cal info]
h_fill_cal_hist [translates raw drift and start times to decoded info]
h_trans_dc

h_track [finds and fits tracks in fp]
h_pattern_recognition [gets space points]
find_space_points [finds points within DC by looking at non-parallel planes]
h_choose_single_hit [handles case where one sp has multiple hits in one plane]
select_space_points [keeps sp only if it has good # hits, good # combinations]
h_fill_dc_dec_hist
h_left_right [fits stubs to all poss L-R combinations of drift distances]
h_find_best_stub ([fits line to sp’s in single chamber (assumes yp = 07?)]
h_link_stubs [looks at sp stubs and links them into tracks]
h_track_fit [finds track residuals]
solve_four_by_four
h_fill_dc_fp_hist
h_targ_trans [transforms tracks from focal plane to target using polynomial map]
h_fill_dc_tar_hist
h_tof [finds t, tof, beta w/ ph, vel, and time offset corrections (uses track info)]
h_tof_fit [fits beta from t and z]
h_cal [computes cal PID gties; corrects energy dep for impact point dependence]
h_clusters_cal [finds clusters and computes size, pos, and uncorrected energy dep]
h_tracks_cal [matches clusters to dc tracks]
h_select_best_track [selects best track based on chi-sq, dE/dx, Etot, and beta]
h_physics [performs final physics analysis of HMS gties]
h_physics_stat [calculates statistics and efficiencies]
h_dc_trk_eff
h_scin_eff
h_cal_eff
h_cer_eff

Figure 38: Software Flow Chart for the HMS Event Reconstruction.
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in terms of the focal plane position and angles. The coefficients of the Taylor
expansion are the reconstruction matrix elements discussed in Section 4.4. All the
basic physics quantities are calculated for this final track and also the scalars and
histograms are incremented. If there was a final track in both spectrometers and
if the event was a coincidence type event the coincidence physics quantities are

calculated, and coincidence tests and histograms are incremented.

4.2.2 Cebaf Test Package

The Cebaf Test Package (CTP) software was written at CEBAF to provide a
flexible way to store and modify histogram, test, and scalar definitions and other
analysis parameters. CTP is modeled loosely on the LAMPF Q system [60]. The
CTP shares variables with the Fortran code by registering all shared variables using
calls to CTP C subroutines. CTP uses remote procedure calls (RPC) to access
these shared variables. In addition, variables that are not part of the engine’s
Fortran code can be defined and used to create tests and to define histograms.
The main use of CTP is to input parameters to the engine, to control the analysis
via run time flags and to define the histograms, tests, and scalar reports to be
output. The parameters and histogram and test definitions are stored in ASCII
files and read in at the beginning of the analysis code. At the end of each event,
the CTP tests are evaluated. The histograms and software scalars are incremented
using the results of the tests. In addition CTP also allows the user to examine
and modify variables when running the event display code. This makes the event
display a valuable debugging tool. A detailed description of CTP can be found in
Reference [58].
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4.3 'Tracking

The tracking algorithm [61] is made up of four major steps as listed below:

e Identify space points (collections of hits in a chamber package) in each cham-

ber.

e Resolve left-right ambiguities of hits in drift chambers associated with each

space point.
e Link space points from each chamber to a trial track.

e Determine the track position and angles by fitting all hits on a track. Eval-

uate error matrix and goodness of fit.

The space point is identified for each group of hits in a chamber, by finding
the intersection of each pair of hits (omitting pairs of parallel wires). Events
with too few or too many hits, (as defined by two user defined parameters) are
rejected. Then all combinations of pairs are tested to see if the distances between
the intersections are less than a constant called the space point criterion. The
minimum number of combinations is a user defined parameter. Next the left-right
ambiguity is resolved for each wire in the space point. If all the planes fire, one
could resolve the left-right ambiguity using the fact that the pair of planes in each
direction are offset with respect to each other. However a more robust method
is used which can handle events where some planes are missing. A track is fit to
each left-right combination (also called a stub, there are 2° stubs per space points)
and the fit with the lowest x? is picked. This step in the algorithm is optimized
by using the small angle approximation. This approximations uses the fact that

wires of each plane are closely spaced (1.0 cm) and there is an offset of half the
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Table 7: Parameters used in the tracking algorithm

|| Parameters ‘ HMS ‘ SOS H
Maximum hits per event per chamber | 30 30
Minimum hits per event per chamber 5 5
Minimum combinations 6 6
Space point criterion (cm) 1.2 | 1.2
z Stub criterion (cm) 30 50
y Stub criterion (cm) 10 10
&' Stub criterion (rad) 0.5 | 0.5
y' Stub criterion (rad) 0.5 | 0.5

this spacing (0.5 cm) between parallel planes. Hence if there are hits in any two
parallel planes the algorithm chooses the left-right combination that makes the
particle go between the wires. The small angle approximation is used for all of the
SOS planes and the y,y’ planes in the HMS. This is done for both the front and the
back chambers. The next step consists of fitting a track through each pair of stubs
in the front and back chambers. This track gives the trajectory of the particle
through the drift chambers in terms of a pair of positions z, y (in the spectrometer
coordinate system (Figure 23) and a pair of angles 2’ and ¢ in the = and y direction
respectively. Here four parameters, one each of the positions and angles, called the
stub criteria are used to determine which stubs can be considered to be part of the
same track. Finally all the tracks which meet these criteria are recorded. Table 7
lists all the parameters which form an integral part of the tracking algorithm. The
values listed in the table were optimized to get the best tracking efficiency for this

experiment.
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4.3.1 Multiple Tracks

Multiple tracks can occur because there were multiple particles passing through
the detectors at the same time or because the tracking algorithm could fit two or
more tracks through the same space point. The latter usually occurs if there are
“noisy” wires or multiple hits in some planes. In case of multiple tracks for an
event, the best track is selected by applying restrictive conditions on the particle
velocity and the calorimeter signal. For multiple tracks beyond this point the track
with the best x2 is selected as the final track. Most of the multiple track events
were found to be of the second type ( caused by extra hits / noisy wires); however,

the fraction of multiple track events is always less than 0.1%.

4.3.2 Tracking Efficiency

Tracking efficiency is a very important correction factor, which is needed for accu-
rate measurement of cross-sections (experimental yields). There are two important
components which contribute to the tracking inefficiency: the inefficiency of the
detectors (wire-chambers) and the inefficiency of the algorithm used to determine
the tracks. In this experiment these inefficiencies were not measured separately.
The determination of tracking efficiency involved defining a method to measure
the efficiency and also conducting tests to check if this method is a true measure

of the tracking efficiency.

The tracking efficiency is measured by using a small region of the triggering
hodoscope planes to tag events which should have passed through the wire cham-
bers. Thus the fraction of these events which are tracked by the wire chambers give
the tracking efficiency. The variation of the tracking efficiency within a plane was

checked by examining the efficiency when different regions of the wire chamber were
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illuminated. Two tests were performed to ensure that the method described above
is a measure of the tracking efficiency. Using the tracking efficiency as measured
above the corrected yields from various runs covering a wide range of kinematics
were compared and found to agree within 1%. Secondly the measured tracking
efficiency was compared with the expected efficiency using wire chamber plane ef-
ficiency. The wire chamber plane efficiencies were determined by using the same
small region of the hodoscopes to tag events which must have passed through the
wire chambers and then the fraction of these events which fired at least one wire
per planes of the chambers gives the plane efficiency. Since the tracking algorithm
required at least five planes firing per chamber, the expected probability of finding

a track is given by,
P = (6P° — 5P°)? (77)

where P is the plane efficiency. This probability was found to match the mea-
sured tracking efficiency to 1%. These two tests tell us that the error involved in

tracking is 1%. The typical tracking efficiency for both spectrometers was > 97%.

4.4 Event Reconstruction

As we have already seen, the two wire chambers in each spectrometer are used to
determine the trajectory of the particle at the detector plane defined as the plane
half way between the two wire chambers perpendicular to the central trajectory
(z axis in the spectrometer coordinate system Figure 39). This plane was also
defined as the focal plane for this experiment. Usually the focal plane is a surface
along which the momentum of the particle determines its position in the dispersive
direction. For this experiment the detector plane was called the focal plane. The

trajectory of the particle in the focal plane is given in terms of two positions
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Figure 39: The Focal Plane

(zfp and yyp) and two angles (xffp and y}p) as shown in Figure 39. The position
angle combination (z,, x'fp)describes the event track in the dispersive plane of
the spectrometer, while the other combination (y¢,, y}p) describes the track in
the plane perpendicular to it (scattering plane). Using these focal plane track
information one can reconstruct the relative particle momentum Ap/p (also called
delta), the position and angle in the scattering plane (ytmﬂ,y;mﬂ) and the angle in
the dispersive plane (x;aT ,also called out of plane angle) of the event at the target,
relative to the central ray through the spectrometer. The position in the dispersive
direction (44,) cannot be reconstructed since it was used as an assumption in the

momentum reconstruction.

The reconstruction of the position, angle and the relative momentum is carried
out by a Taylor expansion (in the focal-plane coordinates) of the solutions of the
equation of motion of charged particles in the magnetic fields of the spectrometer.
The particle transport from the focal-plane to the target can be expressed in the

matrix formalism of Penner [62]. The target quantities labeled tar can be expressed
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in terms of the focal-plane coordinates labeled fp and the transfer coefficients or

matrix-elements M., .

qziar = Z M;klm(xfp)j(:vfp)k(y,fp)l(yfp)m7 (78)

7klm

where g;;>%* corresponds to a:ltm,, Year y;m and Ap/p respectively.

; . ; i gk 1 m
M;klm =< q:fa'r|xfpx fpyfpy fp > . (79)

The symmetry about the center of the focal plane (mid-plane symmetry) im-
poses certain restrictions on these transfer coefficients M. The target coordi-
nates in the dispersive plane (Ap/p and x;a,,,) can have combinations of the focal
plane coordinates (yy,)" and (y}p)m only for even powers of [ + m, while the target
quantities calculated in the scattering plane can have combinations of the focal
plane quantities (:cfp)7(:c}p)k only for even powers of j + k. The coeflicients for
the rest of the combinations are usually zero and are called forbidden coefficients.
The reconstruction coefficients for each spectrometer was determined using the
COSY INFINITY [53] program which was used to model magnetic components
of the spectrometer. However, since these models did not have the exact field
value at each point in these massive spectrometers and due to inhomogeneities in
the magnetic fields of the spectrometers, the calculated transfer coefficients were
not optimal, and hence do not describe the optical properties of the spectrometer
precisely. It has been shown by Loffler et al. [63] that the optical properties of a
spectrometer can be best determined by experiments where rays of particles are
traced over the full solid angle acceptance. Hence solid angle defining slits, the so
called sieve slits introduced in Section 3.4, were used in both spectrometers to study
the optical properties of the spectrometer. The sieve slits (shown in Figure 40)

allow us to populate the large acceptance of the spectrometer simultaneously with
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Figure 40: The Hms and the SOS sieve slits

many pencil beams thus enabling us to study variation in the optical properties
of the spectrometer over the full acceptance. The experimental procedure and the

procedure to optimize the transfer coefficients are described next.

4.4.1 Experimental Procedure

A beam of 845 MeV electrons was incident on a 2C target with the spectrometers
parked at ~ 29°. The scattered electrons were detected in both spectrometers. A
series of runs were taken, each with the central momentum of the spectrometer
aligned to position the elastic peak at different location in the £10% (£20%) of the
HMS (SOS) momentum acceptance in steps of 2% (2.5%). This is called a delta
scan. Such a scan was also repeated with sieve slits in place in the spectrometer.
These data were used to optimize the Ap/p transfer coefficients. The delta scan
was also repeated with an incident beam of 1645 MeV, to check the reproducibility

of the matrix elements.
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Central Target Position z = 0

Beam Direction

Figure 41: A schematic of the slanted target arrangement. The break in the picture
indicates that the upper half is a side view while the lower half is a top view.

In another experiment a beam of 845 MeV electrons was incident on a !2C
slanted target. The slanted target helps us scan the y,, acceptance of the spec-
trometers by raising and lowering the slanted target in the vertical direction, in
steps of 1.0 (0.5) cm for the HMS (SOS), as shown in Figure 41. This ensures
that the beam intercepts the target at different position along the beam direction
(z axis). The central momentum of the spectrometer was set for the electron ex-
citation of the Delta resonance so that the entire momentum acceptance of the
spectrometer was approximately uniformly illuminated. All data were collected
with the sieve slits in place. These data were used to optimize the %q4,, z,,, and
y;ar matrix elements. Once again data were also taken at 1645 MeV to check the

reproducibility of the matrix elements.
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4.4.2 Optimization Procedure

The code (Hall) C Matrix-element Optimization Package, CMOP [64] was devel-
oped to process the experimental data described above and obtain an optimal set
of matrix elements which would give the best resolution in all the reconstructed
quantities. The optimization philosophy is to start with a set of matrix elements
generated by modeling the magnetic fields in the spectrometer using COSY [53].
For each event from the experiments described above in Section 4.4.1, the focal
plane quantities are mapped to target using the COSY generated matrix elements.
This process gives us the first approximation to the target quantities Ap/p, z;, ,
Yiar and y;(w. From the target, each event is then mapped to the sieve slits by
drifting them through the space between the target and the spectrometer entrance.
Now one can determine the sieve slit hole closest to the path of the particle and
since the absolute position of each sieve slit hole is known this leads to a geomet-
rical determination of the angles and y position of the particle trajectory at the
target. These geometrically determined angles and positions are compared to the
reconstructed angles and positions. The square of the difference between the re-
constructed and the geometrical quantities are calculated and a subset of the data
for which this difference squared passes certain tests (eg. radii of the holes) are

retained, which is then fit via the singular value decomposition method (SDV) [65].

The SDV method involves decomposing the design matrix to expose any pos-
sible singularities. Once the singularities have been edited out of the fit, new
matrix elements are obtained by Gaussian backward substitutions [65]. The equa-
tions that are solved or minimized to generate the new matrix elements can be

written compactly as follow [66]:

! ’

Ya; k(e — avo);cp(y — y())‘;p(:c — xa)l}p(y — yé)lfp — gqtar = 0. (80)
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where a; ;1.1 are the elements of design matrix, z,, Ysp, xffp, y"fp are the focal plane
quantities, Zo¢p, Yotp, ngp, yéfp are the offsets at the focal plane, and gtar is one of
the target variables (Yyar, Z10s Ysar> 0)- Equation 80 is written down for each event.
For N events if the number of parameters being varied is M, such that N —M > 0,
the problem is over-determined. Once the new parameters are obtained, the data
is mapped again from the focal plane to the target and this procedure is iterated

till the desired resolutions are achieved. The standard convergence condition used

is,
r. 2 _r 2‘
('XQ—X("”' < 0.0075) and (Nj = Nii-1) < 0). (81)
X(i-1)
Where
2
r,. 2 X
Xi = D> .

2 1s the number of iterations and N; is the number of events that are accepted for the
fit in the ith iteration. The typical uncertainty in the focal plane quantities is used
as weight. Usually one starts with the tests set to larger than the actual radii of the
holes and in subsequent iterations the tests are reduced to values corresponding to
the radii of the holes. While fitting the y;,, and é matrix elements the reconstructed
Yiar and § are compared with the spectrometer set values for the corresponding
slanted target run and the delta scan run, respectively. The set value of y,, is

given by,
Z =d x tan(;), Ytar = 2 X sin(fy). (83)

Where d is the vertical translation of the slanted target (refer to Figure 41) while Z
is the position along the beam direction, 6, is the inclination of the slanted target

and 6, is the spectrometer central scattering angle. Similarly the set value of § is
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§ = (=)

e where py is the central momentum setting of the spectrometer

given by

and p is the momentum of the scattered particle given by,

1 El Fe E[
=B -2 (1 =) -2, 84
Pl 2 ( * M)] 2 (84)
where the recoil factor 7 is given by
2B, — E;)sin®(6y/2
17=1—I-( 0 1) (0/) (85)

M

Here M is the target mass, E, the beam energy, F., is the excitation energy ( Ee
= 0 for elastic scattering), £; is the mean energy loss due to Landau straggling in

the target and 6, scattering angle.

Along with the four reconstructed target quantities the offsets at the focal
planes are also fitted ( these are the zeroth order matrix elements). In the HMS
the matrix elements up to 5th order were optimized while for the SOS they were
optimized up to 6th order. Figures 42 and 43 show the results of optimization

procedure for the SOS.

During the optimization it was found that the best results were obtained when
some of the forbidden matrix elements were allowed to be non-zero. This was later
attributed to the HMS quadrapole coils being rotated with respect to each other

by &~ 1-2 mrad.

4.5 Spectrometer and Beam Energy Calibrations
4.5.1 Beam Energy

A precise measurement of the beam energy is an essential requirement for many
experiments at CEBAF. The standard practice has been to measure the fields

required to bend the beam, as it traverses the set of bending magnets in the HALL
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Figure 43: Optimized 34, reconstruction for the SOS.

C Arc. From such a measurement one can then calculate the beam energy. This
method is dependent on the absolute knowledge of [ Bdl, which is difficult to
measure and maintain to high precision. Hence one must have additional checks
to ensure a higher degree of reliability. In this section three such schemes for

determining the beam energy using just kinematic information from the data are

described.
Differential Recoil Method

Energy determination using the method of differential recoil relies on the fact that
the difference in recoil energies, for (in)elastic scattering between "heavy” and
"light” masses is a function of the beam energy. By measuring this differential
recoil energy in a composite target we can calculate the incident beam energy.

The recoil energy is,

E?’ecoil = — —sin2(§). (86)



115

Hence for a composite target the differential recoil energy is,

0 1 1
AE, con = 2E%sin?(= (— — —) . 87
il (2) ]\41 M2 ( )

In addition the position, x4, along the focal plane is a function of the energy
of the detected electron and it can be written in terms of a polynomial known as

the dispersion polynomial,
Ey :FB(I—I—do—l—dl(x—:rc)—I—dg(;v—xc)z—l—....). (88)

Where I is the conversion factor (in MeV /Tesla) between the magnetic field B of
the spectrometer and the energy of the particles along the central trajectory, d; is
the spectrometer dispersion coeflicients and x,. is the position of the central ray.
For each peak in the spectrum of a certain target, the energy Ey is expressed in
terms of the excitation energy of that state and the incident beam energy E,. It

1s written as,

1 Eloss
Ef == ’_[Eo _— 2
Y|

E,
M)

Eloss

— E,(1
(1+ 5

] (89)

Where M is the mass of the target, 7 is the recoil factor as defined by Eg. 85. E,,

is the mean energy loss due to ionization in the target given by,

Z cot
Eoes = c1—t{In(—)|. 90
e = (2] (90)
Where 't’ is the effective thickness of the target and p is the target density. The
parameters F,, I' and the coefficients d; are determined simultaneously by using
the two equations in a least squares fit to the energy calibration data. One pass
beam was used to perform delta scans on a carbon and a BeO target. The carbon

data were used for calibrating the focal plane. The position of the 4.4 MeV excited
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state of C was measured at the focal plane. The measurements were repeated for
runs ranging from § = —5% to § = +5%. These focal plane positions were then
used to obtain the dispersion parameters , d,, d; and dy, which are related to § as

follows,
8= do+ dy % (Xgp = Xofpoet) + do % (Xpp = Xoppaer)® (91)

These parameters were determined by fitting the data to the equation: Ejy =
I'« B (14 6), where I' is a constant and B is the magnetic field, and Ey is the
energy of the scattered electron. These parameters were used to to obtain the focal
plane positions of the oxygen ground state and the first excited state of Be (2.49
MeV) from the delta scan on the BeO target. The focal plane positions gave the
recoil energies which were used to obtain the beam energy. The different sources

of uncertainty and their contribution to the total uncertainty is listed in Table 8
Diffractive Minima Method

This method involves a measurement of the cross sections of the carbon ground
state and the first excited state at the dispersive minima. A plot of the ratios of
these two cross sections (ground state to first excited state of carbon) is shown
in Figure 44. This reaction is calculated to have a diffractive minimum at ¢> =
0.129 GeV? [67]. For a beam energy of about 845 MeV this would lie at a scattering
angle of about 6., = 24.8. By determining the angle where the the minima occurs

we can calculate the energy using,

¢ = —4EFE'sin’9,
where (92)

E = E'/(1+2Esin29/M) (93)
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Table 8: Beam energy uncertainties for the differential recoil method. The nominal
beam energy is 845 MeV

Sources Error AE

Uncertainty in the
determination of peak | 0.05 cm | 1.30 MeV
centroid

Focal plane
calibration error 1073 0.70 MeV

Uncertainty in
scattering angle 1 mrad | 0.25 MeV
measurement

The uncertainties in this method arise from the errors in the measurement of
the scattering angle. Additional sources of error are due to inaccuracies in the

determination of the ratio of og+ to gq+.

Data were taken at angles close to the diffractive minima at 24.85°, using one
pass beam (845 MeV) on a carbon target. The counts in the elastic as well as the
first excited state of carbon were plotted as a function of the scattering angle. The
ratio of the counts in these two states was also determined as a function of the
scattering angle. The cross section of these two states were calculated theoretically
for scattering angles ranging from 23.0 to 26.0° for a beam energy of 845 MeV,
using MEFCAL [68] for the ground state and FOUBES [69] for the excited state.
The ratio of the theoretical cross sections were then fitted to the measured ratio

to determine the minima. Figure 44 shows the counts in the elastic and the first
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Figure 44: The counts in the elastic (top panel) and first excited state (middle
panel) and their ratio (bottom panel) as a function of difference in the scattering
angle. The solid lines are fits to the data.
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Table 9: Uncertainties in the beam energy determination using the diffractive
minima method. The nominal beam energy is 845 MeV.

Sources Error AE

Minima fitting
error 0.40 mrad | 0.76 MeV

Systematic error in
scattering angle 0.60 mrad | 0.38 MeV
reconstruction

Systematic error
in survey measurement | 0.40 mrad | 0.30 MeV

of collimator position

excited state and their ratio. The various sources of error and their contribution

are listed in Table 9.

Beam Energy from H(e,e’p)

Beam energy can also be determined from elastic scattering of electrons from pro-
tons. If we know the momentum and the angle of either the scattered electron
or the scattered proton, we can reconstruct the energy of the incident beam of
electrons from this information. This method has the advantage that it can be
used at all beam energies unlike the first two methods which can be used only at
one and two pass energies. But it has the disadvantage of being the most inaccu-
rate of the three methods discussed. This is because the resolution and systematic
errors of both the spectrometers have to be folded into this type of measurement.
The uncertainties of this method are listed in Table 10. The uncertainties were

determined by varying the the listed parameters and calculating its effect on the
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Table 10: Uncertainties in beam energy determination using H (e, €'p)

Sources Error AE

HMS momentum
error 1073 1.5 MeV

SOS momentum | 1.5x1073 | 2.0 MeV

€rror

HMS scattering | 1 mrad | 2.5 MeV
angle error

SOS scattering 3mrad | 4+3.0 -3.5 MeV

angle error

beam energy.

The results from the various methods have been listed in Table 11.

4.5.2 Spectrometer Momentum

Measurements of cross-sections require a very accurate determination of the central
momentum of the spectrometer. The momentum calibration depends on a accurate
knowledge of the beam energy and scattering angle. The momentum calibration

of the two spectrometers has an accuracy of ~ + 0.15%.

The central momentum of the spectrometers were calibrated using elastic H(e, ¢’)
data at the same energy but different angles and elastic H(e,e'p) data at several
energies. Here we use the fact that elastic (e, e’) and (e, 'p) kinematics are over de-
termined so the measured momentum of the spectrometer can be checked against

momentum determined from the elastic scattering angle. Using the (e, €'p) data it
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Table 11: Beam energy measurements

Nominal | Method Energy Error
Differential

845.0 Recoil method 844.7 MeV | 1.5 MeV
Diffractive

845.0 Minima method | 844.7 MeV | 0.9 MeV

(first run)

Diffractive
845.0 Minima method | 845.1 MeV | 0.9 MeV

(second run)

2445.0 Elastic H(e,e’p) | 2444.9 MeV | 5.0 MeV

W2 - M? (MeV?)

0015 b b1

Figure 45: Difference in the reconstructed and expected invariant mass as a func-
tion of central momentum, for the HMS
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the SOS.

was found that the HMS central momentum was 0.9% lower than that predicted
by the model of the spectrometer. This was corrected before the elastic H(e, ')
data were collected. The (e,€') data found an offset in the central momentum
of the order of ~ 0.15%, which is consistent with the offsets in the reconstructed
¢ (=) found from the (e, €'p) data. Figure 45 shows the difference between the
reconstructed and expected invariant mass as a function of central momentum,
obtained from the (e, €’) data at a beam energy of 4.045 GeV. The fit to this data,
assuming fixed offsets in beam energy and reconstructed §, gives an offset of 0.15%

in § and no offset in the beam energy.

For the SOS the central momentum differed from the model by up to 0.55% as
determined using H(e, e'p) data, although, this difference varied with momentum
and was about 0.1-0.15 % at most kinematics. The difference between the expected

and the measured central momentum for the SOS is shown in Figure 46.

It was also noticed that in the HMS the vertical position of the focal point
(defined as the waist of the hour-glass like x¢, vs y ¢, plot) varied with momentum.

This variation is shown in Figure 47, however careful studies showed that this
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Figure 47: HMS focal point variation with momentum

variation had negligible effect on the reconstruction of the angles and momenta of

the spectrometer.

4.5.3 Spectrometer Angles

Measurements of cross-section require a very accurate determination of the scat-
tering angle. The calibration of the angles of the spectrometers rely on accurate
optical surveys of the spectrometer, beamline and target positions. The scattering
angle of the spectrometer is determined from surveyed markings on the floor of
the hall. These markings are accurate to better than 2 mm and thus gives rise
to uncertainties of the order of 0.1 mrad in the HMS and 0.3 mrad in the SOS.
However, most of the uncertainties come from magnet motion as the scattering
angle is varied. The motion of the magnets was studied by optical surveys of the
magnet positions at several angles. The scattering angle of the spectrometer can
also be determined using sieve slit data, which also relies on careful pointing survey

( described below) of the spectrometer.

The positions of the target, scattering chamber, collimators and sieve slits,

magnets and the detectors were surveyed before and after the experiment.
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Figure 48: HMS and SOS Scattering Plane, the symbols defined here are used in
Table. 12

The position of the central axis (Figure 48) of the two spectrometers is surveyed
with the spectrometers parked at several angles. These surveys are then used to
check if straight lines drawn from the spectrometers cross at the center of the
target. These kind of surveys are called pointing surveys. The pointing survey
was done at several angles to determine the relative motion between the magnets
when the spectrometers are rotated and also the level of the rails on which the
spectrometers move. In addition the height of the rails at these angles are also
surveyed. Optical survey measurements had an accuracy of about 150-200 p m.
The pointing survey determined that the HMS mispointed to the right of the target
by up to 1.9 mm horizontally at certain angles and up to 1.5 mm vertically. The
mispointing as function of spectrometer angle is shown in Figure 49. The SOS
pointing survey found that the SOS mispoints to the left by up to 4.0 mm at

certain angles but it mispoints by 2.0 mm on the average. The SOS also mispoints
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Figure 49: HMS and SOS mispointing, deviation from the ideal triple intersection
point (two spectrometers central axis and the target center) as determined during
a pointing survey.

by 2.0 mm vertically at certain angles but on the average there was no vertical
mispointing. The results of the pointing survey along with the surveyed position
of the sieve slit relative to the median plane of the spectrometer was used during
optimization of the spectrometer transfer coefficients (matrix elements) described
in Section 4.4. This ensures that the reconstructed scattering angle includes most

of the magnet motion and other variations in the spectrometer position.

It was also found that the magnets in the spectrometer themselves had certain
displacement from their nominal positions which varied with the angle of the spec-

trometer. The displacement of the magnets as a function of the angle is shown in

Figure 50.

Survey of the rails on which the spectrometers rotate found that the SOS rails
were displaced from the level up to 1.5 mm at certain angles this changes the out-
of-plane angle by about 0.15 mrad. The HMS rail surveys and the magnet motion

information was combined to generate a model for the offsets as a function of the
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Figure 50: HMS and SOS magnet motion, offsets in the magnet positions as a
function of scattering angle

spectrometer angle and the model along with the measured offsets are shown in

Figure 50.

It is also known from these surveys that the SOS is -0.15 degrees out of plane
with respect to plane made by the HMS and the target center.

From all the survey results it is estimated that the magnet positions for the
HMS were stable to about 1.0 mm (2.0 mm for the SOS). Using all the survey
information along with the data taken with a sieve slit and a slanted target (which
allows the position in z where the beam hits the target to be varied, described in
Section 4.4) one can determine the central scattering angle with an uncertainty of
1.0 mrad (1.5 mrad for the SOS). The experimental procedure with the sieve slit
and slanted target is described in 4.4. Table 12, shows the various sources of un-

certainty in the determination of the the scattering angle in the two spectrometers.
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Table 12: Uncertainty in the Scattering Angle of HMS and SOS

Error in Optical Survey | Sieve-Slit Determined
[mrad] [mrad]

spectrometer median plane 0.2 -

sieve-slit position 0.4 -

central scattering angle ©,(Figure 48 | 0.1 (0.3 for SOS) 1.0 (1.5 for SOS)

scattering angle A®,, relative to O, - < 1.0(3.0 for SOS)

4.5.4 Spectrometer Resolutions

The resolution of the two spectrometers was checked over the full momentum bite
of the spectrometer by scanning the elastic peak of a 2C target over the full
momentum bite of the spectrometer (§ scan with the '2C peak). The elastic peak
in the reconstructed momentum spectrum was fitted to a Gaussian. Figure 51
shows the standard deviation of these fits as a function of the reconstructed §
(%) for each spectrometer. This shows that the resolution of the spectrometers
were stable over the momentum bite used in this experiment. The average HMS

resolution is about 0.2 % and the average SOS resolution is about 0.15 %.

4.6 Detector Calibrations

A sequence of calibrations had to be performed in order to match the timing of
the individual scintillator elements and to match the gains of the calorimeter and
Cerenkov signals. The Cerenkov counters were calibrated by calculating the gains
for each PMT by determining the single photo-electron peaks from the pedestal
subtracted ADC signals from each channel (4 in SOS/ 2 in HMS). The hodoscope

and the calorimeter calibration involved fitting to event information from high
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Figure 51: HMS and SOS resolution as determined for 840 MeV electrons.

statistics runs, taken for this purpose, where large regions of the detector were

illuminated.

4.6.1 Hodoscope Timing Corrections

There are several corrections in going from the TDC value of an event to the time
of the event. The scintillators used in the hodoscope had a mean time resolution
of ~70-100 ps (in bench tests), and so all timing corrections had to be carefully fit
to achieve a final resolution close to this limit. The TDC scale (ps/channel) was
determined using a Time Interval Generator and also checked using the RF signal
(499 MHz) from the accelerator. The time variation due to changes in the TDC
scale over the range of TDC values, was of the order of +25 ps which is better

than the intrinsic resolution of the scintillators.

The second major correction is the pulse height correction. The timing signal
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comes from a fixed threshold discriminator; the exact time at which the threshold is
exceeded relative to the peak time depends on the height of the signal. Thus, large
signals will fire the discriminator earlier than small signals and corrections for this
effect are called pulse height corrections. These corrections are typically hundreds
of picoseconds and have a significant effect on the resolution of the detector. The
pulse height corrections are fitted by taking crossed pairs of scintillators (to limit
the region of the scintillator that is hit) and then comparing their mean times
(each element is read out by a PMT on each end). Using the mean time eliminates
the dependence on position along the scintillator and leaves only the pulse height
walk correction and an overall offset. By applying a trial correction to the pulse
height walk in three of the four PMTs, the remaining dependence on the ADC
value gives the form of the pulse height variations in the uncorrected tubes. We

use a correction of the form,

At = PHC * \Jmax(0, (ADC/PHOFF — 1)) + t, (94)

where ADC is the raw ADC value, and PHC, PHOFF are the timing correction

parameters, and t; is an arbitrary offset between the two scintillators.

Other corrections include the variation in the propagation time for the signal
to travel from the point where the scintillator was hit to the PMT's, and overall
timing offsets between the individual signals. Once the pulse height correction
is known, the velocity of light propagation along the scintillator element can be
measured by taking the difference in times of PMTs on the opposite ends of an
element. This velocity is the average velocity for the signal to reach the PMT
which accounts for the fact that most of the light does not go directly towards the
PMT but reflects off the sides of the scintillator. The velocity correction therefore

depends on both the index of refraction and the geometry of the scintillator. A
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velocity was measured for each plane, and all elements in that plane used this
average correction. Finally, each tube has its own offset due to variations in cable
length or different response times of the PMTs. These are fit in the same way as
the pulse height corrections. The mean time is generated for a pair of scintillators,
with velocity and pulse height walk corrections included. The offsets are adjusted
in order to make the time between the scintillator hits agree with the velocity of
the particle determined using the measured momentum and known masses of the

particles.

4.6.2 Lead Glass Calorimeter Calibrations

Attenuation in the lead glass gives a variation of signal with distance from the
PMTs, because each block was only read out on one end. To correct for the
attenuation, the signal from each block was multiplied by a correction factor based
on the event position. This correction was checked by looking at the distributions
of measured energy as a function of distance from the PMTs. In addition to
correcting for attenuation, it is necessary to correct the gains of the individual
modules. The operating high voltages for the calorimeter PMTs were adjusted to
match the size of the output signal. This corresponds to a gain variation between
the blocks, since the large momentum acceptance of the spectrometers gives rise
to large variation in the input signals. The absolute gains were found to vary up
to 50% between the different modules. The different lead glass modules were gain
matched by varying the gain correction factor so as to minimize the difference
between the energy sum from all blocks and the true energy of the electron, for
true electron events. The true energy is determined from the reconstructed electron

momentum and good electron events were defined using the Cerenkov counter.
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4.7 Coincidence Timing

As described earlier (Section 3.4 and Section 4.6) the hodoscope planes were used
to determine the time of events at the target. The scintillator times for each track
at the focal plane ( called Focal Plane Time), along with information on the path
of the particle ( determined with parameters from a COSY model, optimized to
give the best coincidence time resolution) was used to determine the times of the
event at the target. These times included the corrections described in Section 4.6
and were measured in each spectrometer. These single arm times along with the
coincidence TDCs give the relative event times. This is called the raw cointime and
this time is then corrected for the actual path taken by the particle and projected

back to the target. The raw coincidence time is given by,

cointime,qw = Tproton arm — Telectron arm — 1 PCUso0s, (95)

here Tproton arm and Tolectron arm are the single arm times and TDCgpg is the
coincidence TDC started by the proton trigger and stopped by the electron trigger.
There were coincidence TDCs in each of the spectrometers and hence we had two
measurements of coincidence time. A typical coincidence time spectrum is shown
in Figure 52. The 2 ns micro-structure of the beam was resolved. The typical
coincidence time resolution was about 0.5 ns. A window of about £1.5 ns about
the mean of the central peak was used as the cut to select the coincidence events.
The number of background events per channel was determined by using two shaded
regions on either side of the main peak in Figure 52). The contributions from
background events in the good cointime region was then subtracted to give the

background corrected coincident events.



132

10

5
G2

c&d&d&é&d&d&é 444
BRI, ot oo et e tatetosatess
Retotatetotitotetitotatetotatetotetetotesotatetotatesatetototet

%

5
5%
SERELL
ato%ete%es

.........
s
RIS
RIS
RS
R
]
o R SRIS
o0e) X GERHHRRRRIRIRR KK
RIS R
IR

0%

BRI R RRRRIHRIRRN
B R AR
SRR,

%
o
5
XK

5

oo
039S
S

o
<5
5%

%
5
S
%

038
5
5
S
%

S
5

5%

oot
2
da3ess

oot

oo%t
05K
X;

<5
58K
o3

R
B
I RRIIIEELKY]
R
s

oo otatetotetetetotetetotetels

0

0005030
QRIS
R

%

dotet

S
3
S

5
Corrected SOS Coin. Time (ns)

IR
KRR
SIS
RIS

RIS

:;:::::.
R
IR
B s
S s

ERERERER

RRRRRRRR
eSS
PRI
R R

-10

log scale.

m

is shown 1

ime spectrum

dence t

incl

1 corrected co

1Ca.

A typ
The shaded peak in the center is taken as the good cointime peak while the shaded

Figure 52

idences

1ncC

d to calculated the random co

1S use

ther side of the peak

region on €1



133

4.7.1 Coincidence Blocking and Synchronization Correc-
tions

We have seen that a cut on coincidence time was used to define the good coincident
events. It was found that in order to use this information reliably some corrections
need to be applied to the coincident events. These corrections are essentially due
to four effects: blocked coincidences, self-timing events, loss of synchronization
between detectors in a spectrometer and the loss of synchronization between the

two spectrometers.

Some coincidence events get blocked when a random prescaled singles event
(which would not ordinarily be recorded) occurs just before a true coincidence
event. This leads to early stops in the coincidence time TDCs and makes the gates
to the ADCs narrower than usual and thus tight cuts on the cointime would miss
these blocked coincident events. In this experiment the SOS rates were always
higher than the HMS rates and thus the majority of the coincident blocked events
were random SOS events arriving just before a true coincidence event. This effect
is corrected for by determining the fraction of the total coincidence events that
were blocked and then correcting the good coincidence events by this fraction.
The blocked events can be identified in the HMS coincidence time spectrum, since
the blocked events lie outside the coincidence trigger window and arrive earlier
than real coincidence events. The fraction of blocked events was almost always <

1.0% and in the worst case it was about 1.8% of the events.

The self-timing problem arises when some late trigger from one of the spec-
trometers can cause the trigger supervisor gate to arrive at the retiming AND gate
(see Figure 35) after the delayed trigger from the the other spectrometer, thus
the coincidence time TDC on this spectrometer is started and stopped by the late

spectrometer (hence the name self timed event). The retiming incorporated into
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Figure 53: The self timed events are are shaded, panel 1 shows the raw coincidence
time , panel 2 shows the coincidence time at the focal plane and panel 3 shows the
path length corrected coincidence time

the trigger logic was designed to avoid these events. However, it turned out that
although the SOS had enough range in delay to avoid self timed events the HMS
did not have enough delay and self timed events occured. The HMS self timed
events are shown in Figure 53. It turns out that in calculating the corrected co-
incidence time when one subtracts the focal plane time from the raw coincidence
time both these quantities are smaller by the same amount and the effect is can-
celed. The self timed events are thus a part of the background in the corrected
cointime distribution (see Figure 53). Since the self timed events occur when one

spectrometer is very late, the tight cointime cut we apply automatically removes
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the self timed events.

The synchronization problem arose from bugs in the data acquisition system
when it was used in a ‘buffered’ mode. In this mode information for up to 8 events
were stored in internal buffers of the ADCs and TDCs, while the data acquisition
computers were busy. Thus this problem occured only during high rate running.
This problem can occur in two ways, the detectors within a single spectrometer
can be out of sync with each other or the two spectrometers can be out of sync
with each other. The synchronization problem of both types effected less than 1%
of events in most cases except for forward proton angle runs in kinematics A where
in the worst case it was a 10% effect. The first kind can be easily detected as the
tracks from a given event do not correspond to the hits in other detectors and thus
the diagnostic histograms looking at the difference between the tracks and the hits
in each detector can easily pick out these runs. These problems were usually caught
online and these runs were thrown out and data was retaken. The second kind is
more subtle and cannot be detected easily. An algorithm was designed to identify
events with this problem and the coincident counts were corrected for this effect.
The algorithm consisted of summing the HMS and the SOS cointimes to form a
checksum. Since the HMS cointime = - SOS cointime + constant, the checksum
defined as HMS cointime 4+ SOS cointime must lie within a well defined small
range. Events outside this range were the out of sync events. Figure 54 shows the
range of checksum for good events. A cut on checksum was use to determine the
fraction of events which were out of sync and the coincidence yields were corrected
with this fraction. This cut on checksum was used as a standard cut along with

the tight cut on cointime.
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Figure 54: The sum of the raw HMS and SOS coincidence time is shown. This was
called the checksum, with the shaded region corresponding to the events which are
in sync or good events.
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4.8 Electronic Dead Time and Computer Dead
time Corrections

One of the corrections to the experimental yield is from data acquisition deadtimes.
These are of two kinds, electronic deadtime and computer deadtime. The electronic
deadtime occurs when triggers are not counted because the electronic hardware is
busy processing the previous triggers. The scalers used in the experiment record
the counts at a smaller rate R.s; than the true rate R,,.,.. Since this is governed

by Poisson statistics, the probability distribution of time between events is given

by,
P(t) = Rexp #. (96)

If 7 is the width of the logic signal, the logic modules miss events which come
within a time 7 of each other. If the probability for this to occur is small (ie. for
small dead times) the fraction of measured events is given by the probability for
events to be separated by times greater than 7,

N, inf ~ ~
_cupt :/ Rexp ® dt = exp™ ¥, (97)
Ntruc T

for the small deadtimes encountered in this experiment this can be approximated

Ne,
as 7 ~ 1 — Rr.
true

In the trigger nearly all gates were 30 ns wide thus the 7 for this experiment was
30 ns. The electronic dead time was measured by generating copies of the trigger
with widths of 60, 90, 120 ns (A trigger arriving, for example 75 ns, after another
would be counted for widths < 75 ns but would not be counted for widths >

75 ns). Counting these signals and making a linear extrapolation to zero deadtime
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Figure 55: The solid line corresponds to the expected dead time for a processing
time of 400us while the dashed line corresponds to the expected dead time for a
processing time of 75us. The pretrigger rate is the average rate over the entire
run, it will be different from the instantaneous rate for runs where the beam was
off for part of the run or if the current changed during the run.
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the electronic dead time is given by,

NT

Kelcc = NQT

(98)

where N7 is the counts recorded by the scaler for the gate of length 7 and
N?7 is the counts recorded for the gate which is twice as long. The electronic
deadtimes were very low in this experiment. The HMS electronic dead time was

always <0.1% while for the SOS it was always <0.03%.

The other kind of dead time, computer dead time, arises as a result of the data
acquisition computers being busy processing an event and not being available to
process events generated while the computers are busy. In this case the hardware
triggers are generated but they are blocked by the busy signal. The computer
deadtime correction is defined to be be the ratio of the actual number of events of
interest to the number processed by the trigger supervisor. This is usually given

by the ratio of pretriggers to triggers.

The typical non-buffered processing time was about 400us for most of the runs
in Dec 1995 the data was taken in non-buffered mode. For those runs which were
run in buffered mode the processing time was about 7bus. and there were just a
few runs which used this mode. In this mode event are stored in a buffer before
they are processed so that events arriving when the trigger supervisor is busy are
not lost. However the processing time here is an effective time and can vary from

run to run.

4.9 Detector Efficiencies

The Calorimeter and Cerenkov detector efficiencies were determined by selecting a

sample of good electron events from data on elastic scattering off a liquid hydrogen
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Table 13: The efficiency of the PID detector are listed

‘ Kinematics HMS Cal HMS C
A 0.992 0.995
B 0.992 0.995
C 0.992 0.995
D 0.976 0.995
E 0.984 0.995
F 0.990 (SOS) | 0.992 (SOS)

target. The good electrons were selected by applying a narrow cut on invariant
mass and a cut on the Cerenkov detector while determining the calorimeter ef-
ficiency and a cut on the calorimeter while determining the Cerenkov efficiency.
The calorimeter and Cerenkov efficiencies for the different kinematics are listed in

Table. 13.

4.10 Proton Absorption

Protons are strongly interacting particles and some of them will undergo a nuclear
interaction as they traverse the detector stack. Such interactions can result in loss
of the proton before it can reach the scintillators and cause a trigger. This would
artificially reduce the coincidence yield. This absorption was measured directly
using the H(e,e'p) data. Each electron in the coincidence acceptance region must
have knocked out a proton; thus the fraction of “missing” protons compared to
the coincident electrons is the absorbed fraction. The coincident electrons were
selected from a small region in the center of the acceptance and then compared
to the corresponding protons. The ratio of the proton yield to the electron yield
give the fraction of the protons which were not absorbed. It is also possible to

estimate the fraction of protons absorbed by using the nuclear interaction lengths
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(the mean free path between nuclear interactions) and the thicknesses of all the

materials in the proton’s path [70].

Table 14 (15) lists the properties of the materials that a proton must traverse
on its way from the target through the SOS (HMS). The mean free path between
nuclear collisions, ), is taken as the average of the total interaction length and the
inelastic interaction length. These interaction lengths are taken from Reference [70]

which lists both the mean free path between nuclear collisions, A7, and the mean

free path between inelastic interactions, A7, as calculated from A = foa. The
elastic cross section being very peaked in the forward direction, elastic scattering
will only remove a small fraction of the protons from the acceptance. Thus the

average of the total interaction length and the inelastic contribution is used.

Assuming that a proton traversing one quarter of the third scintillator is sufhi-

cient to cause a 3/4 trigger, the predicted transmission in the SOS is

PT505 catentarea = € 25/A = 700982 — (. 943, (99)
and for the HMS:

PThms catentatea = € 21 X1/M = 70067 — g 935, (100)

Using the elastic scattering data on hydrogen the proton transmission in the
SOS was measured to be 0.951 £ 0.005. Note that it is independent of the proton
momentum (at least over this limited range covered in this experiment). Note
also, that this is in agreement with the theoretical estimate. Elastic scattering on
hydrogen with the protons detected in the HMS was used to measure the proton
transmission in the HMS. The measured HMS transmission is 0.94540.002, and is
consistent with the theoretical estimate. A detailed account of proton absorption

results can be found in reference [71]. Proton transmission of 0.95 was used to
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Absorber Density | Thickness A X X/\
(fem®) | (em) | (gfem?) | (ofem?) | (1079
Areal
density
3.37cm LH 0.0708 3.37 47.3 0.239 5.04
5 mil Al target window 2.70 0.0127 88 0.0343 0.39
8 mil Al chamber window 2.70 0.0203 88 0.0548 0.62
Air (no vac. coupling) 0.00121 ~ 15 75 | 0.0182 0.24
Kevlar 0.74 0.0127 ~ 70 0.0094 0.13
Mylar 1.39 0.0076 72 0.0106 0.15
Kevlar 0.74 0.0381 ~ 70 0.0282 0.40
Mylar 1.39 0.0127 72 0.0177 0.25
Air (DC 1 through S2) 0.00121 ~ 149 75 0.180 2.40
Mylar cathode 1.39 | 7(0.00125) 72| 00122 | 0.17
Wire (cffective) W 10.3 | 12(0.0002) | 147.7 | 0.00469 | 0.03
6 x 30um + 6 x 60um
Ar/Ethane (50/50 weight) | 0.00154 | 6(0.6178) ~ 70 | 0.00571 0.08
Mylar cathode 1.39 | 7(0.00125) 72| 0.0122| 0.17
Wire (effective) W 19.3 | 12(0.0002) | 147.7 | 0.00469 | 0.03
6 X 30um 4+ 6 x 60um
Ar/Ethane (50/50 weight) | 0.00154 | 6(0.6178) ~ 70 | 0.00571 0.08
Poltysty. (1.04 overlap) 1.03 2(1.04) 70 2.142 | 30.61
Cerenkov windows ~ 1.39 2(0.030) ~ 70 | 2(0.042) 1.21
(2mil tedlar,10mil lexan)
Freon 12 (latm) 0.00493 100 87 0.493 5.67
Mirror (rohacell, mylar, - - ~ 70 0.45 6.43
carbon)
Poltysty. (1.10 overlap) 1.03 | 0.25(1.10) 70 0.283 4.05
| Total - | - | - -] 582




Table 15: Materials in HMS.
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Absorber Density | Thickness A X X/A

(g/cm?) (em) | (g/em?) | (g/em?) | (1077)

Areal
density

3.37cm LH (after scatt.) 0.0708 3.37 47.3 0.239 | 5.04
5 mil Al target window 2.70 0.0127 88 0.0343 0.39
16 mil Al chamber window 2.70 0.0406 88 0.1096 1.24
Air (no vac. coupling) 0.00121 ~ 15 75 | 0.0182 0.24
Kevlar 0.74 0.0381 ~ 70 0.0282 0.40
Mylar 1.39 0.0127 72 0.0177 0.25
Kevlar 0.74 0.0381 ~ 70 0.0282 0.40
Mylar 1.39 0.0127 72 0.0177 0.25
Air (exit pipe through S2) | 0.00121 ~ 256 75 0.310 4.13
2mil Mylar (entr/exit) 1.39 0.0051 72 0.0071 0.10
Sense Wires (effective) 19.3 0.000038 147.7 | 0.00073 | 0.005
25um W, 6 planes
Field Wires (effective) 2.70 0.0068 89.1 0.0184 0.21
150pum Al/Au (99/1)
18 planes
Ar/Ethane (50/50 weight) | 0.00154 8.3 ~ 70 0.0128 0.18
2mil Mylar (entr/exit) 1.39 0.0051 72 0.0071 0.10
Sense Wires (effective) 19.3 0.000038 147.7 | 0.00073 | 0.005
25um W, 6 planes
Field Wires (effective) 5.40 0.0068 87.9 0.0368 0.42
150pum Cu/Be (50/50)
18 planes
Ar/Ethane (50/50 weight) | 0.00154 8.3 ~ 70| 0.0128 0.18
Poltysty. (1.067 overlap) 1.03 2(1.067) 70 2.198 | 31.40
Cerenkov windows 2.70 2(0.102) 88.5 | 2(0.275) 6.22
(40mil Al entrance/exit )
Cerenkov gas No 0.00125 150 64.2 1875 2.92
Rohacell Mirror support ~ 0.05 ~ 1.8 ~ 70 0.09 1.3
Mirror SiO» 2.20 0.3 83.1 0.66 3.13
Poltysty. (1.067 overlap) 1.03 | 0.25(1.067) 70 0.275 7.94

| Total

67.34




144

correct the proton yield in both spectrometers.

4.11 The (e, e'p) Monte Carlo Simulation - SIMC

The PWIA Monte Carlo simulation SIMC was adapted from the (e, 'p) simulation
written for SLAC experiment NE18 [72]. It was converted to simulate the Jlab Hall
C spectrometers in the coordinate system used in Hall C (Figure 23). The main
pieces of the simulation are the event generator, which includes the cross-section
weighting and radiative corrections, and the spectrometer models. The single arm
Monte Carlos written for each of the Hall C spectrometers to study the optical
properties of the two spectrometers were used as the spectrometer models of the
two arms of the coincidence simulation SIMC. This PWIA simulation was a crucial
part of the analysis. It was used in extracting transparency and in extracting the

deradiated spectral functions, described in later sections. In this sections the main

features of SIMC are described.

4.11.1 The Philosophy

The philosophy behind SIMC is to randomly generate the energy and position of
the incident electron within the energy and spatial spread of the beam (the ioniza-
tion losses in the target were also incorporated) and then randomly generate the
momenta and angles of the scattered electron and the proton vectors with a flat
distribution over a region larger than than the actual spectrometer acceptance.
This defined the basic event at the scattering vertex. Next it was allowed for any
or all the particles to emit real or virtual photons and the corresponding parti-

cle vectors were adjusted to account for such processes (see Section 4.11.6). The
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scattered electron and proton were then transported through the target incorporat-
ing the ionization losses involved and finally transported through the appropriate
spectrometer model. These spectrometer models contained the detailed optics,
apertures and multiple scattering in the interfering material of the spectrometer
(described in Section 4.11.2). The surviving events were then reconstructed back
to the target and the energy loss corrections used in the data analysis were em-
ployed here as well. Finally the missing energy F,, and the missing momentum
Pm for the events were determined. Each successful event was assigned a weight
of KoepyS(Em,Pm)WradcorWyen, Where Ko, is the basic e-p cross-section, with
K = Eypy, S(Em,Pm) is the spectral function weight, W, 44cor is the radiative
correction weight and Wy, is the generation weight. Each of these weights are
described in the next few sections of this chapter. The events were then stored
along with the weights for each event. The normalization factor was also calculated
as the experimental luminosity and the phase space volume divided by the total
number of events generated.

LAE,AQ,AE.AQ,
Ngen ’

Normfactor = (101)

where £ is the experimental luminosity, AE,AQ,AE, A2, is the phase space vol-

ume, and Ny, is the number of generation attempts.

4.11.2 Spectrometer Models

The single arm spectrometer models consists of a set of forward matrix elements
which transport the particles to every major aperture in the spectrometer, checking
that the events makes it through each of these apertures. The forward matrix
elements were generated by COSY as described in Section 3.4. All the intervening

material in the spectrometer was included, the energy loss and multiple scattering
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was computed for all the material. The effect of multiple scattering was simulated
by a Gaussian distributions of the in-plane and out-of-plane angles, which had a

standard deviation of [70],

136

= ﬁzvlmd(l + 0.0881og((lrad)) (102)

g

The treatment of external Bremsstrahlung is described in Section 4.11.6. The for-
ward matrix elements were checked by comparing the focal plane distributions of
the model with those of the data as described earlier in Section 3.4. The spectrome-
ter models also contained sets of reconstruction matrix elements which transported
the particles back to the target. The optimized set of matrix elements used in re-
constructing the data was not used in the simulation because the optimized set
cannot be inverted to get the forward matrix elements set. To get consistent re-
sults with the simulation the reconstruction matrix elements should be the inverse
of the forward set, hence the COSY package was used to invert the forward set
of matrix elements and these were used in the simulation. They were checked
by comparing the model reconstructed distributions at the target with those of
the data, for elastic H(e, €'p) scattering. The reconstructed momentum, scattering
and out of plane angle and the target length in the two spectrometer is shown in
Figure 56. The figure shows the model acceptance reconstruction compared to the

data.

Other tests include comparing the Monte Carlo yields for elastic H (e, e'p) scat-
tering with those determined from the data and ensuring that these results were
independent of the cuts applied (Section 5.1). These results were also used to
determine how well the acceptance function of the spectrometers is known and
to determine the systematic uncertainty of the acceptance . The performance of

the simulation was also compared to the data from the nuclear targets. Figure 57
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Figure 56: The reconstructed angles and momenta of the two spectrometers for
Hydrogen (e, €'p) compared to the simulated distributions. The data is corrected
for proton absorption, tracking inefficiency and background subtracted.
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demonstrates the performance of the simulation with '2C(e, ¢'p) scattering com-

pared to data.

4.11.3 Off-Shell ., Cross-section

The deForest prescription [13] 0..; was used in the simulation to describe the funda-
mental cross-section for quasi-elastic scattering of electrons from bound nucleons.
The uncertainty arising from using this prescription was estimated by perform-
ing test-bench calculations with another deForest prescription o.». The PWIA
cross-section was found to change by less than 2%. The structure functions used
in calculating the fundamental cross-sections were the dipole form factor for the
proton electric form factor G, and the Gari and Krumplemann parameterization

for the proton magnetic form factor G%; [73]. These parameterization have been

found to describe the data up to Q% of 8 GeVZ2. [22, 74]

4.11.4 Model Spectral Functions

The model spectral functions were obtained from SLAC experiment NE18 [72,
49]. These spectral functions were based on Independent Particle Shell Model
(IPSM), which describes the nucleus as a sum over nucleons occupying distinct
shells. The assumption that the spectral function can be factored into a momentum
distribution p(p,,) times a energy distribution L(F,,) was also employed. Under
this assumption the IPSM spectral function can be written as:

S(Em,Pm) = (27 +1) 3 pnjt(Pm) Lnji(Em) (103)

n,g,0
The momentum distributions were computed by using the code DWEEPY [75],

which solves the Schréedinger equation in an optical potential (optical potentials

have been discussed in Section 2.4). Wood-Saxon potentials were used for this
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Figure 57: The reconstructed angles and momenta of the two spectrometers for
Carbon (e, e'p) compared to the simulated distributions. The data is corrected for
proton absorption, tracking inefficiency and background subtracted, data is dark

and simulation is grey.
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Table 16: Fermi energy of 12C, °Fe and %7Au
‘ Ta'rget ‘ EFermi

2¢ 15.96
56 e 10.18
O7Aw | 5.78

purpose. The parameters of these potentials were obtained by fitting to previous
data on same or similar targets. A detailed description of these parameters are
given in Appendix A. The non-locality of the potential is corrected in terms of the
Perey factor as described in Section 2.4. The separation energy distribution L(E,,)
were given in terms of the Lorentzian shape associated with an isolated resonance,

1 r/2
LB = =B s 2P

(104)

where Ep is the central binding energy of the shell. The Lorentzians were cut-
off at the minimum proton separation energy E™" of a nucleus and renormalized
to 1. The minimum proton separation energy is given by the mass difference
My—1+ M, — M4. The width parameters I' were taken from either fits to low-Q?
data or were determined using the formula of Brown and Rho [76],

(24MeV)(E — Ep)?
(500MeV?) + (E — Ep)?

I(E) = (105)

with E taken to the central binding energy Ep and Er is the Fermi energy.

It 1s well known that due to short range nucleon-nucleon correlations, the spec-
tral function extends beyond the Fermi momentum and causes some of the single-
particle strength to appear at larger E,, and |p;| [82] and thus some of the strength
is outside the experimental acceptance. Since the ISPM spectral function does not

account for correlations, the simulation overestimates the yield. Hence the Monte
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Table 17: Correlation tail correction to the transparency

Nuclei | Correction
12¢ 1.11 + 0.03
50Fe 1.26 + 0.08
7Au | 1.32 £ 0.08

Carlo yield must be corrected for these excess protons. Assuming that these cor-
relations produce an uniform suppression of the IPSM spectral function strength
for |p.| < 300 MeV/c, the correction correction factor is estimated as described

in Reference [49] by,

f()so SIPSM(Emy pm)dE7nd3pm
(]80 Scorrelate(l(E7n7 p7n)dE7nd3p7n

Correlation correction =

(106)

Here the correlated spectral functions are model spectral functions which in-
clude effects of correlation. Table 17 gives the value of these correlation correction
factors for each target. The model uncertainties of this correction is discussed
in Section 5.3.1. The IPSM spectral function corrected for correlations using the
factors listed in Table 17, will be refered to as Sg%[A(Em,pm) in the rest of the
thesis. The experimental yield compared to the corrected simulated yield is the

transparency at the given momentum transfer squared Q2.

4.11.5 Generation Weight

While generating the various event quantities, the generation volume is defined
by limits which are usually larger than the actual acceptance of the spectrometer.
These limits can be refined once there is partial information about the event, with
refinements governed by the apertures of the spectrometer and the cuts imposed

on the reconstructed F,,, p,, and the particle vectors and the range of F,, over
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which the spectral function is defined. For example, to account for events which
radiate into the acceptance of the spectrometer, generation limits wider than the
spectrometer acceptance are required. However, once the electron momentum
has been generated the range of photon energies required to produce a successful
event can be determined and thus one can refine the generation limits with this
information. The generation weight reduces the event weight to compensate for

these restricted / refined limits.

4.11.6 Radiative Corrections

Electrons radiate in the presence of an electric field due to changes in their velocity
brought about by Coulomb interactions and radiation resulting from such decelera-
tion of the electron is called bremsstrahlung. The incoming and outgoing electrons
can interact with the Coulomb field of the nucleus involved in the scattering pro-
cess, which results in emission and reabsorption of virtual photons and emission
of real, soft photons. Such processes are known as internal bremsstrahlung. The
electrons can also interact with the Coulomb field of a nucleus other than the one
involved in the scattering process and thereby radiate photons. These radiations
are known as external bremsstrahlung. In an experiment involving electrons scat-
tering off some target, the radiative processes have a twofold effect on the data.
Firstly the cross section of the process is modified and secondly the kinematics
(energy, momentum, angle) of the electron are changed. Although these are real
physical processes, they are experiment specific, and so most theoretical calcula-
tions do not take these effects into account. Thus, in order to get to the underlying
physics, and also to directly compare with theoretical calculations, one needs to
unfold these radiative processes from the data. The procedure for doing such ra-

diative corrections was first derived by J. Schwinger [77], and was later modified
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by Mo and Tsai [78]. Radiative correction formulas for coincidence (e, e’p) reac-
tions were calculated from the Mo and Tsai formulation by Makins et. al. [79].
The derivation of these formulae is very well described in references [72] and [79].
This section is an illustration of how the above mentioned formulae are used in the

PWIA Monte Carlo SIMC.

The cross-section for radiating energy E. along the incoming electron direction

k E

€

» along the scattered electron direction k?, E, along the direction of the
scattered proton ];' and also radiating any number of soft photons with energy less
than AFE, calculated to all orders, (note that this cross-section is different from

the cross-sections defined in the rest of the thesis) is given by,

do Ao ) A
= e — Chard
dchEchc/ dEp/ ds2, v (\/W),\e (\/W)/\R/ ( /Mpo/))\p/
1
X (107)

1-x, _1=X,
E-NETN R,

p

Here the total energy radiated is wiptas = E. + Er + Ep/ and the )\ s are the
angular distribution functions of the photons radiated in the three directions. The

angular distribution of the radiation is approximated as,
Acotndyeating(@) = \6(& — k) +  lambda, (& — k') + A 8@ —p').  (108)

This simple approach to the angular distribution is also known as the ’extended

peaking approximation’ and the A s are given by the following expressions,

a 4k> o k 1 — cosb,

Ae = ;[ln(m—z —1)] + ;[2171(? + ln(T)]: (109)
«a "2 «a k 1 — cos

A= —[ln(— —1 —[2in(— + In(——= 11
i 1)+ ain( 4 in(F ) (110
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a p,0—|—|p,|
)\/:—lnﬁ
[in( _|p|)

P

—2]. (111)

)

Where k, k" and p’ are the magnitude of the incident electron momentum, scattered
electron momentum and the scattered proton momentum, respectively, and p'° is
the proton energy. If only the first term in each of Equation 109-111 is used we
get the simpler: peaking approximation. &p,.q is the contribution from the second

order virtual photon radiation to the vertex corrections, and is given by,
3 2/, 2 1 op( 2
5hu7'd — 204[__1”(_(1 /m ) —I_ - = Z 57' (q )]7 (112)
4T T i
where Y, sums over the different flavors of leptons with mass m; and,
57 = 12 4 (=g /m2)]. (113)
! 3r- 3 ‘

All of the above expressions are for internal bremsstrahlung. However, photons
are also emitted when the electrons are in the field of nuclei other than those
involved in the hard scattering process (external bremsstrahlung). The proton
being massive emits negligible amounts of external radiation. Both E!* and E¢
are emitted in the same direction, thus if the internal and external bremsstrahlung
are added together we can write the cross-section in terms of F; and E; radiated

along k and k" as,

do _do oo (1 = Snand) 1 1
dQ,dEMdE dET B dE, — dQ.'” Pard) (1 4 be;) T(1 + biy)
(bt; +A) (bt + Af) dE; dE;

()T (Ey).(114)

kbt,( Ai /bt \/mEl i —bt; El }\f bt ¢

Here we have neglected the proton radiation and the same is done for the rest of
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the discussion. The function ®“** is a correction for external radiation which has

large photon energies and has the form,

bt; FE;

q)(‘aart Ei -1 4 - 11
and
Z+1

b=1/9(12 4+ ——— 11

1
Ly = In(184.15) - <In(Z), (117)

2
Ly = In(1104)) = Sin(2). (118)

In the Monte Carlo SIMC the photon energies £, £, and E,, along the in-
coming electron, the outgoing electron and the proton directions, respectively, are
generated separately and the total energy radiated is the sum of these energies (as
mentioned earlier the proton radiation is small and can e neglected). This comes
about because in Equation 107 above the energy and angular distribution of radi-
ation in the three directions factorize into three independent functions. The shape

of each of these distributions has the form,

1 bt + A dE (119)
1"(1 + bt) kbt( /kk/)/\ El—)‘_bt'
If we rename g =bt + XA and C' = Fﬁizt) kbt(\/lm)m we get the form,

Cx E97YdE. (120)



156

Hence we can use this simple form to generate the energy radiated in a given
direction between limits F,,,, and F,,;,. The generating function must normalize

to 1 between these limits so we have,

Em,ﬂ,v’l‘
N */ (B9"N)dE = 1, (121)
Emin
or
g
i (122)

Thus for each of the radiation tails, the energy radiated in that particular direction
is randomly generated in the range F,,,, — E,., using the generating function or
energy shape,

gEI~!
Efee — E)

mn

G = (123)

The limits F,,,, and F,,;, are determined from the limits of the model spectral
function, the limits on the energy and momenta of the incident and scattered par-
ticles determined from the spectrometer acceptance and the randomly generated

energy and momenta of the incident and scattered particles.

Once the energy radiated in each of the tails is known, the next step is to use
these energies to modify the momentum and energy of the incident and scattered
particles involved in the reaction. This is done for each event by subtracting off
the radiated energy from the randomly generated vertex energies (energy of the

particles at the reaction vertex).

Next the radiation weight is calculated for each event which is then assigned
to that event. The radiation weight is the probability of radiating soft or hard

photons of a given energy. The radiation weight has three components. The first



157

Figure 58: The effect of radiation for hydrogen is shown in the E,,vs p,, distribu-
tion,with (right panel) and without (left panel) radiation. The radiation of real
photons show up as the tail.
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Figure 59: Plot of the missing energy spectrum of hydrogen, solid line is the
calculation using Monte Carlo SIMC and triangles are data, with statistical errors
only.
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component is the probability of emitting a photon and has the correct radiative
tail shape. This comes from Equation 119 and the generating function (Equation

123). From these equations we get the weight for each of the three tails as,

Wiaa = Clg % (Bpua)’ = (Bpin)?)si = e, 1. (124)

7 min

The product of the three weights for the three tails give us W’ ({t.

W:;({t = Wiad :(lzd' (125)
The second component is the multiplicative correction factor due to external ra-
diation ®¢**) as described in equation 115. This too is calculated for each tail and
includes the external radiation suffered in the exit windows of the scattering cham-
ber and the entrance windows of the spectrometers and the air in between these
windows.The final component is the due to the vertex corrections and is given by
(1 — Opara). So finally the product of all these little pieces gives us the radiation
weight for an event,

Wtz:(clfnt — Ws;jt@zwt(bewt(l _ 5hard)~ (126)

7 P e’

When the data are binned in terms of F,, and P,,, we have accounted for events
which radiated into a particular bin by modifying the vertex. The F,, and P,, were
changed by the total radiated energy, hence they contribute to bins they radiated
into and not the ones they would have if there was no radiation. In addition the
radiation weight assigned to each event accounts for events which radiated out of
the bin. These two features together constitute the radiative correction procedure
of the Monte Carlo SIMC. Thus using the described procedure we can generate

radiated spectra with SIMC. This method obtains correct multi-photon angular
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distributions and hence is also known as the 'multi-photon’ technique. However,
one must remember that it does involve the peaking approximation at the single

photon level.

As an illustration of how the procedure works, Figure 58 compares an unra-
diated missing energy vs missing momentum spectrum with a radiated spectrum
for Hydrogen target. Omne can clearly identify the radiative tails in this figure.
In Figure 59 the hydrogen missing energy spectrum is compared with the same
calculated using the Monte Carlo. While the resolution of the Monte Carlo did
not match the data, the integrated strength did compare very well with the data

as described in Section 5.1.

The procedure described above is one of the three radiative correction proce-
dures which are available in SIMC. The procedure described is the one currently in
use. Various comparisons of the different procedures were done by the NE18 [72]
and they found agreement to be better than 1% within the different procedures.
Since the above procedure approximates the angular distribution most effectively,

it is the procedure of choice.

4.11.7 Coulomb Corrections

The Coulomb distortions arise from the fact that the incoming and outgoing elec-
trons interact with the electromagnetic field of the target nucleus. The effect of
the Coulomb potential is to increase the momentum transfer ¢ and also to cause an
increase in the electron flux in the vicinity of the target nucleus. These effects can
be accounted for by appropriately changing the electron wave used to calculate the
coincidence cross-section of the (e, e'p) reaction. This approach is also equivalent
to summing the contributions from Feynman diagrams in which the electron and

the nucleus exchange one, two or more photons while the nucleus still remains in
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its initial state. It can be shown that this kind of distortion of the electron wave
can be approximated by attaching a phase factor to the plane wave expansion [80],
which scales with the nuclear dimension and the strength of the Coulomb field. In
addition the effective momentum of the electron is changed to k = k — Ak , where

Ak is the average electrostatic field around the electron, given by

_ [Ve(r)d?(x)dr _ Za
Ak = Fema ch =< Ve >, (127)

here the factor f varies between 1.1 and 1.5 depending on the size of the nucleus,
at the center of the nucleus f = 1.5. Such calculations have been done by Knoll et
al. [27], and they provide an useful formula to estimate the effect of the Coulomb

distortion on the cross-section:

29 (%) ~ 0.3kiz. (128)

O-’NLG,I o

Where 0,4, 1s the cross-section at the maximum of the distribution and k, is the
momentum of the incident electron. This equation suggests that the Coulomb
corrections get smaller as the energy of the incident electron increases and thus at

high electron energies this correction may be neglected.

In the physics model used in the code SIMC 4.11, Coulomb corrections can be
switched on or off. The correction prescription involves using the average Coulomb
field < Ve > to apply a shift to the incident and outgoing electron momentum
which in turn shifts the momentum transfer and the missing momentum. Changing
in the electron momentum also means that the calculated cross-section for the

process changes. The reduced cross-section is obtained by,

L\ 2
O_:;z(luced: ( Zk ) Oee (129)



161

Table 18: Coulomb radius and the Coulomb factor Vi = fc%;1 for the three
targets.

Target | R = 1.18A'/3 (fm) | Vo (MeV) ‘
12¢ 2.70 3.25
0Fe 4.51 9.4

197 Ay 6.88 19.8

where k; =k + fC%—Z. The effective momentum transfer is given by,
.C

Z-1)1 a(Z —1)k ki
#F— 71 L_ ot SV ALY S 130
q q1+ fe Re kf)+fc Re kz( kf)u (130)
and so the missing momentum is shifted by,
A= AP, ~ f2E 2D (k= kita) (131)
Re k¢

For the averaged Coulomb potential the factor f is taken to be 1.2, but at the
center of the potential it is 1.5. In SIMC the value of f is randomly generated
for every event and it is constrained to have a value between 1.0 and 1.5 using
0.5% (3.0 — (rand)2/3). From this prescription one gets the magnitude of the shifts

and the corrections to the cross-section as shown in Tables 18. and 19.

The effect of the Coulomb correction was investigated by comparing the results
of the Monte Carlo with and without the corrections. The results of this compari-
son are tabulated in Table 20. The Coulomb shift in the data and the Monte Carlo
should be done consistently since we use missing momentum p,,, cuts in comparing
data to Monte Carlo. However, it was realized that the the missing momentum is
not Coulomb shifted in the data while the Monte Carlo outputs Coulomb shifted
missing momentum. In order to study the effect of this discrepancy the Coulomb

shift in the missing momentum of the Monte Carlo ntuples were subtracted, and
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Table 19: Change in the missing momentum AP,, and the correction to the cross-

section.
. . R\
Kine | q AP,,(MeV) M = (’A—l>

200 [ 56Fe | 97 Au 20 56 Fe 97 Ay
A 1084]075]216 | 4.55 | 1.0026 | 1.0077 | 1.0162
B 1.27 1 1.06 | 3.06 | 6.45 | 1.0026 | 1.0077 | 1.0162
C 1.55 1 0.79 | 2.30 | 4.80 | 1.0020 | 1.0058 | 1.0122
D 0.84 | 3.20 |1 9.30 | 19.60 | 1.0077 | 1.0220 | 1.0471
E 1.55 1270 | 7.90 | 16.80 | 1.0039 | 1.0113 | 1.0241
F 2.55 1 1.60 | 4.70 | 9.90 | 1.0020 | 1.0058 | 1.0122

Table 20: Change in counts ATN between 0-80 MeV in F,, with and without
Coulomb corrections. Here conj refers to the conjugate angle for the given kine-

matic setting (A-F), and the extreme proton angle settings around the conjugate
angle for kinematics A is called A5 and A10.

Kine Op,or ANN
12C 56Fe 197Au
Al conj 0.0065 | 0.043 | 0.045
A5 | conj +16 | 0.0105 | 0.019 | 0.015
A10 | conj-16 | 0.0489 | 0.006 | 0.096
B conj 0.0148 | 0.0255 | 0.044
C conj 0.001 | 0.0065 | 0.039
D conj 0.017 | 0.080 | 0.153
E conj 0.043 | 0.083 | 0.166
F conj 0.018 | 0.012 | 0.019
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Table 21: Change in counts ATN between 0-80 MeV in E,, with cuts on Coulomb
shifted and non-shifted missing momentum (-300< p,, <300)

AN
brg) 56.%6 7 Ay
Al conj 0.000 | 0.000 | 0.000

A5 | conj 416 | 0.007 | 0.005 | 0.006
A10 | conj-16 | 0.006 | 0.002 | 0.003

Kine Opyot

the number of counts with cuts on the shifted and the non-shifted missing mo-
mentum (and other nominal cuts) were recorded. Table 21 shows the fractional

difference between the two approaches.

The effect of the Coulomb corrections at backward angles is much larger than
the correction at forward angles. This is because the correction is inversely pro-
portional to the incident electron momentum and the backward angle points are
at much lower momentum compared to the forward angle points. For the forward
angle kinematics the correction is < 2% for 12C, < 4% for *°Fe and < 5% for %7 Au.
Also the discrepancy of cutting on the Coulomb shifted p,, in the Monte Carlo
and the non-shifted p,, in the data was found to be negligible at conjugate angles,

and <=0.6% for the extreme angles on either side of the conjugate angle.

4.12 Extracting Transparency

The nuclear transparency Ty was determined by,

fV dsp'idEmNcwp(Ewm ﬁ;)
Ty =

= - 132
fV d3p’idE'mNPWIA(Em7pi) ( )

where V is the finite experimental phase space volume (with E,, < 80 MeV and

|7;] < 300 MeV),
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Table 22: Standard Data Constraints for E91-013. The calorimeter requirement
depends on the kinematics. Note that there is no Cerenkov constraint for kine-
matics F, with electrons in the SOS.

‘ Cut | Values ‘
TIMS o (%) 3
SOS § (%) -10 - 20
(p in SOS)

SOS § (%) +15
(e” in SOS)

HMS X, (rad) +0.075
HMS Y/, (rad) +0.040
SOS X!, (rad) £0.045
SOS Y/, (rad) +0.060
Missing Energy (MeV) 0- 80

Missing Momentum (MeV /c) +300
Kine. A e~ Calorimeter (GeV) | > 1.0

Kine. B e~ Calorimeter (GeV) | > 1.0
Kine. C e~ Calorimeter (GeV) | > 1.0
Kine. D e~ Calorimeter (GeV) | > 0.2
Kine. E e~ Calorimeter (GeV) | > 0.4
Kine. F e~ Calorimeter (GeV) | > 0.8
e~ Cereknov (npe) >1

Coincidence time cut (ns) +1.5
Backgrd. Sample Width (ns) 6

Newp(Em, Pi) is the normalized experimental yield and Npwa(Em,pi) is the
normalized yield of the simulation. The integration of the yields over missing
energy and missing momentum F,, and P,, ensures that averaging over the initial

energy and momentum of the knocked out proton.

The experimental yield was determined using cuts listed in Table 22, they
were corrected for tracking efficiency, detector efficiencies, computer dead time and

proton absorption. The PWIA yield was calculated with the Monte Carlo SIMC
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using the cuts listed in Table 22 for the same amount of charge as accumulated
experimentally. Using the experimental and PWIA yields the transparency was
determined for all proton angles. The transparency for a given Q? was determined
by taking the yield weighted average of the transparency for the different proton
angles. This ensures that the experimental yield is averaged over the full Fermi
cone over which protons are scattered. The same procedure is repeated for the

PWIA yield. This was done for all three targets and at all Q2.

4.13 Extraction of Spectral Functions

4.13.1 Derivation

In this section the derivation of the formulae used in extraction of the spectral
functions is performed, by starting with the basic relation between the experimen-
tal counts and cross-section of the scattering process. One can measure the energy
of the scattered electron £, the scattered proton energy £, and the two angles
for each of the two scattered particles, (0,9, ), (0, ¢, ). The yield from
(e, €'p) scattering in some volume of phase space V’(Ee/,Ep/,Qe/,Qp/) is,

dSc

N E/ El :L
( e 7 p? ) * v dEp’deldEeldQe/

dE, dQy dE., ., (133)

here L is the experimental luminosity and is the basic experimental

d’c
dE, dQ, dE,1dQ,
yield including all physical processes like radiation. This general expression can

be factorized as the product of the unradiated one photon exchange (OPE) yield

and a redistribution due to Bremsstrahlung radiation as,

N(E, By, ..) =

L*/d6V/ R(p;,e;;pl,e
Jv Jp'e!

!

d600PE
dE. ,dS) ’dEe’dQe/, 134
)dEp,de, dE,do, rer (134)
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where R(p,’,,,e,’,,;p,,e') represents the redistribution and the smearing due to ra-
diation. For clarity the label OPE will be dropped from here onwards with the

understanding that all cross-sections are for OPE processes.

In an experiment the yield is further smeared by the experimental resolution
and limited by the acceptance of the spectrometers used to detect the particles and

hence the yield must include the acceptance function A(p;gjp,e;w;p;,e;) which

. . . ! 4 .
transforms the nominal experimental variables p,,e, to reconstructed variables

! ’

pea7p7 eemp7
N(E ,rap Epéjp : L * / dG / (chp7 exp? pr? )dgpr d3
0'
R dE,dQ,ydE,dQ,. 135
/p’e (pr7 17p e )dEp/de/dEe/dQe/ P ( )

The experimental yield is measured over some fixed range of the measured quan-

tities, which is used to define the volume V,,,. If the data is binned in (E&7?, pco?)

m ' Em

space, the yield can be expressed as,

m ?

N(Eewp AEea‘p’pf;P Apezp) — L*/ dEm / dSpm / dGV
ElllAEHl p V

”L7Ap7n exp
(S(Em - (Ee - E(l,l,p - E'/ cop + M TZ:[:))(S(pIm - (pe - pLLP — pp/ezp))
/ A pemp? e;arp; p;-7 e;)d?’prd?’e;

Pr 76

R(p,,e;:p ¢ c
e :
,e, p'r) (] p ) € dEp/ de, dE(z’ de’

dE,dQydE,dS, . (136)

o

To make the above expression tractable one has to make some assumptions and

approximations. These assumptions are,

e The spectrometers do not bias the measured quantities,

! !
pemp = Ps
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e The spectrometer acceptances are independent of each other,

! ’ ! ! ’ ’

A(pew;w eemp; | S er) = A(pemp)A(eezp)(g(pezp - pr)é(eemp - er)'
e The effects of radiation can be incorporated in terms of smearing and re-

distribution of the incident and outgoing electron and the outgoing proton

as,

/R( eipe) d'o dE, dSYy dE, dQ) do”
- €55 , € ! ! e el = ex eTp ex exTp *
PSP B, dQy dE, dQ, T dESTdQET dESTAO5T

P

Since the measurements are made in the spectrometer coordinates, one has to use

the Jacobian for transforming to the spectrometer coordinates which is given by,

1

= T 6.2 PR T (88, 280, P

here Af.//y and Ag./, are angles measured in the spectrometers relative to the
central angles in the ¢ and p’ arms respectively. Under these assumptions the

expression for experimental yield can be written as,

N(EG B o Apy?) = L [ dB, [ dp, [V
Em,AEnm Pm,APm ex

»
5(Em - (E" - Eewp - Epmp + MP - TZ;;:))(S(pm - (pf’ — Peap — pp/ezp))
d®c®

o) dE, P dQ T dEST dSyT

|| A(Pesy) Ale (137)

Note that the right hand side of Equation 137 can be evaluated by Monte Carlo
techniques and is the basis of the Monte Carlo SIMC described in Section 4.11. In
evaluating this integral one calculates the radiation smeared cross-section under the
PWIA whereby one can factorize the cross-section in terms of the e-p cross-section
0., and the radiation smeared spectral function S’R(Em,p,m) [13],

dSo
AEPAOSTP AR TP A0S
P p e €

= Eyp oo, ST(Ew?, pit). (138)
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So using this factorization gives,

m

N(E AB pit M) = L [ dB, [ & [ &V
ETTI*,AETTL pquprn V,

exrp

! ! exp erp R QR( rpex ex
|J|A(pc1p)A(ee¢p)Ep’ ppp’pacps (Em.p7pmp)
5(E'm - (E<, - Eewp - EI)@:(:]J + Mp - Te';;))(s(Pm - (pc - Pewp - Pp’e”))) (139)

Here S(E.,,, p,.) is the radiation smeared spectral function. Here another approx-
imation is made, the cross-section 06}2 and the spectral function SE(E,,,p,,) does
not change significantly within the bin of size AFE,,, Ap,,. Under this assumption
the cross-section and spectral function can be taken out of the integral. This gives

us,

N(ES?, AES?, p&ir | Ap&ir) =

mo? m

LEPp=pgR SR o 3| ] / dE,. / B, / &5V
o Dyt G oy ST (B P ) || v AB o, P )

exp

x

5B — (B~ By — B, + M, = T0)

exp
!

5(Pr = (Pe = Py — Py, ) APy AleLs)- (140)

exrp

Here E;, 57,6l and S™ are averages over a bin of size AE,,, Ap,,. In the

above expression the terms within the second integral can be seen as a Jacobian
- eTp ,.eTp
to go from (E'pf”p, prezp), (chezp, QCQIP) space to B peP space, and because of the

acceptance functions A(p;wp) and A(G;W) it cannot be evaluated analytically and

one must resort to Monte Carlo techniques in order to evaluate it. If one expresses

SN
e(p,€; By, pm) as,

dE,, / d’pu / V(B — (B~ E.,, — E, +M,—T
/Em,AEm o pmyApm p V/ ( ’ ( crp Pezp —I_ P e:cp))

erp
’

5(p;n - (pe - p;mp - pp'ew))A(p;mp)A(eemp)

= / € (p',€; B, Pm ) pmdE,y, (141)
Enl7pnl
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where ¢ (p', €'; E,,, pm ) is function for converting the phase space in (p', €') to phase
space in terms of F,,, p.., using a Monte Carlo simulation of the spectrometers to

evaluate the integral [p ¢ (p',€'; By, P )d°pimdE,, as described below.

A Monte Carlo model of both the spectrometers with all the apertures and
detector efficiencies i1s made. The experimental phase space is then populated
with uniform distributions in E, E 7, and (2, (the experimentally observable
variables). This ensures that all combinations of these six variables (within the
experimental acceptance) are sampled. In other words the probability of finding

an event with (E, F,...) can be written as,
P(E,,E,,..)= P()P(p'), (142)
where

P(e')=1 forabs(E,) < AE_/, and for abs(Q2.) < AQ.,
=0 otherwise,
P(p)=1 for abs(FE,) < AE,, and for abs($,) < AQ,,

=0 otherwise.

Where AE, is the acceptance in E, and AQ.(0,/, ¢.) is the angular acceptance of
¢’ arm and AL is the acceptance in E» and AQ,(8,, ¢,) is the angular acceptance

of p arm. So the probability of having an event in a bin B of volume
AE/AE A0 Ap A8 A,

is 1, if it is within the experimental apertures. The Monte Carlo is used to generate
Niriea events in a volume V,,, and the Monte Carlo counts are then binned in £,

and p,, space. Now if there are IV;; counts in the bin (¢, j), of volume AE,,Ap,,
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which we will define as unit volume and if Py is the phase space volume defined

by the experimental apertures, we can write,

Nrie ce.
tried Py = ENU» (¢j is sum over all £,, and p,,),
gen ZJ
= NMontcCarlo (143)

This implies,

Voen _ Py (144)

/ El(Ee/, ...)dEm,dBPm = NMonteC’arlo * -
Ntm‘ed

Niriea is the total number of trials in the Monte Carlo, V., generation volume in
(E,...) space over which the events are randomly generated and Njyfontecario 18

number of counts in all F,, and p,, space.

Now substituting the expression for [ ¢ shown above one gets,

N(E;?, ) = LR|J[00 S (B2, 0 Py (145)

m m

here K = E,p,. which brings us to the desired equation

N(EL", pm” ) B

SR EetP petp) _, — —
( )z LK|J|5.,Pg

m 7p'm

(146)

From here onwards the label exzp is dropped with the understanding that all kine-
matic quantities such as E,, and p,, are calculated from measured experimental
quantities. Note that the spectral function so extracted is smeared by radiation.

The procedure to remove this radiation smearing is discusses in Section 4.14.

4.13.2 Procedure

For each of the electron kinematics data were collected over a range of proton

kinematics. To get a complete picture one has to combine the data from all the
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proton kinematics with their correct weights. The procedure used to do this is
described below. The phase space acceptance is calculated by uniformly illuminat-
ing both spectrometers in the Monte Carlo simulation for each proton kinematics.
The same number of successful events are generated for each kinematics. So for
the (4,7)™ bin in E,,, p,, space on gets,

Nij % Ve, * (computer efficiency)
Ntricd '

P(i,j) = (147)

The computer efficiency used here arises from the refining of the limits in which
events are generated, once partial information about the event is known. These
refinements are based on the acceptance of the spectrometers and are done to

increase the speed of generation.

The data is then binned in F,, and p,, bins and for each event, o, the off
shell cross-section multiplied by kinematic factors, is determined. Each event is
then weighted by L x ﬁ.ThLlS for any given proton kinematics the spectral

Tep p, pl

function for a (4, )" bin is,

1 1
S™(i,5) = — , 148
( ) L x P(Z%]) couznts O-@PEp’pp/ |‘]| ( )
and
8SR(i, ) - 85"(i, 5)

[AS™(i,5)] = ((W)Z(AP(%J))Q + (Wﬂvcounw)z)- (149)

i,7)
Here counts is the number of counts N (3, ) in that bin.

Since there are multiple proton kinematics a weighted average for each bin over

all kinematics is done. This is given by,

o Xr SR, )/ (ASEY?
SR — kE=1"~Ek
(d) = =5 JasERE

(150)

av
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and

a U

[(ASE)( an J(ASF). (151)

This gives us the average spectral function for each bin in £,,,p,, space. One
must note that the spectral function extracted from the data using the procedure
described above is not the spectral function as defined under PWIA. The spectral
function thus obtained is a product of the average distorted spectral function and
the transparency. Unlike the PWIA it includes the effects of final state interac-
tions and other distortions of the scattered electron (like coulomb distortion ) and
the scattered proton. In addition these spectral functions are radiation smeared.
However, the effects of radiation averaged over a bin in E,, and p,, can be removed
from the distorted spectral function. The procedure for doing such a deradiation

is described in Section 4.14.

Next one integrates over F,, to get the momentum distribution and integrate

over p,, to get the energy distribution. This is done as follows,

Emal

/SR Z .7 dE - P pm Z Ebm )7 (152)
and
E .o
_ maz SR(Z ])
A m t= ——)? m /s 153
2™ = | 3 (i = plow) (153)
similarly
P?nnz
/SR (3,7)d°py = 47 * Z Din * P * SR(z 7), (154)
Prnln
and

ASHL J pz(—sggj<j)])))2 4 % ST (155)

Pmin
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4.14 Deradiating the Spectral Functions

In the procedure described above we have not accounted for the fact that the
experimental spectra get modified due to internal and external bremsstrahlung
radiation. These radiative processes have twofold effect on the data. Firstly the
cross section of the process is modified and secondly the kinematics (energy, mo-
mentum, angle) of the electron are also changed. Although, these are real physical
processes, they are experiment specific, and so most theoretical calculations do not
take these effects into account. Thus, in order to get to the underlying physics, and
also to directly compare with theoretical calculations, one needs to unfold these

radiative processes from the spectral function extracted from the data.

As mentioned earlier the data is binned in missing energy Em and missing
momentum Pm, which means that for any given bin, the radiative processes would
add some events from neighboring bins into this bin and also displace some events
into the neighboring bins. So any unfolding procedure must recover events which

were lost from a bin and also remove the events which radiated into the given bin.

The unfolding procedure described below uses the Monte Carlo simulation
SIMC, this simulation uses model spectral functions and includes a mechanism
to radiate the simulated events [72], which is based on the radiative correction for-
malism developed by Mo and Tsai [78]. For details about how radiative corrections

are done in the Monte Carlo was discussed in Section 4.11.6.

Our unfolding procedure involved calculating a correction factor for each Em,
Pm bin. To get these correction factors, one runs the Monte Carlo simulation
SIMC for a fixed number of successes and a fixed amount of charge, once with the
radiation turned on and once with the radiation process turned off. Next both the

radiated and the non-radiated events are binned in Em and Pm, and each event
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is weighted by the model spectral function. For events in the radiated spectra
each event has an additional radiation weight which accounts for the events which
radiated out of a given bin. The radiated events also have their kinematics slightly
modified due to radiation, this accounts for events which radiate into a given bin.
The events are also normalized with their correct luminosity. Thus the contents of

bin (7, j) in the two cases mentioned above can be written as,

N;,.ad Em pm Z Wk rad * L7
where 1 is the number of events in the bin(i, j) (156)

and
”L/

NiT,LJQTad(Emvpm) = Z Wk’ * Ly
k=1

where n is the number of events in the bin(3, j). (157)

Here L is the luminosity and Wj, is the weight due to the model spectral function.

Now from these two quantities we can calculate the correction factor as,

rad norad
N‘l (Em,pm) — N‘I (Em,pm)
Nzgd(Em7 pm)

Cr(Em, pm) = : (158)

This correction factor accounts both for events radiating out of a given bin and
those radiating into a given bin. To get deradiated spectral function one must
apply this correction factor 0’“d(Em,p7n), to equation 4.13.2 , which was derived
in the previous section as the correct procedure for extracting spectral functions

from data. That equation now becomes,

1
derad o /qu
Si.J) = gl s Y L ()

counts O-EPE /pp counts O-@PEe/pp,

and
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Figure 60: Spectral Function Extracted from Monte Carlo Data
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anM "d(Z ])
OP(i,7)

A i, ) = ( )
8Sduad(Z ])

ON(i, )

) (AP(i, )" + ( ) (ACH)?

+( )’ )(\/[Oounts — Counts * C’f;"]])2) (160)

Here Counts is the number of events N(i,7) in the bin(i,j), and multiple proton

kinematics are combined as described earlier,

S(lerad( )/(Asgerad)Q

Sdm ad Y\ — 161
av ( 7-7) k=1 1/(A5gc.,-ad)2 ? ( )
and
[(Asjsrad Z Sderad , (162)

and as described in the previous section on can extract the momentum and energy
distributions from the above quantities. We first try this out on Monte Carlo data
where we should be able to get back the model spectral function from the radiated
Monte Carlo data. The results of such an exercise is shown in Figure 60. At the
highest and lowest p,, the phase space varies very rapidly and thus the averaging

over these edge bins have larger systematic uncertainties.

This deradiation procedure is dependent on the model spectral function which
is an essential input in this method. This model dependence is unavoidable, so
one must use an iterative procedure in order to get the final spectral function from
the data. The schematic of the iterative procedure is shown in Figure 61 The
test involves comparing the new spectral function with that obtained from the last
iteration, where the new spectral function is given by,

Nmodel(Em7 pm)

Snew E yPm ) —
( P ) Ndata(EWL)pm)

Sdata(Em7p7n)- (163)
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Figure 61: Schematic of the iterative procedure used to handle the model depen-
dence

05 Model Dependence of deradiated spectral functions
15<EM<25

.ll.|+l.-...*

JAS /IS
. ¢ O O ¢ .
ok
T e
BLA
-
-
.

05 ELlo v b v b b b by |
-300 -200 -100 0 100 200 300

Pm

30<EmM<L50

—.—
-

g
[
n
u
-
-
-
-

&
S
St

PP B I S R B |
200  -100 0 100 200 300
Pm

Figure 62: The model dependence of the deradiation process
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The iteration is continued till the integral over all F,, and p,, of the new spectral
function defined by Equation 163 differs by less than 1% from the integral of the
spectral function from the previous iteration. This iterative procedure was tested
by applying the procedure on simulated data created by using some model spectral

functions which were deliberately distorted.

The model dependence of this procedure was estimated by using a starting
model which had incorrect radii and shape. The radius of the erroneous model
was 40% bigger. The final spectral function obtained was compared with the
spectral function obtained by starting with a good model. The results are shown
in Figure 62. Similar tests were also done with models where the p and s shells
missing energy ranges were swapped. The procedure was successful in extracting

the correct spectral function after several iterations.

The deradiated spectral functions extracted from the data by this procedure
are spectral functions that include distortions due to FSI and also include nuclear
transparency. As described in Section 4.13 they are the average of the distorted
spectral function over the bin size AF,, and Ap,,,. We will denote it as SD(Em,pm)

from here onwards.

4.15 Longitudinal and Transverse Separation of
the Spectral Function

The (e, e'p) coincidence cross-section can be expressed in terms of four structure

functions as shown,

dS¢o ‘B Q?
= 'O Mott T X
B dQdBydy, 1M ()

[eWp(w, q,p') + Wr(w, q,p') + v Wir cos ¢ + vpp W cos 2¢). (164)
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The interference terms Wyr and Wrpr are a function of sin 6, where 6, is the angle
between the ¢ vector and the outgoing proton direction. In parallel kinematics 6,,
is zero, thus the interference terms drop out, giving,

dc Q?

= ' By agor —a— W N+ W 1. 165

In the plane wave impulse approximation the cross-section can also be factorized

as,

dSc
dE.dQedE,ydQ,

= plEp’OepS(Emypm) (166)

Where o, = aMotthi[dFL(Qz)F + |Fr(Q*)]?]. Here F1 and Fr are electric and
magnetic proton form factors. This shows that the longitudinal-transverse charac-
ter of the cross-section is governed by the nucleon current in this approximation.
We also make the approximation that the difference in the proton distortion for
W1, and Wy can be neglected. The accuracy of this approximation must be checked

with a theoretical calculation.

Thus from the two Equations 165 and 166 we get the relation:

[E(Emy pm.)WL(w, q,p’) + WT(W, q,p/)]
(B ) IF2(@)F + [Fr (Q3)F]

S (B Bn) = (167)

Now one would like to separate the longitudinal and transverse spectral function
using the above equation and the spectral functions extracted from the forward
and backward angle data (which have different values of ¢ the photon polarization).
However, there are variations in the @ (momentum transfer) and the w (electron
energy loss) acceptances between the forward and the back angle kinematics, (see
Figure 63). In addition at the backward angle the p,, acceptance is restricted to

~ + 80 MeV. This means we must restrict the forward angle spectral function to a
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Figure 63: w(electron energy loss) vs ¢ for the forward and back angle data

similar range in p,, in order to match the acceptances. Thus the spectral functions
at the forward and backward angle for p,, < 4+ 80 MeV only is used to get the

separated spectral functions.

Extraction of the spectral function from the data involves binning the data in
small bins of missing energy (£,,) and missing momentum (p,,). The ¢ (momentum
transfer) and the w (electron energy loss) are averaged over these small bins, this
removes the large variation in ¢q. For p,, < & 80 MeV the average value of ¢ for
each bin at the forward and backward angle is shown in Figure 64. Its is clear that

they match very well in this scheme.

Now since the forward and back angle measured (distorted) spectral functions

correspond to same average ¢, w and p’ per bin, we can use Equation167 to separate
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the longitudinal and transverse spectral functions. They are given by,

o . W W
SP(Bw) = [ S (Bupu)pdpn = [ L dpn (168)

. F(e)
where F(e) = E|FL(Q2)|2 + |FT(Q2)|2 and the integration over either F,, or
Pm 18 necessary to reduce the statistical errors. Representing all forward angle

quantities with a superscript ‘f” and all back angle quantities with the superscript

‘b’ we get,
S,)D(Em)Fb — SD(Em)Ff
WL(Em,) = Eb _ E,ff ’ (]‘69)
and

1SP(E,)F? — PSP (B,,)F!
Wi(B) = — (En) 7 = € 57 (Bn) 7 (170)

ef — b
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From these we get the separated spectral functions as

WilE,,
SL(Em) = %7 (171)
E
and
W,
St(Em) = 6227;2 (172)
amz'M

Under the approximation that the virtual photon couples to a single nucleon

the longitudinal and the transverse spectral functions are equal,

Sy = Sp. (173)

Deviation from this PWIA result is usually measured in terms of the difference

St— S, and the ratio of the response functions Rg.The the ratio Rg of the response

functions is given by,

AMWr  [Sp Gy
R o, =5, G (174)

If S = St then Rg = py,.

4.16 Error Analysis

The separation of the longitudinal and the transverse spectral function uses the

cross-section at the forward and the backward angles, so the uncertainty in the

operated spectral functions is governed by the uncertainties at the forward and

the backward angles. The uncertainty is given by,

OSpr
LT = ((‘9wad)202(sfwd) + (aSb:)d)QUQ(Sbwd)+

OSLyr 0Sr
8wad aSbwd

2( )O’(Sf,wd)O'(Sbwd)CO’U(wad, Sbwd) (175)
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Here Stwa, Stwa are the spectral functions at the forward and backward an-
gles while 0(Sfwa),o(Spwa) are the uncertainties corresponding to these spectral

functions and C'ov(Sfwd, Spwa) is the covariance between them.

For the statistical uncertainties of the separated spectral functions the covari-
ance is zero and so just the first two terms in Equation 175 contribute. For example

the statistical uncertainty in the separated response functions is given by,

(0(5") + o(57)%)

2 _
and
f b\2 )2
) _ (a(5%) + &0 (57)?)
OWr(pm) = (Ef _ eb)g (177)

The covariance between the two is given by,

e/ (0(5")* + €(a(s)))*

COV(WL,WT) = — (€b — Ef)z

(178)

The various terms in the above equations are as described in the previous

section.

However, for certain systematic errors the covariance is non-zero and thus the
forward angle and backward angle uncertainties are correlated. The systematic
uncertainties in the spectral functions at the forward and backward angles can be

divided into two types,

e Correlated systematic uncertainties - These are uncertainties in quantities
(example, the central scattering angle) which are correlated between the

forward and the backward angle data.

e Normalization type or scale type - These are uncertainties in the quantities

which do not vary between the forward and backward angle points. (example,
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the uncertainty in the absolute normalization and the uncertainty in the

charge measurement, )

The correlated uncertainties propagate to the separated spectral functions in
terms of Equation 175, while the normalization type uncertainties propagate di-
rectly into the separated spectral functions. In addition the normalization type
uncertainties do not effect the ratio of the separated spectral functions Rg. Thus
the ratio of the separated spectral functions has lower uncertainties than the sepa-
rated spectral functions themselves. The systematic uncertainties of the ratio Rg
is given by,

QCOV(WL, WT) )
Wi Wy '

(PHa)? = (D)2 4 (W2

179
Rg Wi Wr (179)



Chapter 5

Results

5.1 Absolute Normalization

The elastic scattering of electrons from a liquid hydrogen target was used to de-
termine the absolute normalization. Data were collected at each conjugate angle
kinematic setting listed in Table. 6, where data were taken on nuclear targets. Be-
cause hydrogen has a single proton there is no final state interaction and thus the
experimental yield should match the yield calculated using the PWIA simulation
SIMC (Section 4.11). This is subject to conditions that all the detectors worked
with 100% efficiency and that the spectrometer acceptance and the radiative ef-
fects and the e-p cross-section were modeled correctly by the simulation SIMC.
Hence this method of comparing the experimental yield corrected for detector ef-
ficiencies and proton absorption with calculated yield is a very effective test of the
spectrometer models and the radiative effects included in the simulation. Data
were collected for both inclusive H(e, e’) scattering (singles) and exclusive H(e, €'p)
scattering (coincidence). The experimental yield, corrected for tracking efficiency
and proton absorption was compared with the simulated yield. Both data and the

simulated yields were normalized to the same luminosity. The set of constraints

185
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Table 23: Nominal Data Constraints applied to the Hydrogen data

‘ Cut ‘ Values ‘
HMS 4 (%) 8
505 5 (%) 10- 420
(p in SOS)

SOS 5 (%) 15
(e~ in SOS)

HMS X;,,. (rad) +0.075
HMS Y, (rad) +0.040
SOS X/, (rad) +0.045
SOS Y}, (rad) +0.060
Missing Energy (MeV) +25
Missing Momentum (MeV/c) +50

applied to both the data and the simulation are listed in Table. 23. In addition to
these nominal constraints it was also required that the invariant mass of each event
correspond to the proton mass in order to ensure a true elastic scattering event.
The coincidence yield for the Q = 1.8 GeV point is low because the gas mixture
in the HMS wire chambers was bad following a power outage (at this setting the
protons were detected in the HMS), which led to large inefficient regions in the
chamber. In addition to this the wire chambers were not optimized for protons
(they were optimized for electrons which have a different % than protons). Under
these circumstances we were unable to make a reliable measurement of the tracking
and wire chamber efficiency of the protons. This behavior was observed only for
hydrogen; the data on the other targets were taken several days later and were not

effected.

The results of these comparisons are shown in Table 24 and in Figure 65, where
the ratio of the experimental to the simulated yields are listed. In addition to

comparing the total yields the reconstructed momentum and angular distributions
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Figure 65: The ratio of the data yield to the Monte Carlo yield with the cuts
shown in Table. 23. Top panel is for the H(e, ¢'p) data while the bottom panel is
for the H(e,¢') data. The coincidence yield at Q = 1.8 GeV is low because of a
malfunctioning wire chamber, as described in the text.



188

Table 24: The ratio of the data yield to the Monte Carlo yield

Q Data/Simulation H(e,e'p) | Data/Simulation H(e, )
(GeV)

0.80 1.006 £ 0.005 1.015 £ 0.005

1.13 1.007 £ 0.005 1.009 + 0.005

1.34 0.991 4+ 0.005 1.003 £ 0.005

0.80 0.986 4+ 0.005 0.997 + 0.005

1.35 0.987 + 0.005 0.989 4+ 0.005

1.82 0.94 &£ 0.012 £ 0.06 0.991 4+ 0.007

for both spectrometers were also compared with the simulated distributions, as
discussed in Section 4.11, where a typical comparison was shown in Figure 56. The
simulation reproduces the detailed shapes of all the reconstructed momentum and
angles, however, the simulation underestimates the effects of multiple scattering
and detector resolutions (as seen in the E,, spectra in Figure 66). This may be
caused by the reconstruction and the optics of the spectrometer not being perfectly
optimized and thus there might be some residual non-physical dependences of the
missing energy and other reconstructed quantities. However, the good agreement
in shapes of the reconstructed quantities tell us that our representation of the
acceptance function is accurate but the representation of the resolution function

is somewhat less accurate.

The constraint dependence of the spectrometer model and acceptance was stud-
ied by varying the constraints (Table. 23) on the reconstructed quantities (momen-
tum, angles missing energy and missing momentum) by about + 10-15%. Each of

the constraints on both spectrometer was individually varied.

The radiative effects included in the simulation were tested by comparing the
missing energy spectra from the data and the simulation at high missing energies

where all of the contributions to H(e, €'p) scattering are due to radiative effects.
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The results of these comparison are shown in Figure 66. The radiative tails are

well reproduced up to missing energies of 80 MeV.

It was concluded from the studies and results listed above that the acceptance

and the absolute normalization is known to 1.5% in this experiment.

5.2 Systematics of The Experiment

Some of the systematic uncertainties in the experimental data due to the experi-
mental equipment and effects like proton absorption and random coincidences are
discussed here. The remaining uncertainties are due to model dependencies of the

physics simulation and these will be discussed in the Section 5.3.

5.2.1 Systematic Variations in The Data

Data were collected at six different kinematic settings (A-F, as listed in Table 6), at
each kinematic setting the electron scattering angle was kept fixed while the proton
angle was changed in steps of 4°. Under these conditions for the same experimental
luminosity, the electron singles yield must remain constant over all proton angles
in a given kinematic setting. However, the singles yield can be different due to
variations in the detector efficiencies, variations in the detector calibration, vari-
ations in the beam and other time dependent systematic variations. Hence the
changes in the singles yield greater than the expected statistical uncertainties was
used as a measure of systematic variation in the data. The percent variation of the
singles yield, defined as the standard deviation of the mean yield divided by the
square root of the number of runs is listed is Table 25 for each of the kinematic
settings. An alternative method for quantifying the systematic variations of the

data involves, comparing the coincidence yield from duplicated data sets (runs).
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Table 25: Singles Yield Stability. The % variation in the average (weighted by
charge) of the singles yields. The variation is calculated from the standard devia-
tion of the mean over the square root of the number of runs. For Kinematics A-D,
both Dec. 1995 and May 1996 data are used in the averages.

Kinematics | Target | % Variation in | Total #

Singles Yield | of Runs
A C 0.22 16
B C 0.33 13
C C 0.19 17
D C 0.37 16
E C 0.69 13
F C 1.02 9
A Fe 0.26 14
B Fe 0.31 11
C Fe 0.29 18
D Fe 0.57 14
E Fe 0.63 14
F Fe 0.35 11
A Au 0.19 18
B Au 0.49 12
C Au 0.42 19
D Au 0.82 10
F Au 1.74 16

For each kinematic setting the central proton angle (conjugate angle) was dupli-
cated for this purpose. The percent variation in the coincidence yield is listed in
Table 26. The relatively large variation in yields for Kinematics F is due to the
fact that half of the data were taken with the scintillator phototubes of one side of
one plane (S2Y-) of the HMS hodoscope turned off. Excluding that data set the
variation from data set to data set is much less than 2%. The statistical uncer-
tainty is less than 1%. Again, with the exception of Kinematics F, the stability of
the coincidence yields over all the kinematic settings are on the order of 1%. The

statistical error is less than 1%.
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Table 26: Coincidence Yield Stability. The % variation in the average (weighted by
charge) of the coincidence yields for the conjugate angle setting at each kinematics.
The variation is calculated from the standard deviation of the mean over the square
root of the number of runs. For Kinematics A-D, both Dec. 1995 and May 1996

data are used in the averages.

Kinematics | Target | % Variation in | Total #

Coin. Yield | of Runs
A C 0.59 4
B C 0.66 5
C C 1.02 5
D C 0.80 4
E C 1.05 6
F C 2.13 2
A Fe 0.49 4
B Fe 0.15 3
C Fe 0.15 2
D Fe 1.24 2
E Fe 0.85 2
F Fe 0.48 4
A Au 0.65 4
B Au 0.50 )
C Au 1.03 4
D Au 1.02 5
F Au 1.87 8
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Table 27: The average over all runs (weighted by luminosity) of the discrepancy
due to variation in constraints, for the three targets are shown.

| Target | Average Discrepancy ‘

C 0.997 £ 0.008
Fe 0.995 + 0.010
Au 0.994 + 0.011

5.2.2 Constraint Dependency

The nominal constraints (also called cuts) are listed in Table 22. The cut depen-
dence of the data was tested by varying each constraint (cut) by 20%-30% and
estimating the discrepancy between the yields with the nominal cuts and with the
modified cuts. The discrepancy was measured for each kinematics and for each
target and is averaged over data sets from each proton angle. The discrepancy was
found to be less than 1% in most cases and, the average discrepancy for the three
targets is shown in Table. 27. This study was used to assign a 1.0% systematic
uncertainty to the data, due to constraint dependence. A detailed account of this

study can be found in Ref. [71]

The experimental spectra for missing energy and the reconstructed angular
distributions were aligned with the simulated missing energy spectra and angular
distributions. The mean offsets needed to achieve alignment for each kinematic
setting are listed in Table 28. In all cases the offsets were small (except for the
energy offsets in Kinematics E). These offsets were due to small variations of the
reconstruction of the events at the target with the kinematics. It was found that the
SOS momentum reconstruction had a small dependence on the central momentum
setting of the spectrometer and this along with the small variations in the beam

position, the small misalignments in the magnets and the target caused these
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Table 28: The mean offsets needed in order to align the experimental missing
energy spectra and the reconstructed angular distributions with the simulated

spectra
Kinematics | Target Offsets
HMS SOS
Em, x;ar y;ﬁa,r m;am y;a.r
(MeV) | (mrad) | (mrad) | (mrad) | (mrad)
Carbon | 2.95 0.71 1.34 -0.2 -1.46
Kine A [ron 2.57 0.44 1.22 -0.09 -0.99

Gold 1.02 0.71 0.91 0.11 -0.07
Carbon | 2.36 0.17 0.56 -0.46 -1.32
Kine B Iron 2.08 0.14 0.35 -0.52 -0.36

Gold 0.77 0.17 0.08 -0.52 -0.35
Carbon | 2.48 1.14 0.48 -0.56 -0.14
Kine C Iron 2.34 1.05 0.31 -0.54 -0.15

Gold 0.55 0.32 -0.09 -0.37 -0.57
Carbon | 0.52 0.94 -0.16 -0.04 -1.64
Kine D Iron 1.05 0.23 -0.33 0.1 -1.81

Gold 0.16 0.25 -0.64 0.08 -0.72
Carbon | 5.76 -1.41 -2.81 0.02 -1.48

Kine E Iron 4.06 -1.73 -3.45 -0.4 -0.93
Gold - - - - -

Carbon | 1.97 1.40 0.43 -0.22 -1.70

Kine F Iron 1.83 1.47 0.10 -0.28 -0.81

Gold 0.62 1.35 -0.08 0.07 0.40
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Table 29: Systematic Uncertainties in the Data.

Item % Uncertainty
in Data Yield

Current Measurement 1

Solid Target Thickness 0.1

or

Cryo. Target Thickness 0.5

HMS Tracking EAff. 1

SOS Tracking Eff. 1

Proton Absorption

Kine A - E 0.5

Kine F 1.0

Background Subtraction 0.1

Constraint Stability 1.0

Run Stability 1

Sum in Quadrature

Kine A-E 2.3

kine F 2.5

offsets.

5.2.3 Summary

The systematic uncertainties of the data are listed in Table 29. The sum in quadra-
ture of all the sources of uncertainty is 2.3 % for kine A-E and 2.5 % for kine F.
As mentioned earlier these do not include the systematic uncertainties due to the

model dependence which is summarized in Section 5.3.

The results of this experiment are discussed in the next three sections. First
we extract nuclear transparency using the IPSM spectral functions in a PWIA
simulation employing the procedure described in Section 4.12. The experimental

yield and the PWIA simulation yield is determined over a fixed phase space volume



196

defined by the constraints in Table 22 and they are averaged over the initial motion
of the proton in the nucleus by averaging the transparency over all the proton angles
covered, for each kinematics. The extracted transparency is compared with the

transparency measured in previous experiments and a few theoretical models.

Next the distorted deradiated spectral functions are extracted from the data
using the procedure outlined in Section 4.13 and Section 4.14. These spectral
functions include the nuclear transparency, ie. they are the product of the dis-
torted spectral function and the transparency (labeled Sp(E,, p,). These spectral
functions are then projected into E,, or p,, space, compared to a few theoretical

calculations and used to extract transparency.

In the last section the measured distorted spectral functions are used to sepa-
rate the longitudinal and the transverse spectral functions over a limited range in
Pm. The ratio of the transverse to the longitudinal response is also calculated. By
extending the longitudinal spectral function to all p,, under the assumption that
the ratio of transverse to longitudinal is independent of p,, we calculate the trans-
parency yet again using just the extended longitudinal spectral function. This can
be thought of as a rough estimate of the transparency of protons knocked out in

single nucleon processes.

5.3 Transparency

Figures 67-69 compare the missing energy spectra from the three nuclear targets
(C, Fe, Au) with the corresponding simulated spectra. The measured and simu-
lated spectra have been normalized to have the same number of counts, to assist
in comparing the detailed shapes. The carbon spectra show that the data has less

strength than the simulation in the dip region between the 1ps/» and the Isi/,
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shells. This effect was studied by moving the s shell peak to higher missing ener-
gies. The data suggests that the s shell peak is a few MeV higher than what is

used in the model, which is based on previous experiments.

The iron spectra show the largest discrepancy between simulation and experi-
ment. The iron spectra have their strength shifted and the simulated shell widths
of the deeply bound states do not match the data. However, since we integrate
over missing energies between 0 and 80 MeV, the transparency calculation are in-
sensitive to the details of the shape of the missing energy spectra. This has been
tested and is discussed in Section 5.2.2. Spectral functions were also extracted

(Section 5.4) from the data and used to calculate the transparency.

The nuclear transparency as a function of proton angle for the three targets
is shown in Figures 70-72. The upper panels compare the data and simulation
yields as a function of proton angles, illustrating the coverage of the Fermi cone.
The lower panels show the transparency as a function of proton angles with the
solid lines corresponding to the transparency averaged over all proton angles, this
illustrates the left-right (about the conjugate angle) asymmetry of the transparency
seen in the data. This asymmetry is caused by the LT interference term in the
offshell cross-section which is in excess of the LT interference strength already
present in the deForest prescription o.. This asymmetry decreases with Q2 and
it is a small asymmetry at Q? = 3.2 GeV? where we have data only on one side of
q.

As mentioned earlier the weighted average of the transparency at all proton
angles is taken as the transparency at a given Q2. Table 73 lists the transparency as
a function of Q2 for the three targets. The uncertainty in the transparency quoted
in this table is the 1% statistical uncertainty and 2.3% (2.5% for kinematics F)

systematic uncertainty and the model-dependent uncertainty added in quadrature.
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Figure 67: Carbon Missing Energy Spectra Compared to Simulated Spectra. Data
are black and simulation is grey. Kinematics are A-F, left to right, then down.
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Figure 70: The upper panel displays the coincidence yield for 2C. For clarity the
yields at the forward angle points kine A-F (solid symbols) have been scaled by
0.13, 0.8, 1.0, 14.0 and the back angle points kine D and E (open symbols) have
been scaled by 2.6 and 18 respectively. The lower panel shows the transparency
which have been offset by 0.05, -0.25, -0.35, -0.5 respectively for kineA-F and by
0.15 and -0.10 respectively for kine D and E. The solid lines are the simulated

yield normalized to the measured transparency. Statistical uncertainties only are

shown.
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Figure 71: The upper panel displays the coincidence yield for 6Fe. For clarity
the yields at the forward angle points kine A-F (solid symbols) have been scaled
by 0.21, 1.6, 2.25, 35.0 and the back angle points kine D and E (open symbols)
have been scaled by 5 and 12 respectively. The lower panel shows the transparency
which have been offset by 0.20, 0.10, -0.15, -0.3 respectively for kineA-F and by
0.25 and -0.05 respectively for kine D and E. The solid lines are the simulated
yield normalized to the measured transparency. Statistical uncertainties only are
shown.
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Figure 72: The upper panel displays the coincidence yield for "Au which have
been scaled by 0.55, 0.4, 5.5, 80.0 and 15.0 for clarity and correspond to the forward
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points correspond to the backward angle point at Q2 0.6 GeV? (kine D). The lower
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normalized to the measured transparency. Statistical uncertainties only are shown.
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Table 30: Nuclear Transparency. The error bars include the systematic uncertain-
ties and the model dependent uncertainties in the experimental data yields with
the statistical uncertainties in parenthesis.

Kinematics Q? Transparency
(GeV/c)? G [ "Fe | ™Au

A 0.64 0.6140.03(0.02) | 0.4740.05(0.01) | 0.38+0.04(0.01)
B 1.28 0.6040.03(0.02) | 0.4440.05(0.01) | 0.32+0.04(0.01)
C 1.79 0.574+0.03(0.01) | 0.4040.04(0.01) | 0.29+0.03(0.01)
D 0.64 0.6440.03(0.02) | 0.5440.06(0.01) | 0.43+0.05(0.01)
E 1.84 0.5940.03(0.01) | 0.4440.05(0.01) -

F 3.25 0.5840.03(0.02) | 0.424+0.04(0.01) | 0.28+0.03(0.01)

Figure 73 shows the transparency as a function of Q2 along with results from
previous experiments at MIT-Bates (12C, °®Ni, '8 Ta targets) and SLAC NE18
(*2C, *Fe, ¥"Au targets) and Figure 74 shows the transparency as a function
of Atomic Number A. The results of this experiment are in agreement with the
results of NE-18, but the statistical uncertainties are much lower. The backward
angle points (kinematics D and E) are higher than the forward angle points for all
targets. This indicates that there might be an excess of transverse strength (since
the backward angle points are more transverse in nature), compared to what is
included in the PWIA model. This also highlights the need for performing a L. and
T separation using this data to investigate how much of the transverse strength
is single particle in nature. Such a separation was performed and the results
(Section 5.5) show an enhancement in the transverse spectral function suggesting

contributions from multi-nucleon processes such as meson exchange currents.

The relative independence of T with Q? at the larger Q? puts constraints on
the media modification of the proton form factor, since the Q% dependence of T is

not effected by the uncertainties in the model spectral function or the correlation
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corrections. There is 2.5 4 2.4% rise in transparency at the two highest Q2 points,
averaged over the three targets. Since the free p-N cross-section decreases by ~

2% over this range in Q? the media modification of the e-N cross-section must be

< 2%.

5.3.1 Model Dependence

All the components of the simulation (the off-shell e-p cross-section, the radiative
effects and the model IPSM spectral functions) contribute to the model dependence
of the transparency results. In addition the correlation corrections mentioned

earlier in this section also contribute to the model dependence.

The model dependence of the off-shell e-p cross-section was checked by using an
alternative prescription o instead of the nominal o..;. The simulation yields were
found to be &~ 1.5 % lower, and varied by £ 0.5 % with target and kinematics. Thus
the systematic uncertainty due to the model dependence of the e-p cross-section
is quoted as 4 1.5%. A recent review of this problem is given by Pollock et al.
[83], where six different prescriptions are compared. In the kinematic range where
most of the world data exists the variation between the different prescriptions was
about 3.0%. However since o, is the most popular prescription, it was used in

this experiment to facilitate comparison with previous experiments.

The model dependence of the radiative effects were determined by studying
the large missing energy and large missing momentum region of the simulated
H(e, €'p) scattering. The large missing energy and large missing momentum region
is dominated by internal bremsstrahlung. The variation in the ratio of experimental
to simulated yield when the upper limit of the missing energy range is varied, was
used to determine the uncertainty in the internal correction procedure. A 1.5%

variation in this ratio was observed when the missing energy limit was varied
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from 50 MeV to 130 MeV. In addition to this the H(e, €'p) yields for alternative
schemes of simulating the internal bremsstrahlung differed by ~ 2%,[79]. These
results were used to assign an systematic uncertainty of 2% to the simulation of
internal bremsstrahlung. The uncertainty in simulating the radiative effects due
to external bremsstrahlung was estimated to be 2% [79] from the changes in the

simulated yields when the radiation lengths of the C and Fe were varied.

The systematic uncertainty due to the model spectral function was calculated
by estimating the uncertainty in the momentum distribution and uncertainty in
the energy distribution. The uncertainty in the momentum distribution is directly
related to the uncertainty in the widths of the distributions. The linearity of the
transparency as a function of the proton angle, constrains the uncertainty in the
momentum distribution to ~ 4.0 %. [71]. The uncertainty in the energy distri-
bution was estimated from the sensitivity of the transparency to E,, constraints.
In addition the position of the centroids of the 1s1/, and 1ps/, peaks were varied
by about 5 MeV in the nominal IPSM model for carbon. In this test the yields
changed by <0.7%. From these tests the uncertainty in the energy distribution
was estimated to be 2%. Thus the net model dependent uncertainty for the three
targets is the sum in quadrature of the momentum and energy uncertainties, i.e.
4.5 %. As a test, the change in the simulated yields when an alternative model
spectral functions 1s used were calculated. For carbon a model spectral function
based on DWIA calculations done by Zhalov [84] was used and the yields were
found to differ by 2% for the conjugate proton angle in Kinematics A,B and C.
However the DWIA model used in this test was not significantly different from
the PWIA model especially for |p,,| < 150 MeV which is covered by the conjugate

angle. Hence this 1s not a strong test of the model dependence. But still the
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results were well within the quoted 4.5 % uncertainty. For the iron target an alter-
native model spectral function was obtained from Hartree-Fock calculations done
by Horowitz [85]. Using the same shell energy widths as the nominal TPSM model
the yields were found to change by about 8%. However we will see in the next
section that the transparency extracted using the the measured spectral function
are consistent with the results of this section indicating that the models used here

are accurate to better than the 4.5% uncertainty.

The systematic uncertainty in the correlation correction factor was estimated
from the changes in simulated yields when two different correlated spectral func-
tions were used as described in Reference [49]. They were found to be 3% for
carbon and 6% for iron and gold. In addition to this the correlation corrections
were calculated for *He, 0 and nuclear matter by Benhar [86]. He found that
the corrections were A independent when he integrated over all E,, but were A
dependent when the E,, was cut off at 80 MeV. This is consistent with the model of
the correlation correction, which distributes a constant fraction of the nucleons at
lower missing energies to higher missing energies. These studies and other studies
show that the correlation correction is the largest theoretical/model uncertainty

in this experiment.

A list of systematic uncertainties due to various components of the simulations
is shown in Table 31. This table also has the sum in quadrature of all the different

sources for all three targets.

Since the model uncertainties are different for each target they will effect the
study of A dependence of the transparency and the comparison to experimental
results extracted using different models. However, because the model dependence
is almost independent of Q?, one can study the Q? dependence of the transparency

without including the model dependence.



Table 31: Model-Dependent Uncertainties.

Item

% Uncertainty
in Simulated Yield

Internal Radiation 2
External Radiation 2
Oep 1.5
Model Spectral Function:
12¢ 4.5
56Fe 4.5
197 Aq 4.5
Correlation Correction:
12C 3
56Fe 6
197 Ay 6
Sum in Quadrature:
'H 3.2
12¢ 5.7
56Fe 8.0
B7Aq 8.0

210
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5.3.2 Comparison to Theoretical Models

The theoretical calculations discussed in this section are based on -

e DWIA which was discussed in Section 2.4,
e Correlated Glauber calculations introduced in Section 2.6.3

e Inter Nuclear Cascade (INC) models.

DWIA Calculations

Most DWIA calculations found in the literature have been done for low Q?, some
authors put the limit of their validity at Q? < 2 GeV? [87]. Some of the popular
calculations include DWEEPY developed by Guisti et al. [23]. However, these cal-
culations are not valid at the higher Q? values of E91-013. The DWIA calculation
presented here is based on the effective empirical interaction (EEI) developed by
J. Kelly [88]. The parameters of the optical potential in this calculation, used
to describe the final state interactions of the outgoing proton, were determined
from fits to inelastic proton scattering data over a range of proton kinetic en-
ergies, 100 < T, < 650 MeV. In these calculations nuclear matter density was
folded with the density dependent p-N interaction. Some authors [89] have shown
that the medium modifications of the p-N interaction is an intrinsic part of these
DWIA calculations. Figure 75 compares the extracted transparency with the EEI

calculations.

From the figure we can see that the calculation predicts the transparency of
carbon at low Q2 very well but under estimates the iron and the gold transparency.
The kinks in the calculation are due to the variations in the independent data sets

used in obtaining the EEIL. The discrepancy gets bigger with increasing target mass.
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The authors explain this discrepancy in terms of the multi-nucleon absorption of
the virtual photon. Since the calculation does not include this reaction channel
the it underestimates the experimental transparency. However, the L-T separation

described in Section 5.5 do not support such a claim.
Correlated Glauber Calculations

Glauber calculations are done under the assumption that the struck nucleon moves
undeflected along a straight trajectory parallel to its original direction. The nuclear
transparency is calculated in terms of the probability of the struck nucleon to not
encounter other nucleons on its way out, integrated over all paths. Glauber calcu-
lations are valid for high Q2 only and some authors put the limit of applicability
at 2.0 GeV? [88, 92] while others assert they should apply down to 500 MeV?2. The
correlations between the proton and other nucleons are included in terms of the
pair correlation function as defined in Section 2.6.3. However, the correlation be-
tween the spectator nucleons is neglected in some calculations (eg. Gao et al. [90]).
As mentioned in Section 2.6.3 the “correlation hole” (p,(r")pa(r”) — ppa(r’,x")) is
positive and so the pair correlation function enhances the transparency. Figure 76
shows the experimentally measured transparency compared to the Glauber calcu-

lations of Gao et al. [90].

These calculations used nuclear wave functions generated by Pieper [91] using
the Argonne V18 potential. The transparency was calculated by averaging the
probability of the proton to exit without encountering other nucleons (the total p-
N cross-section was used to calculate the probability) over multiple configurations
of the nucleons in the nucleus, using a Monte Carlo technique. From Figure 76
it 1s clear that the calculations agree with the measured transparency of carbon

but under estimates the transparency with increasing target mass. The calculation
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also predicts a stronger Q? dependence in carbon than is measured.

In Figure 77 the measured transparency is compared to yet another Glauber
type calculation, this one is from Nikolaev et al. [92]. In these calculations the
Glauber approximations were applied but a simple Fermi parameterization was
used for the nuclear density and only inelastic p-N cross-section was used to cal-
culate the transparency. These calculations do not include any correlations be-
tween the nucleons. The author claims that the reduced density around the pro-
ton due the repulsive p-N interaction at short distances (hole effect) cancels with
the increased interaction between the proton and the spectator nucleons due to
the correlations between the spectator nucleons(spectator effect). The calculated
transparency seems to overestimate the carbon measurement but agrees with the

measurements on other targets within the systematic uncertainties.

Inter Nuclear Cascade Calculations

This calculation was done by Golubeva et al. [93] and involves a scheme in which
the nucleons in the nucleus are treated as a mixture of degenerate Fermi gases. The
calculation uses a Monte Carlo technique where for each event an electron strikes a
proton and the proton propagates through the nucleus undergoing a series of elas-
tic or inelastic reactions. The probability of such interactions is governed by the
total cross-section of free nucleons. Each struck nucleon undergoes its own series of
interaction resulting in a cascade of scattered particles. Pauli blocking is included
by ensuring that only reactions which have recoil momenta greater than the Fermi
momentum get accepted. The transparency is calculated as the fraction of the
protons surviving within a given experimental acceptance compared to PWIA cal-
culations of the same. The NE-18 acceptance was used by the authors in their

calculations. The nucleon-nucleon correlations are neglected in these calculations.
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Thus effects of coherent scattering of the outgoing nucleon is neglected, which the
authors claim are negligible because they are suppressed by Pauli blocking as the
deflections due to coherent scattering is small. In Figure 78 the calculations of
transparency under the INC model is compared with the measured transparency.
The INC transparency is over estimated for all targets, but they seem do a better
job with the Q? dependence. The calculation shows an bigger increase in T at

large Q% than expected from p-N cross-section.

5.3.3 Summary

The transparency is remarkably flat as a function of Q* for carbon even though
the p-N cross-section changes by over 50% in the energy range covered in this ex-
periment. Both DWIA and Glauber calculations underestimate the transparency
as the target nucleus get heavier and the discrepancies are larger than the uncer-

tainties of the measurement.

5.4 Spectral Functions

The deradiated spectral function was extracted from the data on the three targets
at all the kinematic settings using the procedure described in Section 4.13. These
spectral functions are distorted spectral functions since they include the effects
of FSI and they are a product of transparency and the spectral function as men-
tioned earlier, they are labeled as S (E,,,p.). In the plots shown in this section
the experimental spectral function was integrated over p,, or E,, (in other words
projected into E,, or p,, space respectively) and compared to the IPSM model
spectral functions used in the transparency analysis. The uncertainties shown are

the sum in quadrature of the statistical and the systematic uncertainties. The
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systematic uncertainties are discussed in the next section and the experimental

spectral function are compared to a few calculations.

5.4.1 Systematic Variations

The nominal cuts used to constrain the data are shown in Table. 22. In order
to estimate the sensitivity of the procedure to variations in these cuts, they were
varied one at a time and the percent change in the integrated spectral function
recorded. Table 32 shows the variation for the different cuts averaged over all
targets. From Table 32 it is clear that there is very little variation with the angular
cuts but about ~ 1.5 % variation with the cuts on the HMS and SOS reconstructed

delta. The sum in quadrature of the variation is 2.64 %.

As described earlier in Section 4.14, the model dependence of this procedure
was tested by starting the iterative deradiation process with a **0O model instead
of 12C and after several iterations the extracted spectral function was compared
with a spectral function extracted using a correct 12C model. The results is shown
is Figure 62. This figure shows that the model dependence of the procedure is
< 5.0%. The systematic variation in the extraction procedure is determined by
comparing the extracted spectral functions from Monte Carlo data with the input
spectral functions. This uncertainty is determined for each bin in E,, and p,, and

the figure quoted in the table is average over all bins.

The summary of the systematic uncertainties in extracting spectral functions

is shown in Table 33.
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Table 32: The mean variation of the integrated spectral function when the nominal
cuts are changed one at a time. The standard deviation is shown in parentheses

‘ Cuts ‘ kineA ‘ kineC ‘ kineD | kineE ‘ Average ‘

hdelta(£10) 0.6% 1.4% | 1.8% 1.7% 1.3 %
(0.08) | (0.4) | (0.5) (0.6)

hdelta(+6) 1.2% | 1.2% | 1.5% | 1.5% | 1.6%
(0.4) | (0.5) | (0.4) | (0.7)

sdelta(-12+20) 1.2% | 03% | 0.5% | 0.3% 0.6 %
(0.4) (0.1) | (0.2) (0.1)

sdelta(-8+18) 1.4% 2.2% | 0.7% | 0.4% 1.2%

(0.4) | (0.2) | (0.2) | (0.1)
hms y;,,(+ 0.06) | 0.03% | 0.08% | 0.11% | 0.15% | 0.12%
(0.02) | (0.05) | (0.07) | (0.1)
hms y,,.(£ 0.04) | 0.22% | 0.15% | 0.13% | 0.17% | 0.16%
(0.02) | (0.07) | (0.05) | (0.08)
hms =, (4 0.095) | 0.042% | 0.08% | 0.11% | 0.15% | 0.1%
(0.01) | (0.02) | (0.03) | (0.03)
hms z;,, (£ 0.075 | 0.6% | 0.4% | 0.55% | 0.16% | 0.45%
(0.15) | (0.05) | (0.23) | (0.06)

SOS Y, (£ 0.08) 0.17% - 10.02% | 0.08% | 0.7%
(0.1) (0.01) | (0.02)

S0S Y, (£ 0.06) 0.6% | 02% | 0.5% | 0.03% | 0.4%
(0.3) - (0.1) | (0.007)

sos z,,,(4 0.065) | 0.02% - - - 0.02%
(0.0)

sosz,,, (4 0.045) - - - - -

‘ ‘ Total sum in quadrature | 2.64 % ‘
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Table 33: Systematic Uncertainties in extracting the spectral functions

Item % Uncertainty
in Data Yield

Current Measurement 1

Solid Target Thickness 0.1

HMS Tracking Eff. 1

SOS Tracking Eff.
Proton Absorption

Constraint Stability 2.6
Run Stability 1
Sum in Quadrature 3.4
Extraction procedure 3.5(average)
Total systematic uncertainty 4.9

| Model Dependence ‘ 5.0 ‘

5.4.2 p,, and E,, Distributions

The deradiated spectral functions integrated over E,, are shown in the Figures 79 -
85 below. For carbon the spectral function are shown integrated over the p shell ( 15 <
E,, < 25 MeV ) and the s shell ( 30 < E,, < 50 MeV ) respectively, these are fol-
lowed by spectral functions for all three targets integrated over 0 < F,, < 80 MeV.
In the figures below each of the p,, distributions are compared to the IPSM spec-
tral function described in Section 4.11.4. The model is normalized to have the
same number of protons as in the data, ie. the integral over |p,,| < 300 MeV
of the model spectral function is normalized to be same as that of the measured
spectral function. In cases where the data is available only over a limited range
in p,, and does not extend up to |p,,| < 300 MeV, the measured and the model
spectral function were integrated over that limited range. The nominal cuts listed

in Table 22 were applied in all cases.

Figure 86 shows the typical missing energy distribution for the three targets.
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They are compared to IPSM spectral functions, which have Lorentzian energy
distributions for each shell as described in Section 4.11.4. The integral over 0 <
E,, < 80 MeV of the model spectral function is normalized to be same as that of

the data.

These figures indicate that the IPSM spectral functions can describe the shape
and the radii of the distributions. However because no left-right asymmetry is
incorporated in the model they cannot reproduce the asymmetry observed in the
data. In addition there are some differences in the shapes at low missing mo-
mentum. The left-right asymmetry decreases as a function of 2, just as seen
in the transparency results (Figures 70-72). For carbon it was determined that
the experimental strength in the spectral functions at the lowest p,, bins can be
accounted for by small admixture of the s shell strength. It was found that about
8% admixture could account for the anomalous strength. Previous high resolu-
tion experiments at NIKHEF [94] have found spectroscopic strengths in the region
E,, < 27 MeV of 4.1% of the 1p strength (8.2% of the 1s strength). Our results

are consistent with these previous measurements.

The variation with Q? in the iron and gold spectral functions (see also Fig-
ures 88-91) at low py, is not understood. It is possible that the anomalous Q?
dependence is caused by the variation in the resolution at the different kinematics.
These variations in the resolution are an artifact of the reconstruction of the spec-
trometer quantities having some small unphysical dependences (the optimization

of the reconstruction had some small kinematic dependence).

The left-right asymmetry can be attributed to the presence of a stronger in-
terference response Wirp. The off-shell cross-section o, includes an interference
response which gives rise to a left-right asymmetry, but the asymmetry seen in the

spectral functions is in addition to this asymmetry in the off-shell cross-section. At
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Figure 79: The momentum distribution of the p shell (left panels) and the s shell
(right panels) protons in carbon at Q* of 0.6 GeV? (upper panels) and 1.2 GeV?
(lower panels) are shown along with the IPSM spectral function (solid line) de-
scribed in Section 4.11.4. The dashed line shows the 8% admixture of the p and s
shell models. The integral over |p,,| < 300 MeV of the model is normalized to be
equal to the measured spectral function integrated over the same range. The sum
in quadrature of the statistical and systematic uncertainties are shown.
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Figure 80: The momentum distribution of the p shell (left panels) and the s shell
(right panels) protons in carbon at Q? of 1.8 GeV? (upper panels) and 0.6 GeV?
(lower panels) are shown along with the IPSM spectral function (solid line) de-
scribed in Section 4.11.4. The dashed line shows the 8% admixture of the p and
s shell models. The integral over |p,,| < 300 MeV of the model is normalized to
be same as the data integrated over the same range. The Q? = 0.6 GeV? point
corresponds to the backward angle data. For the lower panels the integral between
0< p,, <220 MeV was used to normalize the model. The sum in quadrature of the

statistical and systematic uncertainties are shown.
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Figure 81: The momentum distribution of the p shell (left panels) and the s shell
(right panels) protons in carbon at Q2 of 1.8 GeV? (upper panels) and 3.2 GeV?
(lower panels) are shown along with the IPSM spectral function (solid line) de-
scribed in Section 4.11.4. The dashed line shows the 8% admixture of the p and s
shell models. The integral over 0< p,, < 300 MeV of the model is normalized to be
equal to the measured spectral function integrated over the same range. The Q% =
1.8 GeV? point corresponds to the backward angle data. The sum in quadrature
of the statistical and systematic uncertainties are shown.
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Figure 82: The momentum distribution of the protons in carbon at Q% of 0.6 GeV?
(upper left panel), 1.2 GeV? (upper right panel), 1.8 GeV? (lower left panel) and
3.2 GeV? (lower right panel) are shown along with the IPSM spectral function
(solid line) described in Section 4.11.4. The integral over |p,,| < 300 MeV of the
model is normalized to be equal to the measured spectral function integrated over
the same range. At Q2 of 3.2 GeV? (lower right) the integral over 0< p,, < 300
MeV was used for normalization. The sum in quadrature of the statistical and
systematic uncertainties are shown.
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Figure 83: The momentum distribution of the protons in iron at Q2 of 0.6 GeV?
(upper left), 1.2 GeV? (upper right), 1.8 GeV? (lower left) and 0.6 GeV? (lower
right) are shown along with the IPSM spectral function (solid line) described in
Section 4.11.4. The integral over |p,,| < 300 MeV of the model is normalized
to be equal to the measured spectral function integrated over the same range.
The Q* = 0.6 GeV? point (lower right) corresponds to the backward angle data.
For cases where the measured spectral function covers a small range in p,,, the
normalization was done over the limited range. The sum in quadrature of the
statistical and systematic uncertainties are shown.
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Figure 84: The momentum distribution of the protons in iron at Q2 of 1.8 GeV?
(upper left) and 3.2 GeV? (upper right) and in gold at Q? of 0.6 GeV? (lower
left) and 1.2 GeV? (lower right) are shown along with the IPSM model (solid line)
described in Section 4.11.4. The integral over | < p,,| < 300 MeV of the model is
normalized to be equal to the measured spectral function integrated over the same
range. The Q% = 1.8 GeV? point (upper left) corresponds to the backward angle
data. For cases where the measured spectral function covers a small range in p,,,

the normalization was done over the limited range. The sum in quadrature of the

statistical and systematic uncertainties are shown.



229

r 84 =1.8 GeV” - Q°=0.6 Gevzéde Angle)
L <Em<80 MeV B 5<Em<80 MeV
6 -6
10 10 u
E n"g""n Z
[ [
10 3 10 3
g 2 L]
L] C
-8 E -8
10 F 10 E
i r
%) 10 _9 1 1 I 1 1 1 I 1 1 1 I 1 1 10 _9 1 1 I 1 1 1 I 1 1 1 I 1 1
s -200 0 200 -200 0 200
~ Pm (MeV) Pm (MeV)
S
L
= F (532 =32 GeV?
e L <Em<80 MeV
a -6
- 10 E
S 3
L|_] L
w C
DU) ; L
= 10 3
ol ¥
10 E
10 _9 1 1 | 1 1 1 | 1 1 1 | 1 1
-200 0 200
Pm (MeV)

Figure 85: The momentum distribution of the protons in gold at Q2 of 1.8 GeV?
(upper left), 0.6 GeV? (upper right) and 3.2 GeV? (lower left) are shown along
with the IPSM model (solid line) described in Section 4.11.4. The integral over
|pm| < 300 MeV of the model is normalized to be equal to the measured spectral
function integrated over the same range. The @ = 0.6 GeV? point (upper right)
corresponds to the backward angle data. For cases where the measured spectral
function covers a small range in p,,, the normalization was done over the limited
range. The sum in quadrature of the statistical and systematic uncertainties are
shown.
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Figure 86: The typical missing energy distribution of carbon, iron and gold at
Q* of 1.2 GeV? are shown along with the IPSM model (solid line) described in
Section 4.11.4. The model has been normalized to have same integrated strength
as the data over 0< F,, <80 MeV. The sum in quadrature of the statistical and
systematic uncertainties are shown.
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lower momentum transfer the left-right asymmetry has been used to extract the
interference response Wirr [95] from D(e,e’p) data taken at NIKHEF. For these
lower momentum transfers, it has been seen that the asymmetry in the data is not
reproduced by DWIA calculations. These calculations tend to show more asym-
metry than observed [18, 24]. The authors claim that this discrepancy cannot be
attributed to FSI since the different optical potentials do not affect the asymme-
try. Some authors [24] have accounted for this by introducing an enhancement in
the transverse and the interference response (although these cancel in the parallel

kinematics).

The data from this experiment will be used to extract the asymmetry which
is in excess of the asymmetry already present in the deForest prescription o, as
a function of the transverse momentum and from these asymmetries one can get
a measure of the interference response function Wyp. More detailed theoretical
calculations which can reproduce the observed asymmetries would be very useful

in determining the contributions from various reaction mechanisms.

From the E,, distributions in Figure 86 we see that the carbon p3/2 and sy, shell
is well described by the IPSM model. However, for the heavier targets the measured
spectral functions shows much less structure than the IPSM model, indicating that
the shell widths may be larger than the IPSM values. This data indicates that
the Brown and Rho formulation (Section 4.11.4, Equation 105) which saturates
at about 24 MeV is incorrect for heavier nuclei like iron and gold. Since this
formulation is based on data taken in the early (e, €’p) experiments at very low Q2

there is a definite need for updating the formula by incorporating the new data.

In Section 5.4.3 where the momentum distributions are plotted together on
top of each other, one can see that the spectral functions are approximately in-

dependent of Q2 for the forward angle data. However there are some differences
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Table 34: The integral of the measured spectral function for |p,,| <300 MeV and
E,, corresponding to the carbon ps/, shell (15< E,, <25 MeV), s;/5 shell (30<
E,, <50 MeV), all carbon (0< E,, <80 MeV) all iron and all gold (0< E,, <80
MeV). The statistical uncertainties are < 0.5 % in all cases and the systematic
uncertainty is 4.9 %

% W = [ S, ondBndpy
GoV2 ag 56 e 7 A4

p3/2 shell ‘ s1/2 shell ‘ all all all

A | 0.64 |2.19(0.11) | 0.67 (0.03) | 3.18 (0.15) | 9.63 (0.47) | 23.53 (1.15)

B | 1.28 | 2.10 (0.11) | 0.65 (0.03) | 3.04 (0.15) | 9.10 (0.45) | 20.07 (0.98)

C | 1.79 |2.03 (0.10) | 0.62 (0.03) | 2.89 (0.14) | 8.15 (0.40) | 17.07 (0.84)

D | 0.64 | 2.42(0.12) | 0.78 (0.04) | 3.38 (0.17) | 11.33 (0.56) | 27.08 (1.33)

E | 1.84 | 2.17 (0.12) | 0.66 (0.03) | 3.10 (0.15) | 9.18 (0.39) -

F | 3.25 | 2.15 (0.10) | 0.65 (0.03) | 3.12 (0.15) | 8.91 (0.37) | 16.76 (0.82)

between the forward and backward angle spectral functions (Figure 94, 96 and 99)
as discussed in the next section. This indicates that the Q2 dependence of the
electron-proton coupling is well described by the off-shell cross-section o,,. This
is important because the off-shell cross-section varies widely over the kinematic
range covered. However, the longitudinal- transverse character of the coupling is

not well described.

The integral over all E,, and p,, of these spectral functions give us the total
number of protons observed and can be thought of as the product of the trans-
parency and the spectroscopic factor. The number of protons detected experimen-
tally in the carbon p and s shells and in all the shells within 80 MeV in carbon,

iron and gold are listed in Table. 34.

In Table 34 the number of 2C p shell protons observed is higher than those
observed in previous experiments, for instance those at NIKHEF [24]. We can

calculate the spectroscopic factors by using the observed number of p shell protons
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Table 35: Spectroscopic factors (S, ) calculated using the p shell transparency from
the EEI model and the spectroscopic factors corrected for any excess transverse
strength (S°”") in the p shell region using results from Section 5.5

. The uncertainties are the sum in quadrature of systematic and statistical uncer-
tainties.

Kinematics | Q? Sa Seorr
GeV?

A 0.64 | 2.98 £0.15 | 2.83 £ 0.30

B 1.28 | 3.13 £0.16 -

C 1.8 | 3.03 £0.15 | 2.76 £ 0.46

and dividing by the transparency for the p shell protons calculated with a DWIA
model. We use the EEI calculations of J. Kelly [88] since this calculations is in
agreement with our measurement (Figure 75). The p shell transparency at Q? =
0.64 and 1.28 GeV? were calculated by J. Kelly [96] to be 0.72 and 0.67 respec-
tively. Although his calculations do not extend to Q* = 1.8 GeV? we will use a
transparency of 0.67 for calculating the spectroscopic factor. In Section 5.5 we will
discuss the transverse and longitudinal strength in the p shell region. Using that
information one can correct the number of protons in the p shell region for any
excess transverse strength in the p shell region (using the procedure to extrapolate
the longitudinal spectral function, outline in Section 5.5). This gives a corrected
spectroscopic factor. However, it should be pointed out that the corrected trans-
parency calculated in Section 5.5 (see Figure 107) using the same procedure is lower
and thus does not agree with the EEI calculations. The nominal and corrected

spectroscopic factors are listed in Table 35.

The spectroscopic factors in this experiment are ~ 20 higher than the observed
spectroscopic factors from NIKHEF (2.18 + 0.15). A possible explanation is that

at the lower momentum transfers the transverse strength was found to be about
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Table 36: Nuclear Transparency calculated from the experimental spectral func-
tion. The uncertainties are the systematic uncertainties and the model dependent
uncertainties added in quadrature

Kinematics Q? Transparency
(GeV/P|  2C | ®Fe [ "Au

A 0.64 0.62+0.04 | 0.48+0.04 | 0.404+0.04
B 1.28 0.59+0.04 | 0.45£0.04 | 0.3440.03
C 1.79 0.56+0.04 | 0.41£0.04 | 0.2940.03
D 0.64 0.65540.05 | 0.56+0.05 | 0.47+0.04
E 1.84 0.60+£0.04 | 0.46+0.04 -

F 3.25 0.60540.04 | 0.444+0.04 | 0.29+£0.03

40% higher than the longitudinal strength, in the NIKHEF experiment [24]. In
this experiment however, we observe that the longitudinal and transverse strength

for the p shells differ by ~ 10%.

It is instructive to stress the ambiguity between extracting spectroscopic factors
and extracting transparency. The spectroscopic factors are extracted by comparing
the experimental spectral functions with DWIA calculations which are tuned to
fit the experimental data. Once the DWIA calculations match the data it can
be claimed that the FSI interactions have been accounted for in terms of the
optical potential used in the calculation, hence the integral of the spectral function
gives the spectroscopic strength for a given target. In extracting the transparency
one does not account for the FSI and hence the transparency so extracted is a
product of the spectroscopic factor and the attenuation of the knocked out nucleon.
Thus there is a continuous ambiguity as to what fraction of the transparency is

attenuation and what fraction is the spectroscopic factor (FSI).

One can extract transparencies from the integral of the experimental spectral
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function n;‘”pt (listed in Table. 34 using,

Tp

T(QY) =~ (150)

Where 'nZI)P SM is given by,
nlPSM — / SSC A d*pu, (181)

here [ S¢S, is the integral of the IPSM spectral function over 0<E,, <80 MeV
and |p,,| < 300 MeV and corrected for correlations with the correlation correction

listed in Table 17. The transparency extracted from n¢?! is shown in Table 36.

P
The uncertainties are higher than those quoted in Section 5.3 because the new
transparencies include the uncertainties of the extraction procedure. The trans-

parencies extracted from the measured spectral functions is consistent with the

transparencies in Section 5.3 indicating the consistency of the two analysis.

As discussed in Section 2.7.3 the Koltun sum rule for protons only, corrected

for recoil energy of the residual system is,

FE 1 A—-2
7Z:§(H<T>—<E>). (182)

Here EZZ is the total energy per proton, obtained from nuclear masses and
appropriate Coulomb corrections, < 7" > is the mean kinetic energy and < F >
is the mean removal energy. They are calculated using the extracted spectral
functions and the number of protons observed between 0<E,, <80 MeV. The

results are listed in Table 37.

The results show that there is deviation of about 1-2 MeV from the Koltun sum
rule for all the targets (the deviations are lower than those observed at Saclay [8]

which were ~ -2.5 MeV for carbon) and the deviation is negative in all cases
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Table 37: The total energy per proton, mean kinetic energy, mean removal energy
and the deviation from the Koltun sum rule (A) is listed for the three targets.

Target | Q2 L2 [<T>|<E> A
GeV? | MeV | MeV MeV MeV
0.6 15.93 | 25.95 | -1.2040.12
12¢ 1.2 [-6.93 | 16.28 | 25.79 | -1.44+0.14
1.8 16.04 25.62 | -1.41+0.14
3.2 17.34 26.21 | -1.71 £0.17
0.6 20.42 | 30.71 | -0.96+0.10
56Fe 1.2 |[-6.93 | 18.05 | 29.42 | -0.924+0.09
1.8 17.78 | 27.77 | -1.6240.16
3.2 19.13 | 28.82 | -1.7440.17
0.6 20.18 | 25.45 | -1.99+0.20
7 Ay 1.2 |-4.73 | 18.37 | 25.72 | -0.96+0.10
1.8 18.28 24.06 | -1.75+0.17
3.2 19.42 | 26.05 | -1.31£0.13

implying that the nucleons are less bound than expected which is consistent with
having strength at higher missing energies. This suggests that the deviation from
the sum rule could be due to the short range correlations which push some of the
strength to high missing energies. However, one cannot determine the effect of
correlations just from the sum rule. It can be estimated using correlated spectral
functions, for example using the correlated spectral functions of Benhar et al. it
was estimated that the contribution to the Koltun sum rule from regions at E,,, >
80 MeV 1s -1.756 MeV for iron and -1.974 MeV for gold. These are similar to
the deviation from the sum rule shown in Table 37, indicating that some of the
deviation is indeed due to short range correlations. The Koltun sum rule is derived
under the assumption that there are no three body or many body interactions thus
the deviation from the the sum rule could partly be due to contributions from many

body interactions.
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5.4.3 Comparison to Theoretical Models

The deradiated spectral functions for carbon and iron are compared with DWIA
calculations which use the Hartree-Fock model with Skyrme’s interaction to de-
scribe the single particle aspects of the nuclear structure [97] The distorted mo-
mentum distributions for the nuclear protons is then calculated in terms of these
Hartree-Fock single particle bound state wave functions and distorted outgoing
proton functions are calculated in the eikonal approximation. The potential used
is a Glauber model potential in the optical limit. The potential in terms of the pN
scattering amplitude f,y and nuclear density py(r) is given by,

_hpy aopnpn(r) _Tipy oynpn(r)
Ey 2 Ey 2

a = Refon/Imfon. (183)

ReV (r) =

,ImV (r) =

These calculations were done by Zhalov et al. [84]. for the NE18 experiment
and are valid for the present experiment, since the range of Q? covered overlap.
Two models were obtained, one of them included the authors’ estimates of the

effects of color transparency.

Since all the calculations shown here were done just for p,, > 0.,ie they are

symmetric about p,, = 0, we have symmetrized the measured spectral functions

as S(pm) = (S(p"’>“);s(p"’<0)). This removes the left-right asymmetry observed in
the measured spectral functions and makes them suitable to be compared with the

calculations.

In Figure 87 we see that the DWIA calculations with and without color trans-
parency have almost no difference in the momentum distribution. The momentum

distribution matches the data except at very low p,,. In addition the calculations
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Figure 87: The momentum distribution of the p shell (top panel) and the s shell
(bottom panel) protons in carbon at Q* of 0.6 - 3.2 GeV? are shown along with
the DWIA calculations of Zhalov et al. with (dashed) and without (solid) color
transparency (here there is almost no difference between the two). They have been
normalized so that the integral of the model and measured spectral functions over
|pm| < 300 MeV is equal to the integral of the spectral function at Q2 of 1.8 GeV?
(kine C). The statistical and the systematic uncertainties added in quadrature are
shown.
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do not extend to p,, > 200 MeV where the differences due to short range corre-
lations are likely to show up. These calculations need to be redone for larger p,,

and on both sides of p,,= 0 in order to be useful.

In Figure 88 we see that the DWIA calculations with and without color trans-
parency, both, do not describe the momentum distribution correctly at |p,,| >100
MeV. Some of the Q2 dependence at the low p,, are caused by the symmetrization

since the left-right asymmetry varies with Q2.

Next the deradiated spectral functions for iron and gold are compared to cal-
culations of Benhar et al. [98] These calculations start with single particle finite
nuclei spectral functions to which a nuclear density dependent part is added (also
called the nuclear matter correlated part). The density dependent part (or corre-
lated part) is calculated under the local density approximation. The single particle
spectral function were the same ones used in this experiment for the physics sim-
ulation (described in Section 4.11.4). The recoil-nucleon final state interactions
were treated in the local density approximation and used the high energy approx-

imations discussed in Section 2.6.2.

It is interesting that for both iron (Figure 89) and gold (Figure 91) the measured
spectral functions show some additional strength at the p,, > 250 MeV compared
to the model. Since the model incorporates a density dependent correlation tails,
the effects of which would show only at p,, > 250 MeV, it seems that the model
underestimating the strength of these tails. Another possibility is that the long-

range correlations neglected in these models are becoming important.

The last comparison is for iron where the spectral function is compared to the
calculation based on the code TIMORA of Horowitz [85]. This code is based on
the the o-w relativistic mean field theory of Walecka [99], where the nucleons in the

nucleus interact via exchange of scalar and vector mesons (o and w respectively).
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Figure 88: The momentum distribution of the protons in iron at @2 of 0.6 - 3.2
GeV? are shown along with the DWTA calculations of Zhalov et al. with (dashed)
and without (solid) color transparency. They have been normalized so that the
integral of the model and measured spectral functions over |p,,| < 300 MeV is
equal to the integral of the spectral function at Q* of 1.8 GeV? (kine C). The
statistical and the systematic uncertainties added in quadrature are shown.
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Figure 89: The momentum distribution of the protons in iron at Q2 of 0.6 - 3.2
GeV? are shown along with the calculations of Benhar. They have been normalized
so that the integral of the model and measured spectral functions over |p,,| < 300
MeV is equal to the integral of the spectral function at @2 of 1.8 GeV? (kine C).
The statistical and the systematic uncertainties added in quadrature are shown.
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Figure 90: The missing energy distribution of the protons in iron at Q2 of 1.8 GeV?
are shown along with the calculations of Benhar et al. (solid). They have been
normalized so that the integral of the model and measured spectral functions over
0< F,, < 80 MeV are equal. Only the statistical uncertainties shown.
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Figure 91: The momentum distribution of the protons in gold at Q2 of 0.6 - 3.2
GeV? are shown along with the calculations of Benhar. They have been normalized
so that the integral of the model and measured spectral functions over |p,,| < 300
MeV is equal to the integral of the spectral function at @2 of 1.8 GeV? (kine C).

The uncertainties are statistical and systematic added in quadrature.
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To this framework Horowitz has also added the exchange of isovector p and =
mesons. The coupling constants for these fields are calculated from the nuclear

matter properties and the rms charge radius of *’Ca.

Starting with initial estimates of the binding energy and the occupation number
for each nuclear shell and a mean field potential with Wood-Saxon shape, the Dirac
equation is solved for each nuclear shell to calculate the wave function and energy
eigen value for the shell. These wave functions then in turn give the shell densities
which when integrated over a Greens function gives the new potential. This process

is repeated till the energy eigenvalues converge (differ by < 0.05 MeV).

The Timora calculation seems to match the momentum distribution of the data
quite well. The missing energy distribution reproduces the shape of the data, which
may be an artifact of the fact that the widths of the different shells were tweaked
to match the data. However, it is clear that the shells widths used are higher than
those observed in the data. This may be the cause of some of the large differences

in transparency observed by D. van Westrum [71].

5.5 Separated Response Functions

The deradiated spectral function S? (E,,pn) from the forward and back angle
kinematics at Q2 of 0.6 and 1.8 GeV?, shown in the last section, were used to
separate out the longitudinal and transverse spectral functions Sz, and St, following
the procedure of Section 4.15. In addition to the longitudinal and transverse

spectral functions the ratio of the response functions Rg was also calculated.
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Figure 92: The momentum distribution of the protons in iron at @2 of 0.6 - 3.2
GeV? are shown along with the Timora calculations in solid. They have been
normalized to have integrals equal to that at Q* of 1.8 GeV?2.
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Figure 93: The missing energy distribution of the protons in iron at Q2 of 1.8 GeV?
are shown along with the Timora calculations in solid. They have been normalized
to have equal number of protons.
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5.5.1 Systematic Uncertainties

The systematic uncertainties are divided into two kinds, the correlated point-to-
point uncertainties for each of the forward and backward angle measurements and
the normalization type uncertainties which are same for all the points and therefore

do not effect the ratio Rg.

Table 38 shows the variation of the model cross-section with primary param-
eters such as beam energy, spectrometer momenta and angles. These are used to
determine the point-to-point correlated systematic uncertainties in the measured

spectral functions.

Table 39 shows the correlated point-to-point uncertainties and the normaliza-
tion type uncertainties for all the forward and backward angle points. Using the
uncertainties listed in Table 39 one can calculate the systematic uncertainties for
the separated spectral functions Sy, and S7. The correlated uncertainties are calcu-
lated using Equation 175. The systematic uncertainties in the separated spectral
functions are listed in Table 40, the uncertainties in the separation procedure is
estimated by applying the separation procedure to simulated data. These uncer-
tainties are determined for each bin in E,,. The numbers quoted in the table are

the averages over all bins.

5.5.2 The Q? = 0.6 (GeV?) Results

The spectral functions at the forward and backward angles for Q% = 0.6 GeV?
are compared in Figs. 94 and 96, for carbon, iron and gold targets. The carbon
spectral functions have been split into the p and s shell distributions. In Figure 94
we see that there is very little difference between the forward and the back angle p

shell distributions while there are significant difference in the s shell distributions.
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Table 38: The variation in the cross-section due to uncertainties in the beam energy
the electron momentum and the electron scattering angle for all targets. The last
row shows the uncertainties averaged over all targets and summed in quadrature.

Target | Variable | Variation | Kine A | Kine D | Kine C | Kine E
N
Eyeam +0.25% 1.6% 0.3% 0.8% 0.4%
E. +0.2% 0.4% 0.4% 0.7% 1.2%
Carbon | 6./ +1.0 mrad | 1.7% 0.60% 2.0% 0.5%
P, +0.2% 0.17% 0.7% 0.27% | 0.65%
6, +1.5 mrad | 0.15% | 0.33% | 0.3% 0.7%
Eyeam +0.25% 0.6% 0.1% 1.0% 0.7%
E. +0.2% 0.3% 0.7% 0.7% 0.7%
Iron 0. +1.0 mrad | 1.82% | 0.40% | 2.18% | 0.7%
P, +0.2% 0.4% 0.35% 0.3% | 0.35%
O, +2.0 mrad | 0.15% | 0.25% | 0.5% | 0.6%
Eyeam +0.25% 1.0% 0.15% - -
E. +0.25% 0.4% 0.7% - -
Gold 0. +1.0 mrad | 1.82% 0.5% - -
P, +0.2% 0.5% 0.05% - -
0, +2.0 mrad | 0.01% | 0.1% -
Sum in quadrature 1.86% | 0.90% | 2.43% | 1.49%
Av. over targets
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Table 39: The correlated point-to-point and the normalization type uncertainties
are shown for the forward and backward angle measurements at Q2 of 0.6 and 1.8

GeV?
Item Point-to-point % Norm type %
Q? = 0.6 (GeV?) | Q* = 1.8 (GeV?)
Fwd ‘ Bwd Fwd ‘ Bwd
Kinematic variables 1.86 0.90 2.43 1.49 -
(from Table 38)
HMS Tracking Eff 1.0 1.0 1.0 1.0 -
SOS Tracking Eff 1.0 1.0 1.0 1.0 -
Proton Absorption - - - - 1.0
Run Stability 1.0 1.0 1.0 1.0 -
Acceptance 0.5 0.5 0.5 0.5 1.5
Current Measurement - - - - 1.0
Solid Target Thickness - - - - 0.5
Radiative Corrections 0.5 0.5 0.5 0.5 2.0
Sum in Quadrature 2.64 1.82 3.07 2.39 2.92
Model dependence - - - - 5.0

Table 40: The correlated point-to-point and the normalization type uncertainties
propagated to the separated spectral functions at Q* of 0.6 and 1.8 GeV?

Item Q% = 0.6 (GeV?) | Q% = 1.8 (GeV?)
S; | St S| St |
Correlated 13.07 4.82 33.60 4.84
Normalization type 2.92 2.92 2.92 2.92
Separation procedure(average) | 1.54 1.20 1.54 1.20
| Sum in quadrature ‘ 13.48 ‘ 5.84 ‘ 33.75 ‘ 5.78 ‘
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Figure 94: The momentum distribution of the protons in Carbon at Q2 of 0.6
GeV? for the p shell (upper panel) and the s shell (bottom panel). The forward
angle distribution (squares) and the backward angle distribution (triangles) are
compared. Just statistical errors are shown.
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These forward and backward angle spectral functions were used to separate the
longitudinal and transverse spectral functions. The separated spectral functions
were averaged over the ps/s shell region in carbon and the {7/, shell region in iron,
because the resolution of the spectrometer models are not optimized to match

those of the data.

The separated spectral functions for 0<p,, < 80 MeV for '2C is shown in
Figure 95. We see that for the p shell the transverse and the longitudinal strength
are almost equal, (transverse is 10%+ 10% more than longitudinal). However, there
is considerable excess transverse strength in the s shell region. Also there is little
excess strength at higher missing energies. It is also seen that the s shell strength in
the longitudinal response is peaked at about 38 MeV, while the difference between
the transverse and the longitudinal response peaks about 5 MeV higher. This
suggests that the shift in the unseparated spectrum is due to the excess transverse
strength. We also observe that the longitudinal spectral function extends to high
missing energies. This tells us that the single nucleon strength extends to missing
energies up to 80 MeV. This is in contrast to previous experiments [10] which

observed the longitudinal strength go to zero by 60 MeV in E,, (see Figure 103).

The separated spectral functions for *Fe are shown in Figure 97. We see
that for the f shell the transverse and the longitudinal strength are almost equal
(transverse is 15%+10% more than the longitudinal), but there is considerable
excess transverse strength beyond the f shell up to about 60 MeV, at higher missing
energies the strengths are almost equal again. The separated spectral functions for
197 Au is shown in Figure 98. Here we see that there is excess transverse strength
up to about 60 MeV and at even higher missing energies the excess strengths
falls off slowly. All the observed results in this section and their consequence are

summarized in Section 5.5.5.
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Figure 95: The separated longitudinal spectral functions S; (open circles) and
transverse spectral function Sy (triangles) for carbon at Q? of 0.6 GeV? are shown
on the upper panel, the statistical and systematic uncertainties added in quadra-
ture are shown. The p shell distribution has been averaged over. The solid line
in the upper panel is the model longitudinal spectral function extracted from the
[PSM spectral function and the dashed line shows the average over the p shell dis-
tribution of the model normalized to the measured p shell distribution. The lower
panel shows the difference between the transverse and the longitudinal spectral
functions. The lower panel shows statistical errors only.
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Figure 96: The momentum distribution of the protons in iron (upper panel) and
gold (bottom panel) at Q* of 0.6 GeV?. The forward angle distribution (squares)
and the backward angle distribution (triangles) are compared. Errors are statistical

only.
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Figure 97: The separated longitudinal spectral functions S; (open circles) and
transverse spectral function St (triangles) for iron at @ of 0.6 GeV? are shown on
the upper panel, the statistical and systematic uncertainties added in quadrature
are shown. The peak from 10-25 MeV has been averaged over. The solid line
in the upper panel is the model longitudinal spectral function extracted from the
IPSM spectral function and the dashed line shows the average over the peak for
the model normalized to the measured distribution. distribution. The lower panel
shows the difference between the transverse and the longitudinal spectral functions.
The lower panel shows statistical errors only.
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Figure 98: The separated longitudinal spectral functions S; (open circles) and
transverse spectral function Sy (triangles) for gold at Q2 of 0.6 GeV? are shown on
the upper panel, the statistical and systematic uncertainties added in quadrature
are shown. The solid line in the upper panel is the model longitudinal spectral
function extracted from the ITPSM spectral function normalized to the forward
angle data (kine A). The lower panel shows the difference between the transverse
and the longitudinal spectral functions. The lower panel shows statistical errors

only.
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5.5.3 The Q> = 1.8 (GeV?) Results

The spectral functions at the forward and backward angles for Q% = 1.8 GeV? are
compared in Figure 99 for the carbon target. The carbon spectral functions have

been split into the p and s shell distributions.

Figure 100 shows the separated spectral function for 2C at Q? = 1.8 GeV?2.
We see that the transverse strengths is much reduced compared to the transverse
strength at Q? = 0.6 GeV2 The longitudinal spectral function has very large
systematic uncertainties and hence is not very informative. Assuming that the
longitudinal spectral function is dominantly single particle and Q? independent we
can compare the S, (Q? = 0.6) with Sz (Q* = 1.8)(Figure 102, bottom panel).
Here we see that there still remains some excess transverse strength at 40< F,, <65
MeV but the reduced transverse strength does indicate that the PWIA holds much

better at these higher Q2.

Once again Figure 101 shows that for the transverse strength is reduced and
the large uncertainties in the longitudinal spectral function make it of limited use,
however the reduced transverse strength would again indicate that the PWIA holds
much better at these higher Q? region. The observed results in this section and

their consequence are summarized in Section 5.5.5.

Figure 102 shows the 2C longitudinal and transverse spectral functions at
the two different Q2. The longitudinal spectral functions are consistent with each
other at low missing energies but at high E,, the spectral function at the higher Q2
has more yield. The transverse spectral function at the lower Q2 has a significant

excess compared to the transverse spectral function at the higher Q2.

The separated spectral functions were compared with previous data from MIT

Bates [10] at Q% = 0.14 GeV?. The separated response functions from the previous
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Figure 99: The momentum distribution of the protons in carbon at Q2 of 1.8
GeV? for the p shell (upper panel) and the s shell (bottom panel). The forward
angle distribution (squares) and the backward angle distribution (triangles) are
compared. statistical errors are shown.
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Figure 100: The separated longitudinal spectral functions S, (open circles) and
transverse spectral function Sy (triangles) for carbon at Q? of 1.8 GeV? are shown
on the upper panel, the statistical and systematic uncertainties added in quadra-
ture are shown. The p shell distribution has been averaged over. The solid line
in the upper panel is the model longitudinal spectral function extracted from the
[PSM spectral function and the dashed line shows the average over the p shell dis-
tribution of the model normalized to the measured p shell distribution. The lower
panel shows the difference between the transverse and the longitudinal spectral
functions. The lower panel shows statistical errors only.
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Figure 101: The separated longitudinal spectral functions S, (circles) and trans-
verse spectral function Sr (triangles) for iron at Q% of 1.8 GeV? are shown on
the upper panel, the statistical and systematic uncertainties added in quadrature
are shown. The peak from 10-25 MeV has been averaged over. The solid line
in the upper panel is the model longitudinal spectral function extracted from the
[PSM spectral and the dashed line shows the average over the peak for the model
normalized to the measured distribution. The lower panel shows the difference
between the transverse and the longitudinal spectral functions. The lower panel
shows statistical errors only.
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Figure 102: The upper panel shows the carbon longitudinal spectral function Sy,
at Q* =0.6 GeV? (open circle) compared with the longitudinal spectral function at
Q* =1.8 GeV? (triangles). The lower panel is the same for the transverse spectral
function Sp. The statistical and systematic uncertainties added in quadrature are
shown.



