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Resonant hadronic systems often exhibit a complicated decay pattern in which three-body dynamics
play a relevant or even dominant role. In this work we focus on the a1ð1260Þ resonance. For the first time,
the pole position and branching ratios of a three-body resonance are calculated from lattice QCD using
one-, two-, and three-meson interpolators and a three-body finite-volume formalism extended to spin and
coupled channels. This marks a new milestone for ab initio studies of ordinary resonances along with
hybrid and exotic hadrons involving three-body dynamics.
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Introduction.—Many unresolved questions in the excited
spectrum of strongly interacting particles are related to
the hadronic three-body problem [1]. Some examples
of interest include: axial mesons like the IGðJPCÞ ¼
1−ð1þþÞa1ð1260Þ or exotic mesons, such as the JPC ¼
1−þ π1ð1600Þ claimed by the COMPASS Collaboration [2]
by analyzing three-pion final states; this and other exotic
mesons searched for in the GlueX experiment [3]; the
Roper resonance Nð1440Þ1=2þ with its unusually large
branching ratio to the ππN channel and a very nonstandard
line shape [4–7]; heavy mesons like the Xð3872Þwith large
branching ratio to DD̄π states [8,9]. Furthermore, multi-
neutron forces are crucial for the equation of state of a
neutron star [10]. Recent advances in lattice QCD (LQCD)
on few-nucleon systems [11,12] complement dedicated
experimental programs, e.g., at the FRIB facility [13].
Lattice QCD provides information about the structure

and interactions of hadrons as they emerge from quark-
gluon dynamics. For scattering this information is extracted
indirectly by accessing the energy of the multihadron states
in finite volume. The connection to infinite-volume scatter-
ing amplitudes is provided by quantization conditions. In
the two-hadron sector this technique is already a precision

tool for extracting phase shifts and resonance information
[14–18]. Moving to the three-hadron sector new challenges
emerge, both in terms of determining precisely the energy
of three-particle states from QCD and in developing the
necessary quantization conditions.
Three-hadron LQCD calculations have been performed

mostly for pion and kaon systems at maximal isospin
[19–26]. Through the use of a large basis of one-, two-, and
three-meson interpolators, these calculations provide reli-
able access to the energies of three-particle states and,
using recently developed quantization conditions, infinite-
volume amplitudes can be accessed [27–75]. Among
these approaches we highlight relativistic field theory
(RFT) [33,34], nonrelativistic effective field theory
(NREFT) [39,40], and finite volume unitarity (FVU)
[51,52]. For reviews see Refs. [76–78].
So far, no resonant three-body pole position has been

studied with LQCD data using any finite-volume method-
ology. In this Letter we take on this challenge, calculating
the excited-state spectrum of the a1ð1260Þ in LQCD and
subsequently mapping it to the infinite volume. This
enables, for the first time, the determination of resonance
pole position and branching ratios for a three-body reso-
nance from first principles.
The a1ð1260Þ decays exclusively to three pions [1,2] and

can be measured cleanly in τ decays [79,80] allowing for its
three-body decay channels to be determined. The resonance
is wide [1] indicating strong and nontrivial three-body
effects which make it a prime candidate to study three-body
dynamics. This is reflected in an increased interest in the
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dynamics and the structure of the a1ð1260Þ [81–95]
including pioneering calculations [96,97]. Of these
approaches, Refs. [87,93] use frameworks that manifestly
incorporate three-body unitarity which is the linchpin of the
FVU formalism [51] and a prerequisite for the mapping
between finite and infinite volume.
We generalize the FVU formalism to include two-

particle subsystems with spin, to map the LQCD spectrum
to the resonance pole of the a1ð1260Þ. Furthermore, the
dominant decay of the a1ð1260Þ into πρ occurs in two
channels (S andD waves) which requires an upgrade of the
formalism to coupled channels. Finally, the challenge of
analytic continuation of three-body amplitudes to complex
pole positions is also resolved in this study and we deliver
the first three-body unitary pole determination of the a1
from experiment.
By calculating the excited LQCD spectrum, mapping it

to the infinite-volume coupled-channel amplitude, and
finally determining the a1ð1260Þ pole and branching ratios
we demonstrate that detailed calculations of three-body
resonances from first principles QCD have become pos-
sible. This paves the way for the ab initio understanding of
a wide class of resonance phenomena, including hybrid and
exotic hadrons, that lie at the heart of nonperturbative QCD.
LQCD spectrum.—We extract the finite-volume spec-

trum in the a1ð1260Þ sector with total momentum P ¼
ð0; 0; 0Þ using an ensemble with Nf ¼ 2 dynamical fer-
mions, with masses tuned such that the pion mass is
224 MeV. The lattice spacing a ¼ 0.1215 fm is determined
using Wilson flow parameter t0 [98]. This ensemble has
been used multiple times [22,25,99–102] to successfully
study two- and three-meson scattering, thus, we will
only review the most important calculation details and
new features relevant for the a1ð1260Þ. Computationally
expensive quark propagators are estimated with LapH
smearing [103], calculated using an optimized inverter
[104]. Having access to the so-called perambulators makes
it straightforward to construct a large basis of operators for
use in the variational method [105–107], which removes
excited state contamination and allows extraction of the
excited state spectrum.
Performing the calculation in a cubic volume reduces the

rotational symmetry group SOð3Þ to the group Oh. States
on the lattice thus cannot be classified by their angular
momentum quantum number. Instead, they are classified
by the irreducible representations (irreps) of Oh. For the
a1ð1260Þ the irrep of interest is T1g which subduces onto
the continuum quantum numbers JP ¼ 1þ. Aside from
ensuring that our operators have the correct angular
momentum content we must also construct them to have
total isospin I ¼ 1 to match the a1ð1260Þ. The last major
consideration for constructing our operator basis is to
ensure sufficient overlap with the lowest-lying states of
the spectrum. In that regard we utilize both a single-meson

q̄q operator and multimeson operators for each of the most
prominent decay channels of the a1ð1260Þ, ρπ; σπ, and
πππ. Further details of the operator construction can be
found in supplement A [108].
The most challenging aspect of the calculation is ensur-

ing the operator basis is sufficient to extract the states below
the inelastic scattering threshold. For this ensemble and
symmetry channel, there are only two such states, yet 11
operators were required to stabilize the fit of the first
excited state. We find that the stability of the excited state
relies heavily on the inclusion of a three-pion operator
where two of the pions have back-to-back momenta
ð2π=LÞð1; 1; 0Þ, despite the expected noninteracting energy
of such a three-pion state lying far above the inelastic
threshold. In addition, we also ensure stability under
the variation of fit range and variational parameters. The
obtained energy eigenvalues are depicted in Fig. 1, see
supplement C [108] for numerical values.
Quantization condition.—The a1ð1260Þ couples to

three-pion states in the IGðJPCÞ ¼ 1−ð1þþÞ channel that
can be decomposed as πρ in S and D waves, πf0ð500Þ and
πðππÞI¼2 in P waves and other channels. Pheno-
menologically ðπρÞS is dominant [124] with the branching
ratios into other channels quite uncertain [1].
Since the isoscalar ππ interaction weakens at heavier

pion mass [101,109,110], for now we restrict the discussion
to the πρ channels. In that, and following the unitary
three-body formalism [93,125], the πðp1Þπðp2Þπðp3Þ →
πðp0

1Þπðp0
2Þπðp0

3Þ scattering amplitude can be rewritten in
terms of a two-pion spin-1 cluster, carrying a helicity
index λð0Þ ∈ f−1; 0; 1g, and a third pion (spectator).
For s ≔ ðp1 þ p2 þ p3Þ2 ≕P2, σl ≔ ðP − lÞ2 and El ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

π

p
this yields

FIG. 1. Right-hand side of the quantization condition (5) (gray)
refitted to the correlated LQCD energy eigenvalues (blue bars
indicating 1-σ uncertainties). The red bar shows the position of
the ground level in the case of vanishing interactions.

PHYSICAL REVIEW LETTERS 127, 222001 (2021)

222001-2



hp0
1p

0
2p

0
3jT3ðsÞjp1p2p3i ¼ ℵ

X
λ;λ0
m;n

v̂λ0 ðp0̄n; p0̄n̄Þðτðσp0
n
ÞTc

λ0λðs; p0n; pmÞ þ 2Epn
ð2πÞ3δ3ðp0n − pmÞÞτðσpm

Þv̂λðpm̄; p ¯̄mÞ;

Tc
λ0λðs; p0; pÞ ¼ Bλ0λðs; p0; pÞ þ Cλ0λðs; p0; pÞ þ

Z
d3l

ð2πÞ32El
ðBλ0λ00 ðs; p0; lÞ þ Cλ0λ00 ðs; p0; lÞÞτðσlÞTc

λ00λðs; l; pÞ ð1Þ

where ℵ is an isospin combinatorial factor, and in each
occurrence x̄ ∈ f1; 2; 3gnfxg and ¯̄x ∈ f1; 2; 3gnfx; x̄g.
The coupling of the spin-1 system to the asymptotic
states is facilitated via v̂ðp; qÞλ ¼ −iεμλðpþ qÞðpμ − qμÞ
for the usual helicity state vectors ε, provided for conven-
ience in supplement B [108]. The πρ interaction kernel
projected to I ¼ 1 consists of (1) the one-pion-exchange
term

Bλ0λðs; p0; pÞ ¼
v̂�λ0 ðP − p − p0; pÞv̂λðP − p − p0; p0Þ

2Ep0þpð
ffiffiffi
s

p
− Ep − Ep0 − Ep0þpÞ

; ð2Þ

which is a consequence of three-body unitarity [125]; and
(2) a short-range three-body force generically parametrized
by a Laurent series in the JLS basis, denoting total, relative
and intrinsic angular momentum, respectively. For
(lð0Þ ∈ fS;Dg),

Cl0lðs; p0; pÞ ¼
X∞
i¼−1

cðiÞl0lðp0; pÞ
�
s −m2

a1

m2
π

�i

; ð3Þ

including first-order poles to account for resonances. The
projection to helicity basis follows standard procedure
[111], recapitulated in supplement B [108].
The spin-1 propagator ensures two-body unitarity in all

subchannels and is expressed in terms of an n-times
subtracted self-energy Σn and a K-matrix-like quantity K̃n,

τ−1λ0λðσpÞ¼ δλ0λK̃−1
n ðs;pÞ−Σn;λ0λðs;pÞ;

K̃−1
n ðs;pÞ¼

Xn−1
i¼0

aiσip and Σn;λ0λðs;pÞ

¼
Z

d3k
ð2πÞ3

σnp
ð4E2

kÞn
v̂�λ0 ðP−p−k;kÞv̂λðP−p−k;kÞ

2Ekðσp−4E2
kþ iϵÞ :

ð4Þ

We found that n ¼ 2 is sufficient to render the self-energy
term convergent without destroying analytic properties of
the amplitude in Eq. (1). The finite-volume version of
Eq. (4) captures the power-law finite-volume effects, see
Ref. [126] for exponentially suppressed t and u channel
contributions.
Putting an interacting multihadron system into a cubic

box of size L restricts the momentum space R3 →
SL ≔ ð2π=LÞZ3. This means that the integral equation (1)
becomes an algebraic one via

R
d3k=ð2πÞ3 → 1=L3

P
k∈SL

,
the solutions of which are singular if and only if mesons are

on shell. Thus, the positions of singularities in s < 5mπ are
equivalent to the energy eigenvalues up to e−mπL terms,
determined from

0 ¼ det½BðsÞ þ CðsÞ − ELðK̃−1
2 ðsÞ − ΣL

2 ðsÞÞ�ðλ0λÞðp0pÞ
; ð5Þ

which defines the generalized FVU quantization condition.
Here EL ≔ 2EpL3, while the explicit expression for the
finite-volume ΣL

2 is provided in supplement B [108]. The
major novelty induced by the ρ spin lies in the nondiagonal
Σλ0λ corresponding to in-flight mixing of ρ helicities.
We note that the determinant is taken over helicity

(λ ∈ f−1; 0;þ1g) and spectator momentum spaces
(p ∈ SL). Finding the energies associated with a particular
row μ of irrep Λ of the symmetry group G can be done in
the standard fashion by block diagonalizing the quantiza-
tion condition and examining the determinant only for the
relevant block [72,127]. In practice this is accomplished
by first converting from the helicity basis to canonical
state vectors, jpλi → hpmj, then block diagonalizing,
jpmi → hΛμj.
Fits.—The quantization condition in Eq. (5) contains the

volume-independent, regular quantities C and K̃−1
2 . We fix

the parameters of the latter by using the two-pion finite-
volume spectrum [100–102], matching the isovector ampli-
tude TI¼l¼1

22 ¼ v̂τv̂ to the one determined in Ref. [109]. We
obtain a0 ¼ −0.1577 m2

π , a1 ¼ 0.0133.
The three-body force in Eq. (3) is inherently cutoff

dependent with respect to the spectator momentum
in Eq. (5). This cutoff needs to be held fixed when
connecting finite and infinite-volume quantities. We take
jpj ≤ 2π=Ljð1; 1; 0Þj ≈ 2.69 mπ . Finally, exploring various
possibilities we found that truncating the general expansion
(3) according to

Cl0lðs; p0; pÞ ¼ gl0
�jp0j
mπ

�
l0 m2

π

s −m2
a1

gl

�jpj
mπ

�
l
þ cδl00δl0;

ð6Þ

yields a sufficient parametrization of the three-body spec-
trum. We emphasize that with only two three-body levels
(as expected for the given mπL ≈ 3.3) the fit parameters
will be poorly constrained.
To assess statistical uncertainty, we perform fits of

fma1 ; gS; gD; cg to resampled energy eigenvalues, each
time picking a random starting value 5mπ < ma1 < 12mπ .
The result is depicted in Fig. 1 using a subset of all
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considered samples (2000). The distribution of parameters
and correlations, along with χ2 distributions are provided in
supplement C [108]. We find the largest correlations in
ðma1 ; gDÞ and ðgS; cÞ, meaning that the bare mass ma1 can
be easily renormalized by theD-wave a1 self-energy which
is proportional to g2D; indeed, the latter is almost real in the
considered energy region and therefore strongly correlated
with the real ma1 parameter. As a sanity check, when
adiabatically tuning down the ππ interaction, the ground
level indeed approaches the energy at which K̃−1

2 ¼ 0 (red
bar in Fig. 1), as the ρ becomes infinitely narrow and stable
at the corresponding invariant mass.
Analytic continuation and poles.—To extract the physi-

cal resonance parameters, i.e., the pole position and
branching ratios of the a1ð1260Þ, we turn back to the
infinite-volume scattering amplitude in Eq. (1). With all
parameters fixed from the lattice, Tc

l0l is calculated in the
JLS basis [93,128]. The integration over spectator
momenta is performed on a complex contour, avoiding
singularities for both real and complex-valued

ffiffiffi
s

p
. See

supplement D [108] for technical details and the projec-
tion Tc

λ0λ → Tc
l0l.

For each of the obtained parameter sets, we search for
singularities of Tc

l0l on the second Riemann sheet. The
resulting pole positions are depicted in blue in Fig. 2. As
expected from the previous discussion of parameter corre-
lation a precise determination of the a1 pole position

requires more input. Surprisingly, the distribution of poles
is indeed finite with a stronger concentration around
heavier a1. This is apparent as the darker blue regions
indicate higher sample density.
Putting our results into perspective: (1) We compare them

to an approximate procedure employed earlier [96], assum-
ing a stable ρ-meson. In that, using Lüscher’s method
[129,130] the finite-volume spectrum is mapped to phase-
shifts. Subsequently, a simple Breit-Wigner parametrization
is used to determine the pole positions. The resulting
confidence regions are depicted by the black (un-shaded)
contours in Fig. 2. It appears that this Breit-Wigner
approach has only small overlap with the full FVU at
lower masses, demonstrating the need for using the full
three-body quantization condition. (2) We depict the current
Particle Data Group (PDG) values [1] as

ffiffiffi
s

p
≈M − iΓ=2 in

Fig. 2. The real part of the PDG mass overlaps with our
predictions, but the PDG width is at least twice as large.
This is expected since the pion mass in our case is heavier
than the physical one, resulting in a reduced phase space for
resonance decay. (3) We perform a qualitative chiral
extrapolation of fits to experimental data [93]. The corre-
sponding pole determination at the physical point is the first
of its kind with a three-body unitary amplitude. Then, we
increase the pion mass appearing in the loops and the ρ
mass, but we cannot modify other parameters because there
is no model for their mass dependence. (see supplement D
[108] for technical details). With this incomplete extrapo-
lation, we obtain the second red star in Fig. 2 (“224”). It
confirms the expectation of the a1 becoming heavier and
narrower. Although this does not lead to an overlap with the
pole region from LQCD, as expected, it does demonstrate
that quark mass effects can be as large as the observed
discrepancy. Pole extractions from future lattice data at
different pion masses will allow to directly map out the
chiral trajectory.
Finally, one can ask whether an explicit singularity in our

parametrization leads to a bias towards the existence of
an a1ð1260Þ. Removing that pole and allowing for one
more term in the Laurent expansion, i.e., setting Cl0l ≔
ðcþ c0sÞδl00δl0, one obtains fits that all lead to a pole in the
πρ amplitude. While those poles are concentrated close to
the real axis at

ffiffiffi
s

p
≈ 1.04 GeV, i.e., too light and too

narrow, the exercise shows that a1 poles are dynamically
generated as demanded by LQCD data even if no explicit
singularities are present in the parametrization of C.
The pole residues of the amplitude factorize [93],

ResðTc
l0lð

ffiffiffi
s

p ÞÞ ¼ g̃l0 g̃l in terms of couplings g̃S and g̃D,
analogously to the usual branching ratios but independent
of background terms [1]. Their 1-σ regions are shown in
Fig. 3 as a function of real spectator momentum. Clearly
there are systematics attached (e.g., the missing πσ chan-
nel) to this first determination of the resonance coupling,
which can be addressed once the LQCD dataset is
increased. We expect these effects to be small [131].

FIG. 2. The a1 pole positions from FVU (darker blue indicates
higher sample density). The PDG result [1] and its uncertainties
are included as the orange rectangle. The πρ branch point is
indicated by the red cross and a naive chiral extrapolation with
red stars (from mπ ¼ 139 MeV to mπ ¼ 224 MeV). The crude
two-body Breit-Wigner–Lüscher approximation is indicated with
black contours.
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The calculation of pole position and residues for a three-
body unitary amplitude is another novelty of this work.
Summary.—In this Letter we have presented the first

determination of the resonance parameters of the axial a1
resonance from QCD. For that, three milestones had to be
reached. First, the finite-volume spectrum for a resonant
three-hadron system was determined including three-
meson operators in a lattice QCD calculation. Second, a
three-body quantization condition including subsystems
with spin and coupled channels was derived and applied to
the finite-volume spectrum. Finally, the corresponding
unitary three-body scattering amplitude was solved and
analytically continued to the complex plane to determine
the pole positions and branching ratios. We explored
various forms of the short-range three-body force. In our
main solution we found an overlap of the mass of the a1
with the phenomenological range, but substantially
lower width.
This study paves the way for understanding exotic and

hybrid resonances for which three-body dynamics are
critical. For the a1ð1260Þ resonance, further extending
the lattice calculation will have many benefits.
Additional data at this pion mass will resolve the sub-
dominant channels like πσ, and lead to a more precise pole
position of the a1ð1260Þ. Results at other pion masses will
help complete the picture of the a1, its chiral trajectory, and
its properties from first principles.
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