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We generalize the celebrated heavy quark expansion to nonlocal QCD operators. By taking nonlocal
heavy-light current on the light-cone as an example, we confirm that the collinear singularities are common
between QCD operator and the corresponding operator in heavy quark effective theory (HQET), at the
leading power of 1=M expansion. Based on a perturbative calculation in operator form at one-loop level, a
factorization formula linking QCD and HQET operators is investigated and the matching coefficient is
determined. The matching between QCD and HQET light-cone distribution amplitudes (LCDAs) as well as
other momentum distributions of hadron can be derived as a consequence.
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Hadrons are multiscale strong interaction systems.
Heavy hadron—the hydrogen atom of strong interaction,
plays an unique role of understanding and examining
quantum chromodynamics (QCD). When one of the quarks
in a hadron is heavy comparing with strong interaction
scale, i.e., M ≫ ΛQCD, the hard scale M is expected to
disentangle from the infrared scale. This leads to the heavy
quark effective theory (HQET) [1–3], which has proved an
effective approach of studying heavy flavor hadrons,
especially in B-meson physics. For a review of HQET,
see Refs. [4,5].
The HQET action can be derived by expanding the QCD

action in series of the inverse powers ofM, which is known
as the heavy quark expansion (HQE). The HQE for local
composite operators is also extensively explored. For
example, consider the heavy-light axial-vector current
q̄γμγ5Q, its HQE gives

q̄γμγ5Q ¼ CðM; μÞq̄γμγ5hv þOð1=MÞ; ð1Þ

where q̄ is light quark, Q is the heavy quark field in QCD,
while hv is the heavy quark field in HQET, with velocity
index v. A matching coefficient CðM; μÞ is introduced due
to the different ultraviolet (UV) behavior of the full and
effective theories. The matching coefficient can be calcu-
lated in perturbation theory, while the infrared physics is
only enclosed in the operators. This relation holds at
operator level, so the matching equation as well as the
matching coefficient are independent of hadron states.

Even in local field theories, one can construct not only
local composite operators, but also nonlocal operators. In
QCD and its effective theories, the nonlocal operators are
crucial for understanding inner structure of hadrons. One
important type of such operators are the bilocal quark
operators q̄ðzÞ½z; 0�ΓQð0Þ, in which the two quark fields are
located on the light-cone (i.e., z2 ¼ 0 but z ≠ 0), with μ
being the renormalization scale that defines the operator.
The parton momentum distributions in a hadron, e.g.,
parton distribution functions (PDFs) and light-cone distri-
bution amplitudes (LCDAs), are defined through the matrix
elements of light-cone operators. These distributions are
indispensable ingredients for QCD factorization theorems.
For example, for many B-meson exclusive decay processes,
the decay amplitude can be factorized in terms of hard
scattering kernel and B-meson LCDAs [6–12], where the
B-meson LCDAs are defined by the matrix elements of
heavy-light operators on the light-cone in HQET [13]. The
other case is that the two parton fields are separated off the
light-cone. The spacelike operators attract lots of attentions
in the past few years, thanks to the development of large
momentum effective theory [14,15] and many other
approaches designed for accessing parton physics from
lattice calculation, e.g., pseudo-PDFs [16,17] and lattice
cross-sections [18,19].
When the heavy quark mass M ≫ ΛQCD, analogous to

local operators, the bilocal operators are also expected to be
factorized into hard functions and HQET bilocal operators.
The matching for the first inverse moment of LCDAs in
QCD and HQET was derived in Ref. [20]. A factorization
theorem for LCDAs was proposed recently [21], which
connects B-meson LCDAs defined in QCD and HQET,
based on the perturbative calculation on the LCDAs of
heavy-light mesons [22]. In this work, we will focus on the
operators instead of the momentum distributions, because
factorization holds at operator level, taking matrix elements
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and Fourier transforms are irrelevant for establishing a
factorization theorem.
The goal of this work is to derive the HQE for nonlocal

QCD operators, or in other words, the nonlocal generali-
zation of Eq. (1). Without loss of generality, we will study
the HQE for the nonlocal heavy-light current in which two
quark fields are separated on the light-cone, similar dis-
cussions might be easily generalized to other nonlocal
operators. Based on the factorization formula in the
operator form, the factorization for B-meson LCDAs and
other structure functions can be naturally derived.
In QCD, a gauge invariant nonlocal light-cone operator

composed by a light quark field and a heavy quark field can
be expressed as q̄ðzÞ½z; 0�ΓQð0Þ, where q̄ðzÞ denotes the
light-quark with mass m, and M is the mass of the heavy
quark field Qð0Þ, ½z; 0�≡ P exp½igs

R
1
0 dλz · AðλzÞ� is a

Wilson line located on the light-cone. The position of light
quark is z ¼ z−n, with n being a unit light-cone vector,
n2 ¼ 0. Γ is a certain Lorentz structure. For the sake
of simplicity, we consider a special case Oðz; 0Þ≡
q̄ðzÞ½z; 0�=nγ5Qð0Þ, which corresponds to the leading twist
LCDA of B-meson. The corresponding HQET operator is
denoted as Õðz; 0; vÞ≡ q̄ðzÞ½z; 0�=nγ5hvð0Þ, where hv is the
heavy quark field in HQET, related to the large component
of Q under M → ∞ limit, v (v2 ¼ 1) is the velocity vector
of heavy quark. hv is constrained by =vhv ¼ hv and equation
of motion v ·Dhv ¼ 0.
When the heavy quark mass M is large, the heavy quark

and QCD Lagrangian can be expanded in series of 1=M.
The full heavy quark field Q is expressed by the effective
heavy quark field hv as (see, e.g., Refs. [4,5])

QðxÞ ¼ e−iMv·x

�
1þ iD⊥

2M
þ…

�
hvðxÞ; ð2Þ

where Dμ
⊥ ≡Dμ − vμv ·D, with D denoting the covariant

derivative. At tree level, since there is no interaction, we
immediately have

Oðz; 0Þð0Þ ¼ Õðz; 0; vÞð0Þ þO
�
1

M

�
; ð3Þ

with the help of Eq. (2). The operators with superscript (0)
denotes the uncorrected operators.
If the radiative corrections are included, however, HQE

will generally modify the UV behavior. Taking M → ∞ in
radiative correction of Oðz; 0Þ cannot be reduced to
Oðz; 0; vÞ when ultraviolet (UV) singularities exist, then
a matching is needed. Because the matching is related to
hard scale M, the matching coefficient can be evaluated in
perturbation theory. When the interaction is included, the
position of quarks will be generally shifted, which means
that HQE ofOðz; 0Þwill be a superposition ofOðᾱz; βz; vÞ,
with 0 < β < ᾱ < 1. The HQE formula proposed in this
work is

Oðz; 0; μÞ ¼
Z

1

0

dα
Z

ᾱ

0

dβCðα; β; t;M; μ; μ̃; αsÞ

· Õðᾱz; βz; μ̃; vÞ þO
�
1

M

�
; ð4Þ

where t≡ v · z − i0, ᾱ≡ 1 − α. Cðα; β; t;M; μ; μ̃; αsÞ is the
matching coefficient, which can be evaluated in perturba-
tion theory. To confirm the matching formula and evaluate
the matching coefficient, one should first calculate the
radiative corrections of both QCD and HQET operators.
Since the nonlocal operator is defined in position

space, it is natural to perform calculation in coordinate-
representation. Furthermore, the coordinate-representation
calculation can be done in operator form. We work in D ¼
4 − 2ϵ dimensions so that the UV and soft singularities are
regularized in dimensional regularization (DR). The light-
quark mass m serves as the regulator for the collinear
(mass) singularity.
The radiative corrections to operator Oðz; 0Þ involve UV

singularity, so the operator should be renormalized first.
Here we adopt the modified minimal subtraction (MS)
scheme. The renormalization group equation (RGE) for
Oðz; 0; μÞ is [23]

μ2
d
dμ2

Oðz;0;μÞ¼
Z

1

0

dα
Z

ᾱ

0

dβVðα;βÞOðᾱz;βz;μÞ; ð5Þ

and

Vðα;βÞ¼ αsCF

2π

�
δðβÞ

�
ᾱ

α

�

þ
þδðαÞ

�
β̄

β

�

þ
þ1−

1

2
δðαÞδðβÞ

�

þOðα2sÞ ð6Þ

is the Balitsky-Braun evolution kernel, where the plus
distribution is defined by

Z
1

0

du
�
ū
u

�

þ
TðuÞ≡

Z
1

0

du
ū
u
½TðuÞ − Tð0Þ�; ð7Þ

with TðuÞ denoting a test function. It indicates that
under renormalization, the nonlocal operator will get mixed
with all the operators of the same type but with smaller
separation between two quarks. By taking the forward
hadron-to-hadron or meson-to-vacuum matrix elements
and performing Fourier transform, this equation
will be reduced to the nonsinglet part of the Dokshizer-
Gribov-Lipatov-Altarelli-Parisi equation for PDFs [24–26],
or the Efremov-Radyushkin-Brodsky-Lepage equation
for LCDAs [27–29], respectively [30]. Recently the
evolution of light-cone operators are known up to three-
loops [31–34].
The renormalized operators including radiative correc-

tion can be generally expressed as
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Oðz;0;μÞren: ¼
Z

1

0

dα
Z

ᾱ

0

dβKðα;β;m;M;μ;αsÞ

·Oðᾱz;βzÞð0Þ þhigher twist operators: ð8Þ

Here the operators that vanished by equation of motion are
also eliminated. The function Kðα; β; m;M; μ;αsÞ is a
series in αs

Kðα; β; m;M; μ; αsÞ

¼ Kð0Þðα; βÞ þ αsCF

2π
Kð1Þðα; β; m;M; μÞ þOðα2sÞ; ð9Þ

with Kð0Þðα; βÞ ¼ δðαÞδðβÞ. The one-loop term can be
calculated in coordinate-representation. The result reads

Kð1Þðα;β;m;M;μÞ

¼ δZδðαÞδðβÞþ
�
ᾱ

α
ln

μ2

α2u20M
2
H

�

þ
δðβÞ

þ
�
β̄

β
ln

μ2

β2ū20M
2
H

�

þ
δðαÞ

þ2u0ū0þðαu0−βū0Þðu0− ū0Þ− ðαu0−βū0Þ2
½ðαu0−βū0Þ2�1þϵIR

×Γð1þ ϵIRÞ
�
μ2IRe

γE

M2
H

�
ϵIR þ ln

μ2

M2
Hðαu0−βū0Þ2

; ð10Þ

where MH ≡mþM, and u0 ≡m=MH, μ and μIR are the
renormalization and soft scales, respectively, γE is the Euler-

Mascheroni constant, ðαsCF=2πÞδZ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZOS
2;qZ

OS
2;Q

q
−1, ZOS

2;q

and ZOS
2;Q are the MS subtracted on-shell renormalization

constants for q and Q, respectively. The second term in
Eq. (10) is from the interaction between light quark and
Wilson line, while the third term is from heavy quark–
Wilson line interaction. The last two terms are from light
quark–heavy quark interaction. Note that there is a scheme
dependence on the treatment of γ5 in DR: one is the naive
DR scheme that γ5 anticommutes with all γμ [35]; another
choice is the ’t Hooft-Veltman scheme [36,37], in which γ5

anti-commutes with γμ for μ ¼ 0, 1, 2, 3 but commutes with
γμ for μ ¼ 4;…; d − 1. Without loss of generality, we
simply adopt naive scheme in this work. We also note that
ϵIR is not expanded at this stage, because the existence of
soft singularities located at α ¼ β ¼ 0. Such expansion is
only safe when the soft singularities are isolated (e.g., by
introducing plus-prescriptions for the integrals).
Our result in Eq. (10) is valid for arbitrary m and M. To

compare with previous result on LCDA for mesons with
non-equal quark masses (e.g., K and Bc), one can sandwich
the operator Oðz; 0; μÞ between vacuum and the lowest
Fock state, then Fourier transform to momentum space. By
recalling Eq. (8), this is equivalent to a convolution
between K and δðx − ᾱu0 − βū0Þ. With the kernel given

in Eq. (7), and eliminating the contribution from decay
constant, we will arrive at the result for LCDA, which was
firstly calculated by Bell and Feldmann [22] and later
further explored in NRQCD refactorization approach
[38,39]. Another special case is u0 ¼ 1=2, i.e., m ¼ M,
then Eq. (10) describes the one-loop correction to the
operator with equal quark masses, which can be used to
mesons like π0 and ηc, etc.
Since the topic of this work is the matching of heavy-

light operator, what we are interested in is the M → ∞
limit. After some efforts, we arrive at

Kð1Þðα; β; m;M; μÞ

¼
�
3

4
ln
M2

m2
− 3

�
δðαÞδðβÞ þ

�
β̄

β
ln

μ2

β2M2

�

þ
δðαÞ

þ
�
ᾱ

α
ln

μ2

α2m2
þ 1

2
ln

ᾱ2μ2

α2m2
−
2

α
þ 3

2

�

þ
δðβÞ

þ
�
β̄

β
þ ln

μ2

β2M2

�

þ
þO

�
1

M

�
: ð11Þ

The one-loop correction to HQET operator can be
calculated in the same manner with QCD case. We denote
HQEToperator as Õðz; 0; vÞ≡ q̄ðzÞ½z; 0�=nγ5hvð0Þ, and add
a tilde upon other related variables to distinguish from the
QCD ones. We adopt the MS scheme again for renorm-
alization. Unlike the QCD case, there is a 1=ϵ2UV UV
divergence. In HQET, the heavy quark is described by a
Wilson line along the v-direction. The interaction between
the v- and n-Wilson lines generates a cusp singularity,
therefore light-cone singularity and cusp singularity appear
simultaneously and leads to the 1=ϵ2UV-pole. The cusp
singularity and corresponding cusp anomalous dimension
was computed at two-loop order long time ago [40,41] and
recently has been known up to three-loops [42,43]. The
light quark–Wilson line interaction contributes equally to
both QCD and HQET operators. The heavy quark–light
quark interaction is UV finite. The RGE for Õðz; 0; μ̃; vÞ is

μ̃2
d
dμ̃2

Õðz;0;μ̃;vÞ¼−
αsCF

2π

�
lnðiteγE μ̃Þ−1

4

�
Õðz;0;μ̃;vÞ

þαsCF

2π

Z
1

0

dα

�
ᾱ

α

�

þ
Õðᾱz;0;μ̃;vÞ: ð12Þ

If the anomalous dimension from decay constant is
counted, this evolution equation will match the RGE for
B-meson LCDA in coordinate space [44]. The RGE for
B-meson LCDA in the name of Lange-Neubert equation
was first derived in momentum space [45]. The two-loop
evolution equation was derived very recently [46].
After the UV singularities are removed, the renormalized

HQET operator is linked to the tree-level one by
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Õðz;0; μ̃;vÞren: ¼
Z

1

0

dα
Z

ᾱ

0

dβK̃ðα;β;m; t; μ̃;αsÞ

· Õðᾱz;βz;vÞð0Þ þ higher twist operators;

ð13Þ

where K̃ðα; β; m; t; μ̃; αsÞ can also be expanded in series
of αs:

K̃ðα; β; m; t; μ̃; αsÞ ¼ K̃ð0Þðα; βÞ þ αsCF

2π
K̃ð1Þðα; β; m; t; μ̃Þ

þOðα2sÞ; ð14Þ

with K̃0ðα; βÞ ¼ δðαÞδðβÞ. Our result for the one-loop
term is

K̃ð1Þðα; β; m; t; μ̃Þ

¼ −
�
ln2ðiteγE μ̃Þ þ 5π2

24

�
δðαÞδðβÞ

−
�
lnðiteγEmÞ − 1

4
ln

μ̃2

m2
þ 2

�
δðαÞδðβÞ

þ
�
ᾱ

α
ln

μ̃2

α2m2
− lnðiteγEαmÞ − 2

α

�

þ
δðβÞ: ð15Þ

The first term arises from the interaction between the heavy
quark and Wilson line. A similar result in which the
collinear divergence is regularized in DR was reported
in Refs. [47,48]. In Eq. (15) the 1=ϵ and 1=ϵ2 poles have
already been subtracted in MS. We note that to reproduce
the LCDA in Ref. [22] one should perform the Fourier
transform before subtracting the 1=ϵi poles, during to the
ln it singularities. In contrast to QCD, the HQET nonlocal
operator is nonanalytic when z → 0 because of the loga-
rithmic and double-logarithmic dependence on t, therefore
can not approach to local operator smoothly, and the local
OPE does not exist [49]. The singularities at z → 0 also
lead to the 1=ω behavior in B-meson LCDA ϕþ

B ðωÞ
at ω → ∞.
With the one-loop corrections to QCD and HQET

operators, we are now able to see how factorization formula
Eq. (4) works. Since the matching coefficient is calculable
in perturbation theory, one can expand it in series of αs

Cðα;β; t;M;μ; μ̃;αsÞ

¼Cð0Þðα;βÞþαsCF

2π
Cð1Þðα;β; t;M;μ; μ̃ÞþOðα2sÞ: ð16Þ

At tree-level, the QCD and HQET operators are same, so
the factorization formula Eq. (4) holds and the tree-level
matching coefficient is simply C0ðα; βÞ ¼ δðαÞδðβÞ.
The one-loop matching coefficient can be extracted by

comparing theOðαsÞ terms on the both sides of Eq. (4), the
result is

Cð1Þðα; β; t;M; μ; μ̃Þ ¼ Kð1Þðα; β; m;M; μÞe−iMβt

− K̃ð1Þðα; β; m; t; μ̃Þ: ð17Þ

The reason for the phase factor e−iMβt is following: the
radiative correction changes the location of heavy quark in
QCD operator from 0 to βz, then according to Eq. (2), the
heavy quark in QCD and HQET is related by a phase factor
e−iMβt at leading order of 1=M expansion, this phase factor
finally enters the matching coefficient. In momentum
representation, it turns the residue momentum of heavy-
quark to the total momentum.
By recalling Eqs. (11), (15), and (17), one can evaluate

the matching coefficient at one-loop level, the value reads

Cð1Þðα;β;t;M;μ;μ̃Þ

¼δðβÞ
�
lnðiteγE ᾱμÞþ ᾱ

α
ln
μ2

μ̃2
þ3

2

�

þ

þδðαÞ
�
β̄

β
ln

μ2

β2M2

�

þ
e−iβMt

þδðαÞδðβÞ
�
ln2ðiteγE μ̃Þþ lnðiteγEMÞ−1

4
ln

μ̃2

M2
þ5π2

24
−1

�

þ
�
β̄

β
þ ln

μ2

β2M2

�

þ
e−iβMt: ð18Þ

One can see that the collinear divergences in QCD and
HQET operators, which are represented by lnm2, are
canceled. The matching coefficient Cð1Þðα; β; t;M; μ; μ̃Þ
is free of collinear and soft singularities, indicating that
the factorization also holds at one-loop level. By sandwich-
ing the both sides of matching equation between vacuum
and meson sates, then performing Fourier transforms that
demanded by the definitions of LCDAs, one can get the
matching formula for B-meson LCDAs defined in QCD
and HQET, which has been addressed in Ref. [21].
However, the full result for QCD operator, Eq. (10), can
not be matched onto HQET, because the lnm2 terms in
Eqs. (10) and (15) do not match. This indicates that the
factorization only holds at the leading power of 1=M
expansion.
We also note that only the =nγ5 component of axial-

current is considered in this paper. If the analysis is
performed for all the components, i.e., γμγ5, Lorentz
structures like zμγ5 and many others will enter the expan-
sion formula. HQE for a general current will be a
straightforward generalization of this work.
In summary, we have generalized the heavy quark

expansion to nonlocal heavy-light current on the light-
cone. Based on a perturbative calculation in operator
form, we confirm up to one-loop accuracy that the QCD
nonlocal heavy-light current can be matched onto the
corresponding HQET operator by a factorization theorem.
All soft singularities are canceled, both for QCD and HQET
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operators; while the collinear singularities are common and
can be canceled between QCD and HQET operators. The
matching coefficient is determined at one-loop and leading
power of 1=M expansion, which does not involve any
infrared scale. The matching between leading twist LCDAs
defined in QCD and HQET can be derived by taking matrix
elements and Fourier transforms. The results presented in
this paper might be useful to resum the large logarithms of
Q=M andM=ΛQCD. Furthermore, if the B-meson LCDA in
QCD is calculable by lattice QCD through large momen-
tum effective theory, it would provide another way of
accessing B-meson LCDA in HQET comparing with
Ref. [50].
The work reported in this paper can be generalized along

many directions: (a) It will be straightforward of applying
the method described in this paper to study other heavy-
light currents on the light-cone; (b) It will be also
interesting to study the heavy quark expansion for nonlocal

heavy-heavy operators; (c) In this paper the nonlocal
current is located on the light-cone. A study on the heavy
quark expansion for equal-time operators would be impor-
tant for lattice simulations of heavy meson LCDAs, through
large momentum effective theory or Ioffe time pseudodis-
tribution approach.
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