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We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor
nonsinglet quark correlation functions in position space, which are calculable in lattice QCD, to parton
distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching
coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD
calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients.
By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs
and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching
coefficients for sea-quark and gluon correlation functions, making the program to extract partonic structure
of hadrons from lattice QCD calculations comparable with and complementary to that from experimental
measurements.
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Introduction.—Parton distribution functions (PDFs)
encode the important nonperturbative information of strong
interactions, and they are crucial for understanding all
phenomena at the Large Hadron Collider (LHC) [1]. In
terms of QCD factorization [2], a typical hadronic cross
section with a large momentum transfer Q and collision
energy

ffiffiffi
S

p
at the LHC can be factorized as

dσhh0 ðQ2; SÞ ¼
X
i;j

fi=hðx; μ2Þ ⊗ fj=h0 ðx0; μ2Þ

⊗ dσ̂ijðx; x0; μ2; Q2; SÞ þOðΛ2
QCD=Q

2Þ;
ð1Þ

where i; j ¼ q; q̄; g represents parton flavor; fi=hðx; μ2Þ is
the PDF as a probability distribution to find an active parton
of flavor i inside a colliding hadron h with the parton
carrying the hadron’s momentum fraction x, probed at a
factorization scale μ ∼OðQÞ; dσ̂ij represents a short-
distance partonic scattering; and ⊗ indicates an integration
over value of x or x0, accessible by the scattering cross
section. By measuring hadronic cross sections, with per-
turbatively calculated partonic hard parts dσ̂ij, PDFs have

been extracted from the world data at state-of-the-art next-
to-next-to-leading order (NNLO) accuracy [1].
With the steep falling nature of PDFs as x → 1 and the

convolution in Eq. (1), the uncertainty of extracted PDFs at
large x is so significant that it limits our confidence to push
the search for signals of new physics to larger invariant
mass. With the nonperturbative nature of PDFs, it is natural
to ask if we can calculate PDFs directly in lattice QCD
(LQCD). The short answer is no since the operators
defining PDFs are time-dependent and LQCD is formu-
lated in Euclidean space-time. Recently, stimulated by the
quasi-PDFs approach [3] (it was later formulated in a large-
momentum effective field theory [4,5]), extraction of PDFs
from lattice QCD calculation has drawn a lot of attention
and many new ideas have appeared, including the pseudo-
PDFs [6], current-current correlators in momentum space
[7], and current-current correlators in position space [8].
See also some earlier related approaches [9–14].
As proposed by two of us in Refs. [8,15], PDFs can be

extracted from any good LQCD observables, which are
referred to as “Lattice Cross Sections” (LCSs), that are
calculable in LQCD and factorizable into PDFs with
perturbatively calculable matching coefficients,

σn=hðω; ξ2Þ≡ hhðpÞjTfOnðξÞgjhðpÞi
¼

X
i

fi=hðx; μ2Þ ⊗ Kn=iðxω; ξ2; μ2Þ

þOðξ2Λ2
QCDÞ; ð2Þ
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where ξwith ξ2 ≠ 0 represents the size of nonlocal operator
OnðξÞ of type n, controlling the short-distance physics of
the factorization, ω≡ p · ξ (often referred as Ioffe time),
and Kn=i are perturbative matching coefficients. The PDFs
in Eqs. (1) and (2) are the same, and can be extracted by
QCD global fits of data generated by LQCD calculation of
σn=hðω; ξ2Þ with various operator type n, together with the
world data on various high energy scattering cross sections
[1,8,15,16].
One key difference between Eqs. (1) and (2) is that σn=h

in Eq. (2) is not an experimentally measured physical cross
section. The corresponding operator OnðξÞ, which can be a
two-quark correlation operator that defines quasi-PDFs [3],
current-current correlators [8], or any others that satisfy the
aforementioned properties, might require additional ultra-
violet (UV) renormalization beyond using renormalized
fields. This additional UV renormalization impacts the
calculation and stability of the perturbative matching
coefficients Kn=i for LQCD observables. Although
extraction of PDFs from LQCD calculations has made
tremendous progress in recent years [17–55], the state-of-
the-art calculation of short-distance matching coefficients is
still limited to the next-to-leading order (NLO) in almost all
existing approaches [30–37], which is partially limited by
this additional renormalization and our ability to do
perturbative calculation in coordinate space. In this
Letter, we derive for the first time the NNLO nonsinglet
matching coefficients in dimensional regularization,
allowing us to extract PDFs from LQCD calculations at
the same rigor as those extracted from experimental data, as
well as addressing concerns that the factorization might be
invalidated at NNLO [56].
Quark correlation functions.—We focus on the follow-

ing unpolarized gauge invariant quark correlation operator
[3]:

Oν;b
q ðξ; μ2; δÞ ¼ ψ̄qðξÞγνΦðfÞðfξ; 0gÞψqð0Þjμ2;δ; ð3Þ

which is made of renormalized fields with a path
ordered gauge link in the fundamental representation,
ΦðfÞðξ; 0Þ ¼ Pe−igs

R
1

0
ξ·AðfÞðrξÞdr. Because this composite

quark correlation operator is UV divergent, a UV regulator
δ is needed, which may represent lattice spacing a in lattice
QCD calculations, or represent ϵ≡ ð4 − dÞ=2 in dimen-
sional regularization (DR) of continuum calculations. μ is a
dimensional scale accompanied by the UV regulator, which
is different from the factorization scale in Eq. (2), while one
could choose them to be equal numerically. This UV
divergence is multiplicatively renormalizable [24–26], as

Oν;RS
q ðξÞ ¼ Oν;b

q ðξ; μ2; δÞ=ZRSðξ2; μ2; δÞ; ð4Þ

where superscript RS indicates a renormalization scheme
and ZRSðξ2; μ2; δÞ is the multiplicative renormalization

constant. For regularization-invariant renormalization con-
ditions, the renormalizedOν;RS

q are independent of δ and μ2.
Quark correlation functions (QCFs) are defined as

hadronic matrix elements of Oν;RS
q ðξÞ

Fν;RS
q=h ðω; ξ2Þ ¼ hhðpÞjOν;RS

q ðξÞjhðpÞi; ð5Þ

which is independent of the regularization scheme and
scale, like physical cross sections. With ξ0 ¼ 0 and
ξ2Λ2

QCD ≪ 1, Fν;RS
q=h ðω; ξ2Þ are expected to be calculable

in LQCD and proved to be factorizable into PDFs
[8,15,35]. Their Fourier transform over dω with fixed p
leads to the quasi-PDFs; and with fixed ξ is proportional to
pseudo-PDFs [8]. In this Letter, we focus on flavor non-
singlet combinations of QCFs, and have the corresponding
factorization formula in continuum as [8]

Fν;RS
qik=h

ðω; ξ2Þ ¼ 1

RRSðξ2; μ2Þ
Z

1

−1

dx
x
fqik=hðx; μ2Þ

× Kνðxω; ξ2; μ2Þ þOðξ2Λ2
QCDÞ; ð6Þ

where RRSðξ2; μ2Þ≡ ZRSðξ2; μ2; ϵÞ=ZMSðξ2; μ2; ϵÞ is a
finite renormalization factor that transforms any “preferred”
regularization-invariant RS scheme to the conventional MS
scheme, Kν are perturbative matching coefficients in MS
scheme, and qik ≡ qi − qk means

fqik=hðx; μ2Þ≡ fqi=hðx; μ2Þ − fqk=hðx; μ2Þ; ð7Þ

Fν;RS
qik=h

ðω; ξ2Þ≡ Fν;RS
qi=h

ðω; ξ2Þ − Fν;RS
qk=h

ðω; ξ2Þ; ð8Þ

where qi; qk ¼ u, d, s are quark flavors. To extract the
nonsinglet distribution fqik=h from LQCD calculations of
Fν;RS
qik=h

to the NNLO accuracy, we have to perturbatively
calculate RRS and Kν to the power of α2s . The factori-
zation formula in Eq. (6) is also valid for valence-
quark correlation functions by replacing qij and
Kνðxω; ξ2; μ2Þ with qv ≡ q − q̄ and Kν

vðxω; ξ2; μ2Þ≡
Kνðxω; ξ2; μ2Þ − Kνð−xω; ξ2; μ2Þ, respectively.
Renormalization constant.—The renormalization con-

stant ZRS introduced in Eq. (4) is determined by the
short-distance property of the quark correlation operator
in Eq. (3) and should not depend on the hadronic state used
to define the QCFs of this operator. Because of its
multiplicative renormalizability, the matrix element of
Oν;b

q in Eq. (3) with any state could define an allowable
renormalization scheme,

ZRSðξ2; μ2; δÞ ¼ hRSjn̂ ·Ob
qðξ; μ2; δÞjRSi

hRSjn̂ ·Ob
qðξ; μ2; δÞjRSið0Þ

; ð9Þ

where n̂ is any vector keeping the denominator nonvanishing
and the superscript “(0)” indicates that the matrix element is
evaluated to the leading order (LO) in perturbation theory.
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A different choice of the state jRSi corresponds to a different
renormalization scheme. For example, an off-shell quark
state with a specific momentum was used in defining the
regularization independent momentum subtraction scheme
(RI-MOM) or its modified version RI0-MOM [27–31]; a
hadron state with zero momentum was used in calculations
of pseudo-PDFs [36] [the matrix element in this case cannot
be perturbatively calculated and one may choose the
denominator in Eq. (9) as 1]; and the vacuum state was
introduced in Ref. [57].
In the following, we define the renormalization constant

with the vacuum state jΩi and denote RS ¼ vac. By
calculating the vacuum expectation value to NNLO, we
demonstrate that without an identified external momentum,
the renormalization constant Zvac is completely free of
infrared (IR) and collinear (CO) singularity and its UV
divergence is regularized by DR, from which we obtain
ZMSðξ2; μ2; ϵÞ and Rvacðξ2; μ2Þ at NNLO level.
In the top row of Fig. 1, we show representative LO (a),

NLO (b) and NNLO (c) Feynman diagrams for the vacuum
expectation hΩjn̂ ·Ob

qðξ; μ2; δÞjΩi. The diagram (a) in
Fig. 1 determines the normalization of Zvac,

hΩjn̂ ·Ob
qjΩið0Þ ¼ 2Ncμ

4−dπ−d=2Γðd=2Þjξj−dn̂ · ξ; ð10Þ

where jξj2 ≡ −ξ2, and the result agrees with Ref. [57].
The Fig. 1(b) is a representative Feynman diagram

contributing to NLO Zvac,

Mb ¼ g2sNcCFμ
8−2d

Z
1

0

dr
Z

ddl1ddl2
ð2πÞ2d eil1·ξþirl2·ξ

×
Tr½ð=l1 þ =l2Þ=ξ=l1=̂n�

ðl21 þ i0þÞðl22 þ i0þÞððl1 þ l2Þ2 þ i0þÞ ; ð11Þ

where we assume without loss of generality that z-component
ξz is only the nonzero component of ξ, and n̂ satisfies n̂ ·

l≡ lz for any vector l. We find that it is convenient to carry
out the integration in Eq. (11) by Fourier transforming the ξz
into qz in momentum space as F ½Mb�≡ R

dξze−iξzqzMb to
eliminate the exponential factor by using

Z
dξze−iξzqzξz

Z
1

0

dre−il1zξz−irl2zξz ;

¼ 2iIm

�
1

ðqz þ l1z þ l2z þ i0þÞðqz þ l1z þ i0þÞ
�
;

ð12Þ

where 2πδðxÞ ¼ −2Im½1=ðxþ i0þÞ� is used. The Fourier
transformation also ensures that only the imaginary part of
gauge-link-related propagators are involved, which led to the
similar effect of the optical theorem. Our matrix element is
defined with a gauge link in coordinate space, which is
effectively equal to the sum over diagrams with a cut gauge
link in momentum space. It is the summation of cuts of the
gauge link that forces the appearance of the imaginary part of
the “forward scattering amplitude.” The obtained loop
integrals in momentum space can be reduced to a linear
combination of a small set of integrals, called master
integrals (MIs), by using integration-by-parts relations
(IBPs) [58,59]. We use the package FIRE5 [60] to do this
reduction, which results in

F ½Mb� ¼ ig2sNcCFμ
8−2d 2ðd − 2Þ

d − 4

×
�
I1 −

2ð2d − 5Þð3d − 10Þ
ðd − 3Þðd − 4Þ q−1z I2

�
; ð13Þ

with two vacuum MIs defined as

I1 ¼
Z

ddl1ddl2
ð2πÞ2d

1

ðl21 þ i0þÞðl22 þ i0þÞ

× 2Im

�
1

ðqz þ l1z þ i0þÞðqz þ l2z þ i0þÞ
�
;

I2 ¼
Z

ddl1ddl2
ð2πÞ2d

1

ðl21 þ i0þÞðl22 þ i0þÞ

× 2Im

�
1

qz þ l1z þ l2z þ i0þ

�
: ð14Þ

To carry out these single-scale vacuum MIs, we use the
method presented in Ref. [61] by setting up and solving the
dimensional recurrence relations and obtain

I1 ¼
π−d

8
sinðdπÞΓðd=2 − 1Þ2Γð3 − dÞ2jqzj2d−9q3z ;

I2 ¼
π−d

8
sinðdπÞΓðd=2 − 1Þ2Γð5 − 2dÞjqzj2d−9q4z : ð15Þ

We then Fourier transform inversely from qz dependence
into ξz dependence to derive the result of Mb in DR. Other

(a) (b) (c)

(a´) (b´) (c´)

FIG. 1. Representative LO (a), NLO (b) and NNLO (c) Feyn-
man diagrams for the vacuum expectation value of the quark
correlation operator (top row), and for the nonsinglet quark
matrix elements of the same operator (bottom row).
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two-loop diagrams, including UV counterterm diagrams, can
be calculated similarly.
All three-loop diagrams like diagram (c) in Fig. 1

can also be calculated similarly as the diagram
(b) described above. The only difference is that analytical
expression of vacuum MIs cannot be obtained by solving
dimensional recurrence relations directly. Instead, we
calculate the vacuum MIs to high accuracy by using
dimensional recurrence relations and then obtain exact
results by using the PSLQ algorithm [62]. We check the
correctness of our exact results numerically with at least
103 digits.
By adding all diagrams and UV counterterms together,

the remaining divergences should be removed by operator
renormalization. With a MS subtraction scheme, we obtain
ZMSðξ2; μ2; ϵÞ and Rvacðξ2; μ2Þ at NNLO level, with ana-
lytical expressions given in Supplemental Material [74].
Matching coefficients.—By choosing the MS scheme for

QCFs, we have the same factorization in Eq. (6) with
RRS ¼ 1, which leads to a μ dependence on the left hand of
the equation. To calculate the matching coefficients Kν, we
replace the hadron h in Eq. (6) by a quark state and expand
both sides perturbatively,

FνðnÞ
qik=qi

ðω; ξ2; μ2Þ ¼
Xn
m¼0

Z
1

−1

dx
x
fðmÞ
qik=qi

ðx; μ2Þ

× Kνðn−mÞðxω; ξ2; μ2Þ; ð16Þ

with n, m ¼ 0, 1, 2 indicating the power in αs. While the
partonic fðnÞqik with n ¼ 0, 1, 2 in the MS factorization
scheme are known [63], we have to calculate the partonic
version of FνðnÞ

qik=qi
in the MS scheme perturbatively to n ¼ 0,

1, 2 to derive the NNLO matching coefficient KνðnÞ.
Some representative Feynman diagrams for FνðnÞ

qik=qi
are shown in Figs. 1(a’), 1(b’), and 1(c’). The diagram
Fig. 1(a’) gives the tree level result

Fνð0Þ
qik=qi

¼ −2ipνeiω: ð17Þ

To calculate Fν
qik=qi

ðω; ξ2; μ2Þ at high orders, we again
use transformation as in Eq. (12) to remove the exponential
by going to momentum space, and then reduce the loop
integrals to MIs by using IBPs. For example, at NLO we
have two MIs:

Ið1Þ1 ¼
Z

ddl1
ð2πÞd

1

l21 þ i0þ
2Im

�
1

qz þ l1z þ i0þ

�
;

Ið1Þ2 ¼
Z

ddl1
ð2πÞd

1

l21 þ i0þ
2Im

�
1

qz þ l1z þ pz þ i0þ

�
ð18Þ

and at NNLO we have 21 MIs. The MIs generated from
n-loop diagrams for FνðnÞ

qv=q
are functions that satisfy

IðnÞj ðy; pz; dÞ ¼ jqzjdnqdnjz JðnÞj ðy; dÞ; ð19Þ

where y≡ pz=qz, dn ≡ −2nϵ − 1, and dn þ dnj are the
dimensions of MI IðnÞj . These MIs can be derived by solving
the differential equations [64]

∂yJ
ðnÞ
j ðy; dÞ ¼

X
k

Ajkðy; dÞJðnÞk ðy; dÞ; ð20Þ

with JðnÞj ð0; dÞ serving as boundary conditions. By apply-
ing IBPs again, the integrals in boundary conditions can be
decomposed into vacuum MIs at n-loop order, which
have been calculated in the renormalization procedure.
Therefore, JðnÞj can be expanded as a Taylor series of y
based on the differential equations in Eq. (20).
After carrying out MIs, we can Fourier transform back to

position space and the y dependence is changed to
dependence on ω. Analytical results can be obtained by
fitting the Taylor series of ω with the proper ansatz [65] in
terms of harmonic polylogarithms [66–68]. By adding
contributions from all diagrams and then multiplying it
by UV renormalization factor Z−1

MS
, we obtain perturbative

results of FνðnÞ
qik=qi

ðω; ξ2; μ2Þ with n ¼ 1, 2. We then obtain

MS matching coefficients KνðnÞðxω; ξ2; μ2Þ using Eq. (16).
As expected, all divergences are canceled and final results
of KνðnÞ are finite. It verifies the proof of the factorization
theorem [15] up to two-loop order. Our one-loop results
Kνð1Þ agree with previous calculations [33–35]; terms
proportional to nf in two-loop results have been calculated
in Ref. [57] using the quark mass regulator; while other
two-loop results are new. By performing Fourier trans-
formation, we also obtain analytical matching coefficients
for pseudo-PDFs and quasi-PDFs. All analytical results are
given in the Supplemental Material.
Using Eq. (6), one can obtain NNLO matching coef-

ficients in other RSs by calculating the corresponding RRS.
Numerical results.—With our calculated matching coef-

ficients at LO, NLO, and NNLO and the factorization
formula in Eq. (6), we can predict valence-quark correlation
functions by using existing PDFs extracted from experi-
mental data, and test them by LQCD calculations. In Fig. 2,
we present ði=4ωÞξ · Fvac

qv=h
ðω; ξ2Þ as a function of ω with

fixed 1=jξj ¼ 2 GeV or as a function of 1=jξj with fixed
ω ¼ 10. We used CT18NNLO PDFs [69], and set
μ ¼ 2c=jξj to minimize logarithms encountered in pertur-
bative calculation. We chose c ¼ 1 for the predicted curves,
and varied c ¼ 1=2 to 2 for the bands to estimate theoretical
uncertainties due to ambiguity of scale choice. Our
numerical predictions show a great improvement in per-
turbative uncertainty when NNLO matching is used,
especially, for the region where 1=jξj is small and more
lattice data are available [16]. The NNLO results can reduce
theoretical uncertainty by more than a factor of 3 compar-
ing to NLO results.
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Summary.—Properly renormalized quark correlation
functions in position space, if ξ2Λ2

QCD is sufficiently small,
are good LQCD observables that are calculable in LQCD
and factorizable to PDFs [8,15,35]. We discussed the
ambiguity and scheme dependence of the multiplicative
renormalization constant ZRS, and demonstrated that ZRS

defined with the vacuum state is advantageous for carrying
out perturbative calculations of the matching coefficients,
especially, at high order in αs. For the first time, we derived
complete NNLO flavor nonsinglet coefficient functions for
QCFs, and predicted valence-quark correction functions in
Fig. 2 by using existing PDFs and our matching coef-
ficients. We clearly demonstrated the importance of NNLO
matching coefficients for reducing the perturbative uncer-
tainty in our factorization approach. Comparing our pre-
dictions with LQCD data will provide the first test of
compatibility between LQCD calculations and high energy
experimental measurements in terms of QCD factorization
at the NNLO accuracy [16].
Our definition of QCFs and method of calculations can

be easily generalized to gluon correlation functions
(GCFs). With multiple “good” LQCD observables,
including the QCFs and GCFs, as well as the current-
current correlation functions (better UV behavior) [8], and
our ability to calculate NNLO matching coefficients, the
extraction of PDFs from LQCD calculations in terms of

QCD factorization approach can be in fact at the same rigor
as how PDFs have been extracted from experimental data.
In addition to the complementary revenue for extracting
PDFs or other partonic structures of hadrons, LQCD
calculation provides a tremendous potential to extract the
partonic structure of hadrons that could be difficult to do
scattering experiments with.
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Note added.—Recently, some related preprints appeared
[70–72]. In Ref. [70] the authors obtained NNLO results for
ZMS and Rvac, which exactly agree with our results. In
Refs. [71,72] the authors obtained matching coefficients for
flavor nondiagonal quark to quark channel that starts from
two-loop order. Reference [73], where flavor nonsinglet
matching coefficients for quasi-PDF are also calculated to
NNLO, includes results that are in agreement with ours.
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