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The weak decay parameter α− of the Λ is an important quantity for the extraction of polarization
observables in various experiments. Moreover, in combination with α+ from Λ̄ decay it provides
a measure for matter-antimatter asymmetry. The weak decay parameter also affects the decay
parameters of the Ξ and Ω baryons and, in general, any quantity in which the polarization of the Λ
is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4) is significantly
larger than the previous PDG value of 0.642(13) that had been accepted and used for over 40
years. In this work we make an independent estimate of α−, using an extensive set of polarization
data measured in kaon photoproduction in the baryon resonance region and constraints set by spin
algebra. The obtained value is 0.721(6)(5). The result is corroborated by multiple statistical tests as
well as a modern phenomenological model, showing that our new value yields the best description
of the data in question. Our analysis supports the new BESIII finding that α− is significantly
larger than the previous PDG value. Any experimental quantity relying on the value of α− should
therefore be re-considered.

PACS numbers: 14.20.Jn 13.60.Le 13.30.Eg
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INTRODUCTION

The decay parameter α− of the parity-violating weak
decay Λ → pπ− describes the interference between
parity-violating s- and parity conserving p-waves. A
recent study by the BESIII collaboration [1] reported
a value of α− as 0.750 ± 0.009 ± 0.004 for this quan-
tity, which is significantly different compared to the older
value of 0.642±0.013 quoted in the reviews of the Particle
Data Group (PDG) until 2018 [2].

This newly published value of α− [1] is some 17 %
higher than the older average PDG value, which had
been derived from results in Refs. [3, 4] and others, that
were not compatible among themselves. Since the BE-
SIII and older average PDG values have uncertainties at
the percent level, there is a discrepancy of about five
standard deviations, and the two results are therefore in-
compatible. The discrepancy might be due for instance
to underestimated systematic effects in the calculation
of correction factors in Ref. [3]. In the case of Ref. [4]
photographs of carbon-plate spark chambers were used,
and a ten-parameter kinematic fit applied to each event;
several sources of uncertainty were highlighted and to-
gether with the approximate fitting method, there was
ample scope for systematic error. Whilst the previous
measurements were all state-of-the-art when carried out,
the 2019 PDG online update lists only the new BESIII

value “above the line”.

An independent estimate of this quantity is highly de-
sirable given that α− plays an important role in various
fields of physics. For instance, comparing α− with the
parameter α+ of the decay Λ̄ → p̄π+ provides a test of
CP symmetry for strange baryons and, thus can poten-
tially shed light on the matter-antimatter asymmetry in
the universe [5]. In this respect, a CP violation at the
3.3 σ level has been found by the LHCb collaboration
in four-body decays of Λ0

b and Λ̄0
b baryons [6]. In the

BESIII simultaneous measurement of α− and α+ of the
Λ, no sign of CP violation was found [1], thereby resolv-
ing tensions between older PDG values for them. The
parameter α− has also an impact on several theoretical
studies where its actual value enters directly. In particu-
lar, it would affect calculations of the weak nonleptonic
hyperon decays within SU(3) chiral perturbation theory
[7–9].

Over the last 40 years there have been various exper-
iments whose results rely on the value of α−. Examples
of this are the extensive studies of the reactions p̄p→ Λ̄Λ
and p̄p→ Λ̄Σ0 + c.c. by the PS185 Collaboration at the
LEAR facility at CERN [10] that measured analyzing
powers, spin-correlation parameters and spin-transfer co-
efficients. Recent results, such as the STAR measurement
of heavy ion collisions to study the vortical structure of a
nearly ideal liquid [11], and the ATLAS measurement of
Λ and Λ̄ transverse polarization [12] also depend on the
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value of α−.
Information about other strange baryons depends on

α− through chains of successive decays. For example,
the decay parameter for Ξ is determined from the decays
Ξ → Λπ → Nππ and deduced from the product αΞα−,
which in turn affects the measured polarization data for
the reactions K−p → K+Ξ−,K0Ξ0 [13, 14] and γp →
K+K+Ξ− [15]. The decay parameter for Ω− depends
likewise on the values of αΞ, and therefore α− [2].

Another class of experiments that depends on α− is the
series of measurements of recoil polarization observables
for kaon photo- and electro-production in the baryon res-
onance region [16–20]. Up to now, all recoil polarization
observables relying on the weak decay of the Λ have been
evaluated using the pre-2019 PDG value of α− (hence-
forth denoted αold

− ). Fits to such observables by theo-
retical models are a crucial element in determining the
light baryon resonance spectrum [21–24], which provides
a point of comparison for theoretical approaches such as
quark models, Dyson-Schwinger or Lattice QCD calcula-
tions.

Kaon photoproduction data can be also utilized to pro-
vide a new and independent estimate for α−, as will be
demonstrated in the present work. The photoproduction
data set contained in the combination of publications
[18–20] by the CLAS collaboration, is subject to strict
constraints from spin algebra (so-called Fierz identities),
which can be exploited to derive estimators for α− it-
self. We note that a similar strategy has been followed
once before, based on data for the reaction π−p→ K0Λ
[3]. Anticipating our result, the value for α− found in
our analysis is 0.721± 0.006, i.e. close to but noticeably
smaller than the number given by the BESIII collabora-
tion [1].

DETERMINATION OF α− FROM KAON
PHOTOPRODUCTION DATA

Photoproduction experiments measure events in bins
of hadronic massW , or equivalently Mandelstam

√
s, and

center of mass meson scattering angle cos θ. Following
Ref. [25], the relative intensity distributions of events in
each {W, cos θ} bin for γ+p→ K+ Λ reactions in which
there is no polarization of the beam or target, but where
the decay products of the Λ are measured, is

1 + α− cos θyP. (1)

If the photon beam is circularly polarized we have

1 + α− cos θyP + (α− cos θxCx + α− cos θzCz)P
γ
C , (2)

and if the photon beam is linearly polarized the distribu-
tion is

1 + α− cos θyP − {Σ + α− cos θyT}P γL cos 2φ

− {α− cos θxOx + α− cos θzOz}P γL sin 2φ.
(3)

The Oj ∈ {Ox, Oz, T, Cx, Cz, Σ, P} represent the po-
larization observables and φ is the angle between the re-
action plane and the photon polarization axis. The coor-
dinate system employed in this analysis is the so-called
“unprimed” frame where, for a photon momentum ~k and
a kaon momentum ~q, axes are defined such that

ẑ =
~k

|~k|
; ŷ =

~k × ~q
|~k × ~q|

; x̂ = ŷ × ẑ.

The reaction plane is thus defined by the vector ~k×~q, and
the coordinate system attached to the Λ at rest uses the
same orientation for determining direction cosines of the
decay proton cos θx,y,z. Together with α−, the degrees
of circular and linear polarizations, P γL and P γC , enter as
“calibration” parameters. The three expressions (1), (2)
and (3) represent the measurements [18], [19] and [20]
respectively.

Assuming that the angles θx,y,z, φ are measured accu-
rately, the extraction of the polarization observables Oj is
possible only if the calibration parameters {α−, P γC , P

γ
L}

are known. The equations (1), (2) and (3), show that the
extraction of Ox, Oz and T requires the product α−P

γ
L ,

Cx and Cz require α−P
γ
C , whilst Σ and P require P γL and

α−, respectively.
The spin algebra of pseudoscalar meson photoproduc-

tion results in several constraints among all 15 polar-
ization observables, known as Fierz identities after the
method used in [26] to derive them. Two of these connect
the observables measured by the CLAS collaboration:

O2
x +O2

z + C2
x + C2

z + Σ2 − T 2 + P 2 = 1 (4)

ΣP − CxOz + CzOx − T = 0 . (5)

If all observables in equations (4) and (5) are measured
then these Fierz identities can be used to estimate the
calibration parameters. The published experiments esti-
mate the uncertainties in P γC and P γL as systematic uncer-
tainties, so we have some prior knowledge of their values,
giving the opportunity to estimate α−.

The CLAS data span a range of energies W and scat-
tering angles θ. Distributions of observables in {W, cos θ}
are then used to study light baryon resonances. In the
present work, we can simply treat the measured data as
an ensemble of observations, each of which are related to
α−.

There is a common region in {W, cos θ} space among
the three measurements [18], [19] and [20], which is
spanned by the 314 points reported in [20]. Denot-
ing by Oj,i ≡ Oj(Wi, cos θi) the seven observables j =
1, . . . , 7 at kinematic points i ≡ {Wi, cos θi}, we have five
of these observables, {Ox, Oz, T, Σ, P}i; i = 1, ..., 314,
from Ref. [20]. To obtain the values of Cx and Cz (and
their variances) at the points {Wi, cos θi} we proceed as
follows: We use Gaussian process prior (GP) inference
[27] with maximum a posteriori (MAP) optimisation of
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covariance function hyperparameters to model the Cx, Cz
observation uncertainties. A second heteroscedastic GP
is used, incorporating the mean of the GP uncertainty
model as observation variance, to interpolate the data
reported in [19], using the GPML package [28]. Illustra-
tion and cross-checks of the method are provided in the
Supplemental Material [29].

Statistical Analysis

With these data, the following Fierz values can be de-
fined:

F (1)
i =a2l2

(
O2
x,i +O2

z,i − T 2
i

)
+ a2c2

(
C2
x,i + C2

z,i

)
+ l2Σ 2

i + a2P2
i , (6)

F (2)
i =al [ΣiPi − Ti − ac(Cx,iOz,i − Cz,iOx,i)] , (7)

where c (= P γold
C /P γC) and l (= P γold

L /P γL) represent rel-
ative systematic correction factors in the calibration pa-
rameters for circular and linear photon beam polariza-
tion, respectively. a (= αold

− /α−) allows for a calibration
of the Λ decay parameter, for which in the CLAS pub-
lications the PDG value at that time, αold

− = 0.642, had
been adopted. We use the convention that caligraphic
symbols denote random variables (RVs). The observables
Oj,i are assumed independent, normally distributed RVs,
Oj,i ∼ N [µj,i, σ

2
j,i] that take on values Oj,i. The Fierz

RVs F (1,2)
i take on values f

(1,2)
i and µj,i, σ

2
j,i are the re-

ported CLAS measurements. The use of the constraints
imposed by the Fierz identities to determine a, l, c poses
a series of statistical challenges that are summarized be-
low. The Supplemental Material [29] expands on these
points with several explicit derivations and numerical
checks using synthetic data.

1. Parameter estimates were checked to be unbiased.
The parameters a, l, c scale both the µj,i and the un-
certainties σj,i, which potentially leads to biased re-
sults. This is a problem related to, but not identical
to, an effect known as the d’Agostini bias [30, 31].

2. Unnormalised probability density functions (pdfs)
were used. Normalization factors of likelihoods depend
on the data values that, in our case, depend on a, l, c.
This dependence is spurious [32]. We therefore indi-
cate the likelihoods with “∝” in the following. Once
the distribution of a, l, c is determined we perform an
a-posteriori normalization of the result, see Eq. (10)
below.

3. For the first Fierz identity, a naive guess based on

Eq. (4) of the expectation, E[F (1)
i ] = 1, is only correct

in the limit σj,i → 0. The pdf of each summand in
Eq. (6) follows a scaled, non-central χ2 distribution
with E[O2

j,i] = µ2
j,i +σ2

j,i 6= µ2
j,i. Although there exists

no closed form for the distribution of F (1)
i , denoted

below as p(1)(f
(1)
i |a, l, c) , the expectation value can be

calculated because expectation values add. For F (2)
i ,

E[Oj,iOj′,i] = µj,iµj′,i with j 6= j′ and there is no such

shift so that the Fierz identity reads E[F (2)
i ] = 0.

For each kinematic point i, we obtain

p
(12)
i (Oi|a,l,c) ∝ p(1)(f

(1)
i =∆fi|a,l,c)

× p(2)(f
(2)
i =0|a,l,c), (8)

where Oi = ∪7
j=1Oj,i symbolizes the data set at point

i. Here, ∆fi 6= 1 is the a, l, c-dependent expectation

value for f
(1)
i that corresponds to the best fulfillment of

the first Fierz identity (see Supplemental Material [29]
for an explicit expression). As there is no closed form
for the distributions of the Fierz values, they can be
estimated by sampling: For fixed a, l, c, Fierz values

f
(1,2)
i are calculated from random samples of the ob-

servables Oj,i. Then, those f
(1,2)
i that are located in a

small region around ∆fi and 0 are counted, for Fierz
identity 1 and 2, respectively. This procedure is re-
peated in a scan of the whole a, l, c space.

4. A Gaussian likelihood can be used for each point i.
We found that the non-linearities of the problem are
small for this particular case as discussed in the Supple-
mental Material [29], which allows us to approximate

p
(12)
i (Oi|a, l, c) ∝ exp

−(µf(1)
i
− 1

σF(1)
i

)2

−

(
µ
f
(2)
i

σF(2)
i

)2
 ,

(9)
where the µ

f
(1,2)
i

equal the right-hand sides of

Eqs. (6,7) with the Oj,i replaced by their means µj,i
(i.e. the measured central values reported in the liter-
ature), and expressions for σF(1,2)

i
given in the Sup-

plemental Material [29]. This probability is thus an
expression of how far away from the Fierz constraints
the combination of the observables j at kinematic point
i is.

As data for different energies and scattering angles are
independent, the combined likelihood can be written as
the product

P(O|a, l, c) =
1

Z

n∏
i=1

p
(12)
i (Oi|a, l, c) , (10)

where O = ∪ni=1Oi symbolizes the entire data set and
Z is the normalization constant obtained by integrating
P(O|a, l, c) over the a, l, c space (see item 2.).

Even with the two Fierz identities as constraints, a, l,
and c are highly correlated, and priors on P γC and P γL are
required. Systematic uncertainties in the experiments are
quoted as numbers, which we denote as δC and δL, but
there is no universal prescription to code this information
as a pdf. To check the robustness of the method we used
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FIG. 1. Posterior densities for α−, given different priors for
the beam polarization calibration constants P γC and P γL . The
histograms show the result of the MCMC sampling of the
marginalized posterior densities while the solid lines repre-
sent a direct scan of the posteriors. For clarity, the results
corresponding to the double width uniform priors for P γC and
P γL are omitted. Dark grey vertical bands represent statisti-
cal uncertainty; the additional light grey bands on the BESIII
result represent systematic uncertainty.

four different priors P(l, c): 1) Gaussian: l, c ∼ N (1, δ2
l,c);

2) Uniform: l, c ∼ U(1−δl,c, 1+δl,c); 3) Double Uniform:
l, c ∼ U(1− 2δl,c, 1 + 2δl,c); and 4) Fixed: l = c = 1. We
take δl = 0.05 and δc = 0.02 as representative values,
according to the systematic errors estimated in Refs. [19,
20]. U represents a uniform pdf. The posterior density is

P(a, l, c|O) ∝ P(O|a, l, c)P(l, c) . (11)

The posteriors corresponding to the choice of priors were
explored using a Markov Chain Monte Carlo (MCMC)
implementation (emcee [33]). As there were only three
parameters to be determined we were also able to scan di-
rectly across the parameters a, c and l to validate the re-
sults of the MCMC. The results for α− were obtained by
marginalizing over l and c. Both methods were checked
by applying them to synthetic data that had been scaled
appropriately by a “wrong” value of α−.

RESULTS

The results for the marginalized posteriors for α− with
the measured CLAS data are depicted in Fig. 1, and the
mean and standard deviation of the marginalized pdfs
are reported in Tab. I.

The means of the posteriors are all consistent with each
other. Whilst this is not an exhaustive sensitivity check,
the range of priors chosen reflects quite different assump-
tions. This therefore suggests that the estimated value
for α− does not dependent sensitively on the choice of
prior.

The Gaussian priors for c and l give unrealistic mean
values of c and l in the posterior pdf that are 3-4 standard

deviations from 1.0, their nominal values. This is pos-
sible since a normal distribution is technically non-zero
over an infinite domain. Results reported by experiments
imply that the range of values defined by the quoted sys-
tematic uncertainties should contain the possible values
of calibration parameters with high probability, without
specifying the form of a pdf. Whilst normal pdfs are of-
ten assumed for systematic uncertainty they are perhaps
not appropriate in this case.

The use of uniform pdfs as priors for P γC and P γL rep-
resents another extreme, where the implication is that
the true values must lie within a given range. We take
two variants: a uniform range defined by the size of the
systematic uncertainties, and a uniform distribution of
double this range. A final extreme assumption is that
there is no systematic error, and that c = l = 1.

We make the assumption that the uniform prior for c
and l between the quoted systematic uncertainties rep-
resents the most realistic assumption, so we quote the
mean value of this variant (0.721) as our result, together
with the standard deviation (0.006) of the pdf of α− as
the statistical uncertainty, and a systematic uncertainty
of ± half the range of values 1/2(0.727 − 0.717) = 0.005.
We denote this value by αCLAS

− below.
The Supplemental Material [29] provides a more de-

tailed representation of the results in a, l, c space.

Refits with the Jülich-Bonn model

To cross-check the results obtained in the previous sec-
tion and to estimate the impact of a new value of α−
in calculations that employ data such as the ones from
Refs. [18–20] as input, we use the Jülich-Bonn (JüBo)
framework. This dynamical coupled-channel approach
is one framework among others [21, 22, 24, 34–36] that
aim to extract the nucleon resonance spectrum from kaon
photoproduction, often in a combined analysis of pion-
and photon-induced hadronic scattering processes. In
the JüBo approach, the Fierz identities are fulfilled by
construction. A detailed description of the model can
be found in Refs. [37] and [38]; the photoproduction
data of the ηp and K+Λ final states were included re-
cently [23, 39], among them the measurements of the
differential cross section and several polarization observ-
ables in KΛ photoproduction by the CLAS Collabora-
tion [18–20].

In order to estimate the impact of a different value for
α− within the JüBo model, the polarization observables
T , Ox and Oz from Ref. [20], Cx and Cz from Ref. [19]
and P from Ref. [18] are scaled by this value, i.e. multi-
plied by (αold

− /αBESIII
− ) or by (αold

− /αCLAS
− ) and a refit of

a subspace of free parameters of the model is performed.
The data included in the refit are limited to those that
are contained in the energy range defined by the measure-
ment in [20]. Note that also the statistical data errors
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Source Value (stat) (sys) Prior Assumption c, l

PDG’18 [2] 0.642 (13)
BES III [1] 0.750 (9) (4)

Analysis 0.719 (13) N (1.0, 0.022), N (1.0, 0.052)
of CLAS 0.721 (6) (?) U(0.98, 1.02), U(0.95, 1.05)
data 0.727 (7) U(0.96, 1.04), U(0.90, 1.10)

0.717 (4) Both fixed at 1.0

0.721 (6) (5) Summary of our result

TABLE I. Summary of results. The result marked (?) repre-
sents the most realistic prior on P γC and P γL .

Observable χ2/n (Refits)
(# data points) α− = 0.642 0.75 0.721

dσ/dΩ (421) [18] 1.11 1.03 0.95
Σ (314) [20] 2.55 2.61 2.56
T (314) [20] 1.75 1.74 1.69
P (410) [18] 1.84 1.66 1.62
Cx (82) [19] 2.15 1.72 1.34
Cz (85) [19] 1.58 1.83 1.62
Ox (314) [20] 1.44 1.53 1.51
Oz (314) [20] 1.34 1.58 1.49

all (2254) 1.67 1.66 1.59

TABLE II. χ2/data point of the Jülich-Bonn refits for differ-
ent values of α−. The value of α− = αold

− = 0.642 corresponds
to the refit to unscaled data, α− = 0.75 correponds to the
BES-III result [1] and α− = 0.721 uses the data-driven result
of this study as input for the refit.

entering the χ2 are scaled.

In addition, we also perform a refit of the unscaled
data. This is necessary because the solution JüBo2017
[23], which is the starting point for the refits, represents
the minimum of the global coupled-channels fit including
all 48,000 data points from different reactions. A refit
considering only the unscaled data listed in Tab. II pro-
vides a valid point of comparison for the fit to the scaled
data. We vary only parameters of the non-pole polynomi-
als [38] that couple to the KΛ final state, which amounts
to 73 fit parameters. They are adjusted to the data in a
χ2 minimization using MINUIT on the JURECA super-
computer at the Jülich Supercomputing Centre [40]. In
all three fits identical fitting strategies are applied.

The results are shown in Table II. The best χ2 is ob-
tained for the data scaled by αCLAS

− as determined in this
study, while the refit to the data scaled by αBESIII

− returns
a similar χ2 to the fit to the unscaled data (αold

− = 0.642).
Both are significantly worse than αCLAS

− which corrobo-
rates our independent result. As a caveat, the best χ2/n
itself (1.59) is still too large which suggests that for a
more quantitative comparison l and c should also be var-
ied as before to allow for more systematic uncertainties,
or that the model parameterization itself is not flexible

enough.

CONCLUSIONS

The decay parameter α− of the Λ is a fundamental
physical constant that is used to obtain polarization in-
formation from reactions in which the parity-violating
weak decay Λ→ pπ− occurs. Its value has recently been
thrown into dispute by a new measurement, thereby af-
fecting all results that rely on it. We have made an in-
dependent estimate of this quantity by combining an en-
semble of observables from kaon photoproduction mea-
sured at CLAS with constraints set by Fierz identities.
Our value of 0.721 ± 0.006 (statistical) ± 0.005 (sys-
tematic), clearly favours the new BESIII result of 0.750
± 0.009 ± 0.004 over the previous PDG value of 0.642
± 0.013, though it differs manifestly from the former as
well.

In view of that, it is clear that past results which in-
volve the Λ decay parameter should be revisited to ensure
that the derived quantities are in line with the new and
larger reference value of α−, bearing in mind the remain-
ing uncertainty. This applies to data from all experi-
ments where the polarization of the Λ or Ξ baryon was
measured. As a consequence, phenomenological analy-
ses of those data performed in searches for (new) excited
baryons and their properties should also be updated.
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[40] Jülich Supercomputing Centre, Journal of large-scale re-
search facilities 4 (2018), 10.17815/jlsrf-4-121-1.

mailto:David.Ireland@glasgow.ac.uk
mailto:doring@gwu.edu
mailto:Derek.Glazier@glasgow.ac.uk
mailto:j.haidenbauer@fz-juelich.de
mailto:maximmai@gwu.edu
mailto:Roderick.Murray-Smith@glasgow.ac.uk
mailto:roenchen@hiskp.uni-bonn.de
http://dx.doi.org/10.1038/s41567-019-0494-8
http://arxiv.org/abs/1808.08917
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1016/0550-3213(75)90054-1
http://dx.doi.org/ 10.1016/0550-3213(72)90544-5
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://dx.doi.org/ 10.1038/nphys4021
http://arxiv.org/abs/1609.05216
http://dx.doi.org/10.1016/0550-3213(85)90569-3
http://dx.doi.org/10.1016/0550-3213(85)90569-3
http://dx.doi.org/10.1142/S0218301300000295
http://arxiv.org/abs/hep-ph/0010125
http://dx.doi.org/10.1103/PhysRevD.67.114016
http://dx.doi.org/10.1103/PhysRevD.67.114016
http://arxiv.org/abs/hep-ph/0306175
http://dx.doi.org/ 10.1016/S0370-1573(02)00144-8
http://dx.doi.org/10.1038/nature23004
http://dx.doi.org/10.1103/PhysRevD.91.032004
http://dx.doi.org/10.1103/PhysRevD.91.032004
http://dx.doi.org/10.1103/PhysRev.158.1334
http://dx.doi.org/10.1103/PhysRev.158.1334
http://dx.doi.org/ 10.1103/PhysRev.179.1262
http://dx.doi.org/ 10.1016/j.physletb.2018.07.004
http://arxiv.org/abs/1804.04564
http://dx.doi.org/10.1103/PhysRevLett.90.131804
http://dx.doi.org/10.1103/PhysRevC.79.065205
http://dx.doi.org/10.1103/PhysRevC.81.025201
http://dx.doi.org/10.1103/PhysRevC.75.035205
http://dx.doi.org/10.1103/PhysRevC.75.035205
http://dx.doi.org/10.1103/PhysRevC.93.065201
http://dx.doi.org/10.1103/PhysRevC.93.065201
http://dx.doi.org/10.1103/PhysRevC.94.015201
http://arxiv.org/abs/1605.00363
http://arxiv.org/abs/1605.00363
http://dx.doi.org/ 10.1103/PhysRevLett.119.062004
http://dx.doi.org/ 10.1103/PhysRevLett.119.062004
http://arxiv.org/abs/1712.07549
http://dx.doi.org/10.1140/epja/i2018-12541-3
http://dx.doi.org/10.1140/epja/i2018-12541-3
http://arxiv.org/abs/1801.10458
http://dx.doi.org/10.1103/PhysRevC.99.055204
http://dx.doi.org/10.1103/PhysRevC.99.055204
http://arxiv.org/abs/1804.07422
http://dx.doi.org/ 10.1088/0954-3899/38/5/053001
http://arxiv.org/abs/1010.4555
http://dx.doi.org/10.1103/PhysRevC.55.2054
http://dx.doi.org/10.1103/PhysRevC.55.2054
http://portal.acm.org/citation.cfm?id=1953029
http://portal.acm.org/citation.cfm?id=1953029
http://arxiv.org/abs/xxxx.xxxxx
http://dx.doi.org/10.1016/0168-9002(94)90719-6
http://dx.doi.org/10.1007/JHEP05(2010)075
http://dx.doi.org/10.1007/JHEP05(2010)075
http://arxiv.org/abs/0912.2276
http://arxiv.org/abs/1506.09077
http://dx.doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665
http://dx.doi.org/10.1103/PhysRevC.88.055204
http://dx.doi.org/10.1103/PhysRevC.88.055204
http://arxiv.org/abs/1303.2604
http://dx.doi.org/10.1103/PhysRevC.85.034611
http://dx.doi.org/10.1103/PhysRevLett.108.182002
http://arxiv.org/abs/1111.6511
http://dx.doi.org/10.1140/epja/i2013-13044-5
http://arxiv.org/abs/1211.6998
http://dx.doi.org/10.1140/epja/i2014-14101-3, 10.1140/epja/i2015-15063-6
http://arxiv.org/abs/1401.0634
http://arxiv.org/abs/1401.0634
http://dx.doi.org/ 10.1140/epja/i2015-15070-7
http://dx.doi.org/ 10.1140/epja/i2015-15070-7
http://arxiv.org/abs/1504.01643
http://dx.doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.17815/jlsrf-4-121-1

	Kaon Photoproduction and the  Decay Parameter -
	Abstract
	 Introduction
	 Determination of - from Kaon Photoproduction data
	 Statistical Analysis 

	 Results
	 Refits with the Jülich-Bonn model

	 Conclusions
	 Acknowledgments
	 References


