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We present a comprehensive analysis of the SU(3) octet and decuplet baryon masses and σ-
terms using high-precision lattice QCD data and chiral SU(3) effective theory with finite range
regularization. The effects of various systematic uncertainties, including from the scale setting
of the lattice data and the regularization prescriptions, are quantified. We find the pion-nucleon
and strange nucleon σ-terms to be σπN = 44(3)(3) MeV and σNs = 50(6)(1) MeV, respectively.
The results provide constraints on the energy-momentum tensor mass decompositions of the SU(3)
octet and decuplet baryons, where we find the trace anomaly and quark/gluon energies decrease for
strange baryons due to their larger strange σ-terms.

I. INTRODUCTION

With the scheduled construction of the Electron-Ion
Collider and plans underway for elaborating its physics
program, the origin of the nucleon’s mass has been iden-
tified as one of the most important problems in hadronic
physics for the next decade [1]. In any decomposition
of a baryon’s mass, matrix elements that quantify its
scalar quark content, usually referred to as σ-terms, play
a crucial role [2–11]. Additionally, σ-terms can be used
to calculate the trace anomaly of the energy-momentum
tensor (EMT), whose existence may explain quark con-
finement [2, 5, 12], and are important for understanding
chiral symmetry breaking in quantum chromodynamics
(QCD). They also frequently appear in dark matter mod-
els in the couplings of spin-1/2 dark matter particles to
scalar quark bilinears [13–18]. For these and other appli-
cations it is crucial to have precise and accurate deter-
minations of baryon σ-terms.

The best determined σ-terms are those of the nucleon.
Its light (u and d) quark contribution, commonly referred
to as the pion-nucleon σ-term, σπN , was determined by
Gasser et al. [19] from an analysis of πN scattering in
the early 1990s. These studies, along with σ-term ex-
tractions from chiral extrapolations of baryon mass lat-
tice QCD data [20–25], predict a “canonical” magnitude
of σπN ≈ 45 MeV. This value is also typically supported
by direct lattice simulations of σπN [20, 26–28]. More re-
cent calculations of σπN determined from pionic atom
scattering experiments predict a magnitude of around
60 MeV [29–32], in tension with the smaller canonical
predictions. A flavor decomposition of the larger σπN

was made using baryon chiral perturbation theory in an
effort to understand this discrepancy [33].

The strange nucleon σ-term, σNs, is even more con-
troversial. Chiral extrapolations of baryon mass data us-
ing the Feynman-Hellmann theorem have led to a wide
range of values in the literature, from small negative
to ≈ 100 MeV [20–25]. Direct calculations of σNs on
the lattice slightly narrow the estimates to σNs ≈ 20–
100 MeV [20, 26–28]. However, disconnected diagrams

and numerical derivatives about the physical point neces-
sary for calculating σ-terms on the lattice are more com-
putationally demanding than for baryon masses. Improv-
ing chiral extrapolations of σ-terms from baryon mass
data offers a cheaper route to computing other SU(3)
octet and decuplet baryon σ-terms, in addition to the
nucleon’s σ-term.
Extracting σ-terms from lattice mass data does, on

the other hand, require control of systematic uncertain-
ties. Shanahan et al. [23, 24] observed that the available
baryon mass data can depend strongly on the lattice scale
setting scheme, which can lead to strong variations in
σNs without a proper continuum extrapolation. Further
uncertainties arise from the forms used for the chiral ex-
trapolations of the lattice data to the physical point.
In particular, the convergence of the chiral expansion

as a function of the meson mass can depend on the reg-
ularization scheme chosen, and it has been argued that
finite range regularization (FRR) schemes, which involve
an effective resummation of higher order terms in the
baryon mass, parametrized by a finite range regulator,
can provide better convergence over a larger range of
masses [21, 34–36]. To accurately capture the light and
strange quark dependence of the baryon properties, it is
important to use an effective field theory that can de-
scribe the strangeness content of baryons, such as SU(2)
chiral perturbation theory for hyperons with the strange
quark treated as heavy, or SU(3) chiral effective theory
where the strange quark is treated as a light quark along
with the u and d quarks.
In this paper, we employ the latest calculations of the

octet and decuplet baryon masses within a relativistic
chiral SU(3) effective theory framework [37] that uses
FRR to analyze high-precision lattice QCD data from
the PACS-CS [38] and QCDSF-UKQCD [39] Collabora-
tions. Using the Feynman-Hellmann theorem [21, 23],
we then use the parameters determined in the global fits
to extract the light-quark and strange-quark σ-terms for
all SU(3) octet and decuplet baryons, and discuss the
impact of the results on baryon mass decompositions.
In Sec. II of this paper we begin with definitions of the

baryon σ-terms and their chiral expansions, and extract
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the expansion parameters from lattice data in Sec. III.
We discuss the resulting σ-terms in Sec. IV and impli-
cations for the mass decompositions of SU(3) baryons
in Sec. V. We conclude in Sec. VI with some remarks
about future extensions of this work, and in the Appendix
present details of the results for the generalized mass ex-
pansion scheme.

II. BARYON MASSES AND σ-TERMS

The σ-terms for a baryon B are defined as the forward
baryon matrix elements of a quark scalar current of fla-
vor q,

σBq = mq ⟨B|qq|B⟩, fBq =
σBq

MB
, (1)

where mq and MB are the quark and baryon masses,
respectively, and fBq are the corresponding quark mass
fractions. For the nucleon, the πN and strange σ-terms
are defined as σπN ≡ σNℓ = mℓ ⟨N |uu+dd|N⟩ and σNs =
ms ⟨N |ss|N⟩, respectively, where the average light quark
mass is mℓ = (mu + md)/2. From the mq dependence
of the baryon masses, one can compute σBq using the
Feynman-Hellmann theorem,

σBq = mq
∂MB

∂mq
. (2)

In a chiral expansion of the baryon mass one can
write [21, 23],

MB = M
(0)
B + δM

(1)
B + δM

(3/2)
B + · · · , (3)

where M
(0)
B is the baryon mass in the chiral limit, mq →

0, and δM
(1)
B and δM

(3/2)
B are quark mass dependent cor-

rections.
The first correction is linear in the quark masses,

δM
(1)
B = −C

(1)
Bℓ mℓ − C

(1)
Bs ms, (4)

with coefficients C
(1)
Bℓ and C

(1)
Bs determined from the chiral

SU(3) effective theory [40]. These coefficients for octet
(B = B) and decuplet (B = T ) baryons are linear combi-
nations of the shared parameters, α, β and σ for octet,
and γ and σ for decuplet,

C
(1)
Bq = aqB α+ bqB β + cqB σ, (5a)

C
(1)
Tq = aqT γ + bqT σ̄, (5b)

where the values of the constants aqB, b
q
B, and cqB for q =

ℓ, s are given in Ref. [40].

The δM
(3/2)
B term arises from the meson loop self-

energies of the baryons, ΣBB′ϕ, where B′ and ϕ denote
the intermediate baryon and meson in the loop. The
unique feature of this correction is that it is nonanalytic

in the quark mass mq ∼ m2
ϕ, according to the Gell-

Mann–Oakes–Renner (GOR) relation [41], with a low-
energy structure that is model independent. In this work
we use the latest calculations for the baryon self-energies
computed within a relativistic chiral SU(3) effective the-
ory regularized with FRR [37], which introduces an ad-
ditional cutoff parameter ΛB.

To avoid mixing between the δM
(3/2)
B term and the

lower order analytic M
(0)
B and δM

(1)
B terms, we “renor-

malize” the self-energies by subtracting the values of the
O(m0

ϕ) and O(m2
ϕ) terms at mϕ = 0,

ΣBB′ϕ = ΣBB′ϕ − ΣBB′ϕ(0)−m2
ϕ

∂ΣBB′ϕ

∂m2
ϕ

(0). (6)

The explicit expressions for the self-energies ΣBB′ϕ are

given in Ref. [37]. This allows δM
(3/2)
B to be simply writ-

ten as a sum of the renormalized self-energies over all B′

and ϕ states,

δM
(3/2)
B =

∑
B′ϕ

ΣBB′ϕ. (7)

To preserve SU(3) symmetry, we set all octet baryon
masses in the self-energy equations to the average ex-
perimental octet mass, MB = 1142 MeV, and all decu-
plet baryon masses to their experimental average, MT =
1455 GeV, which gives an octet-decuplet mass difference
of 313 MeV.

III. BARYON MASS PARAMETERS FROM
LATTICE DATA

Computing the Bq σ-terms requires determining the

parameters {M (0)
B , α, β, σ, γ, σ,ΛB} in the various terms

of Eq. (3), which can be done by analysing lattice QCD
data on octet and decuplet baryons as a function of quark
mass. Such data are available from the PACS-CS [38]
and QCDSF-UKQCD [39] Collaborations, with the lat-
ter dataset for Nf = 2 + 1 flavors particularly useful for
studying variations with both mℓ and ms. More recent
calculations at or near the physical point exist, but do not
provide the light and strange quark mass dependence of
octet and decuplet baryon masses required for our anal-
ysis. We fit the lattice baryon mass data using Eq. (3)
as a function of both the π and K masses, using the
GOR relation [41] to relate the quark and meson masses,
mℓ ∝ m2

π/2 and ms ∝ m2
K − m2

π/2 [40, 42]. For the η

meson loops in δM
(3/2)
B , the η mass can be obtained via

m2
η ∝ 2

3 (mℓ + 2ms) → (4m2
K −m2

π)/3 [40].
When converting data from lattice units to physical

units, the method used to determine the lattice spacing a
at each quark mass can have a significant impact on the
magnitude of the strange quark σ-terms [24]. A stan-
dard practice for setting the scale is to assume that the
lattice spacing remains fixed at each quark mass simu-
lation point, which we refer to as the mass independent
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lattice spacing (MILS) scheme. In this case the lattice
spacing is provided as a = 0.0907 fm for the PACS-CS
points [38] and a = 0.075 fm for the QCDSF-UKQCD
data [39]. These values are also close to those determined
self-consistently using chiral EFT [43].

Alternatively, the scale can be chosen by relating it to
an external quantity that is invariant under changes in
the quark masses, so that any variation observed in a
lattice simulation must be attributed to changes in the
lattice spacing. Referring to this as the mass dependent
lattice spacing (MDLS) scheme, we choose the Sommer
scale r0 = 0.4921 fm for the PACS-CS data [38], and the
SU(3) singlet quantity XN = (MN +MΣ+MΞ)/3 for the
QCDSF-UKQCD data [39] to set the scale.

We emphasize that the choice of scale setting scheme is
very relevant for the data sets used in this work, which do
not have a proper continuum limit, and we cannot per-
form a robust scale setting analysis because of the lim-
ited range of coupling and quark mass parameter avail-
able. Since the σ-terms are determined from derivatives
of the baryon masses with respect to the quark mass
[Eq. (2)], they are very sensitive to any relative variations
of the baryon mass data that come from changing the
scale, and the lattice data should be handled with great
care. This is well demonstrated by the large discrepancy
found by Shanahan et al. [24] for the strange nucleon
σ-term, which varies between σMILS

Ns = 59(6) MeV and
σMDLS
Ns = 21(6) MeV for the mass independent and mass

dependent schemes, respectively. On the other hand, we
should also note that scale setting is not typically a con-
cern for more modern lattice simulations which do have
proper continuum extrapolations. A new lattice data set
that studies the light and strange quark mass dependence
of the full SU(3) octet and decuplet with such a contin-
uum extrapolation would be ideal to minimize the scale
setting uncertainty.

We apply small, finite volume corrections to both sets
of data using the expressions derived in Refs. [44–46]. To
minimize the effects of finite lattice volume, only data
from the largest (323 × 64) lattice volumes are selected.
Data at larger pion masses, m2

π ≳ 0.25 GeV2, which
are more susceptible to the choice of scale, are excluded.
With these cuts, fitting to the PACS-CS and QCDSF-
UKQCD data gives agreement between the two scale set-
ting schemes, reducing the systematic uncertainty in the
strange σ-term, σBs.

In fitting the free parameters we allow distinct chiral

limit masses M
(0)
B and M

(0)
T for the octet and decuplet.

The parameters α, β, σ, andM
(0)
B are shared in the global

fit of the octet, and similarly γ, σ, and M
(0)
T are shared in

the fit of the decuplet. In earlier work [21, 23] the cutoff
ΛB was taken as a shared parameter between all baryons.
In the present analysis, we allow distinct ΛB values to be
determined from fitting to the lattice data to parameter-
ize the ultraviolet structure of each individual baryon B
(although care should be taken when using SU(3) flavor-
breaking regulators in calculations of other quantities).
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FIG. 1. Fits to the octet (top) and decuplet (bottom)
baryon masses versus m2

π from the finite volume corrected
PACS-CS [38] (lighter circles) and QCDSF-UKQCD [39]
(darker triangles) data, using the MILS (main panels) and
MDLS (insets) schemes. The experimental masses (black cir-
cles) are not used in the fit.

We find, however, that this choice has a minimal impact
on the results with slightly smaller uncertainties.

For the coupling constants, following Ref. [37] we use
D = 0.85 and F = 0.41 for the octet-octet couplings,
C = 6

5gA for the octet-decuplet, and H = 9
5gA for the

decuplet-decuplet coupling, with gA = D+ F = 1.26 the
axial vector charge. For the pseudoscalar decay constant
we use the convention where fϕ = 93 MeV. The effects
of varying the couplings within their uncertainties are
relatively small [25, 47], and can be mostly compensated
for by adjusting the free parameters.

The fits to the octet and decuplet baryon masses for the
PACS-CS [38] and QCDSF-UKQCD [39] data are pre-
sented in Fig. 1 for both the MILS and MDLS schemes.
The data include finite volume corrections, as well as cor-
rections for the nonphysical values of the strange quark
mass used in the simulations, although the latter does
not affect the fit results. Good agreement is obtained for
the octet data, with χ2 per degree of freedom (dof) values
χ2
dof = 0.78 and 0.89 for the MILS and MDLS schemes,

respectively. The decuplet baryon data are more difficult
to fit, with χ2

dof = 2.7 and 3.3 for the MILS and MDLS
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cases, which is mostly due to the large spread of the lat-
tice data and small uncertainties on the heavier baryon
masses, most notably the Ω baryon. Improved calcu-
lations of decuplet baryons at small mπ that take into
account pion-nucleon scattering states may lead to im-
provements in the quality of the decuplet fits. Although
the parameter values were found to be somewhat differ-
ent for the MDLS and MILS fits, the extracted σ-terms
turn out to be remarkably stable (see Appendix A for
information about the “generalized” scheme, parameter
values, and all σ-term results for the various schemes).

IV. EXTRACTED σ-TERMS

From the parameters determined through the fits to
the baryon mass data, direct predictions can be obtained
for the light and strange quark σ-terms. For the nucleon,
we find excellent agreement of the results from the dif-
ferent scale setting prescriptions, with σπN = 46(3) MeV
and 41(4) MeV, and σNs = 49(8) MeV and 50(8) MeV,
for the MILS and MDLS schemes, respectively. This
can be compared with the values σNs = 59(6) MeV and
21(6) MeV for the MILS and MDLS methods obtained
by Shanahan et al. [23, 24], who do not fit explicitly to
the QCDSF-UKQCD data.

Other chiral extrapolations [25, 48] have extracted σ-
terms from lattice data using a covariant SU(3) baryon
chiral perturbation theory with dimensional regulariza-
tion. Camalich et al. [48] fit to the PACS-CS data
[38] up to next-to-leading order, finding nucleon σ-terms
σπN = 59(2)(17) MeV and σNs = −4(23)(25) MeV. Ren
et al. [25] use a similar scheme, but up to N3LO, fit-
ting to the PACS-CS [38], QCDSF-UKQCD [39], and
LHPC [49] data to obtain σπN = 55(1)(4) MeV and
σNs = 27(27)(4) MeV. Our results are somewhat differ-
ent from both of these analyses due to the FRR scheme
used, which offers better convergence of the mass expan-
sions [35] (and therefore σ-term expansions) and pro-
duces smaller fit uncertainties. Our fits also do not
include experimental masses, whose small uncertainties
could skew the slopes of the fitted masses. This may ex-
plain our somewhat larger σNs compared with that in
Ref. [25].

Our results can also be compared with chiral extrapo-
lations of σ-terms from the LHPC lattice data [49], which
yield σπN values of 84(17)(20) MeV and 42(14)(9) MeV
using next-to-next-to-leading order heavy baryon chiral
perturbation theory with and without the ∆ resonance,
respectively. The differences with our results could be
due to numerous reasons, the most obvious being the
different regularizations and the masses used in the chi-
ral extrapolation. Young and Thomas [21] performed
more sophisticated extrapolations by collectively fitting
the LHPC data with the PACS-CS data using heavy
baryon chiral perturbation theory with FRR, finding re-
sults consistent with Refs. [23, 24] and differing with our
findings for presumably the same reasons.

We also note that the QCDSF-UKQCD collabora-
tion has performed chiral extrapolations of the full octet
baryons using their own data [50]. Their results are
mostly consistent with ours within uncertainties, with
the exception of the somewhat smaller light nucleon
σNl = 31(3)(4). This could be due to several reasons,
such as not using chiral perturbation theory to extrap-
olate the σ-terms [50], but rather expanding about the
SU(3) flavor line, as well as the inclusion of the PACS-CS
data in our analysis.

The agreement between our MILS and MDLS results
persists for all other baryons in the SU(3) octet and decu-
plet. In Table I we show the averaged values for the mass
independent and mass dependent results, with differences
between the two quoted as a systematic uncertainty. To
explore the model dependence of the results from the
renormalization prescription and the imposition of SU(3)
symmetry, we also perform a less restricted fit in which no
parameters are shared between the baryons, apart from

the chiral limit masses, M
(0)
B , and which does not use

Eq. (6) for the self-energies. This fit, which we refer to
as the “generalized” scheme, gives results consistent with
the more constrained fits described above. In particular,
for the nucleon πN σ-term we find σπN = 47(4) MeV and
45(5) MeV and for the strange σ-term σNs = 59(14) MeV
and 68(15) MeV for the MILS and MDLS scenarios, re-
spectively, suggesting the model used for the extrapo-
lation of the lattice data is not overreaching (see Ap-
pendix A).

There is also some additional theoretical uncertainty
from higher order corrections in the chiral effective the-
ory. These come into play for both the calculation of
the baryon masses in Eq. (3) and in higher order cor-
rections to the meson masses which would give correc-
tions to the Feynman-Hellmann theorem. We expect
the corrections to the σ-terms arising from higher order
terms in the baryon mass expansion to be well accounted
for by our FRR prescription, as discussed in more de-
tail in Appendix B. However, since SU(3) meson chiral
perturbation theory typically has order 20%–30% cor-
rections from next-to-leading order, their effect on the
Feynman-Hellmann theorem may not be neglegible, es-
pecially when converting the derivative with respect to
the strange quark mass. As a conservative estimate, we
quote an additional 10% theoretical uncertainty for the
σBl values and a 20% uncertainty for the σBs values aris-
ing from these corrections.

Our results for σπN and σNs agree well with the aver-
aged Nf = 2 + 1 lattice values in the FLAG review [20].
On the other hand, despite our comprehensive treatment
of multiple data sets, scale setting schemes and fitting
models, we cannot reconcile our results with those from
the pionic atom and πN scattering determinations of the
πN σ-term, σπN ≈ 60 MeV [29–32]. A global analysis of
experimental data and lattice simulations may be needed
to understand this difference. Recent results by Gupta
et al. [51] have indicated that the discrepancy may be
related to excited πN and ππN states in direct calcula-



5

TABLE I. σ-terms (σBq, q = ℓ, s), baryon masses (MB), and their ratios (fBq), together with the trace anomaly (fBa) and the
sum of the quark and gluon energy contributions ⟨x⟩EBq +

3
4
⟨x⟩Bg, extracted from fits to lattice QCD data. The first uncertainty

is statistical, the second is systematic from the differences between the MILS and MDLS results, and the third on the σ-terms
is from the theoretical uncertainty of higher order corrections in chiral effective theory.

B σBℓ (MeV) σBs (MeV) MB (MeV) fBℓ fBs fBa ⟨x⟩EBq +
3
4
⟨x⟩Bg

N 44(3)(3)(4) 50(6)(1)(10) 920(10)(10) 0.047(3)(3)(5) 0.053(6)(1)(10) 0.900(7)(3)(11) 0.675(7)(3)(11)
Λ 31(1)(2)(3) 196(5)(7)(39) 1080(6)(10) 0.028(1)(2)(3) 0.176(4)(6)(35) 0.796(4)(6)(35) 0.597(4)(7)(35)
Σ 25(1)(1)(3) 256(5)(7)(51) 1145(5)(13) 0.021(1)(1)(2) 0.215(4)(6)(43) 0.764(4)(6)(43) 0.573(4)(6)(43)
Ξ 15(1)(1)(2) 365(5)(12)(73) 1269(3)(12) 0.011(1)(1)(1) 0.277(4)(10)(55) 0.712(4)(10)(55) 0.534(4)(10)(55)

∆ 29(9)(3)(3) 67(11)(3)(13) 1263(28)(23) 0.024(9)(2)(2) 0.054(9)(2)(10) 0.921(13)(3)(10) 0.692(13)(3)(10)
Σ∗ 18(6)(2)(2) 189(11)(9)(38) 1385(13)(22) 0.013(4)(1)(1) 0.137(8)(7)(27) 0.850(9)(7)(27) 0.638(9)(7)(27)
Ξ∗ 10(3)(2)(1) 307(12)(15)(61) 1520(6)(21) 0.007(2)(1)(1) 0.200(8)(10)(40) 0.793(8)(10)(40) 0.594(8)(10)(40)
Ω 5(1)(1)(1) 418(14)(20)(84) 1663(8)(18) 0.003(1)(1)(0) 0.250(8)(12)(50) 0.747(8)(12)(50) 0.560(8)(12)(50)
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FIG. 2. Nucleon σ-terms compared with the Gupta et al. [51]
(blue) and ETMC [28] (green) direct calculations on the lat-
tice. The σπN is plotted as a function of m2

π with the strange
quark mass fixed, and σNs as a function of m2

K with the pion
mass fixed at the physical point.

tions of σπN on the lattice. We note, however, that heavy
baryon chiral perturbation theory is used for the compu-
tation of the scalar charge and σπN in Ref. [51], while
a generalization to SU(3) is required for strange quark
σ-terms, along with the other baryon σ-terms. Addition-
ally, the better convergence offered by FRR could provide
an improved functional form to guide the lattice calcula-
tions. In Fig. 2 we compare our MILS σπN results with
direct calculations from Ref. [28, 51], and the prediction
for σNs with Ref. [28]. The comparisons show good agree-
ment for all masses, apart from the smallest m2

π results,
which are of course the most important. This empha-
sizes the need for future simulations in order to resolve
the discrepancy.

V. BARYON MASS DECOMPOSITION

The quark mass fractions fBq in Eq. (1) represent
the quark contributions to the baryon mass, which is
defined by the matrix element of the EMT of QCD,

MB = ⟨B|
∫
d3xT 00

QCD|B⟩/⟨B|B⟩. This can be decomposed
according to [2–5],

MB =

[∑
q

(
⟨x⟩EBq + fBq

)
+

3

4
⟨x⟩Bg +

1

4
fBa

]
MB, (8)

where ⟨x⟩EBq = 3
4

(
⟨x⟩Bq−fBq

)
is interpreted as the quark

kinetic and potential energy, and ⟨x⟩Bq,Bg are the quark
and gluon momentum fractions of the baryon at the scale
µ. The trace anomaly of the EMT, fBa, can be computed
from the sum rule fBa +

∑
q fBq = 1 [2, 3]. Since the

σ-term and trace anomaly contributions are scale inde-
pendent, so is the sum,

∑
q⟨x⟩EBq +

3
4 ⟨x⟩Bg = 3

4fBa. The

numerical values of the various terms in Eq. (8) are listed
in Table I.
The decomposition (8) is scheme dependent and cor-

responds to defining the trace anomaly as the trace of
the renormalized gluon component of the EMT. An al-
ternative decomposition defines the baryons mass from
only the trace of the EMT [5, 9–11]. Both of these de-
compostions are identical for octet and decuplet baryons,
however, in a more general decomposition, such as those
involving baryon gravitational form factors at zero mo-
mentum transfer, new form factors appear for the de-
cuplet case. For the temporal component of the EMT,
these terms do not contribute due to the vanishing spin
polarization for the decuplet for the µ = 0 component.
(For spatial components, they do not vanish, and can
provide information on unique anisotropic terms in the
pressure/work distributions of decuplet baryons, similar
to those discussed for spin-1 hadrons [52]).
While the debate about the most appropriate mass de-

composition continues [5–9], we note that the σ-term con-
tribution to MB is independent of the scheme. In Fig. 3
we use Eq. (8) to illustrate the decomposition for several
representative octet and decuplet masses (nucleon, ∆, Ξ
and Ω) into their trace anomaly, quark energy, and gluon
momentum components.
The latter contributions decrease with increasing mag-

nitude of the quark mass fractions for heavier baryons,
so that the sum of the quark mass fractions is ≈ 3 times
larger for the Ξ compared to the nucleon, for example.
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fBℓ fBs
1
4
fBa ⟨x⟩EBq +

3
4
⟨x⟩Bg

FIG. 3. Mass decomposition of the nucleon, ∆, Ξ, and Ω
baryons in the rest frame, showing the fractional contribu-
tions of the light (blue) and strange (red) σ-terms, the trace
anomaly (orange), and the sum of the quark and gluon ener-
gies (yellow). For the nucleon, the quark (q) and 3/4 the gluon
(g) energies are shown separately, computed using PDFs from
the JAM global QCD analysis [53, 54] at µ = 2 GeV.

This is of particular interest as the gluonic energy from
the trace anomaly may be associated with quark confine-
ment in hadrons (see e.g., Refs. [2, 5, 12]) by exerting a
restoring pressure on the hadrons [5, 12], reminiscent of
that in a bag model [2]. The decreasing magnitude of
the trace anomalies for heavier baryons may indicate a
proportionally smaller restoring pressure.

VI. OUTLOOK

It is clear from this analysis that to better understand
the internal quark and gluon compositions of baryons in
QCD, the quark and gluon momentum distributions of
all octet and decuplet baryons need to be further studied
using lattice and effective field theory techniques. Exper-
imentally, the nucleon mass decomposition will be one of
the issues that will be probed at the future Electron-Ion
Collider [1], while the J-PARC facility in Japan will study
the origin of hyperon masses [55]. Other applications of
our results include constraining dark matter models, such
as those involving WIMPs interacting with heavy nuclei
[13–17], which require nuclear σ-terms. Our results for
the light and strange quark σ-terms of octet and decuplet
baryons with reduced systematic uncertainty can serve as
a good basis for such endeavors.

ACKNOWLEDGMENTS

We thank P. E. Shanahan, A. W. Thomas, and
R. D. Young for helpful discussions. This work was sup-
ported by the U.S. Department of Energy Contract No.
DE-AC05-06OR23177, under which Jefferson Science As-
sociates, LLC operates Jefferson Lab and DOE Contract
No. DEFG02-03ER41260.



7

Appendix A: Generalized mass expansion scheme

To explore the model dependence of our analysis of the baryon masses, we consider a generalized parametrization for
MB, which does not impose the constraints from SU(3) symmetry and renormalization that were used in Eqs. (4)–(7).

In this alternative scenario the coefficients C
(1)
Bℓ and C

(1)
Bs in Eq. (4) and ΛB in δM

(3/2)
B are treated as free parameters

to be determined for each baryon B from the data. The only constraint imposed is that the chiral limit mass is the

same for all baryons. Additionally, in contrast to Eq. (7), the δM
(3/2)
B term is not renormalized and is given by the

direct sum over all possible intermediate states for the self-energies,

δM
(3/2)
B =

∑
B′ϕ

ΣBB′ϕ. (A1)

Since the parameters in this scheme are uncorrelated, in each self-energy term ΣBB′ϕ we use the appropriate physical
baryon mass instead of the mass averaged over the multiplet.

1. Fits to data

The results for the octet and decuplet baryon masses are given in Figs. 4 and 5, respectively, for the MDLS and
MILS schemes, using the SU(3) constrained and generalized mass expansion schemes. Note that the SU(3) constrained
results are identical to those shown in Fig. 1, which we include here for more direct comparison with the generalized
results at small m2

π values.
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FIG. 4. Octet baryon masses versus m2
π for the N (blue), Λ (orange), Σ (green) and Ξ (red) baryons, for the MDLS (left) and

MILS (right) schemes, with the standard SU(3) constrained (top) and generalized (bottom) mass expansion schemes. The fits
are compared with PACS-CS (darker) [38] and QCDSF-UKQCD (lighter) [39] data, with the empirical values indicated by the
black circles at the physical point.
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FIG. 5. As in Fig. 4, but for the decuplet baryons ∆ (blue), Σ∗ (orange), Ξ∗ (green) and Ω (red).

2. Fit parameters

The relations for the C
(1)
Bℓ and C

(1)
Bs coefficients in the linear quark mass term, δM

(1)
B , in terms of the fit parameters

α, β and σ for the octet, and γ and σ for the decuplet, in the SU(3) constrained scenario are given in Table II [40].

The values of the octet parameters {M (0)
B , α, β, σ, ΛB} and decuplet parameters {M (0)

T , γ, σ, ΛT } determined from
the fits of the SU(3) constrained scheme are given in Tables III and IV, respectively. Similarly, the octet baryon

parameters {M (0)
B , C

(1)
Bℓ , C

(1)
Bs , ΛB} and decuplet baryon parameters {M (0)

T , C
(1)
Tℓ , C

(1)
Ts , ΛT } determined from the fits

to the lattice data using the generalized scheme are given in Tables V and VI, respectively.

TABLE II. Relations for the coefficients of the linear light quark, C
(1)
Bℓ , and strange quark, C

(1)
Bs , mass terms in terms of the fit

parameters α, β, σ for the octet baryons and γ and σ for the decuplet baryons [40].

B C
(1)
Bℓ C

(1)
Bs

N 2α+ 2β + 4σ 2σ

Λ α+ 2β + 4σ α+ 2σ

Σ 5
3
α+ 2

3
β + 4σ 1

3
α+ 4

3
β + 2σ

Ξ 1
3
α+ 4

3
β + 4σ 5

3
α+ 2

3
β + 2σ

∆ 2γ − 4σ 2σ

Σ∗ 4
3
(γ − 3σ) 2

3
(γ − 3σ)

Ξ∗ 2
3
(γ − 6σ) 2

3
(2γ − 3σ)

Ω 2γ − 2σ 4σ
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TABLE III. Octet baryon fit parameters M
(0)
B , α, β, σ, and the regulators ΛN , ΛΛ, ΛΣ, and ΛΞ, for the SU(3) constrained

mass expansion scheme and for the MDLS and MILS scenarios. Statistical uncertainties are given in parentheses.

M
(0)
B α β σ ΛN ΛΛ ΛΣ ΛΞ

(MeV) (MeV−1) (MeV−1) (MeV−1) (MeV) (MeV) (MeV) (MeV)
MDLS 799(27) −1 362(100) −1 097(85) −433(53) 535(81) 545(83) 544(78) 555(83)
MILS 794(26) −1 471(71) −1 241(63) −513(43) 687(70) 695(70) 703(66) 708(70)

TABLE IV. Decuplet baryon fit parameters M
(0)
T , γ, σ, and the regulators Λ∆, ΛΣ∗ , ΛΞ∗ , and ΛΩ, for the SU(3) constrained

mass expansion scheme and for the MDLS and MILS scenarios. Statistical errors are given in parentheses.

M
(0)
T σ γ Λ∆ ΛΣ∗ ΛΞ∗ ΛΩ

(MeV) (MeV−1) (MeV−1) (MeV) (MeV) (MeV) (MeV)
MDLS 1 122(93) 252(366) −1 377(467) 483(89) 487(91) 490(94) 492(100)
MILS 1 136(91) 462(267) −1 500(364) 549(101) 548(100) 549(103) 552(107)

TABLE V. Octet baryon fit parameters M
(0)
B , C

(1)
Bℓ , C

(1)
Bs , and ΛB (B = N , Λ, Σ, Ξ) for the generalized baryon mass expansion

scheme.

B M
(0)
B C

(1)
Bℓ C

(1)
Bs ΛB

(MeV) (MeV−1) (MeV−1) (MeV)

MDLS

N

870(32)

−2 738(256) −281(58) 678(118)
Λ −2 186(199) −869(55) 680(110)
Σ −1 858(302) −1 108(66) 442(417)
Ξ −1 226(229) −1 631(114) 448(136)

MILS

N

927(26)

−2 620(192) −233(52) 730(92)
Λ −2 108(153) −782(44) 734(238)
Σ −1 801(178) −992(80) 387(69)
Ξ −1 234(179) −1 491(80) 494(158)

TABLE VI. Decuplet baryon fit parameters M
(0)
T , C

(1)
Tℓ , C

(1)
Ts , and ΛT (T = ∆, Σ∗, Ξ∗, Ω) for the generalized baryon mass

expansion scheme.

T M
(0)
T C

(1)
Tℓ C

(1)
Ts ΛT

(MeV) (MeV−1) (MeV−1) (MeV)

MDLS

∆

1184(39)

−2 014(544) −370(191) 601(224)
Σ∗ −1 478(547) −851(202) 508(459)
Ξ∗ −898(455) −1 377(145) 499(652)
Ω −407(272) −1 861(160) 540(423)

MILS

∆

1254(54)

−2 027(545) −294(171) 636(214)
Σ∗ −1 545(456) −733(199) 500(82)
Ξ∗ −1 002(400) −1 238(185) 494(124)
Ω −541(251) −1 698(191) 582(511)
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3. σ-term results

The octet baryon σ-terms and masses obtained from the fitted parameters in Tables III–VI for the SU(3) contrained
and generalized mass expansion schemes, and for the MDLS and MILS scenarios, are listed in Table VII, along with
the χ2 per degree of freedom (χ2

dof) values. The corresponding decuplet baryon results are given in Table VIII.

TABLE VII. Octet baryon σ-terms and masses from the SU(3) contrained and generalized schemes, for the MDLS and MILS
scenarios, along with the corresponding χ2

dof values.

MDLS MILS
B σBℓ σBs MB χ2

dof σBℓ σBs MB χ2
dof

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SU(3) constrained

N 41(4) 50(8) 910(14)

0.89

46(3) 49(8) 930(14)

0.78
Λ 29(2) 203(7) 1 070(8) 32(2) 189(7) 1 089(8)
Σ 24(2) 263(7) 1 132(7) 26(2) 248(7) 1 158(7)
Ξ 14(1) 376(7) 1 257(3) 15(1) 353(6) 1 280(4)

generalized
N 46(5) 68(15) 896(18)

0.82

47(4) 59(14) 921(18)

0.75
Λ 32(7) 212(12) 1 055(12) 34(3) 200(13) 1 076(12)
Σ 23(8) 257(11) 1 138(15) 21(3) 228(22) 1 170(10)
Ξ 14(1) 379(16) 1 260(4) 14(1) 348(17) 1 283(4)

TABLE VIII. Decuplet baryon σ-terms and masses from the SU(3) contrained and generalized schemes, for the MDLS and
MILS scenarios, along with the corresponding χ2

dof values.

MDLS MILS
T σTℓ σTs MT χ2

dof σTℓ σTs MT χ2
dof

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SU(3) constrained

∆ 26(13) 69(17) 1 240(38)

3.29

31(11) 64(15) 1 285(40)

2.70
Σ∗ 16(9) 198(18) 1 363(17) 19(7) 180(14) 1 407(20)
Ξ∗ 8(5) 322(19) 1 499(9) 11(4) 292(16) 1 540(9)
Ω 4(2) 437(19) 1 645(10) 5(2) 398(20) 1 681(12)

generalized
∆ 38(17) 88(50) 1 209(71)

4.39

40(15) 71(48) 1 245(70)

3.61
Σ∗ 23(23) 199(46) 1 368(55) 24(8) 171(46) 1 412(29)
Ξ∗ 13(14) 321(39) 1 500(31) 14(6) 288(45) 1 539(23)
Ω 4(3) 435(25) 1 622(11) 5(3) 400(38) 1 655(12)

Appendix B: Convergence of finite range regulated
chiral effective theory

Since the extrapolation of the lattice data is performed
with SU(3) chiral effective theory, one may question the
importance of higher order loop corrections in our calcu-
lation and the convergence of the effective theory. Con-
sidering an expansion of σπN in powers of the pion mass,
we compare the relative sizes of terms at the physical
point. We find the ratio of theO(m3

π)/O(m2
π) terms to be

≈ −0.35, indicating that the O(m3
π) contribution gives a

∼ 30% correction to the leading order result. Note that

the O(m3
π) contribution does not represent our δσ

3/2
πN cor-

rection (analogous to the δM
3/2
B term in Eq. (3)), which

estimates all higher order terms by virtue of the FRR

fitting parameter. The O(m3
π) term is the leading non-

analytic term predicted from QCD, and hence must be
independent of the regularization scheme or the effective
field theory implementation used.

At the physical point we find the ratio δσ
3/2
πN /O(m2

π) to
be ≈ −0.36, which is comparable to the O(m3

π)/O(m2
π)

ratio, suggesting the net effect of the O(m4
π) and higher

terms captured by the FRR prescription is relatively

small here. At larger pion masses the ratio δσ
3/2
πN /O(m2

π)
varies dramatically from theO(m3

π)/O(m2
π) ratio, as seen

in Fig. 6. This suggests that the higher order corrections
become more important at largerm2

π, as expected. These
corrections are well described by our finite range regula-
tor, as indicated by the quality of the fit to the data in
Fig. 1.
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FIG. 6. Ratio of terms in the chiral expansion of σπN , relative to the O(m2
π) term. The ratio O(m3

π)/O(m2
π) (blue) for the

LNA O(m3
π) term is compared with the ratio δσ
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π) (red), where δσ
3/2
πN contains higher order terms in powers of mπ

parameterized by the finite range regulators.
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