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We study the semi-inclusive production of real, high-pT , isolated photons in unpolarized and polarized 
lepton-proton collisions, �p → �γ X . In particular we analyze the transverse nucleon single-spin 
asymmetry within the collinear twist-3 formalism in perturbative QCD to leading order (LO) accuracy. 
We find that this spin asymmetry is generated by twist-3 dynamical quark-gluon-quark (qgq) correlations 
in the nucleon through the so-called soft-fermion and hard pole contributions. Hence, this process 
unprecedentedly allows for a point-by-point scan of the support of the dynamical qgq twist-3 matrix 
elements F F T (x, x′) and G F T (x, x′) in lepton-nucleon scattering experiments.
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1. Introduction

Transverse single-spin asymmetries (SSA) in single-inclusive 
high-energy collisions have received a lot of attention in recent 
years. In particular, remarkably large SSAs have been reported in 
polarized proton collisions, pp↑ → h X , where p↑ denotes a trans-
versely polarized proton (see review [1]). The theoretical treatment 
within perturbative QCD (pQCD) − based on the so-called collinear 
twist-3 formalism − is challenging for processes like pp↑ → h X
that are mediated purely by the strong force, see Refs. [2–12]. The 
main reason for this is that several competing matrix elements de-
scribing multiparton correlations in each colliding and produced 
hadron enter such factorization formulae. Thus, it is not an easy 
task to extract information on these multiparton correlation func-
tions from proton-proton data alone.
A reduction of complexity of (underlying) processes may be 
achieved by studying transverse spin effects in high-energy lepton-
nucleon collisions. A promising experimental facility to do so 
would be the future Electron-Ion Collider (EIC) [13]. Naively, at 
first sight, the easiest transverse single-spin observable is an SSA 

* Corresponding author.
E-mail addresses: wbaltan@nmsu.edu (W.S. Albaltan), prokudin@jlab.org

(A. Prokudin), schlegel@nmsu.edu (M. Schlegel).
https://doi.org/10.1016/j.physletb.2020.135367
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
in inclusive deep-inelastic lepton (�) - nucleon (N) scattering (DIS), 
�N↑ → �X . However, it is a peculiarity of this observable that 
time-reversal symmetry forces the SSA to vanish in Quantum Elec-
trodynamics (QED) for a one-photon exchange between lepton and 
nucleon [14]. A non-zero transverse nucleon SSA in DIS may be 
generated by higher-order QED contributions due to a two-photon 
exchange [15–18], however the additional photon exchange causes 
a suppression factor for the SSA of one order of the QED fine 
structure constant, αem � 1/137. A naturally small effect of about 
10−4 − 10−3 is expected for the proton SSA [19]. Surprisingly, 
somewhat larger effects have been found for a neutron target at 
JLab [20], while a small effect was indeed observed for a proton 
target at HERMES [21].
Another promising reaction that may give access to multiparton 
correlation functions at an EIC is the (polarized) single-inclusive 
production of hadrons or jets from leptons scattering off protons, 
�N → h X [22–25]. In particular the polarized production of jets 
in this process might provide valuable information on soft-gluon 
pole contributions at LO in pQCD. It is however expected that NLO 
and NNLO corrections can become sizable for jet production at an 
EIC [26,27], and an NLO calculation for the transverse nucleon SSA 
has not yet been presented in the literature. On the other hand, 
if a hadron instead of a jet is produced, multiparton correlations 
in the fragmentation process also contribute to the asymmetry 
[22,25], and it might turn out that the fragmentation contribution 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Factorized amplitude with one quark leg connecting the nucleon (green blob) 
and the hard scattering amplitude M̄q,n .

may potentially be the dominant source for a measured SSA, see 
Ref. [12]. At NLO, Ref. [28] questions how well we understand the 
origin of polarized processes in inclusive hadron production for 
leptons scattering off nucleons.
In this paper we investigate the semi-inclusive production pro-
cess of real, high-pT , isolated photons in lepton-nucleon collisions 
which we refer to in the following as γ SIDIS. The �p → �γ X
process and major sources of its background were considered pre-
viously in the literature, see Refs. [29–32]. γ SIDIS combines two 
positive features of the aforementioned processes:

1. Due to the additional radiation of a photon, a transerse nu-
cleon SSA in this process will not suffer the same fate as the 
SSA in DIS, that is, to vanish under time-reversal symmetry at 
LO. Consequently, the SSA will not be suppressed by αem.

2. Since we consider a real, high-pT , isolated photon in the fi-
nal state emitted in a point-like QED-vertex rather than in a 
fragmentation process, the only non-perturbative objects gen-
erating the transverse nucleon SSA will be quark-gluon-quark 
correlation functions in the nucleon. Hence, we expect that 
these functions can be cleanly probed in the (polarized) semi-
inclusive production process of photons.

Our paper is organized as follows: In Section 2 we analytically 
calculate the unpolarized cross section to LO accuracy and set up 
the kinematics and notations. In Section 3 we present our ana-
lytical LO results for the transverse nucleon-spin dependent cross 
section calculated in the collinear twist-3 formalism. Finally, in 
Section 4 we present our conclusions.

2. Analytical LO formula for the unpolarized cross section

In this section we perform a LO calculation of the unpolarized 
cross section for the process �(l) + N(P ) → �(l′) + γ (Pγ ) + X . As 
indicated, the four momenta of the incident lepton and nucleon 
are labeled as lμ and Pμ , respectively. In the final state we assume 
that the lepton is detected with a four momentum l′μ along with 
a real, high-pT , isolated photon with four momentum Pμ

γ . Since 
we are interested in this process at high energies, we will neglect 
the lepton and nucleon masses and treat their four momenta as 
light-like vectors, l2 = l′2 = P 2 � 0. Of course, we also have P 2

γ = 0
for a real photon.

We apply the common factorization procedure to the amplitude 
of this process, sketched in Fig. 1. Here, the full amplitude is fac-
torized into a hard scattering amplitude M̄q which is subject to 
perturbation theory, and a hadronic matrix element describing the 
soft physics in the nucleon. Along with the detected lepton and 
photon we take into account that there may be additional unde-
tected partons produced in the hard scattering whose momenta 
{ri} are integrated out.
By squaring the amplitude in Fig. 1 we can derive a formula for the 
fully differential cross section. We may write this factorized cross 
section as an integral over the full four momentum kμ of a hard 
partonic cross section σ̂ q̄q(k) and a quark-quark correlator �(k). 
The partonic cross section may be defined as
σ̂
q̄q
rs (k) =

∞∑
n=1

n∏
i=1

∫
d4ri

(2π)3
�(r0

i ) δ(r2
i − m2

i ) × (1)

δ(4)(k + q − R)
[
M̄q,n

s (k) (γ 0M̄q,n(k))
†
r

]
.

In this formula we encounter the partonic amplitude M̄q,n which 
we consider the sum of all Feynman diagrams for a subprocess 
�q → �γ + n unobserved partons. The quark legs in these Feyn-
man diagrams are amputated, that is why the amplitudes carry 
an open Dirac index r or s. The integrals in Eq. (1) refer to the 
Lorentz-invariant phase space integrations over the parton mo-
menta r1, ..., rn . The produced unobserved partons may or may not 
be massive (mass mi ). The sum of the unobserved parton momenta 
is labeled by R = ∑n

i=1 ri , while the momentum q is defined as 
q = l − l′ − Pγ .

We then apply the collinear approximation to the quark momen-
tum kμ in terms of a Sudakov decomposition,

kμ � x Pμ + kμ
T . (2)

This decomposition provides the collinear picture where the parton 
in a nucleon moves collinearly to the nucleon with a momentum 
fraction x. In addition, small transverse (to the nucleon’s motion) 
deviations from this picture are allowed through the (small) trans-
verse momentum kT of the parton. In order to define the term 
transverse an additional light-cone vector nμ is required satisfying 
n2 = 0, and for a normalization we choose P · n = 1. Then, trans-
verse is defined through the projector

gμν
T = gμν − Pμnν − Pνnμ . (3)

Any transverse vector is defined by aμ
T = gμν

T aν . A component of k
in the direction of n is neglected in Eq. (2). In fact, for twist-2 ob-
servables like the unpolarized cross section it would be sufficient 
to consider k � xP .

Once the collinear approximation k � xP is applied to the par-
tonic cross section (1) we can write the factorized unpolarized 
cross section as

Dσ = 1

32π2 s

∫
dx σ̂

q̄q
rs (k = xP )�

q
sr(x) +O(�/Q ) , (4)

where we introduced the Mandelstam variable s = (P + l)2 as well 
as the short notation Dσ = E ′Eγ

dσ

d3�l′ d3 �Pγ
. E ′ and Eγ are the ener-

gies of the detected lepton and photon, respectively. Furthermore, 
the hard scale of the process is Q 2 = −q2, and � is some small 
hadronic scale, for example the nucleon mass M . We also en-
counter the unpolarized collinear correlator [25],

�
q
sr(x) =

∞∫
−∞

dλ

2π
eiλx〈P | q̄r(0) [0;λn]qs(λn) |P 〉

= 1
2 /P sr f q

1 (x). (5)

In this definition q, ̄q denote quark fields and [0; λn] a Wilson line 
along the light-cone direction n. The function f q

1 (x) is the usual 
unpolarized parton distribution function (PDF) for a quark flavor q.

We evaluate the partonic cross section to LO accuracy. The 
corresponding diagrams are shown in Fig. 2. This calculation has 
already been performed early on in the seventies by Brodsky, Gu-
nion and Jaffe (see Ref. [29]). We repeated this calculation as a 
check, and fully confirm their results. In order to compare our re-
sults to their calculation we use the following Lorentz-invariant 
dimensionless variables introduced in [29],
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Fig. 2. LO diagrams for the subprocess �q → �qγ . The photon can either be radiated 
of the lepton (black fermion line) or the quark (red fermion line).

P · l = 1
2 Q 2 α ; P · l′ = 1

2 Q 2 α′

l · Pγ = 1
2 Q 2 β ; l′ · Pγ = 1

2 Q 2 β ′

P · Pγ = 1
2 Q 2 γ ; Q̃ 2 = (1 − β + β ′) Q 2 . (6)

Another four vector is introduced, q̃μ = (l − l′)μ , with Q̃ 2 = −q̃2

being a different scale that would correspond to the hard scale in 
a DIS process. It was discussed in detail in Ref. [29] that a parton 
model picture emerges if both scales Q 2 and Q̃ 2 are larger than 
the nucleon mass M , as well as their difference,

Q 2 � M2 ; Q̃ 2 � M2 ; Q 2 − Q̃ 2 � M2 . (7)

As discussed in Ref. [29], every partonic factor that appears 
in factorization formulae for the semi-inclusive photon production 
process receives three kinds of contributions:

1. The square of diagrams where the photon is radiated off the 
lepton − Bethe-Heitler (BH) contributions,

2. The square of diagrams where the photon is radiated off the 
quark − Compton (C) contributions,

3. Interfering diagrams where the photon is radiated off the lep-
ton and quark − Interference (I) contributions.

Those three effects are cleanly separated by the fractional quark 
charges. While the quark charges appear squared for the BH con-
tribution, e2

q , their powers are larger for C- and I-contributions, i.e., 
e4

q and e3
q , respectively. For this reason we define the following 

charge combinations of a generic correlation function f q of quark 
flavor q according to the charge weightings:

f BH ≡
∑

q=u,d,s,...

e2
q

(
f q + f q̄

)
,

f C ≡
∑

q=u,d,s,...

e4
q

(
f q + f q̄

)
,

f I ≡
∑

q=u,d,s,...

e3
q

(
f q − f q̄

)
. (8)

Note that there is a relative sign between quark and anti-quark 
functions in the flavor combination f I . It is not, a priori, obvious at 
LO at which factorization scale μ the correlation functions are to 
be evaluated in Eq. (8). While a choice μ = Q and μ = Q̃ seems 
to be plausible for the BH- and C-contributions it is not so clear 
for the interference contributions I. Hence, we take the geometric 
average μ =

√
Q Q̃ as a plausible choice.

At LO the fully differential unpolarized cross section has the 
following form,

Dσ LO
U = α3

em

4π2 s Q 4

∑
k=BH,C,I

σ̂ k
U f k

1 (xB) . (9)

The parton distributions f k
1 that appear in Eq. (9) are evaluated at 

a specific scaling variable xB which we define as

xB = Q 2

2P · q
= −(l − l′ − Pγ )2

2P · (l − l′ − P )
= 1

α − α′ − γ
. (10)
γ

The value of xB is entirely driven by the external kinematics and 
one can, just like in DIS, scan the PDF point-by-point. Note how-
ever that the scaling variable xB is different from the one we 
encounter in DIS,

x̃B ≡ Q̃ 2

2P · q̃
= −(l − l′)2

2P · (l − l′)
= 1 − β + β ′

α − α′ , (11)

due to the additional photon emission.
The partonic cross sections σ̂ k

U depend on the external kinemat-
ical variables defined in Eq. (6). They were presented in Ref. [29]. 
For the convenience of the reader we show the explicit expressions 
in Appendix A.

3. Analytical LO formula for the twist-3 transverse nucleon SSA

In this section we present our result for the transverse nucleon 
SSA calculated within the collinear twist-3 formalism. In general, a 
twist-3 observable may receive contributions from more than just 
one class of correlation functions. Typically, there are three classes 
(cf. Ref. [25]): intrinsic, kinematical and dynamical twist-3 contribu-
tions. For the particular observable we are interested in it is easy 
to see that there are no intrinsic twist-3 contributions. However, 
kinematical twist-3 contributions may very well contribute. They 
are generated by a Taylor expansion (collinear expansion) of the 
partonic cross section in terms of the transverse parton momen-
tum kT in Eq. (2) up to first order (twist-3),

σ̂
q̄q
rs (k) = σ̂

q̄q
rs (xP ) + kρ

T

∂σ̂
q̄q
rs (xP + kT )

∂kρ
T

∣∣∣∣∣
kT =0

+O(k2
T ) . (12)

The zeroth order generates the intrinsic twist-3 contribution, and 
as stated above, it vanishes for an unpolarized incident lepton and 
transversely polarized nucleon. For the first order, at LO the deriva-
tive w.r.t. kT may also act on a delta function in Eq. (1). Performing 
algebraic manipulations, this derivative may be turned into an x -
derivative on the kinematical twist-3 matrix element. We find the 
following form of the kinematical twist-3 contribution,

Dσ LO
T,kin = α3

em

4π2 s Q 4
M ε Pnρ S (13)

∑
k=BH,C,I

[(
∂ σ̂ k

U

∂kρ
T

− 2 xB qTρ

Q 2

∂ σ̂ k
U

∂x

)x=xB

kT =0

f ⊥(1),k
1T (xB)

−σ̂ k
U

∣∣∣x=xB

kT =0

2xB qTρ

Q 2

d

dxB
f ⊥(1),k
1T (xB)

]
,

where the totally antisymmetric tensor ε Pnρ S = εμνρσ Pμnν Sσ

with the sign convention ε0123 = +1 is introduced. The vector Sμ

denotes the four dimensional nucleon spin vector with P · S = 0
and S2 = −1.

In Eq. (13) the partonic functions σ̂ k
U are calculated in the same 

way as the ones in Eq. (9) for the unpolarized cross section, how-
ever the momentum k that appears in Eq. (1) is not immediately 
set to xB P but to xP + kT , then the derivatives in Eq. (13) are per-
formed, and afterwards we set x = xB and kT = 0.

The correlation function f ⊥(1)
1T (x) is the first kT -moment of the 

well-known Sivers function [33,34]. It is defined as follows,

�
ρ,q
∂,sr(x) =

∫
d2kT kρ

T �
q
sr(x,k2

T ) (14)

= 1
2 M ε Pnρ S /P sr f ⊥(1),q

1T (x) + ... .

The (naive) definition of the transverse momentum dependent 
(TMD) quark-quark correlator �(x, k2

T ) in Eq. (14) including a 
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Fig. 3. Factorized amplitude with a quark and a gluon leg connecting the nucleon 
(green blob) and the hard scattering amplitude M̄qg,n .

Fig. 4. LO diagrams for the subprocess �qg → �qγ . The hard photon can either be 
radiated of the lepton (black fermion line) or the quark (red fermion line).

future-pointing Wilson line (needed for semi-inclusive DIS), as well 
as its parameterization, may be found in Refs. [35,36].

There are also dynamical twist-3 contributions that are gen-
erated by quark-gluon-quark correlations. Those contributions are 
interferences of amplitudes shown in Fig. 3 (with a quark and a 
gluon entering the hard scattering) and in Fig. 1 (with only one 
quark entering the hard scattering part). The quark and the gluon 
in Fig. 3 carry momenta k′ and k − k′ , respectively. We may apply 
the collinear approximation like Eq. (2) to these momenta right 
away, so that kμ � xPμ and k′μ � x′ Pμ . A convenient gauge for 
a gluon field Aμ to work with in the collinear twist-3 formalism 
is the light-cone gauge n · A = 0. Using this procedure, we derive 
a general factorization formula like Eq. (4), but for the dynamical 
twist-3 contribution based on Fig. 3:

DσT,dyn = −1

32π2s

∫
dx

∫
dx′ (15)(

σ̂
q̄gq
rs,ρ(k = xP ,k′ = x′ P )

i �q,ρ
F ,sr(x, x′)
x′ − x

+ c.c.

)
.

The partonic cross section is similarly defined as Eq. (1), but with 
a hard quark-gluon scattering amplitude,

σ̂
q̄gq
rs,ρ(k,k′) =

∞∑
n=1

n∏
i=1

∫
d4ri

(2π)3
�(r0

i ) δ(r2
i − m2

i ) ×

δ(4)(k + q − R)
[
M̄qg,n

s,ρ (k,k′) (γ 0M̄q,n(k))
†
r

]
. (16)

The quark-gluon-quark correlator �F (x, x′) appears in Eq. (15) and 
its definition and parameterization can be found in [25]. Here we 
just write the relevant correlation functions for a transversely po-
larized nucleon,

�
q,ρ
F ,sr(x, x′) = 1

2 M i ε Pnρ S /P sr F q
F T (x, x′) (17)

− 1
2 M Sρ

T (/Pγ5)sr Gq
F T (x, x′) + ... .

In Fig. 4 we show the LO diagrams relevant for the quark-gluon 
hard amplitude M̄qg,1

s,ρ in Eq. (16) where they are to be interfered 
with the diagrams of Fig. 2. At LO (n = 1), just like the unpolar-
ized case, the partonic cross sections (16) will be proportional to 
a delta function δ(x − xB), fixing the momentum fraction x = xB . 
In addition, we note that all numerators of the interference cross 
section σ̂ q̄gq are either imaginary (when being traced with /P ) or 
real (when being traced with /Pγ5). Since we add the complex con-
jugate (c.c.) in Eq. (15) an additional imaginary part needs to be 
generated to obtain a non-vanishing transverse spin dependence. 
This additional imaginary part is induced by the iε part that ap-
pears in the quark propagators in Fig. 4, where we encounter three 
different types of propagators,

1

(k′ + q)2 + iε
= xB

Q 2

(
P

x′ − xB
− iπδ(x′ − xB)

)
,

1

(k′ + q̃)2 + iε
= x̃B

Q̃ 2

(
P

x′ − x̃B
− iπδ(x′ − x̃B)

)
,

1

(k′ − Pγ )2 + iε
= − 1

γ Q 2

(
P
x′ + iπδ(x′)

)
. (18)

Here, the symbol P denotes the principal value prescription. The 
delta-function in the first line of Eq. (18) produces the so-called 
soft-gluonic pole (SGP) contributions, the second line generates 
hard-pole (HP) contributions, while the third line generates soft-
fermionic pole (SFP) contributions.

The SGP contributions fix the second momentum fraction in 
�

q,ρ
F ,sr(x, x′) to be x′ = xB , and those contributions will be propor-

tional to the qgq correlation function F F T (xB , xB) (Efremov-Teryaev-
Qiu-Sterman (ETQS) matrix element [2,3,37]).1 Also, the derivative 
terms d

dxB
F F T (xB , xB) may appear through terms proportional to 

δ(x′ − xB)/(x′ − xB) = − d
dx′ δ(x′ − xB), and a subsequent integration 

by parts in x′ . The SGP contributions and the kinematical twist-3 
contributions in Eq. (13) can be added using the well-known con-
nection between the Sivers function and the ETQS-matrix element 
[25,38,39],

π F q
F T (x, x) = f ⊥(1),q

1T (x) . (19)

We find that those two terms cancel each other, i.e., the SGP and 
kinematical twist-3 contribution from Eq. (13), for all three chan-
nels B H , C and I when being summed. As a consequence, SGP 
terms do not enter the transverse spin dependent cross section, 
and the HP and SFP terms are the only remaining contributions.

In general, the light-cone vector nμ explicitly enters partonic 
twist-3 cross sections through the ε Pnρ S and Sρ

T terms in the pa-
rameterization (17). We checked the independence on the choice 
of the light-cone vector nμ of the partonic HP and SFP cross sec-
tions. To do so we followed the procedure of Ref. [25] and wrote 
the nμ vector as a linear combination of the four linearly indepen-
dent physical vectors P , l, l′ , Pγ ,

nμ = a lμ + b Pμ + c l′μ + d Pμ
γ . (20)

The conditions P · n = 1 and n2 = 0 eliminate only two of the 
coefficients, say, a and b in favor of c and d, which cannot be oth-
erwise determined. One might worry that the coefficients c and d
enter the partonic cross sections in this way, which would lead 
to the explicit dependence on vector n, and hence to ambigui-
ties. We checked explicitly that this is not the case and that the 
coefficients c and d do cancel out. The remaining parts of the vec-
tor n in Eq. (20) that enter the cross sections amount to a choice 
nμ = 2

αQ 2 lμ . That would be the natural choice in a lepton-nucleon 
center-of-mass frame.

After adding all twist-3 contributions the final LO formula for 
the spin-dependent cross section emerges,

1 Note that no contribution proportional to G F T (xB , xB ) appears since this func-
tion vanishes due to the anti-symmetry property of that particular function, 
G F T (x, x′) = −G F T (x′, x). In contrast, we have F F T (x, x′) = +F F T (x′, x) [25].
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Dσ LO
T (S) = α3

em

4π2 s Q 4

π M

Q

[ε Pll′ S

Q 3
σ 1

UT + ε PlPγ S

Q 3
σ 2

UT

+ (l′T · S T )ε
Pll′ Pγ

Q 5 σ 3
UT + (Pγ T · S T )ε

Pll′ Pγ

Q 5 σ 4
UT

]
. (21)

Even though Eq. (21) is written completely covariantly, the struc-
tures σ i

UT may be viewed as different azimuthal modulations of the 
transverse spin vector Sμ

T . At this point we present the analytical 
expression for those modulations,

σ i=1,2
UT =

∑
k=C,I

[
σ̂ i,k

HP,F F k
F T (xB , x̃B) + σ̂ i,k

SFP,F F k
F T (xB ,0)

+σ̂ i,k
HP,G Gk

F T (xB , x̃B) + σ̂ i,k
SFP,G Gk

F T (xB ,0)
]
, (22)

σ i=3,4
UT =

∑
k=C,I

[
σ̂ i,k

HP,G Gk
F T (xB , x̃B) + σ̂ i,k

SFP,G Gk
F T (xB ,0)

]
. (23)

We note that only Compton (C) and Interference (I) effects con-
tribute to the transverse nucleon spin dependent cross section 
Eq. (21). The Bethe-Heitler (BH) contributions to DσUT where the 
detected photon is radiated off the leptonic part cancel once dy-
namical and kinematical twist-3 contributions are added. This fea-
ture is in agreement with the situation for inclusive DIS where 
a transverse single-spin asymmetry is forbidden for a one-photon 
exchange due to time-reversal symmetry [14]. The first and second 
lines of Eq. (22) display HP and SFP contributions of the qgq cor-
relation functions F F T and G F T , respectively. The structures σ i=3,4

UT
are generated by HP and SFP contributions of the qgq correlation 
functions G F T alone. The partonic factors σ̂ i,k depend on external 
kinematical variables (6). Their analytical expressions are rather 
lengthy, and we present our results in Appendix A.

Eqs. (21), (22), (23) constitute the main result of this paper. 
They reveal the possibility to experimentally scan the qgq corre-
lation functions F F T and G F T point-by-point at LO on their full 
support in x and x′ , by varying the scaling variable xB and x̃B . This 
means that a measurement of the transverse nucleon SSA, e.g., at 
an EIC, can give us for the first time direct information on these 
functions. Such a feature is unprecedented and does not appear in 
other processes in this way, to the best of our knowledge.

As the variables defined in Eq. (6) are not intuitive, we want to 
rewrite the cross sections Eq. (9) and Eq. (21) in terms of the ex-
perimentally accessible kinematical variables that typically appear 
in collider experiment like an EIC, i.e., transverse momentum p′,γ

T , 
pseudo-rapidity η′,γ and azimuthal angle φ′,γ of the scattered 
electron and the isolated photon. The momenta and nucleon spin 
vector acquire the following form in the lepton-nucleon center-of-
mass (cm) frame,

Pμ = 1
2

√
s (1,0,0,1) , lμ = 1

2

√
s (1,0,0,−1) ,

l′μ = p′
T

(
coshη′, cosφ′, sin φ′, sinhη′) ,

Pμ
γ = pγ

T

(
coshηγ , cos φγ , sin φγ , sinhηγ

)
,

Sμ = (0, cosφs, sin φs,0) . (24)

The Lorentz-invariant cross sections Dσ in Eqs. (9), (21) can be 
translated to the cm-frame as follows,

dσ

dp′
T dη′ dφ′ dpγ

T dηγ dφγ
= p′

T pγ
T Dσ , (25)

where Dσ depends on the variables defined in Eq. (6). Of course, 
those variables need to be expressed explicitly in terms of the 
cm-variables Eq. (24). We note that the unpolarized cross section, 
Eq. (9), depends only on the difference of the azimuthal angles 
φ′ − φγ , and one may integrate out one of those angles. On the 
other hand, the spin-dependent cross section, Eq. (21), carries four 
azimuthal structures related to the transverse spin vector S . While 
the functions σ i

UT in Eq. (21) only depend on the difference of the 
azimuthal angles φ′ − φγ − like the unpolarized cross section −
the prefactors include the azimuthal angle φs of the nucleon spin 
vector in the following way,

ε Pll′ S

Q 3
= 1

2

√
αα′(1 − β + β ′) sin(φs − φ′) ,

ε PlPγ S

Q 3
= 1

2

√
αβγ sin(φs − φγ ) ,

(l′T · S T )ε
Pll′ Pγ

Q 5 = 1
2

α′
α (1 − β + β ′)

√
αβγ ×

sin(φ′ − φγ ) cos(φs − φ′) ,

(Pγ T · S T )ε
Pll′ Pγ

Q 5 = 1
2

√
αα′(1 − β + β ′) βγ

α ×
sin(φ′ − φγ ) cos(φs − φγ ) . (26)

By varying the azimuthal angle φs it will be possible to experi-
mentally disentangle the four azimuthal structures.

4. Conclusions

In this paper we have calculated the transverse nucleon spin-
dependent cross section of the semi-inclusive production pro-
cess of real, high-pT , isolated photons in lepton-nucleon collisions, 
�N↑ → �γ X , to LO accuracy in the collinear twist-3 formalism. We 
found that a non-zero transverse spin-dependent cross section is 
generated by the quark-gluon-quark correlation functions F q

F T and 
Gq

F T . Most importantly, through measurements (e.g., at the EIC) of 
the momentum spectra of leptons and photons it might be pos-
sible to (partially) reconstruct these otherwise unknown functions 
point-by-point from experimental data. In this sense the suggested 
process plays the same important role for the determination of the 
qgq functions as DIS has historically played (and still does) for the 
determination of quark PDFs. We also stress out that information 
on the support of the qgq functions F q

F T and Gq
F T will have a great 

impact on the evolution of TMD functions like the Sivers function 
[40–43] and will deepen our understanding on the g2 structure 
function in DIS.

Since the functions F q
F T (x, x′) and Gq

F T (x, x′) are essentially un-
known for x �= x′ we leave the estimate of the transverse nucleon 
SSA at an EIC for a future publication. We expect that the total 
cross section of γ SIDIS will be suppressed with respect to DIS 
cross section in the same (lepton) bin due to a suppression factor 
of αem for γ SIDIS compared to DIS. However, since the expected 
event DIS rate is large at an EIC we conclude that γ SIDIS may be 
feasible as well.

We are also aware that the LO calculation considered in this 
paper is likely not sufficient for a detailed description of data gath-
ered at the EIC. In particular, it is known that gluons (at NLO) play 
an important role [31]. At NLO, other (unknown) matrix elements, 
such as triple-gluon correlations might be probed when measur-
ing the nucleon SSA in γ SIDIS. Also, the isolated photon may be 
produced exclusively through a soft quark-antiquark distribution 
amplitude at NLO, rather than in a point-like QED vertex. How-
ever, such effects are beyond the scope of this paper, and we leave 
the study of those NLO effects for a future publication.
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Appendix A. The full expressions for the hard partonic factors

In this appendix we present our analytical LO results for the 
various partonic cross sections discussed in the main text.

A.1. Unpolarized cross section

We abbreviate the denominators D1 = 1 − β + β ′ , D2 = 1 −
xB(α − α′) and D3 = 1 − β + β ′ − xB(α − α′), and obtain

σ̂ BH
U = 4

ββ ′
(

2(1 − β) + β2 + β ′2 + 2β ′ (A.1)

−2xB(α(1 + β ′) − α′(1 − β))

+2x2
B

(
α2 + α′2))

,

σ̂ C
U = ββ ′ σ̂ BH

U

D1 D2 D3
, (A.2)

σ̂ I
U = −aU + bU xB + cU x2

B + dU x3
B

β β ′ D1 D2 D3
, (A.3)

with the following coefficients,

aU = 4 D1 (β + β ′)(2 − β(2 − β) + β ′(2 + β ′)) , (A.4)

bU = 4α
[
(β − 1)β((β − 2)β + 4)

−β ′(β − 2)((β − 3)β − 2) + β ′2((β − 3)β − 6)

−β ′3(β + 3)
]
+ 4α′ [β(3(β − 2)β + 4)

−β ′(β − 2)((β − 1)β + 2) + β ′2(β − 3)(β − 2)

−β ′3(β − 3) + β ′4] , (A.5)

cU = 8α2
[

2(1 − β)β + β ′(2 + β(2 − β)) + β ′2(2 + β)
]

+8α′2[2(1 − β)β + β ′(2 − β(2 − β)) + β ′2(2 − β)
]

+8αα′[ − β(2 − β(2 − β)) − β ′(2 − β2)

−β ′2(2 − β) − β ′3] , (A.6)

dU = 8(α2 + α′2)
[
α′(β + β ′(1 − β) + β ′2)

−α(β(1 − β) + β ′ (1 + β))
]
. (A.7)

A.2. Transversely polarized cross section - Compton contributions

Here we give our explicit analytical results for the partonic 
factors of the Compton contributions in Eqs. (22), (23). The ones 
appearing in the structure σ 1 read,
UT
σ̂ 1,C
HP,F = 16

α D2
1 (1 − D2) D2

3

[
− D2

1 − 2xB α′(1 + β ′)D1

+2x2
B

(
α2β(1 − β) + αα′(1 + 2β ′) − α′2(1 + β ′)2

)
−x3

B D1(α − α′)(α2 + α′2)
]
, (A.8)

σ̂ 1,C
SFP,F = − 16

α D2
1 D2 D3

[
−D1(3 − 2β(1 − β) + 2β ′(2 + β ′))
+xB

(
D1(3αD1 − α′(2 + D1))

−2αβ(1 − 2D1) + 2β2(α − α′)
)

−x2
B D1(α

2 + α′2)
]
, (A.9)

σ̂ 1,C
HP,G = 16

α D1 (1 − D2) D2
3

[
D1 + 2xBα(1 + β ′)

−2x2
Bα

(
(α − 2α′)(1 − β) − α′β ′)

−x3
B (α − α′)(α2 + α′2)

]
, (A.10)

σ̂ 1,C
SFP,G = − 16

α D1 D2 D3

[
− (1 + 2D1)

−xB
(
α′(2 + D1) − α(3 − 3β + β ′)

)
−x2

B (α2 + α′2)
]
. (A.11)

The partonic functions for the structure σ 2
UT read

σ̂ 2,C
HP,F = 16

α (α − α′) D2
1 D2 D2

3

[
D2

1(α − α′)

−2xB D1

(
α2(1 − β) + α′2(1 + β ′)

)
+2x2

B (α − α′)
(
α2(1 − β)2 + α′2(1 + β ′)2

+αα′(1 + β ′ − β(1 + 2β ′))
)

+x3
B D1(α − α′)2(α2 + α′2)

]
, (A.12)

σ̂ 2,C
SFP,F = − 16xB

α D2
1 D2

2 D3

[

D1

(
α(3 − 2β(2 − β) + 2β ′(1 + β ′))

−α′(3 − 2β(1 − β) + 2β ′(2 + β ′))
)

−xB

(
α2

(
3 + β2 − 2β(2 + β ′) + β ′(4 + 3β ′)

)
−2αα′ (3 − β(5 − 2β) + 5β ′ − 2ββ ′ + 2β ′2)
+α′2 (

D1(2 + D1) + 2β2
))

+x2
B D1(α − α′)(α2 + α′2)

]
, (A.13)

σ̂ 2,C
HP,G = 16xB

α D1 D2 (1 − D2) D2
3

[
− D1(α − α′)

+2xB αα′(1 + D1)

−2x2
B αα′(α − α′)(1 + 2D1)

+x3
B (α − α′)2(α2 + α′2)

]
, (A.14)

σ̂ 2,C
SFP,G = − 16xB

α D D2 D

[
(1 + 2D1)(α − α′)
1 2 3
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−xB

(
(α2 + α′2)(2 + D1) − 2αα′(1 + 2D1)

)
+x2

B (α − α′)(α2 + α′2)
]
. (A.15)

For the structure σ 3
UT we obtain the following partonic factors,

σ̂ 3,C
HP,G = −64xB(1 + β ′)

D2
1 D2

3

, (A.16)

σ̂ 3,C
SFP,G = −64xB(1 + β ′)

D2
1 D2 D3

, (A.17)

while for the structure σ 4
UT we obtain

σ̂ 4,C
HP,G = −64x2

B(α + α′ − αβ + α′β ′)
D2

1 D2 D2
3

, (A.18)

σ̂ 4,C
SFP,G = −64x2

B(α + α′ − αβ + α′β ′)
D2

1 D2
2 D3

. (A.19)

A.3. Transversely polarized cross section - interference contributions

At last we give our explicit analytical results for the partonic 
factors of the Interference contributions in Eqs. (22), (23). The ones 
appearing in the structure σ 1

UT read,

σ̂ 1,I
HP,F = 16

α β β ′ D1 (1 − D2) D2
3

[
β ′ D2

1

+xB D1

(
α(β2 − (1 + β)β ′) + α′β ′(3 − β + 3β ′)

)
−2x2

B

(
α2β2(1 − β) + αα′β ′(1 + β + β ′ + 2ββ ′)

−α′2β ′(D1 + β)(2D1 + β)
)

+x3
B

(
− α2α′β ′(1 − β − 6β2 + β ′)

+α3(2β2(1 − β) + β ′ − ββ ′ + β ′2)
+α′3β ′(β + (1 + β ′)(1 + 2β ′))
−αα′2β ′(1 + β ′ + β(5 + 6β ′))

)
+x4

B(α − α′)(α2 + α′2)
(
α(β2 − (1 + β)β ′)

+α′β ′ D1

)]
, (A.20)

σ̂ 1,I
SFP,F = − 16

α β β ′ D1 D2

[
β3 − β2(2 − β ′) + β ′(1 + β ′)2

+β(2 + β ′(2 + β ′))
+xB

(
α′(2β − β2(2 − β ′) + β ′(1 + β ′)2)

+α(β2 − β3 − β ′ − β ′2 − β(2 + β ′(2 + β ′)))
)

+x2
B β(α2 + α′2)

]
, (A.21)

σ̂ 1,I
HP,G = 16

α β β ′ D1 (1 − D2) D3

[
− β ′D1 (A.22)

−xB

(
α(β ′2 + β(2 + β ′)) + α′(2D1 + β)(D1 − 1)

)
−x2

B

(
α2(β ′2 − β(2 − β ′)) + αα′(β ′2 + β(4 − 3β))

+α′2(2D1 + β)(D1 − 1)
)

−x3
B (α2 + α′2)(α(1 − D1 − βD1) + α′β ′D1)

]
,

σ̂ 1,I
SFP,G = − 16

α β β ′D1 D2

[
β + D1(β + β ′)

+xB

(
α′(β + D1(β + β ′)) − α(2β(1 − β) + β ′)

)
+x2

B(α2 + α′2)β
]
. (A.23)

The partonic factor appearing in the structure σ 2
UT read,

σ̂ 2,I
HP,F = 16xB

α β β ′ D1 (1 − D2) D2
3

[
D2

1(α
′β ′ − αβ)

+2xB D1

(
α2β(1 − β) + α′2β ′(1 + β ′)

)
−2x2

B

(
α3β(1 − β)2 + α2α′ββ ′(2 − 3β)

−α′3β ′(1 + β ′)2 + αα′2ββ ′(2 + 3β ′)
)

+x3
B(α − α′)(α2 + α′2)(α′β ′ − αβ)D1

]
, (A.24)

σ̂ 2,I
SFP,F = − 16xB

α β β ′ D1 D2
2

[
α′(β3 − β2(2 − β ′)

+β ′(1 + β ′)2 + β(2 + β ′(2 + β ′))
)

−α
(
β3 − β2(2 − β ′) + β(1 − β ′)2

+β ′(2 + β ′(2 + β ′))
)

+xB

(
α2(β(1 − β)2 + 2β ′ + (2 + β)β ′2)

+α′2(2β − β2(2 − β ′) + β ′(1 + β ′)2)

−αα′(β + β ′)(3 − β(2 − β) + β ′(2 + β ′))
)

+x2
B (α2 + α′2)(α′β − αβ ′)

]
, (A.25)

σ̂ 2,I
HP,G = 16xB

α β β ′ D1 (1 − D2) D3

[
D1(αβ − α′β ′)

+xB

(
α′2(D1 − D2

1 + β) − α2(1 − β − D2
1)

−αα′(β + β ′)(3 − 2β + 2β ′)
)

+x2
B(α2 + α′2)D1(αβ − α′β ′)

]
, (A.26)

σ̂ 2,I
SFP,G = − 16xB

α β β ′D1 D2
2

[
α′(β + D1(β + β ′))

+α(1 − β − D1(1 + β + β ′))
−xB(α − α′)

(
α′(β + D1(β + β ′))

+α(1 − β − D1(1 + β + β ′))
)

+x2
B(α2 + α′2)(α′β − αβ ′)

]
. (A.27)

For the structure σ 3
UT we obtain the following partonic factors,

σ̂ 3,I
HP,G = 32xB

β β ′ D1 D2
3

[
− β2 + β ′2 + 2β(1 + β ′)

+xB

(
β(α′(2 − β) − α(2 + β)) + β ′2(α + α′)

−2(α − α′)ββ ′)]
, (A.28)

σ̂ 3,I
SFP,G = 32xB(β2 + β ′(2 + β ′))

β β ′ D1 D2
, (A.29)

while for the structure σ 4 we obtain
UT
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σ̂ 4,I
HP,G = 32x2

B

β β ′ D1 D2
3

[
β(α′(2 − β) − αβ)

+2β ′(α(1 − β) + α′β) + (α + α′)β ′2], (A.30)

σ̂ 4,I
SFP,G = − 32x2

B

β β ′ D1 D2
2

[
α(β ′2 − β(2 − β))

−α′(β2 + β ′(2 + β ′))
]
. (A.31)
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