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Using lattice QCD we extract ππ scattering amplitudes with isospin 0, 1, and 2 in low partial-waves at
two values of the light quark mass corresponding to mπ ∼ 283 and 330 MeV. We confirm expectations of
weak repulsion in isospin-2, and the presence of a narrow ρ resonance in isospin-1, and study the pion mass
dependence of these channels. In isospin-0 we find that the two pion masses considered straddle the point at
which the σ transitions from being a stable bound state to being either a virtual bound state or a
subthreshold resonance. We discuss the ability of lattice calculations like these to precisely determine the σ
pole location when it is a resonance, and propose an approach in which the full complement of amplitudes
computed in this paper can be used simultaneously to provide more constraint.
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I. INTRODUCTION

Hadron-hadron scattering processes have long been used
as a tool to explore strong interaction physics. The
amplitudes which describe these processes as a function
of energy and angle can be expanded in partial waves, and
examination of these yields information about the reso-
nance content of quantum chromodynamics. Scattering of
the lightest hadron, the pion, off the pion cloud around a
proton or nucleus offers the simplest such process, being
unburdened by complications of spin.
Experimentally, ππ scattering in the lowest partial waves

shows very different behavior across the three possible
isospins. Isospin-2 is found to be weak and repulsive, with
the lack of resonances being an early motivator of the qq̄
quark model. Isospin-1 houses the narrow ρ resonance,
appearing as a rapid rise in the phase shift of the P-wave
amplitude, which is otherwise featureless at low energy.
Isospin-0 is found to be attractive, but shows only a slow
rise in phase shift with energy across the elastic scattering

region. Typically, this rise is associated with a broad scalar
resonance, the σ. A state with these quantum numbers has
historically been included in models of the nucleon-
nucleon potential to describe intermediate-range effects.
Precise determination of the pole location of the σ remained
a problem until recently, with a range of amplitude para-
metrizations applied to experimental data generating a
spread of pole locations [1]. This problem was solved
by applying dispersion relations which implement analy-
ticity and crossing symmetry in a consistent way, providing
additional constraint beyond that given by the isospin-0
scattering data on the real-energy axis alone [2–7].
The nature of the σ within QCD is somewhat

unclear [8–12]. It is often partnered with the f0ð980Þ,
a0ð980Þ and κ states into a “scalar nonet”, despite the very
different appearances of these resonances (narrow states at
KK̄ threshold versus very broad states away from any
threshold). An association of this type for the lightest vector
resonances, ρ;ω;ϕ; K�, is quite natural, given their
common properties, and is often used as motivation for
a qq̄ quark-model assignment of these states, with their
modest differences being due to the mild breaking of an
approximate SUð3Þ flavor symmetry that leads to states
with strange content being heavier. The scalar nonet has no
such simple interpretation [13–16].
Recently, ππ scattering in QCD has been considered

making use of the first-principles lattice approach. The
discrete spectrum of states with the quantum numbers
of ππ in the finite periodic spatial volume of the lattice
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can be related to ππ scattering amplitudes through the
Lüscher relation [17,18]. Computations have taken place at
several values of the light-quark mass for all three iso-
spins [19–56]. By parametrizing the elastic scattering
amplitudes the resonance pole content can be investigated
through analytic continuation into the complex energy
plane.
Isospin-2 is found to be weak and repulsive, as in

experiment, and the variation of the scattering length with
changing quark mass has been explored in the context of
chiral perturbation theory [35,40]. Isospin-1 is found to
feature a ρ-like resonance whose mass increases and width
decreases with increasing quark mass until it becomes
stable at a pion mass near 400 MeV. Isospin-0 shows a
much more dramatic evolution with changing quark mass:
at mπ ∼ 391 MeV, a clear stable bound-state σ is observed,
while at mπ ∼ 239 MeV, a slow variation of the phase shift
appears to indicate a broad resonance σ, albeit with a large
degree of amplitude parametrization dependence in the pole
position [53,57].
The possibility that the σ could undergo a transition from

being a broad resonance into being bound, as the light
quark mass is increased, was previously explored in a
unitarized version of chiral perturbation theory [55,58]. By
making assumptions about the quark mass dependence of
certain low-energy coefficients, it was found that over a
relatively small variation in pion mass, the σ undergoes a
rapid transition from being a bound state, to being a virtual
bound state (a pole on the real-energy axis below threshold
on the unphysical Riemann sheet), to being a broad
resonance. These results provide a particular manifestation
of the general framework for scalar resonance pole trajec-
tory discussed in Ref. [59].
In this paper, we will report the results of a calculation

determining ππ scattering amplitudes in all three isospins at
two previously unconsidered light quark masses, corre-
sponding tomπ ∼ 283 MeV and 330 MeV. These values lie
between the points at which the σ has been observed in
lattice calculations to be bound, and where it appears as a
broad resonance, so that we aim to be able to close in on the
region where the transition takes place.
The scatter of σ pole positions under reasonable variation

of amplitude parametrization in the previous lattice calcu-
lation at mπ ∼ 239 MeV indicated that the same issue
present in analysis of experimental scattering data may
plague attempts to pin down with precision the pole
location in these first-principles QCD efforts. A possible
mechanism to overcome this might be to apply dispersion
relations to the results of lattice QCD computations. Such
an approach would require input of computed ππ scattering
amplitudes in all three isospins in low partial waves, which
is what we provide in this paper.
We will show that the isospin-2 amplitude evolves

smoothly with changing light quark mass, and we will
explore the role of the “Adler zero” predicted by the broken

chiral symmetry of QCD. The evolution of the ρ resonance
which dominates the isospin-1 amplitude is presented, with
a confirmation of the near independence of its coupling to
ππ to variations in the light quark mass. The isospin-0
S-wave amplitude is found to undergo a dramatic transition
between mπ ∼ 330 MeV and 283 MeV, from a behavior
compatible with an only-just-bound σ at the heavier mass to
a mild energy dependence compatible with being either a
virtual bound state or a subthreshold resonance at the
lighter mass. We will conclude that to make more precise
statements about the σ in cases that it is unbound, we
require additional constraints of the type offered by
dispersion relations.1

II. LATTICES AND OPERATOR CONSTRUCTION

The calculations described in this manuscript make use
of anisotropic Clover lattices [61,62] whose parameters are
presented in Table I. These three-flavor lattices, which have
as ∼ 0.12 fm, degenerate light quarks, and a strange quark
mass approximately tuned to the physical strange quark
mass, were previously used in calculations of the πK
system [63,64].2

In order to determine ππ scattering amplitudes, we require
the spectra of states with the appropriate quantum numbers
in the finite spatial volume of the lattice. These spectra are
extracted using variational analysis of matrices of two-point
correlation functions computed using a basis of operators at
source and sink. A basis that has proven successful in
prior calculations [36,45,53,57,66,67] makes use of
“single-hadron” operators (in isospin-0 and isospin-1) of

fermion bilinear type, ψ̄ΓD
↔
…D

↔
ψ , supplemented by oper-

ators resembling a pair of mesons having definite total
momentum, and magnitude of relative momentum,

ðΩΩÞ†½p⃗1;p⃗2�
P⃗;Λ;μ

¼
X

p⃗1þp⃗2¼P⃗

CðP⃗;Λ;μ;p⃗1;p⃗2ÞΩ†ðp⃗1ÞΩ†ðp⃗2Þ: ð1Þ

The operators appearing in the product on the right-hand
side are selected to be those linear combinations of “single-
hadron” operators that optimally overlap with the pion
states in the variational analysis of correlation functions
with the quantum numbers of a single pion. The “lattice
Clebsch-Gordan coefficients” in this equation ensure that
the operator transforms in a definite irreducible represen-
tation, Λ, of the relevant lattice symmetry group. Systems
of definite angular momentum subduce into these “irreps”

1While this paper was in the final stages of production, a
preprint, Ref. [60], appeared applying dispersion relations to
lattice QCD data, focusing at mπ ∼ 391 MeV, where the σ is a
well-determined bound state.

2The pion masses have been recomputed with greater statistics
since that previous paper, and herein are referred to as 283 MeV,
330 MeV, which correspond to the 284 MeV, 327 MeV lattices
therein.
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according to Table II of Ref. [36] for I ¼ 0, 2, and
according to Table III of Ref. [45] for I ¼ 1. In this
paper, we will consider irreps with total momentum
jP⃗j2 ≤ 4ð2π=LÞ2.
Use of the distillation framework [68] allows for efficient

computation of a large number of correlation functions, and
in particular, allows diagrams featuring quark-antiquark
annihilation (of which there are many in the isospin-0 case)
to be evaluated without further approximation [53,57].
While our primary focus is on ππ elastic scattering, in

order to have a reliable evaluation of the finite-volume
spectra in the energy region where the KK̄ and ηη thresh-
olds open, we have included, where relevant, also KK̄-like
and ηη-like operators into our basis. We are guided as to
which relative momentum combinations to include in the
basis by the noninteracting energy of the operator,
En:i: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jp⃗1j2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jp⃗2j2

p
, where m is the mass

of the meson (π, K, η). All operator constructions are
included which have noninteracting energy in the energy
region we intend to study.
The matrices of correlation functions computed in the

large basis indicated above are analyzed using a variational
approach based upon solving a generalized eigenvalue
problem. Our primary interest is in the spectrum which
is obtained by fitting the exponential time-dependence of
the extracted eigenvalues. In order to account for the impact
of the choice of fitting window and the number of
exponentials, we implement a version of the “model
averaging” technique proposed in Ref. [69], as described
in Ref. [64]. In addition, the sensitivity of the extracted
energy levels to the choice of the reference time slice t0 in
the generalized eigenvalue problem, and to the precise
choice of operators in the basis is explored and reflected in
the quoted energy values and uncertainties.
When dimensionful quantities are required, the lattice

scale is set using the Ω baryon mass computed on the
relevant lattice, at ¼ atmΩ

mphys
Ω
, where the physical mass of the Ω

baryon is mphys
Ω ¼ 1672.45 MeV. The quoted pion mass in

MeV for each lattice follows from use of this prescription.

III. EXTRACTING SCATTERING AMPLITUDES
FROM FINITE-VOLUME SPECTRA

The relationship between two-body scattering ampli-
tudes and the discrete spectrum of states in a finite periodic
volume is well-established [17,70–79]. For an irrep Λ of

total momentum P⃗, the discrete spectrum in an L × L × L
box corresponds to the solutions of

det ½1þ iρðEÞ · tðEÞ · ð1þ iMP⃗;ΛðE; LÞÞ� ¼ 0; ð2Þ

where MðE;LÞ is a matrix of known kinematic functions
which characterize the cubic spatial volume, while tðEÞ
contains the partial-wave scattering amplitudes. In general,
these are matrices in the spaces of coupled-channels and
partial-wave angular momentum, l, but for elastic scatter-
ing they reduce to being dense and diagonal matrices
respectively in l.
Our approach follows from parametrizing the energy

dependence of the partial-wave amplitudes tIlðsÞ for those
lowest values of l which subduce into the irrep P⃗;Λ. In
practice for I ¼ 1, only l ¼ 1 is relevant over the elastic
region, while for I ¼ 0, 2, both l ¼ 0 and l ¼ 2 are
considered. For a given set of parameter values in these
parametrizations, the solution of Eq. (2) yields a discrete
spectrum that can be compared to the lattice QCD com-
puted spectrum via a correlated χ2. We form this χ2 by
considering energy levels in all irreps which constrain the
partial waves for each choice of isospin, and take as the
amplitude results those which minimize the χ2. Explicit
expressions for the subduction of partial-waves into irreps
of the relevant symmetry group are presented in Refs. [80]
and [81], and further discussion of the approach, and
implementation details can be found in Refs. [18,57,80,82].
The elastic scattering partial-wave amplitudes appearing

in Eq. (2) can be parametrized by compact forms, allowing
for a description of the entire lattice QCD computed
spectrum in terms of a few free parameters. The resulting
amplitudes can be analytically continued into the complex
energy plane to search for pole singularities. A range of
parametrization forms is typically used, with the spread of
amplitude behaviors and pole locations providing an
estimate of systematic error. Each relevant partial-wave
amplitude tIlðsÞ is parametrized in a way that respects
elastic unitarity exactly, but may not necessarily respect
other fundamental constraints.
In terms of the phase shift, δIlðsÞ, elastic amplitudes can

be written as

tIlðsÞ ¼
1

ρðsÞ e
iδIlðsÞ sin δIlðsÞ ¼

1

ρðsÞ
1

cot δIlðsÞ − i
; ð3Þ

TABLE I. Anisotropic three-flavor lattices used in this paper. Anisotropy values, ξ, are obtained from the pion dispersion relation.
Nvecs indicates the number of distillation vectors used in the construction of correlation functions, and Ntsrc the number of 0 → t
perambulator time sources averaged over [65].

−atml ðL=asÞ3 ×T=at Ncfgs Nvecs Ntsrc atmπ atmK atmη atmΩ ξ mπ=MeV

0.0850 243 ×256 473 160 8–16 0.05635(14) 0.09027(15) 0.09790(100) 0.2857(8) 3.467(8) 330
0.0856 243, 323 ×256 393, 475 160, 256 4–8 0.04720(11) 0.08659(14) 0.09602(70) 0.2793(8) 3.457(6) 283
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where ρðsÞ ¼ 2k=
ffiffiffi
s

p
is the ππ phase space, with

k ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

p
being the scattering momentum.

In those cases where a single partial wave only domi-
nates Eq. (2), or where the amplitudes for higher partial
waves are fixed, each discrete finite-volume energy can be
used to obtain a discrete value of the phase shift at that
energy. This approach is used to make the discrete phase-
shift “data points” that will appear in plots later in this
document. The amplitude curves are not obtained by fitting
these “data”, but rather using the spectrum χ2 approach
described above.
At low scattering energies, the slow variation of the

S-wave and D-wave can be well described by a low-order
expansion in the square of the scattering momentum,
typically called the effective range expansion,

k2lþ1 cot δIl ¼ FI
lðsÞ

�
1

aIl
þ 1

2
rIlk

2 þ � � �
�
; ð4Þ

where the conventional choice has FI
lðsÞ ¼ 1, aIl inter-

preted as the scattering length and rIl as the effective range.
Additional desired features can be built into the amplitude

with other choices, such as FI
lðsÞ ¼ 4m2

π−sA
s−sA

to ensure a zero
of the amplitude, like those predicted by broken chiral
symmetry known as “Adler zeros”.
An alternative expansion follows from defining

ΦI
lðsÞ ¼

2ffiffiffi
s

p k2lþ1 cot δIlðsÞ; ð5Þ

which must be real analytic between the elastic threshold
and the inelastic threshold. One can engineer the presence
of an effective inelastic threshold (s0), and the opening of
the left-hand cut at s ¼ 0 (required by crossing symmetry),
by using a conformal mapping variable [83,84],

ωðsÞ ¼
ffiffiffi
s

p
− α

ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p
ffiffiffi
s

p þ α
ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p : ð6Þ

In this expression α and s0 are fixed parameters that
determine what energy region is mapped into a unit disk
of ω.3 The convergence of the conformal expansion is
expected to be rapid,

ΦI
lðsÞ ¼ FI

lðsÞ
XN
n¼0

Bnω
n; ð7Þ

where, again, one may build additional properties into the
amplitude by suitable choices for FI

lðsÞ, for example,

FI
lðsÞ ¼ s−m2

R
m2

R
, to force a resonance. As suggested in

Ref. [85], spurious singularities introduced below threshold
by this conformal expansion can be removed by adding a
suitable function,

ΦI
lðsÞ ¼ FI

lðsÞ
�
γIlðsÞ þ

XN
n¼0

Bnω
n

�
: ð8Þ

Partial waves that contain a narrow resonance and no
other features, like the experimental I ¼ 1 P-wave, are
usually well-described over a limited energy region by a
Breit-Wigner form, which effectively parametrizes a single
nearby pole,

tl¼1ðsÞ ¼
1

ρðsÞ
ffiffiffi
s

p
ΓðsÞ

m2
BW − s − i

ffiffiffi
s

p
ΓðsÞ ; ð9Þ

with the energy-dependent width, ΓðsÞ ¼ g2BW
6π

k3
s . The width

form can be elaborated to damp out the threshold behavior
at high energies (sometimes called barrier factors) at the
cost of including at least one extra parameter and possibly
spurious singularities.
A rather flexible parametrization scheme which genera-

lizes nicely to the case of coupled-channel amplitudes, uses
the K-matrix defined in [86]

ðtIlðsÞÞ−1 ¼ ðKI
lðsÞÞ−1 − iρðsÞ; ð10Þ

where a common parametrization choice is a sum of poles
plus a finite-order polynomial,

KI
lðsÞ ¼ ð2kÞ2l

�X
r

g2r
m2

r − s
þ
X
p

γpsp
�
: ð11Þ

This form can be modified to ensure an Adler zero by
taking KðsÞ → ðs − sAÞKðsÞ, and the unphysical singular-
ity in the phase space at s ¼ 0 can be removed from the
physical sheet by replacing −iρðsÞ with the Chew-
Mandelstam function, which we present subtracted at
threshold, as

IðsÞ ¼ ρðsÞ
π

log

�
ρðsÞ þ 1

ρðsÞ − 1

�
; ð12Þ

which has ImIðsÞ ¼ −ρðsÞ as required by unitarity.
For each partial wave, we will consider a large number

of parametrizations based on the forms above, reporting
all those which are found to be capable of describing
the computed finite-volume spectra as established by the
spectrum χ2 value.
For every amplitude parametrization, once the parameters

are constrained by describing the lattice QCD spectra, we
search the second Riemann sheet for poles that we interpret

3In practice, we will set s0 ¼ 0.09a−2t and α ¼ 0.8 for the
I ¼ 2 waves and the I ¼ 0 D–wave, as they do not exhibit any
inelastic behavior up to high energies. We use s0 ¼ 0.05a−2t and
α ¼ 1 for the I ¼ 1 P-wave. For the I ¼ 0 S-wave, where we
expect the inelasticity to become significant at a lower energy, we
set α ¼ 1, and we consider two values of s0 ¼ 0.032a−2t ,
0.04a−2t .
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as being due to resonances. The pole locations provide a
model-independent definition of a mass and width for the
resonance,

ffiffiffiffiffi
sR

p ¼ mR − iΓR=2, and the corresponding res-
idue in tIlðsÞ ∼ c2=ðsR − sÞ, gives a coupling of the reso-
nance to ππ. An alternative definition of the ππ coupling, as
presented in Ref. [87], is related to ours by

g2ππ ¼ 16π
2lþ 1

ð2kRÞ2l
c2: ð13Þ

We will find, as has been observed in previous lattice
calculations [45,47,57,63,88,89], and in amplitude ana-
lyses of experimental data [90–93], that when a narrow
resonance is present the pole position and coupling
typically show very little scatter over a range of sufficiently
flexible parametrizations, but when a resonance pole lies
far into the complex plane, different amplitudes which
behave similarly in a limited energy region on the real
energy axis (and which describe the finite-volume spectra
equally well in the lattice case) can lead to quite different
pole locations [94–96]. We will return to this point later
when discussing the σ pole appearing in the isospin-0
S-wave.
In the following, we will illustrate the finite-volume

energy levels included in our fits in black, to discern them
from other levels that are not fitted, plotted in gray.

IV. ππ → ππ I = 2

As in experiment, previous determinations in lattice QCD
at various pion masses (e.g. [27,32,34–37,97]) have found
ππ scattering in isospin-2 to be weak and repulsive. Lattice
calculations of this channel typically use a basis of operators
resembling a pair of pions only, since qq̄ operators cannot
access I ¼ 2. The lowest inelastic channel is ππππ, but
expectations from experiment are that the coupling of this
channel to ππ turns on very slowly [98–100].

A. I = 2 finite-volume spectra

Using bases of ππ operators as described in Sec. II,
matrices of correlation functions are computed, and varia-
tional analysis leads to the spectra shown in Fig. 1.
Departure of the discrete energy levels from the values
for noninteracting ππ pairs can be observed, being much
larger in those irreps which feature a subduction of the
S-wave.
The first inelastic threshold here is ππππ, indicated in

Fig. 1 by the horizontal dashed line. We have not included
any ππππ-like operator constructions in our basis, so the
spectrum presented above the inelastic threshold will only
be a correct subset of the complete true spectrum in the case
that the ππ and ππππ channels are decoupled. In

FIG. 1. I ¼ 2 finite-volume spectra, atEcm, by irrep, against L=as, for mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right). Upper
panel irreps have D-wave as their leading partial wave, while those in the lower panel have S-wave leading. Red curves show ππ
noninteracting energies.
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experiment, this is indeed the case until quite high energies,
well above those considered here [98–100].
The determined energies have fractional errors typically

at the 0.5% level, where this includes an estimate of
systematic error coming from varying different fitting
details and whether a “weighting-shifting” step (see
Ref. [36]) is applied to cancel mild finite-time-extent
effects. These systematic variations impact at a level below
the statistical error on most points. Across all irreps, we
extract 50 energy levels for mπ ∼ 330 MeV, and 98 for
mπ ∼ 283 MeV, of which 19 and 41 are below or at the
ππππ threshold, respectively.

B. ππ → ππ I = 2 scattering

The spectra presented in the previous section can be used
to constrain S-wave and D-wave elastic scattering ampli-
tudes4 using the approach described in Sec. III. Examining
energy levels in those irreps whose lowest subduced partial
wave is l ¼ 2, we observe extremely small energy shifts
from the noninteracting curves that suggest a very weak
interaction.
Descriptions in terms of parametrizations featuring only

a single free parameter, such as a scattering length, lead to
good descriptions of the spectra, and as can be seen in
Fig. 2, clearly describe a very weak D-wave interaction.
Adding further parameter freedom does not lead to an
improved description of the spectra.
The spectra shown in the lower row of Fig. 1 are for

those irreps in which the S-wave is present. These are
included together with the spectra in the top row in a χ2 to
obtain descriptions of the S- and D-wave amplitudes
simultaneously. The S-wave amplitudes for several sample
parametrization choices are shown in Fig. 3. The principal
difference between these various descriptions of the finite-
volume spectrum, most of which have χ2=Ndof ∼ 1, can be
observed to be at threshold where the slope of the phase-
shift curve, and hence the scattering length, appears to be
poorly constrained. This is more clearly seen in the plots of
k cot δ20, where for both pion masses a spread of behaviors
at threshold, well outside the statistical uncertainty, is
observed. The behaviors fall into two broad categories—
amplitudes where k cot δ20 is fairly flat at threshold corre-
spond to those which have not been engineered to have an
Adler zero below threshold, unlike those which fall at
threshold, where an Adler zero was included at the tree-
level χPT location, sA ¼ 2m2

π .
Given that the pion masses used in this study are further

from the chiral limit than the experimental pion mass, we
expect corrections to the tree-level location of an Adler zero
that may be significant. As was shown in Ref. [101],
dispersive analyses of experimental data suggest that even

for the physical pion mass the Adler zero may be displaced
from the tree-level location. Motivated by this result, we
take the range produced by the “CFD” dispersive predic-
tions in Ref. [101], and extrapolate it to the pion masses
used herein using sA ¼ sphysA ðmπ=m

phys
π Þ2. We consider

descriptions of the finite-volume spectra using amplitudes
with Adler zeros fixed at the extremes suggested by this
approach, together with some amplitudes for which the
Adler zero is allowed to float freely, although these latter
choices lead to statistically imprecise results for the
amplitude. The location of the enforced Adler zero (or
the central value when fitted) for each description is given
in Figs. 4 as the ratio to the tree-level value, sA=2m2

π .
We plot in Fig. 4 the values of S-wave scattering length

extracted from all parametrizations which provide a rea-
sonable description of the finite-volume spectra, separated
between those parametrizations with an Adler zero (of
varying location) and those without—a clear systematic
difference is observed, indicating a strong correlation
between the location of a subthreshold zero and the value
of the scattering length when constrained by only finite-
volume energy levels above threshold. This systematic
spread is not reduced for the lighter-pion-mass case, despite
the fact that we fit over twice the data points than for the
heavier mass.
In Fig. 5 we show the pion mass evolution of the I ¼ 2

S-wave scattering length across four pion masses computed
with the same lattice action. The rightmost point, taken
from Ref. [36] reflects an average over several para-
metrizations in which Adler zeroes were not enforced.
The leftmost points, atmπ ∼ 239 MeV, show an analysis of

FIG. 2. I ¼ 2 D-wave phase shift for mπ ∼ 330 MeV (top) and
mπ ∼ 283 MeV (bottom). Discrete data points come from irreps
in which l ¼ 2 is the lowest subduced partial wave, assuming
l ≥ 4 scattering to be negligible. Curves show two illustrative
parametrizations; a scattering length form (red) and a conformal
mapping with two terms (black), fitted to the full set of energy
levels below ππππ threshold. The shaded region indicates
energies above the ππππ threshold.

4The spectra are compatible with the amplitudes for l ≥ 4
being zero throughout the energy region considered.
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FIG. 3. I ¼ 2 S–wave scattering for mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right). Four example parametrizations are shown: a
two-term conformal mapping (black), an effective range expansion with two terms (green), and two choices with an Adler zero fixed at
the leading order χPT location, a two-term conformal mapping (red), and an effective range expansion with two terms (orange). The
enforced presence of the Adler zero can be seen in the deviation of the red and orange curves from nearly flat behavior at threshold in the
lower panels. Discrete “data” points with large uncertainties have been removed from the plot for clarity. The shaded region indicates
energies above the ππππ threshold. Note that, in both cases, the conformal mapping parametrization without an Adler zero produces a
relatively poor fit, and for this reason, their scattering lengths are not quoted in Figs. 4 and 5.

FIG. 4. Extracted scattering length for a range of I ¼ 2 S-wave
amplitude parametrizations for mπ ∼ 330 MeV (top) and
mπ ∼ 283 MeV (bottom). Each amplitude is labeled by the
χ2=Ndof , on the top axis, with which it describes the finite-
volume spectrum. Red points correspond to amplitudes contain-
ing an Adler zero at some location, while blue points lack any
enforced subthreshold zero. The numbers below the red points
indicate the corresponding Adler zero location, in units of the LO
value, 2m2

π .

FIG. 5. I ¼ 2 S-wave scattering length extracted from para-
metrizations describing finite-volume spectra at four pion masses.
Red points indicate amplitudes that feature an Adler zero, while
blue points lack an enforced subthreshold zero. The result of
dispersive analysis applied to experimental data [101] is shown
by the gray point.
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the same type followed by this paper that has not been
previously published.5 It is clear that the slope of the
variation with pion mass is very sensitive to the existence,
or not, of an Adler zero. We return in this paper’s
conclusions to whether the presence and exact location
of the Adler zero, which lies far from the region of
constraint provided by finite-volume energy levels, can
be resolved using only lattice QCD data.

V. ππ → ππ I = 1

The I ¼ 1 channel contains the P–wave ρ resonance
which appears below the KK̄ threshold, while the F-wave
amplitude is expected to be featureless and very weak
across the elastic region. In order to reliably determine the
finite-volume spectrum up to slightly above the KK̄
threshold, we make use of a large basis of single hadron
operators, ππ-like operators, and KK̄-like operators.

A. I = 1 finite-volume spectra

Figure 6 shows the extracted spectra for the two pion
masses considered in this calculation, where large depar-
tures from the ππ noninteracting energies (red curves) are
observed, indicative of strong interactions. The isolated
“extra” levels near atEcm ∼ 0.14 suggest a narrow reso-
nance in that energy region. At higher energies, the
extracted finite-volume spectra lie very close to the non-
interacting energies (including those corresponding to KK̄)
suggesting that the scattering amplitude may be featureless
above the resonance.
In total, we extracted 23 levels for mπ ∼ 330 MeV and

95 levels formπ ∼ 283 MeV, of which 17 and 42 are below
theKK̄ threshold, respectively. Examination of the operator
overlaps for states above the KK̄ threshold suggests that
there appears to be no significant coupling between the ππ

and KK̄ channels, indicating that an analysis of elastic
scattering above threshold, retaining only those levels with
overlap onto ππ operators, may be successful. This appears
to be essentially the same situation as was observed for
mπ ∼ 239 MeV in Ref. [47],6 where coupled channel
analysis showed negligible ππ; KK̄ channel coupling over
a significant energy region above threshold.

B. ππ → ππ I = 1 scattering

As explained above, we restrict ourselves to an elastic
analysis in this manuscript, and the extracted spectra
indicate that the F-wave amplitude is negligible relative
to the P-wave in the region of interest. The l ¼ 3 angular
momentum barrier factor suppresses the low-energy inter-
actions, and the only resonance with those quantum
numbers that decays to ππ is a ρ3, which is expected to
appear far above the energy region we consider. Thus, in
this case, each energy level can be used to determine a
discrete value of δ11ðsÞ, as plotted in Fig. 7. The behavior for
each pion mass is clearly that of a narrow resonance, and
we consider elastic amplitude parametrizations which
describe the finite-volume spectra up to atEcm ¼ 0.19.
A Breit-Wigner form, Eq. (9), is found to describe the

finite-volume spectra reasonably, with parameters

mBW ¼ 0.13978 ð51Þ · a−1t
gBW ¼ 5.664 ð104Þ

�
1 0.08

1

�

χ2=Ndof ¼
14.42
17 − 2

¼ 0.96; ð14Þ

for mπ ∼ 330 MeV, and

FIG. 6. I ¼ 1 finite-volume spectra, atEcm, by irrep, against L=as, for mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right). Red/green
curves show ππ=KK̄ noninteracting energies. Levels appearing on top of KK̄ noninteracting energies are not considered in our elastic
fits to data.

5Details of this analysis are provided in [102].

6Referred to in that paper as mπ ∼ 236 MeV. An improved
extraction of the pion mass and the Ω baryon mass used to set the
scale provide the newer value.
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mBW ¼ 0.13440 ð34Þ · a−1t
gBW ¼ 5.560 ð61Þ

�
1 0.00

1

�

χ2=Ndof ¼
41.34
49 − 2

¼ 0.88; ð15Þ

for mπ ∼ 283 MeV. The matrices illustrate the statistical
correlation between the parameters. In both cases, the
Breit-Wigner mass and coupling parameters are essentially
uncorrelated.
Considering a wider variety of amplitude parametriza-

tions, including K-matrix forms and conformal expansions,
we can find examples that describe the data with slightly
improved χ2=Ndof , but all successful descriptions show
compatible phase-shift energy dependence in the region of
the resonance. In the next section, we will examine the
variation of the ρ resonance pole with parametrization
choice.
The amplitude at threshold is characterized by a scatter-

ing “length”, defined via k3 cot δ11 ¼ 1
a1
1

, and as seen in

Fig. 8, amplitudes capable of describing the finite-volume
spectrum with the smallest χ2 values have compatible

values of this parameter. The first entry plotted for each
pion mass corresponds to the Breit-Wigner fit, and such a
form is not expected to provide a faithful description of
amplitudes away from the resonance that is being para-
metrized, and hence this form may not describe the
threshold behavior accurately.

C. The ρ resonance

In the case of the I ¼ 1 P-wave, for both pion masses, a
pole singularity lying near the real axis is found on the
second Riemann sheet for every parametrization that
successfully describes the finite-volume spectra. The pole
location for each parametrization is plotted in Fig. 9 where
we observe very little scatter, indicating that the lattice
spectra precisely determine the mass and width of the ρ
resonance at these pion masses without significant ampli-
tude parametrization dependence.
These ρ pole results supplement those obtained in

Refs. [45,47] at mπ ∼ 391, 239 MeV, and in Fig. 10 we
present the evolution of the pole position and pole residue
coupling [defined in Eq. (13)] with varying pion mass. As
expected the ρ becomes heavier as the light quark mass
increases and narrower as the phase space for decay to
two pions decreases. The coupling appears to be consistent
with being constant across the range of pion masses
considered. These results agree with the expectations
for an “ordinary qq̄ meson” as defined in Ref. [103],
and agree with predictions made for the quark mass
trajectory of the ρ in unitarized chiral perturbation theory
models [58,104–109].

VI. ππ → ππ I = 0

Isospin-0 ππ scattering in S-wave is not simple to
describe, being neither weak nor dominated by a single
narrow resonance. At the physical pion mass, despite there

FIG. 8. Extracted scattering length for a range of I ¼ 1 P–wave
amplitude parametrizations for mπ ∼ 330 MeV (top) and mπ ∼
283 MeV (bottom). Each amplitude is labeled by the χ2=Ndof
with which it describes the finite-volume spectrum.

FIG. 7. I ¼ 1 P-wave phase shift for mπ ∼ 330 MeV (top) and
mπ ∼ 283 MeV (bottom). A parametrization using a conformal
mapping with a resonance enforcing FI

lðsÞ factor shown by the
black curve, and a K-matrix with a single pole plus a constant
shown by the red curve. Discrete “data” points with large
uncertainties have been removed from the plot for clarity. The
shaded region indicates energies above the KK̄ threshold.
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being relevant scattering data available for over forty years,
it is only recently that the role of the broad σ resonance
has been confirmed with certainty [7,87,110]. Recent
consideration of this scattering channel using first-
principles lattice QCD showed a clear σ bound state when
mπ ∼ 391 MeV, and evidence for a broad σ resonance
(albeit with significant parametrization dependence) when
mπ ∼ 239 MeV [53]. We will observe in the current
calculation that between the two pion masses considered
here the σ undergoes a dramatic change in form.

A. I = 0 finite-volume spectra

Spectra were extracted from correlator matrices com-
puted using a basis of single-hadron operators, ππ-like
operators, KK̄-like operators, and some ηη-like operators
(for the lighter pion mass, larger volume lattice). The
energies are shown in Fig. 11, where it is clear that there are
large departures from the noninteracting ππ energies in
those irreps containing subduction of the ππ S-wave sug-
gesting strong scattering, while those irreps havingD-wave

as their leading partial wave show only small downward
shifts indicative of mild attraction. D-wave resonances,
f2; f02, are expected to lie at significantly higher energy,
well into the coupled-channel region [57].
Even though the I ¼ 0 correlation functions receive vital

contributions from relatively noisy diagrams featuring
complete quark-line annihilation, the use of distillation
leads to high-quality signals, and the extracted energy
levels are of high statistical precision. The error bars on the
points plotted in Fig. 11 also include systematic errors
originating from fitting variations, which are modest in
most cases.
In total, there are 23 levels for mπ ∼ 330 MeV and 75

levels for mπ ∼ 283 MeV. For the D-wave dominated
irreps, there is no evidence of coupling between ππ and
KK̄, and a description in terms of purely elastic ππ
scattering, even above the KK̄ threshold will prove to be
successful. The S-wave dominated irreps on the other hand
cannot be described so simply, and we consider only energy
levels lying some way below the KK̄ threshold, where
channel coupling is expected to turn on rapidly. For

FIG. 9. Extracted ρ resonance pole location for each I ¼ 1 P-wave parametrization found capable of describing the finite-volume
spectra for mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right).

FIG. 10. Left: ρ resonance pole location with varying pion mass from this calculation (blue and red points) and from calculations on
lattices with the same action [45,47] (green, orange). Right: Magnitude of the complex ρ resonance pole coupling, as defined in Eq. (13),
and the real coupling, gBW, extracted when a Breit-Wigner, Eq. (9), is used to describe the spectrum. The uncertainties on the pole
location and pole couplings quoted from Ref. [47] (orange points) are a rather conservative average over a large number of
parametrizations, including several which include the KK̄ coupled-channel region. For pole properties, the “Roy” result of dispersive
analysis of experimental data [87] is shown in gray, while the physical value of gBW comes from the neutral eþe− mode listed
in the PDG [1].

RODAS, DUDEK, and EDWARDS PHYS. REV. D 108, 034513 (2023)

034513-10



mπ ∼ 330 MeV we use 18 energy levels, and 48 for
mπ ∼ 283 MeV.

B. ππ → ππ I = 0 scattering

There is no evidence in the computed spectra that
amplitudes with l > 2 are required over the energy region
we are considering, and as seen in Fig. 12, even theD-wave
amplitude is only very mildly attractive.
The S-wave amplitudes, shown in Fig. 13, provide our

first example of amplitudes whose description is not
obvious, and where the behavior changes dramatically
between the two pion masses considered. The lighter pion
mass shows a phase shift increasing with a moderate slope
from threshold, and when plotted as k cot δ00, a crossing of
threshold at a small positive value, indicating a large
positive scattering length. The heavier pion mass shows
a qualitatively different energy dependence, having an
approximately flat phase shift above threshold, and a
k cot δ00 threshold crossing at a small negative value,
indicating a large negative scattering length.
The plots of k cot δ00 show clearly the presence of a

systematic variation with choice of parametrization. Awide
range of forms of the type described in Sec. III is used,
including cases with and without an Adler zero. As was the
case for I ¼ 2 S-wave analysis, we explore Adler zeros

FIG. 11. I ¼ 0 finite-volume spectra, atEcm, by irrep, against L=as, formπ ∼ 330 MeV (left) andmπ ∼ 283 MeV (right). Upper panel
irreps have D-wave as their leading partial-wave, while those in the lower panel have S-wave leading. Red/green curves show ππ=KK̄
noninteracting energies.

FIG. 12. I ¼ 0 D-wave phase shift for mπ ∼ 330 MeV (top)
and mπ ∼ 283 MeV (bottom). Discrete data points come from
irreps in which l ¼ 2 is the lowest subduced partial-
wave, assuming l ≥ 4 scattering to be negligible. Curves show
two illustrative parametrizations: an effective range expansion
with two terms (red) and a conformal mapping with two terms
(black). The shaded region indicates energies above the KK̄
threshold.
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fixed at the leading order location, sA ¼ 1
2
m2

π , and varying
between the dispersive “CFD” predictions in Ref. [101]
(appropriately scaled for the changed pion mass), and
finally, allowing the zero location to float as a free

parameter. The locations of the different Adler zeroes
are given in Fig. 14.
The four illustrative cases presented in Fig. 13 (right)

indicate a slight sensitivity to the presence of an Adler zero,
likely reduced relative to the I ¼ 2 case by virtue of the
zero being further below threshold. The energy levels
below threshold do not obviously suggest a preference
either way for an Adler zero.
Figure 14 shows the scattering length for each para-

metrization choice that successfully describes the finite-
volume spectra. It is clear that at the heavier pion mass, the
presence, or not, of an Adler zero has no impact on the value
of the scattering length, andwewill discuss this further in the
next section in the context of there being a bound-state pole
dominating the amplitude.At the lighter pionmass, there is a
slight tendency to a larger scattering length for amplitudes
that lack an Adler zero, but the effect is barely significant.
Our estimates at these two pionmasses and those determined
in Ref. [53] are plotted in Fig. 15. An explanation of the
observed behavior would be that these pion masses straddle
a rapid divergence near mπ ∼ 300 MeV, where the scatter-
ing length tends to �∞ on either side of the divergence. In
the next section, we will discuss how this can be related to
the σ pole undergoing a transition between Riemann sheets
by passing through the ππ threshold.

C. The σ pole

The presence of singularities on the real axis below
threshold can be inferred rather directly from graphs of

FIG. 13. I ¼ 0 S–wave scattering for mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right). Four example parametrizations are shown: a
two-term conformal mapping (black), an effective range expansion with two terms (green), and two choices with an Adler zero fixed at
the leading order χPT location, a two-term conformal mapping (red), and an effective range expansion with two terms (orange). In the
bottom panels, the gray curves show ∓ ffiffiffiffiffiffiffiffi

−k2
p

below threshold—intersection of the k cot δ00 curves with these indicate the location of a
bound state or a virtual bound state, respectively.

FIG. 14. Extracted scattering length for a range of I ¼ 0 S–wave
amplitude parametrizations for mπ ∼ 330 MeV (top) and mπ ∼
283 MeV(bottom).Eachamplitude is labeledby theχ2=Ndof , on the
top(bottom) axis, with which it describes the finite-volume spec-
trum. Red points correspond to amplitudes containing anAdler zero
at some location, while blue points lack any enforced subthreshold
zero. The numbers closest to the red points indicate the correspond-
ing Adler zero location, in units of the LO value, m2

π=2. Negative
values come from those cases where the zero location is a free
parameter, and these values have large uncertainties.
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k cot δ against k2. Since

tIlðsÞ ¼
1

ρðsÞ
1

cot δIlðsÞ − i
¼

1
2

ffiffiffi
s

p
k cot δIlðsÞ − ik

; ð16Þ

it follows that pole singularities are present whenever the
graph of k cot δ intersects a curve, ik ¼ �

ffiffiffiffiffiffiffiffi
−k2

p
below

threshold. The negative sign corresponds to a pole on the
physical Riemann sheet, a bound state, while the positive
sign corresponds to the second Riemann sheet and a virtual
bound state.
In Fig. 13 (left), for the heavier pion mass, all amplitude

parametrizations intersect with −
ffiffiffiffiffiffiffiffi
−k2

p
only slightly below

threshold, with a parametrization dependence below the
statistical uncertainty. This indicates the presence of a
bound state lying very close to threshold, and indeed
numerical determination shows it to be statistically com-
patible with being at threshold, see Fig. 16. Restricting
amplitude fits to only describing levels in a small region
around threshold does not change this conclusion.
As a bound-state pole approaches threshold, the value of

k cot δ00 at the pole location tends to 1=a00, and hence the
scattering length must diverge to −∞ as was suggested in

the previous section. An argument due to Weinberg [111]
suggests that the scattering length (a00), effective range (r

0
0),

and binding energy (ϵ ¼ 2mπ −mσ) together can be used
to determine the degree to which this bound state is of
“ππ-molecular” versus “compact” nature,

a00 ¼ −2
1 − Z
2 − Z

1ffiffiffiffiffiffiffiffi
mπϵ

p ; r00 ¼ −
Z

1 − Z
1ffiffiffiffiffiffiffiffi
mπϵ

p ; ð17Þ

where Z is interpreted as the probability to find the state
in a compact configuration. Compatible values of Z are
obtained from each of these two equations suggesting that
(suppressed) corrections are modest, and the resulting
Z ¼ 0.07ð4Þ suggests dominance of a ππ component over
any compact component in the σ at this pion mass.
In Fig. 13 (right), for the lighter pion mass, there are now

two classes of parametrization. Many parametrizations
capable of describing the finite-volume spectrum cross
the curve þ

ffiffiffiffiffiffiffiffi
−k2

p
below threshold, indicating the presence

of a virtual bound state, but some do not. Upon searching
these latter amplitudes for poles off the real axis, complex
conjugate pairs of poles are found off the real axis below
threshold. As can be seen in Fig. 13 (right), there is not a
significant qualitative difference in the amplitude above
threshold between the effect of a virtual bound state and a
subthreshold resonance. The locations of these poles are
shown in Fig. 16.
In the case of a virtual bound state lying at threshold, a

similar logic to that presented above for a bound state
indicates that the scattering length must diverge to þ∞ as
the pole reaches threshold. The transition, as the pion mass
increases, from scattering length diverging to þ∞, to
reducing from −∞ would therefore correspond to a pole
on the second Riemann sheet moving onto the physical
Riemann sheet by passing through the threshold.
Figure 17 summarizes the σ pole positions extracted

from calculations at mπ ∼ 391, 330, 283 and 239 MeV
using the same lattice action. At the heaviest two pion
masses, the σ is a stable bound state, at 283 MeV it is
either a virtual bound state or a subthreshold resonance

FIG. 16. Extracted σ pole location for each I ¼ 0 S–wave parametrization found capable of describing the finite-volume spectra for
mπ ∼ 330 MeV (left) and mπ ∼ 283 MeV (right). Left panel shows the physical sheet housing a bound-state pole, right panel shows the
lower half-plane of the unphysical sheet housing either a virtual bound-state pole or a subthreshold resonance pole. For some of the
parametrizations producing a virtual bound state, a second, lighter pole is also observed on the real axis.

FIG. 15. I ¼ 0 S-wave scattering length at four pion masses
(this paper and Ref. [53]). Red points correspond to parametri-
zations featuring an Adler zero, while blue points have no
enforced subthreshold zero. The result of dispersive analysis
applied to experimental data [101] is shown by the gray point.
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(depending upon parametrization), while at 239 MeV it
appears to be a broad resonance. Qualitatively this evolu-
tion in quark mass conforms to the general scheme
presented in Ref. [58,59,104]—as the pion mass is
increased from its physical value, where the σ is a broad
resonance, the complex conjugate pole pairs on the second
Riemann sheet move toward the real energy axis, even-
tually meeting at a point below threshold. One pole then
moves away towards negative infinity, becoming less
relevant, while the other moves toward threshold as a
virtual bound state. When this pole reaches threshold, it
moves onto the physical sheet as a bound state, which
becomes more deeply bound as the pion mass increases
further.
The behavior of the amplitude in the pion mass region

where the conjugate pole pair meet on the real axis indicates
the origin of the large statistical errors in the right panel of
Fig. 16. At this point, the derivative of the pole location with
respect to amplitude parameters can diverge, leading to an
inability to propagate a statistical error.7 The fact that our
mπ ∼ 283 MeV choice appears to be close to this point
generates larger statistical uncertainties on the pole position
than might otherwise be expected.
The lack of a reliable determination of a second

subthreshold pole (as expected by the pole evolution
argument described above) for the heavier pion mass

considered in our calculation likely reflects the insensitivity
of the amplitude near and above threshold (which deter-
mines the finite volume spectrum) to such a rather distant
pole. Some additional constraints below threshold would be
required to pin it down with certainty.
The reduction in the value of jgππj observed in Fig. 17 for

mπ ∼ 330 MeV is expected on general grounds if this point
is close to the pion mass where the σ pole passes through
the threshold. Kinematic constraints on the amplitude at
threshold ensure that as the pole approaches threshold, the
S-wave coupling must behave like g2ππ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sR − 4m2

π

p
, and

hence must vanish as the pole crosses the threshold.
As was previously observed in a lattice calculation with

mπ ∼ 239 MeV [53], the results of this paper indicate that
in those cases where the σ is unbound, even with the use of
large numbers of high-precision finite-volume energy
levels, the σ pole location cannot be precisely pinned
down. Different parametrizations which describe the real-
energy data equally well lead to pole locations and
couplings scattered well outside the statistical uncertainty,
and we conclude that to reduce this systematic error it will
be necessary to introduce a greater level of theoretical
constraint into the determination of the scattering ampli-
tudes. In the next section, we will describe a plausible
approach to achieve this which makes use of the full set of
partial-wave amplitudes across three isospins computed in
this paper.

VII. CONCLUSIONS AND OUTLOOK

We have reported on the extraction of ππ elastic
scattering amplitudes across all three isospins for low
partial-waves, supplementing earlier calculations on aniso-
tropic lattices with mπ ∼ 391, 239 MeV, with new calcu-
lations at two interpolating pion masses, 330 MeV and

FIG. 17. Left: σ pole location with varying pion mass from this calculation and from calculations on lattices with the same
action [45,47]. Green (mπ ∼ 391 MeV, from [53]) and blue (mπ ∼ 330 MeV) points lie on the physical sheet while red (mπ ∼ 283 MeV)
and orange (mπ ∼ 239 MeV) points lie on the unphysical sheet (additional parametrizations have been applied to the energy levels
published in [53] to generate the spread of orange points). Right: Magnitude of the σ pole coupling, as defined in Eq. (13) at four pion
masses, with different parametrizations displaced horizontally for clarity. The points atmπ ∼ 283 MeV are separated into two groupings
according to whether the pole in that case is a subthreshold resonance or a virtual bound state. The dashed vertical lines locate each one
of our pion masses. The result of dispersive analyses [7,87,110] ([87] only for the coupling) of experimental data is shown in gray in
each plot.

7For example, with an effective range parametrization, the
dependence on the pole locations on the scattering length and
effective range is given by

∂kR
∂a

¼ 1

a2
1

rkR − i
;

∂kR
∂r

¼ −
1

2

k2R
rkR − i

;

and the location where the two poles coincide is kR ¼ i=r with r
negative and with a ¼ −2r.
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283 MeV. The new pion masses explore the region where
we expected the σ state appearing in the I ¼ 0 S–wave to
transition from a bound state into a resonance. We
continued the philosophy used in prior publications
[36,45,47,53,57,63,66,67,80,88,89,112,113] of exploring
a wide range of amplitude parametrizations to test the
uniqueness of the lattice QCD spectrum constrained
amplitudes and their resonance content.
The isospin-2 S-wave at both new pion masses is found

to be weak and repulsive, and we isolated a sensitivity in
the extracted value of the scattering length to whether
amplitude parametrizations contain a subthreshold zero like
an Adler zero. The isospin-1 P-wave is dominated by an
isolated narrow ρ resonance, and we were able to establish
the trajectory of the corresponding resonance pole through
the complex plane as the pion mass varies. The corre-
sponding coupling of the resonance to ππ was found to be
essentially quark mass independent.
The isospin-0 S-wave, which houses the σ, shows the

most dramatic change between the two pion masses
considered. At mπ ∼ 330 MeV the phase shift is relatively
flat over the entire region and is found to feature a bound-
state σ with a binding energy of only about 3 MeV, while
at mπ ∼ 283 MeV the phase shift rises slowly from 0°
caused by the σ being either a virtual bound state or a
subthreshold resonance. We conclude that the σ undergoes
a transition from being a bound state to being a virtual
bound state somewhere between mπ ∼ 283 MeV and
mπ ∼ 330 MeV.
The very different quark mass evolutions observed for

the vector ρ and the scalar σ agree with the general
arguments that a P–wave resonance can only become
stable by having the complex conjugate resonance pole
pair coalesce at the threshold, while an S–wave state need
not meet this requirement. Once the pair of S–wave poles
meet on the real axis below threshold, they evolve differ-
ently, with one of them approaching threshold as the quark
mass increases. In those lattices where we find a bound σ,
the pole closest to threshold determines the low energy
behavior of the partial-wave.
The fact that we are unable to state with certainty

whether the σ at mπ ∼ 283 MeV is a virtual bound state
or a subthreshold resonance reflects the same problem that
was previously reported for the σ at mπ ∼ 239 MeV in
Ref. [53], where equally good amplitude descriptions of the
finite-volume spectrum have poles in locations scattered
across the complex plane. Given the degree of systematic
uncertainty associated with the choice of parametrization
observed, it would not be appropriate to attempt to
extrapolate the current data at unphysical pion masses to
the physical pion mass.
The inability of even large numbers of high-precision

lattice QCD energy levels to uniquely pin down the σ pole
location, and also to determine the location of Adler zeroes
in the I ¼ 0 and I ¼ 2 S–wave amplitudes, are problems

that most likely have a common origin. In both cases, we
are required to analytically continue relatively far from
where the amplitudes are constrained, which is over a
limited section of the real energy axis mainly above
threshold.
We propose that a solution is to apply additional

theoretical constraints to the amplitudes. In particular,
the behavior of any fixed isospin partial-wave amplitude
for s < 0 is controlled by partial waves in all isospins by
virtue of crossing symmetry, and dispersion relations allow
us to make practical use of this symmetry, while also
ensuring good analytic properties of the amplitudes. Since
we have computed amplitudes with all isospins on the same
lattices in this paper, we can envisage applying a dispersion
relation analysis approach to more accurately constrain
partial-wave amplitudes. We are pursuing such an app-
roach, and a publication is in preparation.
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