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We study the decay J=ψ → πþπ−π0 within the framework of the Khuri-Treiman equations. We find that
the BESIII experimental dipion mass distribution in the ρð770Þ-region is well reproduced with a once-
subtracted P-wave amplitude. Furthermore, we show that F-wave contributions to the amplitude improve
the description of the data in the ππ mass region around 1.5 GeV. We also present predictions for the
J=ψ → π0γ� transition form factor.
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I. INTRODUCTION

Decays of the lowest-lying charmonium states provide
an excellent environment to study light hadron spectros-
copy, search for exotic mesons, test QCD and QCD-based
models, as well as testing theoretical techniques in a region
where both nonperturbative and perturbative QCD effects
play a role.
In this work we analyze the decay J=ψ → πþπ−π0,

to study the dynamics of the three-pion system at low
and intermediate energies under rather clean conditions.
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Here, the final state invariant mass distribution can contain
contributions from the P-wave ðJPC ¼ 1−−Þ and F-wave
ðJPC ¼ 3−−Þ states of the ππ subsystem. Previous exper-
imental studies from BESII [1] and BABAR [2] showed that
the P-wave ρð770Þπ intermediate state dominates the
process, but limited statistics prevented any detailed study
of substructures in the 3π system. While the dominance of
the ρð770Þ resonance can be clearly seen in the Dalitz plot
distribution and projection measurements by the BESIII
collaboration obtained with roughly 1.9 million J=ψ →
πþπ−π0 events [3], there are hints of contributions other
than the ρð770Þ. For example, the absence of events in the
center of the Dalitz plot indicates the contribution from
additional states and/or partial waves which may interfere
destructively with the ρð770Þ. Exactly the opposite sit-
uation is found for the partner reaction ψð2SÞ → πþπ−π0.
There, the 7872 events from BESIII [3] show a completely
different shape of the ππ invariant mass distribution and the
Dalitz plot—the ρπ contribution is subleading and almost
all events are found in the center of the Dalitz plot, with
data indicating that the main contribution comes from a
higher mass resonance, i.e., the ρð2150Þ resonance with
JPC ¼ 1−−. The different picture between the J=ψ and
ψð2SÞ decays into πþπ−π0 and the lack of reasonable
explanations within the quark model is known as the ρπ
puzzle and still remains largely unresolved (see, e.g.,
Refs. [4–8], and references therein). New high-statistics
BESIII data on J=ψ decays will soon be available [9,10],
which could be used to greatly improve the theoretical
uncertainties associated to vector charmonium decays. In
particular, they might help clarify the ρπ puzzle, as well as
provide access to high-precision ρ − ω mixing effect
analyses and motivate coupled channel studies with the
decays J=ψ → KþK−π0 and J=ψ → KSK�π∓.
The decay J=ψ → πþπ−π0 has previously been studied

within the context of the Veneziano model [11], and using
aspects of unitarity and analyticity constraints [12,13].
Here, we adapt the Khuri-Treiman (KT) framework [14],
applied extensively in the isospin-violating decay η → 3π
[15–21] and in the decay of light vector isoscalar reso-
nances ω;ϕ → 3π [22–24], to the analysis of the vector
charmonium decay J=ψ → πþπ−π0. We show that one
subtraction in the KT equations satisfactorily describes the
BESIII experimental dipion mass distribution at the peak of
the ρð770Þ. In addition, we find that F-wave effects are
needed to describe the intermediate energy region around
1.5 GeV. We also apply our analysis techniques to predict
the J=ψ → π0γ� transition form factor. Our study lays the
groundwork for a detailed analysis of J=ψ decays using the
large data sample currently being collected at BESIII.
This paper is organized as follows. In Sec. II we review the

KT formalism for the J=ψ → 3π decay. In Sec. III we apply
the formalism to the BESIII data and discuss the results. In
Sec. IV,we present predictions for the J=ψ → π0γ� transition
form factor, and we summarize our findings in Sec. V.

II. FORMALISM

A. Decay amplitude and kinematics

The amplitude for the decay J=ψðpVÞ → π0ðp0Þ ×
πþðpþÞπ−ðp−Þ can be expressed in terms of a kinematic
prefactor and a single invariant scalar function Fðs; t; uÞ
containing the dynamical information,

Mðs; t; uÞ ¼ iϵμναβϵμðpVÞpνþpα
−p

β
0Fðs; t; uÞ; ð2:1Þ

where ϵμναβ is the Levi-Civita tensor and ϵμðpVÞ is the
polarization vector of the J=ψ meson. The particle
momenta are related to the Mandelstam variables through:

s¼ ðpþ þp−Þ2; t¼ ðp0 þpþÞ2; u¼ ðp0 þp−Þ2;
ð2:2Þ

with sþ tþ u ¼ m2
J=ψ þ 3m2

π . In this paper, we work
in the isospin limit with mπ ≐ mπ� ¼ mπ0 and mπ ¼
ð2mπ� þmπ0Þ=3. The scattering angle in the s-channel,
defined by the center of mass of the πþπ− pair, is denoted
by θs and is given by:

cosθsðs; t;uÞ ¼
t−u

4pðsÞqðsÞ ; sinθsðs; t;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; t;uÞp

2
ffiffiffi
s

p
pðsÞqðsÞ ;

ð2:3Þ

where the momenta pðsÞ and qðsÞ,

pðsÞ ¼ λ
1
2ðs;m2

π; m2
πÞ

2
ffiffiffi
s

p ; qðsÞ ¼ λ
1
2ðs;m2

J=ψ ; m
2
πÞ

2
ffiffiffi
s

p ; ð2:4Þ

are, respectively, the momenta of the π� and π0 in the
s-channel. λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ca is
the Källén, or triangle, function [25]. The zeroes of the
well-known Kibble function [26],

ϕðs; t; uÞ ¼ ð2 ffiffiffi
s

p
sin θspðsÞqðsÞÞ2

¼ stu −m2
πðm2

J=ψ −m2
πÞ2; ð2:5Þ

define the boundaries of the physical regions of the
process. The Dalitz-plot boundaries in t for a given value
of s for J=ψ → 3π lie within the interval ½tminðsÞ; tmaxðsÞ�,
with

tmax;minðsÞ ¼
m2

J=ψ þ 3m2
π − s

2
� 2pðsÞqðsÞ; ð2:6Þ

while the allowed range for s is given by smin ¼ 4m2
π

to smax ¼ ðmJ=ψ −mπÞ2.
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Finally, the measured differential decay width can be
written in terms of the invariant amplitude Fðs; t; uÞ as

d2Γ
dsdt

¼ 1

ð2πÞ3
1

32m3
J=ψ

1

3

ϕðs; t; uÞ
4

jFðs; t; uÞj2: ð2:7Þ

B. Khuri‐Treiman equations for J=ψ → 3π

The KT formalism for the J=ψ → 3π amplitude
Fðs; t; uÞ is formally identical to the well-established one
for the ω → 3π decay amplitude [22–24,27], and has been
discussed in Ref. [28] (see also Ref. [29]). As shown in
these references, the s-channel partial-wave expansion for
Fðs; t; uÞ is given by

Fðs; t; uÞ ¼
X∞
J odd

ðpðsÞqðsÞÞJ−1P0
JðzsÞfJðsÞ; ð2:8Þ

where zs ¼ cos θs and P0
JðzsÞ is the derivative of the

Legendre polynomial. The KT representation of the
scalar function Fðs; t; uÞ in Eq. (2.8) may be obtained
by replacing the infinite sum of partial waves in the
s-channel with the sum of three so-called isobar ampli-
tudes, one for each of the s-, t- and u-channels. By
truncating the partial wave expansion of each isobar
amplitude at Jmax ¼ 1 we obtain the following crossing-
symmetric isobar decomposition [22,23,30]:

Fðs; t; uÞ ¼ F1ðsÞ þ F1ðtÞ þ F1ðuÞ; ð2:9Þ

where each isobar amplitude, F1ðxÞ, has only a right-hand
or unitary cut in its respective Mandelstam variable. The
relation between F1ðsÞ and f1ðsÞ is obtained by projecting
Eq. (2.9) onto the s-channel partial wave,

f1ðsÞ ¼ F1ðsÞ þ F̂1ðsÞ; ð2:10Þ

F̂1ðsÞ≡ 3

Z
1

−1

dzs
2

ð1 − z2sÞF1ðtðs; zsÞÞ; ð2:11Þ

where the inhomogeneity F̂1ðsÞ contains the s-channel
projection of the left-hand cut contributions due to the t-
and u-channels, and its evaluation in the decay region
requires a proper analytical continuation [31]. Assuming
elastic unitarity with only two-pion intermediate states, we
arrive at the KT equation for the J=ψ → 3π decay, i.e., the
unitarity relation for the isobar amplitude F1ðsÞ:

discF1ðsÞ ¼ 2iðF1ðsÞ þ F̂1ðsÞÞ sinδ1ðsÞe−iδ1ðsÞθðs− 4m2
πÞ;

ð2:12Þ

where δ1ðsÞ is the P-wave ππ phase shift, which is real.
Given the discontinuity relation in Eq. (2.12), one can

write an unsubtracted dispersion relation for F1ðsÞ as

F1ðsÞ ¼
1

2πi

Z
∞

4m2
π

ds0
discF1ðs0Þ
s0 − s

; ð2:13Þ

the solution of which can be written as:

F1ðsÞ ¼ Ω1ðsÞ
�
aþ s

π

Z
∞

4m2
π

ds0

s0
sin δ1ðs0ÞF̂1ðs0Þ
jΩ1ðs0Þjðs0 − sÞ

�
; ð2:14Þ

where Ω1ðsÞ is the usual Omnès function [32],

Ω1ðsÞ ¼ exp

�
s
π

Z
∞

4m2
π

ds0

s0
δ1ðs0Þ
s0 − s

�
: ð2:15Þ

The subtraction constant a in Eq. (2.14) is the only
free parameter in the model. It is in general complex,
a ¼ jajeiϕa . While its modulus jaj can be fixed from the
experimental J=ψ → 3π decay width, no observable of
the decay is sensitive to the overall phase ϕa, so we can set
ϕa ¼ 0. Since it determines the overall normalization of the
amplitude, the constant a can be factored out.
We note that due to the asymptotic behavior of F1ðsÞ in

Eq. (2.14), the amplitude Fðs; t; uÞ satisfies the Froissart-
Martin bound [22,33,34]. Also note that, even though
F1ðsÞ=Ω1ðsÞ in Eq. (2.14) looks like a once-subtracted
dispersion relation, F1ðsÞ actually satisfies the unsubtracted
dispersion relation given in Eq. (2.13). Therefore, the energy
dependence of F1ðsÞ is a pure prediction given solely by the
phase shift δ1ðsÞ. Here, we take δ1ðsÞ from the phase shift
parametrizations of Ref. [35] that are valid roughly up toffiffiffi
s

p ¼ 2 GeV. These phase shifts contain information about
inelastic channels, but given that the inelasticity is found to be
rather small until about 1.4 GeVwe refrain from considering
them. Therefore, the phase shift that we employ have the
physics of the ρð770Þ and also the effects of the higher
ρð1450Þ and ρð1770Þ resonances. For our analysis, beyondffiffiffi
s

p ¼ Λ≡ 1.85 GeV we smoothly guide the δ1ðsÞ to π
through [27,36]

δ∞ðsÞ≡ lim
s→∞

δ1ðsÞ ¼ π −
α

β þ ðs=Λ2Þ3=2 ; ð2:16Þ

where α and β are parameters introduced so that the phase
δ1ðsÞ and its first derivative δ0ðsÞ are continuous at s ¼ Λ2.
Their explicit expressions read

α¼ 3ðπ − δ1ðΛ2ÞÞ2
2Λ2δ01ðΛ2Þ ; β ¼ −1þ 3ðπ − δ1ðΛ2ÞÞ

2Λ2δ01ðΛ2Þ : ð2:17Þ

This ensures the expected asymptotic 1=s behavior ofΩ1ðsÞ.
The three phase shifts δ1ðsÞ from Ref. [35] that we use as an
input are shown in Fig. 1 up to 2.5 GeV. The different
solutions come from using different ππ scattering data
sources. As seen, the behavior of the phase shift solution I
suggests a large interference between the ρ0 and ρ00, with a
sizable change in the phase in the region between 1.5 and
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1.8 GeV, while solutions II and III looks smoother in this
region. For our analysis, we use solution I as our central
input for the phase and solutions II and III to quantify the
systematic uncertainties in our calculations.
We solve Eq. (2.14) following a numerical iterative

procedure similar to Refs. [16,20–22,38]. We use F1ðsÞ ¼
Ω1ðsÞ as an efficient initial input to calculate F̂1ðsÞ from
Eq. (2.11), which subsequently is inserted as an input in
Eq. (2.14) for the computation of an updated F1ðsÞ.
This cyclic calculation is repeated until the solution
converges. In Fig. 2, we show the solutions for F1ðsÞ
(normalized to a ¼ 1) after each iteration step along with
the initial input (dashed blue line). As can be seen,
convergence is achieved after three iterations. The differ-
ence between the final solution (solid black) and the

starting point, i.e., F1ðsÞ ¼ Ω1ðsÞ (dashed blue), is rather
small, hinting at moderate crossed-channel effects.
Note that when the crossed-channel rescattering effects

are removed from the isobar F1ðsÞ, i.e. when F̂1ðsÞ ¼ 0 in
Eq. (2.14), F1ðsÞ is simply the pure Omnès function
multiplied by a constant,

F1ðsÞ ¼ a0Ω1ðsÞ; ð2:18Þ

which implies the following isobar decomposition of the
full amplitude [cf., Eq. (2.9)]:

Fðs; t; uÞ ¼ a0ðΩ1ðsÞ þ Ω1ðtÞ þ Ω1ðuÞÞ: ð2:19Þ

In this case, a new normalization constant a0 has to be
chosen to reproduce the J=ψ → 3π decay width. Also note
that Eq. (2.14) can be written in the form

F1ðsÞ ¼ Ω1ðsÞ
�
aþ b0sþ s2

π

Z
∞

4m2
π

ds0

ðs0Þ2
sin δ1ðs0ÞF̂1ðs0Þ
jΩ1ðs0Þjðs0 − sÞ

�
;

ð2:20Þ

where b0 satisfies the following sum rule [22]:

b≡ b0=a ¼ 1

π

Z
∞

4m2
π

ds0

ðs0Þ2
sin δ1ðs0ÞF̂1ðs0Þ=a

jΩ1ðs0Þj
: ð2:21Þ

The subtraction constant, b, is complex due to the presence
of the three-particle cut in the physical region of the decay
amplitude. This value is found to be

bsum ≃ 0.141e2.321i GeV−2: ð2:22Þ

FIG. 2. Convergence behavior of the iterative procedure for the real (left plot) and imaginary (right plot) parts of the amplitude F1ðsÞ
given in Eq. (2.14) using solution I of the phase shift δ1ðsÞ as input. The vertical line denotes the two-pion threshold.

FIG. 1. Solutions I, II, and III for the P-wave phase shift δ1ðsÞ
from Ref. [35] valid roughly up to

ffiffiffi
s

p ¼ 2 GeV. The solution of
Ref. [37] (dotted red line) is valid only up to aboutffiffiffi
s

p ¼ 1.3 GeV, and is shown for completeness.
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Had we used solution II or III of the phase shift δ1ðsÞ (cf.,
Fig. 1), we would have obtained bsum ≃ 0.129e2.640i GeV−2

and bsum ≃ 0.124e2.811i GeV−2, respectively.
Performing one subtraction on Eq. (2.13) leads to the

solution [20,22,30]:

F1ðsÞ ¼ a½FaðsÞ þ bFbðsÞ�; ð2:23aÞ

where now b is not constrained to satisfy Eq. (2.21), and the
functions FaðsÞ and FbðsÞ are given by

FaðsÞ ¼ Ω1ðsÞ
�
1þ s2

π

Z
∞

4m2
π

ds0

s02
sin δ1ðs0ÞF̂aðs0Þ
jΩ1ðs0Þjðs0 − sÞ

�
; ð2:23bÞ

FbðsÞ ¼ Ω1ðsÞ
�
sþ s2

π

Z
∞

4m2
π

ds0

s02
sin δ1ðs0ÞF̂bðs0Þ
jΩ1ðs0Þjðs0 − sÞ

�
: ð2:23cÞ

These functions only need to be calculated once since they
are independent of the numerical values of a and b and, as
we will discuss in Sec. III, a and b will become fit
parameters. In Fig. 3, we show the solutions for FaðsÞ
and FbðsÞ using a numerical iterative procedure similar to
the one described previously. In this case, nine iterations are
needed to obtain convergent solutions. Strictly speaking,
the amplitude Fðs; t; uÞ built from F1ðsÞ in Eq. (2.23) does
not satisfy the asymptotic Froissart-Martin bound for an
arbitrary value of the parameter b ≠ bsum [cf., Eq. (2.22)].

FIG. 3. Convergence behavior of the iterative procedure for the real (left plots) and imaginary (right plots) parts of the amplitudes
FaðsÞ (Eq. (2.23b), upper plots) and FbðsÞ (Eq. (2.23c), lower plots) using solution I of the phase shift as δ1ðsÞ input. The vertical line
denotes the two-pion threshold.
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The main advantage of introducing one subtraction is that,
due to the additional 1=s0 factor introduced, we reduce the
importance of the high energy region of the dispersion
integrals where the phase shift is not well known. By letting
the subtraction constant b be a free parameter, we can
partially absorb our ignorance of the higher energy part
of the integral. This allows us to parametrize some
unknown energy dependence of the J=ψ → 3π interaction
not directly related to ππ rescattering. As we will show in
the following section, the once-subtracted parametrization
provides a good representation of the data from BESIII in
the ρð770Þ resonance region.

III. RESULTS

A. P-wave contribution

We now compare our KT amplitudes defined in the
previous section to the experimental data from the BESIII
collaboration [3]. Given that the Dalitz plot distribution is
not publicly available, we are only able to analyze the
dipion mass projection of Eq. (2.7), computed on theffiffiffi
s

p ≡mππ invariant mass, shown in Fig. 2 of Ref. [3]. A
Poisson distribution is assumed to assign uncertainty for
every bin. High statistics of the data sample make it
challenging to achieve an accurate description of the data
with reasonably simple models. Nevertheless, we will be
able to obtain a qualitative description of the data in the
whole energy range. We start by using the unsubtracted
KT amplitude Eq. (2.14). The single free parameter a
only affects the overall normalization of the amplitude
and can be fixed from the J=ψ → πþπ−π0 decay width.
Using the PDG values ΓJ=ψ ¼ 92.6 keV and BRðJ=ψ →
πþπ−π0Þ ¼ 2.10ð8Þ% [39] one finds jaj ≃ 0.051 GeV−3.

In Fig. 4, we compare our prediction to the mππ

distribution by BESIII with proper normalization
[cf., Eq. (3.1)]. In the figure, we also show the result
obtained when the crossed-channel rescattering is
neglected [cf., Eq. (2.19)], in which case the global
normalization is found to be ja0j ≃ 0.046 GeV−3. As can
be observed, the result of the latter solution (dotted
brown line) lies below that of the unsubtracted KT
F1ðsÞ solution at the peak of the ρ-meson, and neither
reproduce the experimental data in this region. In
addition, both appear to fail at describing the inter-
mediate energy region. In order to achieve a better
description of the data, we next use the more flexible,
once-subtracted amplitude Eqs. (2.23b) and (2.23c),
with the additional subtraction constant b fitted to
BESIII data. For our analysis, we define

χ2data ¼
X
i¼1

�
Nev;i −N dΓth

i =dmππ

σNev;i

�
2

; ð3:1Þ

where Nev;i and σNev;i
are, respectively, the experimental

number of events distribution and the corresponding
error in the ith bin and dΓth

i =dmππ is the theoretical
expression for the decay distribution [cf., Eq. (2.7)]. For
σNev;i

we take
ffiffiffiffiffiffiffiffiffiffi
Nev;i

p
. The constant N is at this stage an

arbitrary normalization. Since we are not determining
the branching ratio, we reabsorb the global normaliza-
tion of the amplitude a into N and fix alone this overall
constant from the fit to the BESIII data. The sum in
Eq. (3.1) runs over the 80 data points and we take into
account an efficiency of about 0.3 for the number of
events and the errors in our fits [3].
The χ2data minimization yields

jbj ¼ 0.198ð35Þ GeV−2; ϕb ¼ 2.675ð300Þ; ð3:2Þ

which implies jaj ¼ 0.0565ð22Þ GeV−3 for the normali-
zation of the amplitude upon using the BRðJ=ψ →
πþπ−π0Þ from the PDG. The statistical error is negligible
and the quoted error is the theoretical systematic uncer-
tainty attached to our calculations. This is obtained from
the absolute value of the difference between the fits
performed with solutions I (central solution) and III of
the phase shift δ11ðsÞ (cf., Fig. 1), which gives the largest
variation. We observe that the systematic errors attached
are sizable, of about 18% and 11% for jbj and ϕb,
respectively. We also note that this value stays close to
its sum-rule prediction given in Eq. (2.22). Therefore, we
conclude that the pion-pion P-wave phase shift saturates
the sum rule for the J=ψ → 3π partial wave to about 75%.
This result is to be compared to similar sum rules for
ω → 3π in Ref. [38], where the fitted value of b was found
to be quite different than its sum-rule bsum, and for ϕ →
3π in Ref. [22], where it was observed that the difference

FIG. 4. BESIII (red circles) [3] measurement of the mππ

invariant mass distribution for the decay J=ψ → 3π as compared
to our prediction without crossed-channel effects (dotted brown
line), with the unsubtracted KTamplitude (dashed green line) and
our fit in Eq. (3.2) including one subtraction (black solid line).
The gray band accounts for the systematic uncertainties attached
to our calculations. See main text for details.
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between the fitted b and bsum was small. The result of the
fit is shown in Fig. 4 with the normalization of the events
distribution resulting from the fits, N ¼ 7.64ð33Þ × 108 in
units of ð2.4 MeVÞ−1. The gray error band in the figure
accounts for the systematic uncertainties associated to our
fits and is defined as the (symmetrized) difference between
the fit results obtained with solution I of the phase shift
with respect to the ones from solution III, which give the
largest difference. It can be seen that this fit provides a
satisfactory description of experimental data up to mππ ∼
1 GeV (the elastic region). However, we obtain high
values of the χ2=dof of about 200 but this problem is
not critical. We shall come back to discuss this point
below. Here we stress that the once-subtracted KT
amplitude is able to reproduce the ρð770Þ function shape
and note that contributions of partial waves other than the
elastic P-wave, which is the main one, seem to be required
to describe the intermediate energy region around
mππ ∼ 1.5 GeV. The next allowed partial wave is the
F-wave, which we will include in the following subsec-
tion. As we will see, the inclusion of an explicit F-wave
improves the quality of the fit.
In Fig. 5, we show the Dalitz plot distribution resulting

from our fit, which exhibits unambiguous contributions
from ρð770Þ resonances which appear as bands along the
Dalitz plot boundaries, with almost no events in the center
of the Dalitz plot. The visual comparison with the corre-
sponding BESIII Dalitz-plot data shows a good agreement
(see Fig. 2 in Ref. [3]).

B. Inclusion of the F-wave contribution

The isobar decomposition of the amplitude including
F-waves follows from Eq. (2.8) and reads [22,38]:

Fðs; t; uÞ ¼ F1ðsÞ þ F1ðtÞ þ F1ðuÞ
þ ðpðsÞqðsÞÞ2P0

3ðzsÞF3ðsÞ
þ ðpðtÞqðtÞÞ2P0

3ðztÞF3ðtÞ
þ ðpðuÞqðuÞÞ2P0

3ðzuÞF3ðuÞ; ð3:3Þ

where F1ðsÞ is the P-wave isobar [cf., Eq. (2.23a)], F3ðsÞ is
the F-wave isobar amplitude, which as F1ðsÞ only has a
right-hand cut, and:

zt ¼
s − u

4pðtÞqðtÞ ; zu ¼
s − t

4pðuÞqðuÞ : ð3:4Þ

The discontinuity of the F-wave is expressed by:

discF3ðsÞ ¼ 2iðF3ðsÞþ F̂3ðsÞÞsinδ3ðsÞe−iδ3ðsÞθðs− 4m2
πÞ;

ð3:5Þ

where δ3ðsÞ and F̂3ðsÞ are the F-wave phase shift and
inhomogeneity, respectively. Here, we will simplify
Eq. (3.5) by neglecting F̂3ðsÞ, as done for instance in
Ref. [20]. The solution is then given by:

F3ðsÞ ¼ p3ðsÞΩ3ðsÞ; ð3:6Þ

whereΩ3ðsÞ is the F-wave Omnès function [cf., Eq. (2.15)]

Ω3ðsÞ ¼ exp
�
s
π

Z
∞

4m2
π

ds0

s0
δ3ðs0Þ
s0 − s

�
: ð3:7Þ

In order to obtain the required input phase δ3ðsÞ, we
model the F-wave contribution by a ρ3ð1690Þ resonance
(JPC ¼ 3−−). While the dominant decay mode of the
ρ3ð1690Þ is to 4π, we only consider here its decay to ππ
and neglect inelastic channels effects. We use the following
Breit-Wigner representation for F3ðsÞ:

F3ðsÞjBW ¼ m2
ρ3

m2
ρ3 − s − imρ3Γ

l¼3
ρ3 ðsÞ ; ð3:8Þ

with the energy-dependent width given by

Γl
RðsÞ ¼

ΓRmRffiffiffi
s

p
�

pðsÞ
pðm2

RÞ
�

2lþ1

ðFl
RðsÞÞ2: ð3:9Þ

The Fl
RðsÞ denotes the Blatt-Weisskopf factor that limits the

growth of the isobar [40]. For l ¼ 3 it is given by:

Fl¼3
R ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ðz0 − 15Þ2 þ 9ð2z0 − 5Þ2
zðz − 15Þ2 þ 9ð2z − 5Þ2

s
;

z ¼ r2Rp
2ðsÞ; z0 ¼ r2Rp

2ðm2
ρ3Þ; ð3:10Þ

with the hadronic scale rR ¼ 2 GeV−1. The phase can then
be computed from the relation

FIG. 5. Dalitz plot distribution d2Γ=dsdt (in arbitrary units)
resulting from our fit in Eq. (3.2).
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tan δ3ðsÞ ¼
ImF3ðsÞjBW
ReF3ðsÞjBW

; ð3:11Þ

which completes our representation of the F-wave isobar
F3ðsÞ. Using mρ3 ¼ 1688 MeV and Γρ3 ¼ 161 MeV from
the PDG, in Fig. 6 we display the model for the phase δ3ðsÞ
Eq. (3.11) and the output for the corresponding Omnès
function Ω3ðsÞ Eq. (3.7) that we use for our analysis.
Finally, the function p3ðsÞ in Eq. (3.6) is a polynomial

that parametrizes the energy dependence not directly
related to the propagation of the ρ3ð1690Þ resonance and
fixes the strength of the F-wave amplitude. In order to
achieve a satisfactory description of the data, we take p3ðsÞ
linear in s with parameters relative to the P-wave ampli-
tude, i.e. p3ðsÞ ¼ aðjcjeiϕc þ jdjeiϕdsÞ, such that the over-
all normalization of the amplitude a can be factored out in
Eq. (3.3) and absorbed in N [cf., Eq. (3.1)] as in the
previous subsection. By minimizing Eq. (3.1), we obtain
the following values for the fit parameters:

jbj ¼ 0.205ð34Þ GeV−2; ϕb ¼ 2.784ð298Þ; ð3:12Þ

for the P-wave subtraction constant, and

jcj × 102 ¼ 4.38ð1.46Þ GeV−4; ϕc ¼ 3.80ð5Þ;
jdj × 102 ¼ 1.58ð46Þ GeV−6; ϕd ¼ 0.65ð8Þ; ð3:13Þ

for the parameters of the F-wave subtracted polynomial
p3ðsÞ. Again, the quoted error in the previous equations is
the systematic uncertainty obtained from using the different
P-wave phase shifts δ1ðsÞ as input. The result of this fit
implies jaj ¼ 0.0581ð60Þ GeV−3 for the overall normali-
zation of the amplitude and it is plotted in Fig. 7 as the
dash-dotted blue line using the event distribution normali-
zation from the fits, N ¼ 8.09ð41Þ × 108 in units of

ð2.4 MeVÞ−1. In the figure, the result of the standalone
P-wave fit [cf., Eq. (3.2)] is also shown for comparison. As
seen, the ρ3ð1690Þ-induced F-wave contribution improves
the description of the data around 1.5 GeV. Numerically, we
find that the individual F-wave contribution is rather small,
BRðJ=ψ → πþπ−π0ÞF−wave ¼ 6ð4Þ × 10−4, while the inter-
ference between the P- and F-waves gives a correction of a
few percent in the region mππ ∼ 1.5 GeV. The χ2=dof
remains high (about 100). However, with the systematic
uncertainties associated to our fits (blue error band in
Fig. 7), we conclude that our representation of the ampli-
tude is capable of describing the two more prominent
features shown by the data: the line shape of the BESIII
measurements in the vicinity of the ρð770Þ resonance as
well as the movement of the function atmππ ∼ 1.5 GeV due

FIG. 6. F-wave phase shift δ3ðsÞ Eq. (3.11) (left plot) and output for the Omnès function Ω3ðsÞ Eq. (3.7) (right plot).

FIG. 7. BESIII (red circles) [3] measurement of the mππ

invariant mass distribution for the decay J=ψ → 3π as compared
to our fits in Eqs. (3.2) (solid black line), (3.12) and (3.13)
(dot-dashed blue line). The blue error band accounts for the
systematic uncertainties attached to our calculations. See main
text for details.
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to the F-wave effects.1 As for the Dalitz-plot distribution,
the F-wave effects provides no significant change with
respect to Fig. 5 and we thus refrain to show them here.

IV. J=ψ → π0γ� TRANSITION FORM FACTOR

The J=ψπ0 transition form factor (TFF), fJ=ψπ0ðsÞ,
governs the J=ψ → π0γ� amplitude and its energy depend-
ence is experimentally accessible from the decays J=ψ →
π0eþe− and J=ψ → π0μþμ−. At present, there is no meas-
urement of the shape of the form factor and the only
experimental information on these decays is the measure-
ment of the branching ratio by the BESIII collaboration,
BRðJ=ψ → π0eþe−Þ ¼ ð7.56� 1.32� 0.50Þ × 10−7 [41].
This measurement was obtained subtracting the ρ resonance
contribution and assuming that excited cc̄ exchanges, e.g.
coming fromoff-shellψ 0 contributions, dominate the energy-
dependence of the form factor. References [28,42] showed
that subtracting this contribution is not well motivated, as the
light vector meson contributions to the form factor actually
dominate the decay. Using the formalism previously
employed for the decays of light vector mesons ω=ϕ →
π0γ� [24,43], we present a dispersive description of fJ=ψπ0ðsÞ
comparable to Ref. [28], but with the difference that our
analysis is driven by the J=ψ → 3π experimental data
analysis presented in Sec. III.
A dispersive representation of fJ=ψπ0ðsÞ is fully deter-

mined, up to possible subtractions, by the discontinuity
across the right-hand cut. Here, we focus on the light-quark
resonance contributions to the discontinuity, which domi-
nate the form factor at low and intermediate energies.
Additional cc̄ contributions can arise close to the upper
limit of the accessible phase space,

ffiffiffi
s

p ¼ mJ=ψ −mπ0 , and
in fact can dominate the transition form factor there [28,42],
but these contributions appear in a region of the Dalitz
decays which are strongly suppressed by phase space
[28,42], rendering the task of experimentally observing
them nearly impossible. Bearing this in mind, and because
of the absence of experimental data for the form factor, we
do not consider them in our analysis.
In order to be consistent with the elastic approximation

in the J=ψ → πþπ−π0 study, we include only the two-pion
intermediate state contribution to the discontinuity (see
Fig. 8 for a diagrammatic interpretation):

discfJ=ψπ0ðsÞ ¼ i
p3ðsÞ
6π

ffiffiffi
s

p FV
π
�ðsÞf1ðsÞθðs − 4m2

πÞ; ð4:1Þ

which requires as input the full s-channelP-wave J=ψ → 3π
amplitude f1ðsÞ given in Eq. (2.10) and the pion vector form
factor complex-conjugateFV

π
�ðsÞ, which we approximate by

theOmnès function (complex-conjugate) given inEq. (2.15).
Given that we are using a once-subtracted dispersion relation
for the J=ψ → 3π KTequations, an unsubtracted dispersion
relation for the TFF, as used for instance in Ref. [28], would
result in a divergent integral if no cutoff is used. Therefore,
we use a once-subtracted dispersion relation for the TFF
itself,

fJ=ψπ0ðsÞ ¼ jfJ=ψπ0ð0ÞjeiϕJ=ψπ0 ð0Þ

þ s
12π2

Z
∞

4m2
π

ds0

ðs0Þ3=2
p3ðs0ÞFV

π
�ðs0Þf1ðs0Þ

ðs0 − sÞ ;

ð4:2Þ
wherewe indicate explicitly the existence of a non-vanishing
phase of fJ=ψπ0ðsÞ at s ¼ 0. This is implied by the cross-
channel effects, i.e., the functions FV

π
�ðsÞ and f1ðsÞ do not

have the same phase, and the discontinuity of fJ=ψπ0ðsÞ is in
general complex [24,43]. The modulus of the subtraction
constant jfJ=ψπ0ð0Þj can be fixed from the J=ψ → π0γ partial
decay width

ΓðJ=ψ → π0γÞ ¼ e2ðm2
J=ψ −m2

π0
Þ3

96πm3
J=ψ

jfJ=ψπ0ð0Þj2: ð4:3Þ

Using the value of the partial decaywidth of J=ψ → π0γ [39]
in combination with the above equation, one obtains:

jfJ=ψπ0ð0Þj ¼ 6.0ð3Þ × 10−4 GeV−1: ð4:4Þ

The phase ϕJ=ψπ0ð0Þ is a free parameter that can only be
accessed from the transition form factor experimental data
(see e.g., Ref. [24]). Due to the absence of data for
J=ψ → π0γ�, we set ϕJ=ψπ0ð0Þ ¼ 0 in our study.
In Fig. 9, we show up to

ffiffiffi
s

p ¼ 2 GeV our prediction for
the absolute value of the transition form factor resulting
from Eq. (4.2) and using the results from Eq. (3.2) (solid

FIG. 8. Diagrammatic representation of the two-pion contri-
bution to the discontinuity of the J=ψπ0 transition form factor
[cf., Eq. (4.1)]. The blue and red circles represent, respectively,
the full s-channel P-wave J=ψ → 3π amplitude f1ðsÞ and the
pion vector form factor FV

π ðsÞ.

1We shall wait for the arrival of new Dalitz distribution
experimental data from BESIII to ascribe a strict statistical
meaning to our χ2 fits.
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black line). This is our central result for the form factor. In
this figure, however, we also show the result of using the
unsubtracted KT solution for J=ψ → 3π (dashed blue line).
It is worth noting that both curves are similar and only a
slight difference is observed at the ρ peak. Additionally, the
calculations when an unsubtracted dispersion relation for
the form factor is used are also shown in the figure, both
with an unsubtracted (dotted red line) and once-subtracted
(dot-dashed green line) J=ψ → 3π amplitude. In the latter
case, we have cut the dispersive integral at 4 GeV2 to avoid
the dispersion relation to diverge. Again, both curves are
similar. In this case, the value at the real photon energy can
be calculated from the sum rule [28,43]:

fJ=ψπ0ð0Þ ¼
1

12π2

Z
∞

4m2
π

ds0
p3ðs0ÞFV�

π ðs0Þf1ðs0Þ
ðs0Þ3=2 : ð4:5Þ

This value is found to be jfJ=ψπ0ð0Þj ¼ 5.0ð2Þ×10−4 GeV−1

for both versions of the unsubtracted dispersion relation. The
quoted uncertainty is the systematic error from using the
different phase shifts as input. This value is in qualitative
agreement with the value extracted from the measured
J=ψ → π0γ in Eq. (4.4), indicating that the normalization
is saturated by the two-pion intermediate state contribution
by roughly 85%. The difference between the various lines
provides an estimate of the theoretical uncertainty associated
to our description.We expect our study to strengthen the case
for new experimental measurements of the shape of this form
factor, which would allow improving the understanding of
radiative J=ψ decays.

V. SUMMARY

We have analyzed the decay J=ψ → πþπ−π0 within the
framework of the Khuri-Treiman equations, which satisfy
the constraints imposed by unitarity, analyticity and cross-
ing symmetry. We have included the P-wave effects of the
ππ subsystem up to around 2 GeV, which are controlled by

the ππP-wave scattering-phase shift. We have seen that one
subtraction in the P-wave amplitude is necessary to achieve
a good description of the experimental data in the ρð770Þ-
region. The corresponding subtraction constant was fixed
from fits to the dipion invariant mass distribution from
BESIII. We have also seen that the P-wave alone is not
capable of reproducing the data in the mass region around
mππ ∼ 1.5 GeV, and that the inclusion of an F-wave
contribution arising from the ρ3ð1690Þ brings theory closer
to data in this region. In addition, we have provided
predictions for the transition form factor J=ψ → π0γ� up
to 2 GeV. Our study lays the groundwork for an event-by-
event likelihood fit of high-precision data from J=ψ decays,
which are expected to be available from BESIII in a near
future.
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